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Abstract

In this thesis, we designed and implemented a Neural Network which can identify
recurrent patterns in various metrics used in cellular network traffic forecasting and
conduct sufficient conclusions about the traffic in the future. Thanks to custom archi-
tecture and memory, the proposed Neural Network can handle prediction faster and
even more accurate, in real life scenarios. An architecture like this can divide fore-
casting process in two phases, offloading training for a faster centralized system and
giving the opportunity for low processing power devices to make instant predictions
in a more power efficient way than other algorithms used by the industry today. This
proposal may offer a solution for service providers to enhance cellular network perfor-
mance, by utilizing effectively all available resources with smart strategic planning,
that uses predictions by this proposed Neural Network architecture. This specific
Neural Network is implemented with state-of-the-art, open-source software libraries
developed by Google, offering seamless execution on both high and low end hardware.
Multiple predictions were made in the same data-set, in order to provide a robust con-
clusion about the performance and precision of the proposed Neural Network against
other algorithms from similar literature.
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Chapter 1

Introduction

1.1 Background

Traffic forecasting is important for cellular service providers, in order to strategically

plan their resources in an efficient and future proof way. Resources from energy

consumption to link bandwidth are becoming more and more valuable, due to the

exponential increase in cellular data usage. Research suggests that the increase will

continue with faster pace, so Service Providers must be ready to deal with this phe-

nomenon in the near future.

1.1.1 Core problem

There have been several works in the past that study subscriber generated traffic fore-

casting in cellular networks. Most of these prior studies try to understand wireless

spectrum usage and characterize network performance and capacity using small scale

measurements using a few mobile clients and outdated forecasting algorithms. To

understand the network usage pattern and subscriber1 behavior, a large scale com-

prehensive prediction algorithm comparison and analysis of a variety of metrics must

be performed. A detailed algorithmic performance and accuracy study of subscriber

Internet generated data traffic forecasting is still lacking and it is a need that must

1The terms client and subscriber are used interchangeably in this thesis.
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be covered as quickly as possible.

1.1.2 Related work

It is noteworthy that only a few studies have investigated data traffic of cellular mobile

Internet with modern and efficient algorithms.

Most related studies address only well-known prediction models that have chal-

lenged a few crucial problems. An appropriate example are all traditional time-series

forecasting models including ARIMA2, that due to the lack of a dynamic learning

mechanism, cannot fit data sequences very well for irregular or non-periodic time

series. AutoRegressive Moving Average3, for example, is sufficient only for Poisson

distributed values and has short-range dependence [29]. More complex models, such

as Support Vector Machine and wavelet-based models, mainly use data during a short

range of time near a predicted time point, they are not the first choice to model a

time-series with self-similarity or long-range dependence [29].

Instead, Neural Networks, trained with the right data-set can outperform com-

peting forecasting models, by range and accuracy.

1.1.3 Proposed solution

Due to the rich multifractal4 behavior of cellular Internet traffic, modern signal pro-

cessing algorithms like Artificial Neural Networks5 can easily outperform model based

algorithms [12].

Artificial Neural Networks, firstly introduced in 1940s as a set of functions that

can model complex functional relationships, by utilizing interconnected mathematical

nodes, called neurons, due to their similarity with the neurons of human nervous

system. Instead of modelling the given data, Artificial Neural Networks are used as

an alternative mathematical tool for classification, pattern recognition, predictions

2ARIMA stands for Auto Regressive Integrated Moving Average.
3Also known as ARMA.
4Multifractal is an abstract object used to describe and simulate naturally occurring objects.

Fractals commonly exhibit similar patterns at increasingly small scales.
5The term Artificial Neural Networks will also be referred as ANNs for short in this thesis.
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and other tasks performed in auto-correlated data.

In particular, Long-Short Term Memory6 recurrent neural network7 architecture

remembers values over arbitrary intervals. LSTM is well-suited to classify and predict

time series given time lags of unknown size and duration between important events.

Relative insensitivity to gap length gives an advantage to LSTM over alternative

RNNs, hidden Markov models and other sequence learning methods.

A big advantage Long-Short Term Memory Recurrent Neural Networks offer in

modern cellular network architectures is that part of their computation can be of-

floaded to a centralized system. Since training phase can be performed by a server,

all base stations can perform predictions in simple embedded hardware, allowing ser-

vice providers the option to completely automate strategic resource planning in base

stations themselves. That offers an energy, resource and cost efficient way for service

providers to address the problem of resource planning and allocation.

1.2 Structure and purpose

In this thesis, we analyze subscriber generated Internet traffic data, collected by a

4G network. We then predict various metrics that can provide useful information for

Service Providers, in order to strategically manage resources for future events. Before

that, a brief introduction to competing algorithms and useful metrics will be made,

in order to provide readers a spherical view of the proposed solution. Experimental

results will be presented and discussed to show the superiority of Machine Learning

algorithms in time-series prediction for data-sets with multifractal behavior, following

their implementation in current infrastructure.

Brief outline of Thesis chapters

The structure of this Thesis includes the following chapters:

Chapter 1 introduces the proposed scheme. Shows the advantage of the proposed,

6Long-Short Term Memory will be referred as LSTM for short.
7Recurrent Neural Network is also know as RNN.
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in-house build and tested, Long Short-Term Memory Recurrent Neural Network for

predicting subscriber generated traffic, compared to competing algorithms.

Chapter 2 is a brief theoretical introduction about the metrics that can be ex-

tracted from the existing cellular network and how we can use them for forecasting.

Chapter 3 is an in-depth review of the most commonly used algorithms for time-

series forecasting. We classify them into two big important categories. In the end,

since we are aware how every algorithm works, we compare all of the advantages and

disadvantages every algorithm has.

Chapter 4 begins with a brief introduction to Machine Learning and then focuses

on Neural Networks. Then, we give clear and simple explanation of how Neural Net-

works work and how they can improve forecasting. After mentioning the advantages

and the actions that require attention, we can safely read the proposed scheme of this

Thesis and understand the advantages of it.

Chapter 5 is the heart of this Thesis. It is an extremely detailed analysis of how

the proposed scheme works. Step-by-step explanation of the forecasting procedure

and in-depth analysis of all the components needed to build our proposed Neural

Network based forecasting mechanism will be given.

Chapter 6 begins with an introduction of how cellular networks work. It is really

important to know all the network components and how they connect together be-

fore proceeding to the proposed scheme. Gradually we dive into the importance of

Traffic-aware Network Architectures and then, we take a look at proposals in similar

literature, as well as the way our proposed scheme can be implemented in the existing

infrastructure.

Chapter 7 is a complete summary of every issue raised in this Thesis and a brief

insight at the future work.
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Chapter 2

Traffic Dynamics

Traffic forecasting in cellular networks is becoming increasingly important, as the

rapid demand for radio resources requires an energy-efficient, network-driven archi-

tecture. We study the behavior of subscribers on the part of their traffic, their mobility

and their activity on a time scale.

Traffic forecasting is based on the periodic similarity of traffic itself and requires

a certain amount of previous information to reduce uncertainty. Generally, when the

amount of previous information increases, the performance of the forecast improves.

2.1 Subscriber Dynamics

In general, we design the relationship between traffic generated by subscribers with

their mobility and their level of activity in every dimension [20]. Then, we present the

categories of data from the subscribers’ side, which can be used to extract information

and forecast their behavior in the future.

A brief reference will be made to the most common behaviors of each category as

well as to their impact on resource design in cellular data networks.
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2.1.1 Distribution of Subscriber Traffic

The simplest thing to do is to analyze the amount of data generated by subscribers

on the network. The result is a data and time volume diagram.

A logical issue with this technique is that there are users who generate huge

amounts of data traffic per day, as well as users that generate almost no data traffic

at all per day. Studies [21] show that only 1 of subscribers generate more than 60 of

daily network traffic and less than 10 of subscribers generate 90 of network traffic.

This shows a significant imbalance in network usage among subscribers, with few

subscribers using most network resources.

2.1.2 Subscriber Time Activity

We describe the subscribers’ activity time by the number of days in a week or the

number of hours of a day that generate data traffic. This approach deals with basic

questions such as whether subscribers often or occasionally create traffic. To un-

derstand subscribers’ time activity in detail, we are studying the distribution of the

transmission time used by each subscriber.

In the commonly used 3GPP or 3GPP2 standards, a subscriber requests and in

turn allocates a radio channel whenever it has data to send. The assigned radio chan-

nel is recalled by the network when the subscriber is idle for a certain period known

as the sleeping period that can be configured for different networks. A subscriber

can switch between active and idle status multiple times within a single IP mobile

IP session. We mention the time a subscriber holds on a radio channel, regardless of

whether he actually communicates, as the broadcast time [4].

In fact, active time gives us the time a subscriber uses radio and radio resources.

In general, studies [21] show that a typical subscriber occupies the radio channel only

for a short duration of the whole day.

18



2.1.3 Associate Subscriber and Traffic Activity

In this section, we define the relationship between the traffic generated by the sub-

scribers and the frequency of their occurrence in the trace. In particular, we focus

on demanding users, as they are the ones that carry most of the traffic. Studies [21]

show that the appearances of demanding users on the trail are uncommon but in fact

quite sporadic.

It is interesting to look at how effectively subscribers use radio resources and

whether there is a difference between small and large volume users. To do this,

we define a measurement called effective bit-rate. This is the ratio between the

traffic volume generated by subscribers in transmission time1 used by them. This

measurement tells us how efficiently the assigned radio channel is used to send the

traffic.

In general, it seems that most applications produce much less traffic [21] compared

to other applications for the same consumption time consumed. The most likely

reason for this is that applications tend to use the network sporadically [32] [21].

2.1.4 Subscriber Mobility

The signaling packets we receive provide enough information to track the base station

and the cell sector connected to the mobile terminal at all times. This provides us

with a rich set of data to study subscriber mobility based on the time stamp sequence

of the base station to which it is connected. We have this data at any time, regardless

of whether the subscriber is communicating or not [14] [5].

2.1.5 Base Stations Visited

In general, mobility is low in terms of the number of separate base stations visited [5]

[8]. The data only includes the number of base stations visited, but not the physical

extent of the trip.

1The actual time it actually occupies the radio channel, regardless of the traffic generated
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2.1.6 Radius of Gyration

To capture the physical distance we are using, we use a concept called a radius of

rotation or otherwise Radius of Gyration [14].

The radius of Gyration is the linear magnitude occupied by the subscriber trajec-

tory. It is calculated by the average of the displacement of the recorded subscriber

locations from a central point. The central point is the center of mass of the entire

orbit. This records the extent to which subscribers move, as opposed to the actual

distance traveled.

In general, the radius of rotation indicates the periodic nature of human mobility

with a period of 24 hours and the tendency to return periodically to the same position

[14] [24].

2.1.7 Associate Mobility of Subscribers and Traffic

Another way is to link the mobility of subscribers and the volume of traffic they

produce. This simply categorizes subscribers based on their degree of mobility. The

trend is that more mobile subscribers generate more traffic, as the average traffic

generated by subscribers in the higher mobility class is about twice as high as the

subscribers of the lowest mobility class [8]. This association of subscriber mobility

and traffic has implications for resource planning and spectrum management [24].

2.2 Base Station Dynamics

In this section, we focus our attention on the behavior of the network as a whole or

on base stations rather than focusing on subscribers.

2.2.1 Aggregate Load

We define load as the amount of data moving across all of the base station components

at a given point of time. When forecasting, we usually point our interest in the total

amount of data served by the given base station within a defined time frame.
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The most common metric used for load forecasting is Throughput2. Throughput is

the rate of successful message delivery over a communication channel. The throughput

of the system can be affected by various factors, including the limitations of underlying

analog physical medium, available processing power of the system components, and

end-user behavior. When various protocol overheads are taken into account, useful

rate of the transferred data can be significantly lower than the maximum achievable

throughput. Those factors are mainly non variable, so the total throughput used by

the base station can be proven a robust metric for load measurement.

Throughput measured at any time frame is a time-series. Time-series share many

similarities with one dimensional signals. Given that they include many signal prop-

erties, that make them ideal for analysis and forecasting with more complex signal

processing algorithms and not only as statistical mathematical models.

We will take advantage of this complex nature those signals have in later chapters

in the thesis, to make forecasts and take a step further to understand the hidden

patterns behind them.

2.2.2 Load Distribution

We can also characterize the total load across the entire network under review. By

analyzing the daily traffic volume for each base station, we can discern recurrent

geometrical patterns in the two dimensional space. This is a know behavior since

statistics [21] show that about 20% of the base stations account for the total traffic

load.

Carriers place cells to meet their best guess about where the most people will use

their phones and other devices, but network demand can flare up suddenly in certain

areas.

2Throughput is essentially synonymous to digital bandwidth consumption.
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2.2.3 Auto Correlation

For rigorous analysis of the periodic behavior describing the network load we evaluate

temporal correlation for load metrics. This will enable us understand the underlying

trends and seasonal variations better.

Figure 2-1: Self-Similarity of time-series.

Self-similarity is an adaptability of traffic in networks. Many factors are involved

in creating this characteristic. The scaling region for traffic self-similarity is divided

into two timescale regimes:

1. short-range dependence (SRD).

2. long-range dependence (LRD).

Experimental results [12] show that the network transmission delay separates the

two scaling regions. This gives us a physical source of the periodicity in the observed

traffic.
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Figure 2-2: Spatial correlation between images.

2.2.4 Spatial Correlation

Our main goal is to determine whether the network load is spatially related. This

can help the provider to properly distribute the resources.

It may also be useful [6] to predict the load of a single area, given the load of

another area. To ensure that the area of interest is fully covered and that Quality

of Experience3 is at all times, mobile operators develop overlapping blanks, which in

turn leads to similarities between traffic in the underlying cells.

3Quality of Experience is also referred as QoE for short.
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Chapter 3

Forecasting Models

Time series forecasting methodologies used for traffic prediction, fall into two main

categories and the combination of those. Linear, Non-Linear or Hybrid models.

Linear and Non-Linear Models

A linear model is one in which the independent variable is added or multiplied to-

gether with the parameters. A non-linear model has exponents, logarithms, or other

complicated functions of the independent variable and parameters. Some non-linear

models can be reduced to linear models to make it easier to do the fitting.

Figure 3-1: Linear and non-linear systems. The middle of the three figures above
shows a linear discrimination line between the two classes, although the line is not
linear in the sense of a straight line.

In order to choose a suitable model for traffic forecasting in the existing cellular
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network architecture, we first need to analyze the nature of the data. Below we present

various forecasting algorithms that can be applied to almost any type of time-series

based information we extract from the cellular network, mentioned in the previous

chapter.

3.1 Linear time series techniques

Linear models have drawn much attention due to their relative simplicity in under-

standing and implementation. They are used to model and predict the behavior of

complex systems.

Linear models describe a continuous response variable as a function of one or more

predictor variables. They describe the relationship between a dependent variable1 y

as a function of one or more independent variables2 Xi.

3.1.1 Autoregressive Moving Average

The ARMA model is combined from both AR and MA models, to obtain an accurate

model. The AR(p) model is written:

Xt = c+
p∑

i=1

φiXt−i + εt (3.1)

The notation MA(q) refers to the moving average model of order q:

Xt = µ+ εt +
q∑

i=1

θiεt−i (3.2)

The notation ARMA(p, q) refers to the model with p autoregressive terms and q

moving-average terms. This model contains the AR(p) and MA(q) models:

Xt = c+ εt +
p∑

i=1

φiXt−i +
q∑

i=1

θiεt−i (3.3)

1Dependent variable is also called ’response’.
2Independent variables are also called ’predictors’.
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The general model was described in the 1951 thesis of Peter Whittle, who used

mathematical analysis3 and statistical inference. Autoregressive Moving Average is

statistical model use with time series model for prediction [9]. The ARMA model

applied to well-behaved time series data. ARMA model are considered in adequate

for predicting data that integrate random. The ARMA linear time series model is

very significant to predict network traffic [9].

3.1.2 Autoregressive Integrated Moving Average

In the statistical analysis of time-series, ARIMA is a generalization of an auto-

regressive moving average4 model, that provides a parsimonious description of a sta-

tionary stochastic process in terms of polynomials.

The AR part of ARIMA indicates that the evolving variable of interest is regressed

on its own lagged values. The MA part indicates that the regression error is actually

a linear combination of error terms whose values occurred contemporaneously and at

various times in the past. The I, which stands for ’integrated’, indicates that the data

values have been replaced with the difference between their values and the previous

values and this differencing process may have been performed more than once. The

purpose of each of these features is to make the model fit the data as well as possible.

3.1.3 Fractional AutoRegressive Integrated Moving Average

Fractional AutoRegressive Integrated Moving Average5 can be deployed to model and

predict network traffic demand [28], which exhibits both long-range and short-range

dependence.

The main difference between FARIMA and ARIMA is that the former uses frac-

tional values instead of integers. specifically, FARIMA model shares the same form

of representation as the ARIMA(p,d,q) process:

3Laurent series and Fourier analysis.
4Autoregressive Moving Average is also referred as ARMA for short in this Thesis.
5Fractional AutoRegressive Integrated Moving Average also referred to as FARIMA or ARFIMA

in similar literature.
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(1 −
p∑

i=1

φiB
i)(1 −B)dXt = (1 +

q∑
i=1

θiB
i) (3.4)

In contrast to the ordinary ARIMA process, the ”difference parameter”, d, is

allowed to take non-integer values.

When the time-series show statistical self-similarity with long-range dependence,

FARIMA is the best option due to its fractional nature [12].

3.1.4 Seasonal AutoRegressive Integrated Moving Average

The seasonal part of an ARIMA model has the same structure as the non-seasonal

part. It may have an AR factor, an MA factor, and an order of differencing. In the

seasonal part of the model, all of these factors operate across multiples of lag6. A

seasonal ARIMA model is classified as an ARIMA(p,d,q)x(P,D,Q) model, where P is

number of Seasonal Auto-Regressive7 terms, D is the number of seasonal differences

and Q is the number of Seasonal Moving Average8 terms [9].

3.1.5 Kalman Filtering

Also known as linear quadratic estimation, it can be used in any place containing sta-

tistical noise and uncertain information about any dynamic system. Linear quadratic

estimators produce educated guesses of unknown variables.

Kalman filters use a series of measurements, observed over time and they are

ideal for systems which are continuously changing. They have the advantage that

they are light on memory, and they are very fast, making them well suited for real

time applications.

6Lag, or S, is the number of periods in a season
7Seasonal AutoRegressive is SAR for short.
8Seasonal Moving Average is also called SMA in similar literature.
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Figure 3-2: The Kalman filter keeps track of the estimated state of the system and
the variance or uncertainty of the estimate.

3.2 Non-Linear processing techniques

Non-linear time series are generated by non-linear dynamic equations. They exhibit

features that can’t be modeled by linear processes such as, time-change variance,

asymmetric cycle, higher-moment structures, thresholds and breaks.

3.2.1 GARCH model

The Generalized AutoRegressive Conditional Heteroskedasticity model9 is an exten-

sion of the ARCH model. The GARCH is a non-linear time series model introduced

to analyze financial data [3]. Based on this model, Nikkie C. Anand et al., have

developed a forecast algorithm in similar literature [3], where a one step prediction

recursively determines the forecast value of the traffic for the next time interval [9]. It

can capture the bursty nature of Internet traffic [9]. The GARCH model can capture

the conditional variance effectively, because of its dependence on variance at every

time instant.

9Generalized AutoRegressive Conditional Heteroskedasticity is also known as GARCH
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3.2.2 Artificial Neural Networks

Studies [15] show that nonlinear prediction based on Neural Networks, is more ap-

propriate for network traffic prediction, than linear prediction models. In general,

Neural Networks are widely used for modeling and predicting because they can learn

complex patterns through powerful self-learning and self-adaptability. Neural Net-

works are able to predict virtually any function in an efficient and stable way, when

the underlying data relationships are unknown.

Neural networks are a non-parametric adaptive modeling approach, based on the

observed data and not on a detailed mathematical model. The architecture and

parameters of the neural network are determined solely by the data-set. Neural

Networks are known [15] for the ability to non-linear mapping and generalization,

fault tolerance, adaptability and parallel processing capability.

Figure 3-3: Simplified Neural Network.

Neural networks consist of interconnected nodes, called neurons. Each connection

is characterized by a weight. The neural network comprises several layers of neurons:

1. An input layer.
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2. One or more hidden layers.

3. An output layer.

The most popular neural network architecture is the feed-forward flow, in which

the information moves through the network only forward, in direction from the input

to the output layer.

The use of a neural network as a prognostic tool involves two phases:

1. The training phase.

2. The prediction phase.

Through the training phase, the training data-set is presented in the input layer

and the neural network parameters are dynamically adjusted in order to achieve the

desired output value for the input set. The most commonly used learning algorithm

is the back propagation algorithm [26], where weights are continuously adjusted until

the output error falls below the predetermined value. In this way, the neural network

can learn correlated patterns between the input sets and their respective desired

outputs. The prediction phase represents the testing of the neural network. A new

input, not included in the training set, is presented to the neural network and the

output is calculated, thus predicting the outcome of the new input data.

The number of hidden layers and the number of nodes in each layer are usually

empirically selected. To be able to predict nonlinear values, the neural network must

have at least one hidden level. Many hidden layers slow down the training process and

increase the complexity of the Neural Network. In order to improve the non-linearity

of the solution, the activation functions of the neurons in the hidden layer are sigmoid

functions, while the output nodes have linear transport functions.

3.2.3 Support Vector Machines

Also know as SVM, is a linear supervised machine learning algorithm which, according

to recent studies [16], can be used for both classification or regression challenges.
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Figure 3-4: Support Vector Regression kernel comparison.

Given a data-set of training examples, each marked as belonging to one or the

other of two categories, a SVM training algorithm builds a model that assigns new

examples to one category or the other. A SVM model is a representation of the

examples as points in space, mapped so that the examples of the separate categories

are divided by a clear gap that is as wide as possible [22]. The SVM is very costly in

terms of time and memory consumption [9].

New examples are then mapped into that same space and predicted to belong to

a category based on which side of the gap they fall.

3.3 Hybrid Model techniques

Hybrid Models are a combination of two or more approaches, for analysis of the

network traffic.
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3.3.1 ARIMA/GARCH hybrid model

The ARIMA/GARCH is a combination of linear ARIMA with GARCH variance

[31]. Parameter estimation is the first step in fitting an ARIMA/GARCH model to

observed data.

In a standard ARIMA(r, d, m)/GARCH (p, q) model, there are five parameters

to be estimated.

1. The first step is to compute differenced parameter d. This parameter deter-

mines the time series stationary. For the network traffic data that behave non-

stationary, we can use differenced operation to change it from non-stationary

to stationary.

2. ARIMA model is a linear time series model that the mean is conditional changed

but the variance is constant. The ARIMA back shift parameters order of r and m

can be determined by auto-correlation function and its partial auto-correlation

function. For the characteristic of auto-correlation function describes the cor-

relation between the current states of the time series with the past, we can

determine the moving average (MA) parameters order m straight. For the

characteristics of the partial auto-correlation function describes the correlation

between the current states innovation of the time series with the past, we can

determine the auto regressive (AR) parameters order r directly.

3. The initial GARCH parameters p and q should be estimated independently [3]

comparing with the ARIMA parameters r and m.

The parameter estimation procedure of ARIMA and GARCH models are both

based on Box-Cox methodology. The ARIMA/GARCH model uses the lagged actual

traffic values to predict one-step-ahead traffic value [31].

However there bound to be some prediction errors that cannot be avoided by the

prediction model. This is because the real trace dynamic variance is out of expectation

of GARCH model variance prediction. The traffic predictability depends on the traffic

nature, the considered time scales and prediction step length. The non-linear time
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series model ARIMA/GARCH can model and forecast the network traffic better than

the traditional linear time series model. However, its prediction methodology is more

complex and unstable [31].

3.4 Brief comparison

Traffic prediction plays an integral role in telecommunication network planning and

optimization. The effectiveness of statistical models in forecasting future metrics

related to network traffic has been proved useful. Several researchers introduced

different approaches to forecasting network traffic in previous studies, most of them

mentioned in this thesis.

In a general rule, if the traffic follows a Poisson distribution and the series exhibits

short-range dependence, linear techniques including Auto-Regressive Moving Average

and its variants, may be sufficient. If the traffic is self-similar or it exhibits long-range

dependence, more complex models such as Artificial Neural Networks, Support Vector

Machines, and wavelet-based combined models need to be employed [2].

According to this thesis, some certain types of Artificial Neural Networks like Long

Short-Term Memory Recurrent Neural Networks, can outperform competing linear

techniques, including Auto-Regressive Moving Average10, due to the rich multifractal

spectra [12] of the traffic data. FARIMA model also provides a solid option, because

of its ability to eliminate long-range dependence by means of fractional differencing.

Traffic data are not only self-similar, but they also exhibit significant multifrac-

tal properties [12], so they can be exploited by complex algorithms based on signal

processing techniques.

10Note that for maximum performance, a long data-set is required in order to fit the Neural
Network in a efficient way.
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Figure 3-5: 3G Traffic multifractal analysis, as shown by Singularity Spectrum.
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Chapter 4

Machine Learning Approach

With machine learning, we are training a function f to map input X to output Y

with minimal loss on the test data. In machine learning that is called, supervised

learning.

Machine learning tasks are typically classified into three main categories.

1. Supervised learning. Neural Network is presented with inputs and their desired

outputs. The goal is to learn a general rule that maps inputs to outputs.

2. Unsupervised learning. No outputs are given to the Neural Network, leaving it

on its own to find structure in its input. Unsupervised learning can be a goal

in itself, as discovering hidden patterns in data.

3. Reinforcement learning. A Neural Network interacts with a dynamic environ-

ment in which it must perform a certain goal, without being programmed to do

so.

In fact, the majority of practical machine learning uses supervised learning. It

is called supervised learning because the process of an algorithm learning from the

training data-set can be thought of as a teacher supervising the learning process.

The data-set contains all the correct answers. The Neural Network iteratively makes

predictions on the training data and is corrected by making updates. Learning stops

when the algorithm achieves an acceptable level of performance.
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Supervised learning problems can be further grouped into another two categories.

1. Classification. A classification problem is when the output variable is a category.

A really common example is visual classification. Visual classification divides

objects from images into categories, such as ’cats’ or ’dogs’.

2. Regression. A regression problem is when the output variable is a real value.

Regression approach mainly used for stock market price forecasting.

For subscriber generated traffic forecasting, we are mainly interested in regression.

Given a sequence of numbers for a time series data-set, we can restructure the data

in order to convert them into a supervised learning problem. We can do this by

using previous time steps as input variables and use the next time step as the output

variable [23].

Figure 4-1: Basic Machine Learning categories.

Artificial neural networks are known as universal function approximators because

they are able to learn any function, no matter how scattered input data are, with just

a single hidden layer.

38



4.1 Deep Learning for prediction

Deep Learning is a branch of Machine Learning based on a set of algorithms that at-

tempts to model high-level abstractions in data by using Neural Network architectures

composed of multiple non-linear transformations.

Figure 4-2: Artificial Intelligence is an umbrella term, encompassing machine learning
and deep learning.

4.1.1 Neural Networks, the core of deep learning

Neural networks are capable of learning complex non-linear relationships and have

been successfully applied to the problem of time series prediction. Recently they have

been applied to the problem of traffic prediction.

Furthermore, a simple scheme that predicts the next value to be the equal to the

current value will pass these statistical tests, since the sequences are essentially the

same but shifted one step in time [23]. Several others claim [2] that neural networks

can successfully predict traffic, however in each one questions must be raised about

the validity.
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4.1.2 Recurrent Neural Networks

Recurrent neural networks are a type of neural network that add the explicit handling

of order in input observations.

This capability suggests that the promise of recurrent neural networks is to learn

the temporal context of input sequences in order to make better predictions [30]. That

is, that the suite of lagged observations required to make a prediction no longer must

be diagnosed and specified as in traditional time-series forecasting, or even forecasting

with classical neural networks [30]. Instead, the temporal dependence can be learned,

and perhaps changes to this dependence can also be learned.

4.1.3 Long Short-Term Memory Recurrent Neural Networks

Recurrent neural networks, like the Long Short-Term Memory network, add the ex-

plicit handling of order between observations when learning a mapping function from

inputs to outputs. The addition of sequence is a new dimension to the function being

approximated. Instead of mapping inputs to outputs alone, the network is capable of

learning a mapping function for the inputs over time to an output.

In addition to the general benefits of using neural networks for time series fore-

casting, recurrent neural networks can also learn the temporal dependence1 from the

data. Recurrent neural networks are able to learn the temporal dependence in the

input data, without the need to specify a fixed set of lagged observations.

Technically, the available context may allow recurrent neural networks to learn:

1. Trend. An increasing or decreasing level to a time series and even variation in

these changes.

2. Seasonality. Consistently repeating patterns over time.

1Temporal Dependence is the context of observations over time.
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4.2 Deep Learning for traffic prediction

As mentioned before, there are various metrics that can be extracted from the cellular

network.

Most of those metrics are easy to predict, because they present a strong correlation

between chronologically ordered values. Time-series problems, such as throughput,

time activity, radius of gyration and others, can be presented as signal and be fore-

casted by signal processing techniques, like Neural Networks [15]. Their predictability

is mainly determined by their statistical characteristics.

4.2.1 Data-set length significance

Due to the nature of cellular networks, an enormous data-set of measurements can be

extracted. That data-set can be used by a single or layers of multiple neural networks

in order to harvest more detailed and complex conclusions about subscriber activity

and usage trends.

The most significant thing to enable neural networks use this advanced prediction

functionality, is an appropriate training set required [15].

A small training set can result into a prediction model that cannot extend over

new unseen data2 [25]. On the other hand, a large training set can result into a more

accurate prediction model at the expense of a prohibitively high computational cost

[15]. Hence, there is a trade-off concerning the selection of the training set for the

prediction model. As a result, it becomes apparent that the proper selection of the

training set is of great importance for the client performance of the prediction model.

2The effect of losing forecast accuracy because of insufficient data-set is also known as under-
fitting
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Figure 4-3: Neural Network under-fitting and over-fitting effects. Over-fitting offers
better results in some scenarios.
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Chapter 5

Design & Analysis of the Proposed

Forecasting Application

In this work we build a terminal based software application, entirely based on the

proposed machine learning approach analyzed in previous chapter, that can easily be

executed in both embedded Unix and server systems combined. Given the data-set,

our software can evaluate, normalize and forecast future values of any given metric,

used by modern standards in network forecasting.

This application demonstrated, includes both the fitting phase1 of the LSTM

Neural Network and the testing2 phase for demonstration.

5.1 Traffic Data

Subscriber traffic data was kindly provided by Vodafone, which is a major Service

Provider in Greece. User personal information was removed from the data-set, in

respect to user privacy.

Data-set includes cells spatially located in Crete, during the months of March till

June, of 573 cells in total. We analyze subscriber generated traffic data collected from

a deployed 4G network in 2016.

1The phase that the Neural Network is being trained.
2Testing phase, is the actual forecasting, held by the trained Neural Network.
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5.1.1 Database Setup

All data samples are encoded in a csv file format. Csv files are commonly used

in industrial applications, due to the fact that they are easy to handle by modern

software libraries, and keep file size close to raw data size.

The csv file is organized as described bellow.

1. Time-stamp of the sample.

2. Downloaded traffic bits.

3. Activity time, in milliseconds.

4. Cell throughput, in megabits per second.

5. Cell ID, for classification.

This way, data are easy to filter and classify, in order to normalize and forecast.

5.1.2 Data Analysis

Before proceed to the actual forecasting, it’s really important to analyze the nature of

our data. Sample gaps and unwanted spikes, may affect the quality of the forecasts.

Rudimentary Seasonality

By performing data evaluation with Seasonal ARIMA with eXogenous regressors

algorithm3, we can clearly identify a rudimentary seasonality. It is important to note

that a Seasonal ARIMA with eXogenous regressors algorithm is implemented in the

application, developed for this Thesis.

Clear Trend

In a general rule, weekend behavior is slightly different than weekday behavior. The

load distribution is very similar in the weekdays, while the distribution in the week-

3This algorithm is also known as SARIMA X.

44



ends are somewhat different. As expected, weekends see increased load than week-

days.

Noise

Spikes and sample gaps in all metrics cause algorithms to perform poor, forecast with

lower accuracy than expected.

Figure 5-1: Accuracy and computation time benchmark of the most popular forecast-
ing algorithms, against of the proposed LSTM RNN. Less is better.

Linear time-series prediction algorithms like ARIMA and its extensions, seem to

be affected by unwanted artifacts in the signal. These algorithms use a technique

called moving average to calculate the trend in the series and it is directly connected4

to the forecasting results.

Long Short-Term Memory Recurrent Neural Networks, due to their ability to

memorize and forget weights [25] according to their activation function, they can

forget5 and re-evaluate their weights according to the correlation with rest of the

signal. That ability makes Long Short-Term Memory Recurrent Neural Networks

more versatile and resistant to errors, noise and sample gaps.

5.2 Data Filtering

As stated in the previous section, artifacts in the signal can cause forecasting algo-

rithms to lose accuracy. Defending against this problem, data filtering is required

before forecasting.

4It is a linear subsystem.
5This function of LSTM RNNs is called Dropout.
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Figure 5-2: Data Flow of the Demonstrated Application.

5.2.1 Spike Filtering

The main problem that causes forecasting inaccuracy are, the so-called, value spikes.

By definition, a spike is a comparatively large upward or downward movement of a

value in a short period of time.

Statistical Spike Elimination

In this Thesis we propose an algorithm suitable for spike elimination, which does not

distort the signal. It is very important to keep the signal intact, as close to the raw

data.

The algorithm is called Excess Average and is based on simple mathematical

calculations to eliminate the spikes with the least computational circles possible.

Excess Average consist of two main parts, the Upper and the Lower Filter Loop.

The Upper Filter Loop, classifies all values above the signal. If ai is greater than

the ae, then is classified as excessive.

ae = maxj(aj) ∗ p (5.1)

Where p is the excess percentage and maxj(aj) the statistical maximum.

The Lower Filter Loop, classifies all values below the signal. If ai is less than the

ae, then is classified as excessive.

ae = (maxj(aj) +minj(aj)) − (maxj(aj) ∗ p) (5.2)

Where p is the excess percentage, minj(aj) the statistical minimum and maxj(aj)

the statistical maximum.

If a value is classified as Excessive from the Upper or the Lower Filter Loop, a
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Figure 5-3: Evaluation accuracy comparison with Radial Basis Function forecasting
algorithm. First Figure, evaluation without Excess Average. Second Figure, evalua-
tion with Excess Average.

simple average value between the next and the previous value, replaces the current.

ai =
ai−1 + ai+1

2
(5.3)

The only parameters Excess Average algorithm requires, are an array that holds

the data-set and the percentage between the minimum and maximum value, that if

passed by a threshold, it replaces that value with the average of the next and previous

values.

f unc t i on excessAverage ( array , exce s s ) :

f o r i in range (1 , l ength ( array )−1):

i f array [ i ] > (max( array ) ∗ exce s s ) :

array [ i ] = ( array [ i −1] + array [ i +1]) / 2

i f array [ i ] < (max( array ) + min ( array ) ) − (max( array ) ∗ exce s s ) :

array [ i ] = ( array [ i −1] + array [ i +1]) / 2

return array

As we can see from the pseudo-code above, this algorithm is fast and efficient.
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Despite that, keep in mind that this algorithm must be applied with caution not to

distort the rest of the data.

Keep in mind that the following results presented in this Thesis, do not make

use of the Excess Average spike elimination algorithm, in order to exhibit a clear

view of the efficiency that the proposed machine learning algorithm has. It is advised

to always filter data before continuing to the training phase, especially if additional

information are available.

Advanced Spike Elimination

Simple spike filtering algorithms, like the Excess Average presented in the previous

section, may be fast and energy efficient, but for a real world scenario a more advanced

algorithm is needed.

In particular, Excess Average algorithm can be easily tweaked in order replace the

excess values by a percentage, calculated from the average trend of the time-series

and not the statistical minimum and maximum. Also, if additional information are

available, a series of Boolean values that indicate specific dates with spikes, can be

used to trigger the algorithm only on those dates. That way, we drastically reduce the

possibility to distort values from the rest of the data and make use of the algorithm

as a proper advanced spike elimination tool.

Beyond the tweaked Excess Average algorithm proposed, there are even more

complex statistical algorithms that can give more accurate results, but with a major

trade-off. Computational complexity and completion time.

5.3 Smart LSTM Training

As noted in previous section, it is demonstrated that an initial statistical processing

of the collected data and the subsequent selection of the training set can efficiently

improve the performance of the prediction model.

In similar literature [13], the authors use the notion of the Relative Standard
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Deviation6 so as to depict and exploit the statistical properties of the collected data.

The RSD is a measure of precision regarding the collected data and is defined as

RSD(%) =
σ

µ
× 100 (5.4)

where is the standard deviation and is the average value of the data set.

Practically, a small RSD for a set of collected data implies that the measurements

are averaged around their mean value, while a high RSD refers to collected data with

great variations. The former may correspond, for example, to busy times in a crowded

cell where the bandwidth is shared among all the subscribers, while the latter may

refer to quiet times where a small amount of subscribers exploits a large portion of

the available bandwidth [13].

We split our data-set in even blocks of data and select the one with the lowest

Relative Standard Deviation.

Figure 5-4: Proposed Smart LSTM Training.

That method produced higher forecasting accuracy in most cases, than the stan-

dard way of training the Neural Network with the whole data-set.

6Relative Standard Deviation, known also as RSD, is a standardized measure of dispersion of a
probability distribution or frequency distribution.

49



5.4 Analytic Forecasting Software Breakdown

Finally, we dive into the heart of this Thesis, the proposed Long Short-Term Memory

Recurrent Neural Network. Since the proposed architecture is complex enough, every

aspect of it must be analyzed and understood.

5.4.1 Libraries

Multiple libraries used to reduce the complexity of building the proposed Neural

Network. The most important libraries are listed below.

1. TensorFlow. An open-source software library for Machine Intelligence made by

Google.

2. Keras. A high-level neural networks API, capable of running on top of Tensor-

Flow, CNTK or Theano.

3. Pandas. An open source library providing high-performance, easy-to-use data

structures and data analysis tools for Python programming.

4. sklearn. Simple and efficient tools for data mining and data analysis.

5. NumPy. Fundamental package for scientific computing with Python.

Specifically, Google Tensorflow enabled us to achieve maximum performance, even

on embedded low-power devices.

5.4.2 Data Normalization

It is important to analyze every part of the code in our proposed application, in order

to give readers the ability to continue our work.

Our software comprises of many important complementary functions, that trans-

form the data before proceeding to the fitting phase of the neural network.

In our proposed scheme, Long Short-Term Memory data preparation consists of

three main phases.
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Figure 5-5: Complete Data Transformation Flow Chart.

1. Transform time series metric data into a supervised learning problem.

2. Transform the time series metric data to stationary data.

3. Transform the samples to have a specific scale.

Keep in mind that we should keep track of every transformation applied to data,

in order to reverse it after the testing phase.

Transform Time Series to Supervised Learning

According to Keras library documentation, supervised learning data should be divided

into input and output components.

As stated in previous chapters of this Thesis, traffic prediction is a time-series

problem. In a time-series problem, we achieve this division by using the samples from

the last time-step as the input and the sample at the current time-step as the output.
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Pandas library function shift() quickly push all values in a series down by a

specified number of steps. We require a shift of one step, which will become the input

variables. The time-series as it stands will be the output variables.

Then we concatenate those two series together to create a Data-Frame, ready for

supervised learning. The series will now have a new position at the top without any

value. This is called a NaN7 and will be used in this position. Later, we replace these

NaN values with zeros, which the LSTM model will have to learn.

Transform Time Series to Stationary

It is clear that our data-set is not stationary.

In short, this means that there is a structure in the data that is dependent on the

time. Specifically, there is a specific observed trend in our data, mentioned in the

previous chapter.

In order to proceed, the trend must be removed from the samples, then added

back to forecasts later to return the prediction to the original scale and calculate an

error score, in order to evaluate our forecast.

A quick and reliable way to remove trend from our data-set is by differencing

the data. Simply, we subtract the previous time-step from the current sample. This

removes the trend and provide us a difference series. A difference series are the

changes to the samples from one time-step to the next.

Pandas library includes a completely automatic way to implement differencing,

but in our proposed application a build-in-house differencing function is implemented.

This is preferred for flexibility and further control over data.

Transform Time Series to Scale

Similar to other neural networks, Long Short-Term Memory Neural Networks expect

data to be within the scale of the activation function used by the network.

7NaN stands for Not a Number. It is a numeric data type value representing an undefined or
unrepresentable value.
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The default activation function for Long Short-Term Memory Neural Networks is

the hyperbolic tangent8, which outputs values between −1 and 1.

It is very important the scaling coefficients values to be calculated only on the

training data-set and be applied to scale the test data-set and the forecasts. This is

to avoid contaminating the forecast with data from the test data-set.

By using scikit-learn transform classes, we transform our data-set to the range

[−1, 1] using the MinMaxScaler class. This class requires data provided in a matrix

format with rows and columns, so we reshape our arrays before transforming.

5.4.3 Long Short-Term Memory Model Development

The reason we prefer Long Short-Term Memory neural network over other types of

neural networks is that it is a type of Recurrent Neural Network.

Building LSTM Layers with Keras

Recurrent Neural Networks have the ability to learn and remember over long se-

quences and do not rely on a pre-specified window lagged samples as input. This is

referred as stateful, and it needs to be specified as True in Keras when defining an

LSTM layer.

LSTM layer in Keras keeps the state between data within one batch by default. A

batch of data is a fixed-sized number of rows from the training data-set that defines

how many patterns to process before updating the weights of the network.

In order to build an LSTM layer with Keras, input must be shaped to a matrix

with the specified dimensions.

1. Samples. These are independent data samples, typically rows of data.

2. Time-steps. These are separate time-steps of a given variable for a given data

sample.

3. Features. These are separate measures observed at the time of observation.

8Hyperbolic tangent is mentioned as tanh in mathematiical equations.
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We will frame the problem as each time-step in the original sequence is one sepa-

rate sample, with one time-step and one feature.

Proposed LSTM Neural Network Architecture

The batch size should be much smaller than the total number of samples in the data-

set. It, along with the number of epochs, defines how often the weights are updated.

Which practically means, how quickly the neural network learns the data.

Another important parameter used for defining the LSTM layer is the number of

neurons9. This is a reasonably simple problem, given that is a time-series forecasting

problem, so any number between 1 and 5 should be sufficient. Neurons number is

a parameter set mostly empirically. Keep in mind, that there is a trade-off between

optimal fitting time and forecast accuracy involved in this parameter.

We must set manually the neural network to be stateful, because the state in the

LSTM layer between batches is cleared by default.

LSTM( neurons , batch input shape , s t a t e f u l )

The network requires a single neuron in the output layer with a linear activation

to predict the given metric at the next time-step.

Once the network is specified, it must be compiled into an efficient symbolic repre-

sentation using a backend mathematical library. In this proposal, we use TensorFlow

as backend, due to the state-of-the-art algorithms, flexibility and performance it of-

fers.

In order to compile the network, we must specify a loss function and optimization

algorithm. In this Thesis we use ′mean squared error′10 as the loss function as

it closely matches Mean Squared Error that we use compare the algorithms. As

an optimization algorithm we use ′adagrad′, because of the efficiency it offers in

time-series forecasting. According to Keras documentation ′adagrad′ optimization

algorithm is ideal for recurrent neural networks as the LSTM we use.

9Neurons, are also called memory units or blocks in similar literature.
10’Mean Squared Error’ is ’mse’ for short.
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Figure 5-6: Proposed Training Phase.

Now that we finally defined our neural network, we use the Sequential Keras API

to create and compile our proposed LSTM RNN analyzed in this section.

model = Sequent i a l ( )

model . add (LSTM( neurons , batch input shape , s t a t e f u l = True ) )

model . add ( Dense ( 1 ) )

model . compi le ( l o s s = ’ mean squared error ’ , opt imize r = ’ adagrad ’ )

Manually Operated Neural Network Training

Once our proposed neural network is compiled by the Sequential Keras API, it is

ready to be fit to the training data-set. Because our network is stateful, we must

manually control when the internal state is reset. In order to achieve this we must

manually manage the training process one epoch at a time across the desired number

of epochs.

Due to Keras API the samples within an epoch are shuffled prior to being exposed

to the network by default. Of course, this is undesirable for our proposed LSTM
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neural network because we want it to build up state as it learns across the sequence

of samples of the training data-set. So, sample shuffling must be disabled by setting

′shuffle′ to ′False′. Since we manually control the fitting operation we must reset the

internal state at the end of the training epoch, ready for the next training iteration.

Keep in mind that increasing the number of epochs may result to overfitting. The

dangers of overfitting discussed in a previous chapter in this Thesis.

The possibility of overfitting exists because the criterion used for selecting the

neural network parameters is not the same as the criterion used to judge the suit-

ability of it. For example, a specific neural network architecture might be selected by

maximizing its performance on some set of training data, and yet its suitability might

be determined by its ability to perform well on unseen data; then overfitting occurs

when the neural network begins to ’memorize’ training data rather than ’learning’ to

generalize from a trend.

In order to prevent overfitting in our proposed scheme, epoch number must stay

low11, depending on the data.

Also, batch size must be set to 1, because it must be a factor of the size of the

training and test data-sets. This is ideal for forecasting time-series, because that way

we make one-step forecasts on the test data-set.

Proposed LSTM Forecast Phase

After our proposed LSTM Neural Network is fit to the training data-set, it can be

used to make accurate forecasts.

We decide to fit the Neural Network at once, on all of the training data and then

predict each new time-step one at a time from the test data-set. This is called fixed

approach. We also have the flexibility to fit our Neural Network dynamically, at

each time-step of the test data-set as new samples from the test data-set are made

available. This is called dynamic approach.

Keep in mind that dynamic approach can give more accurate forecasts, since

11Epoch number is usually set empirically through test or by using algorithms to guess the best
parameters.
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it dynamically adapts to the training data-set trend, but fixed approach can give

complete forecasts faster and with considerably less computing power.

In this Thesis, we propose to follow fixed approach to reduce computational com-

plexity and powerful hardware demand, in order to give Intelligent Agents the ability,

not only to forecast, but also to fit data locally. As the embedded raw computing

power increase over time and hardware prices drop, it is highly recommended to

switch to dynamic approach, also analyzed in this Thesis.

We sum up the forecasting operation in a synonymous function. The function

returns an array of predictions, one for each input row provided. Because we are

providing a single input, the output will be a 2 dimensional array with one value.

Figure 5-7: Proposed Forecasting Phase.

Given a fit neural network, a batch-size used when fitting the neural network, and

a row from the test data-set, the function will separate out the input data-set from

the test row, reshape it, and return the prediction as a single floating point value.

As stated in the current chapter before, during training the internal state is reset

after each epoch. This is something we clearly do not want while forecasting. We

do not want to reset the internal state between forecasts. In fact, we would like the

model to build up state as we forecast each time-step in the test data-set.

In our proposed work, we seed the state by making a prediction on all samples in

the training data-set. That way the internal state is set up ready to forecast the next

time-step.
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5.5 Forecast Analysis

Now that our Neural Network is complete, it is time to fit it on our data-set and

evaluate its performance.

5.5.1 Evaluating Forecast Performance on Existing Data

In our proposed work, we include a tool called ’Evaluation’. Evaluation is the tool

that helps the user to evaluate the accuracy performance of the Neural Network in

the given data-set and parameters.

During the Evaluation, we set the Neural Network to forecast all samples from

the data-set it is trained to.

Evaluation is a really important tool, that helps the user understand if the param-

eters given, can cause overfitting or underfitting in the data-set, that will be used for

training. As stated before in this Thesis, overfitting or underfitting can may cause a

large deviation from the expected forecasted values. Not only in this case, but gen-

erally it is extremely important to configure Neural Networks correctly and evaluate

their performance before proceeding to real world forecasting.

Figure 5-8: Evaluation results of a Neural Network adjusted with the optimal param-
eters for the testing data-set.

For our proposed Long Short-Term Memory Engine, well adjusted Neural Network

parameters result to almost perfect match between trained and forecasted data-set.
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Since fitting and testing data-set is the same, almost zero error during evaluation

process indicates that the neural network is set-up correctly and ready to forecast in

a real world scenario.

A close match is a sign of a well configured Neural Network, but still not for

extremely accurate forecasting.

As stated before, over-fitting and under-fitting causes large deviation between the

forecasted values and the training data-set during evaluation. This is a sign that the

Neural Network, due to bad adjustment, is unable to learn or it memorizes instead of

forecasting. Results also include large Mean Squared Error numbers and long fitting

times.

Figure 5-9: Evaluation results of a Neural Network over-fitted to the training data-set.

The most profound way to avoid this effect, is empirically, through testing and

evaluating performance.

After we complete the Neural Network performance evaluation and we are cer-

tain about using the optimal parameters, we can proceed to a real world forecasting

scenario.

5.5.2 Perform Forecast on Unknown Data

Now, it is time to run a real world forecast, to draw some defining conclusions. Let’s

select a random cell from our data-set and forecast it’s future throughout values.
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For this forecast demonstration, we split 122 days of samples in half. The first 61

days will be used for training and the last 61 will be used for testing. That way, the

Neural Network will forecast the later without any knowledge of their actual values.

We also divide the 61 days in a specific number of data blocks, five in this specific

case and select the one with the lowest Relative Standard Deviation, as stated in the

previous subsection. That procedure ensure us that we train our model with the most

condensed data, that are averaged around their mean value.

Figure 5-10: Real world forecast at a random base station sample data-set.

As we conclude from the results, the proposed forecasting mechanism continues

the forecast with almost the same accuracy, even 60 days without any knowledge of

new samples. Prediction duration is almost instant, especially compared to algorithms

like Seasonal ARIMA or Support Vector Machine.

Let’s focus on this specific result from another nearby base station. For this

forecast we split 110 days into 6 even data blocks and chose the one with the lowest

Relative Standard Deviation. With ease we can distinct that the results follows the

flow of the real data and have low Mean Squared Error. It is almost impossible to

predict the daily fluctuation in throughput of every base station with that data-set

resolution, but we are confident that with additional samples our algorithm can reach

that level of accuracy.

For this next result, we made a week long forecast of an other base station, by

60



Figure 5-11: Brief, 11 day forecast.

Figure 5-12: One week forecast.

splitting 114 days in 4 data blocks and training the neural network with the one

that has the lowest Relative Standard Deviation. This forecast looks almost identical

to the real data and the Mean Squared Error is minimal. As we stated in previous

sections of this Thesis, using longer training data-set can return more accurate results.

Those last results are from two entirely different base stations, but yet share

enough similarities. They are week long like the previous forecasts. Despite the fact

that the left forecast belongs to a base station located in a more popular location than

the right one, both have accurate results, but failed to predict a sudden transition.

As previously mentioned, longer data-set and higher sample rate can train the neural

network to predict more spikes, but there are more factors that compose this behavior.
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Figure 5-13: Similar forecast behavior, from different base stations.

Using an advanced spike filter or disabling it completely can help identifying

upcoming unexpected transitions that appear periodically. Keep in mind that in

some cases this can increase the Mean Squared Error of the forecast.

Improve Forecasting Accuracy

There are several ways to improve forecasting accuracy. The best way to drasti-

cally improve accuracy is to increase the number of samples in our data-set. Huge

amount of training data can improve accuracy, but need more time to fit the neural

network. Choosing an alternative pre-processing or filtering algorithm can also give

better results. Training data-set pre-processing is important because gaps in sam-

ples or spikes in signal may confuse Neural Network weighting system. Another way,

also mentioned before, is to use the Evaluation tool and re-adjust Neural Network

parameters, to make sure that there is no over-fitting or under-fitting effects.

A more common scenario for forecasting application is just predicting the next

value of our metrics. At this point, it is important to note that this functionality is

build-in our proposed forecasting mechanism.

Benchmark Statistics

Since we use Mean Squared Error to calculate the deviation between forecasted and

real values, we can compare the accuracy of all algorithms against the proposed.

The results show that the Seasonal ARIMA provide less accurate results in less

time than ARIMA. Radial Basis Function of Support Vector Machine can give more
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Figure 5-14: Benchmark of a real world forecasting scenario between LSTM and
competing algorithms.

accurate results in less time than Seasonal and Linear ARIMA. Our proposed LSTM

RNN architecture can easily outperform all of the competing forecasting algorithms

in both accuracy and execution time.

Since forecasting can produce accurate guesses for long periods of time and data-

set training can be performed in specific hardware in parallel, the mechanism proposed

in this Thesis remains the best option.

5.6 Summary

We can clearly conclude this chapter by acknowledging the superiority of our proposed

Long Short-Term Memory Recurrent Neural Network against similar forecasting tech-

niques.

According the results, not only from this Thesis, but also from similar literature

[15] [30] [23], most of the commonly used linear forecasting algorithms fail to adapt

to the testing data-set. Linear time-series forecasting algorithms can mostly extract

the possible trend from the given data-set, but cannot identify patterns and make

educated guesses about future values.

Due to the rich multifractal behavior of the cellular subscriber Internet traffic

activity [12], Long Short-Term Memory Recurrent Neural Networks can easily out-

perform linear algorithms. Depending their architecture they can be used to forecast

time-series or signal values, given time lags of unknown size and duration.

A big advantage of the proposed Long-Short Term Memory Recurrent Neural

Network offer in modern cellular network architectures, is that part of their compu-

tation can be offloaded to a centralized system. Since training can be performed by

a centralized system, all base stations can perform predictions in simple embedded
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hardware, allowing service providers the option to completely automate strategic re-

source planning in base stations themselves. That offers an energy, resource and cost

efficient way for service providers to address the problem of resource planning and

allocation.
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Chapter 6

Cellular Network Architecture

In order to improve the resource management of cellular networks, traffic modeling

and prediction has been focused in recent years [10].

6.1 Network Architecture Overview

In this section, we go through some basic concepts of the existing cellular network

architecture. The typical architecture of a GSM/UMTS standard hybrid cellular

network, consists of an Access Network1 and a Core Network2 [27]. Access Network

is the edge part of a telecommunications network which connects subscribers to their

service provider, and Core Network is the central part of the network that provides

services to subscribers who are connected by Access Network.

In Access Network, subscriber uses a Mobile Station3 to connect to Base Transceiver

Station4, which can be identified by a unique number, the cell ID. In Core Network,

MSC5 processes the voice and text demand in Circuit Switch6 domain, as well as

1Access network is AN for short.
2CN also means core network.
3A Mobile Station, ST for short is considered any type of end user device with cellular connec-

tivity.
4Also called BTS or NodeB. Usually mentioned as base stations.
5’MSC’ stands for ’Network Switching Subsystem’.
6Circuit Switch is pictured as CS.
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Figure 6-1: Typical architecture of a GSM/UMTS hybrid cellular network.

Serving GPRS Support Node7 processes the data demand in Packet Switch8 domain.

Access Network has complex forms of connections and is adjusted frequently, therefore

it is difficult to monitor every Base Station [27].

In this Thesis, we use Signaling Monitor System in Core Network, as well as most

of the Base Station metrics, to get traffic information for forecasting.

6.2 Traffic-Aware Network Architecture

Despite the fact that research on traffic prediction is an established field, most existing

works [11] have been carried out on traditional wired broadband networks and rarely

shed light on cellular radio access networks9.

However, with the explosively growing demand for radio access, there is an urgent

need to design a traffic-aware energy-efficient network architecture [19] [17] [18].

7Serving GPRS Support Node is also called SGSN
8Packet Switch is also called PS for short.
9Cellular Radio Access Network is also known in literature as CRAN in similar literature.
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The rebuilding of a traffic-aware energy-efficient architecture for cellular networks

is becoming a trend [1] [7].

6.2.1 The TANGO Project

With traffic forecasting, it is possible for cellular networks to be configured and man-

aged more efficiently [10]. In similar literature, Niu et al. [17], advocated establishing

traffic-aware energy-efficient radio access networks, or the so-called TANGO10. One

of the key principles in TANGO is to make the working status of network elements,

mainly Base Stations, to be adaptively adjusted according to the traffic pattern.

Specifically, some Base Station or elements of Base Stations can be tuned into sleep-

ing mode to save energy when the predicted traffic is negligible [19], while other Base

Stations expand their coverage in a coordinated manner [17].

6.2.2 Long-Term Solution

Owing to the flexibility of resource allocation and its considerable agility to meet

explosively increasing traffic demands [27], Traffic-aware Networks would be the most

potentially suitable future cellular architecture [17] [18], in which traffic prediction

acts as one of the dominant factors for on-demand network management [10].

6.3 Centralized System for Prediction

The main concept behind using Neural Networks for subscriber generated traffic pre-

diction, is a centralized overlying system over the current cellular network architec-

ture.

Consider an Intelligent Agent located at the side of every Base Station, that is

responsible for monitoring the Base Station environment and storing all the necessary

data11, which will be subsequently used for the training process of the Neural Network.

10TANGO stands for Traffic-aware Network Planning and Green Operation.
11All measured data should be time-stamped network traffic measurements
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Figure 6-2: Overview of the proposed centralized system.

Then, based on the prediction model, the Intelligent Agent exchange sections of

it’s extracted measurements to a centralized system, a server, for the training phase

and gets back the trained model. Intelligent Agent data exchange should take place

only when the network is underutilized, most likely at dawn. At times where, due to

congestion or malfunction, Intelligent Agent could perform training phase itself, but

with the trade-off lower accuracy. That architecture allows for fast training and faster

prediction, by offloading the resource demanding task of training phase to proper

hardware and leaves forecasting phase to the energy efficient Intelligent Agent of the

base station. Base stations can become completely autonomous as the Intelligent

Agent estimates the forthcoming needs for resources and proactively requests their

commitment from the back-haul network.

6.4 Implementation in Current Infrastructure

Since this proposed architecture is presented as an overlying technology, there is no

need to alter the structure of the existing network in order to implement such system.

With just a simple set of hardware, this system can be set up and running. The

hardware needed for the proposed centralized system, consists of the following:
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1. Intelligent Agents are small network devices, that collect measurements and

execute the testing phase12 of neural network. They use the back-haul network

to send collected values to the Service Provider for the training phase13 and get

back the trained model for instantaneous and energy efficient forecasting.

2. Centralized Intelligent System is a server, spatially located near Service Provider

and is used solely for the training phase of Neural Network. Powerful and

efficient, GPU or CPU, hardware can be used to fit the Neural Network of

every Intelligent Agent quickly and transfer the trained model back to them for

the next phase.

No further devices are required to implement this proposed architecture. In case

of failure, Intelligent Agents are ready to take the situation in their hands and make

decisions autonomously. Transition to that model is fast, efficient and most of all safe

with respect to the current network, things that make it highly recommended.

12Testing phase and forecasting phase will be both be used in this Thesis.
13Training phase is also known as fitting phase.
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Chapter 7

Concluding Comments

7.1 Future Work

It is desirable to investigate how to leverage the additional information to further

optimize the proposed work and improve the prediction accuracy.

We intend to conduct another, but this time long term forecast, that the results

will be from a period more than one year. Such an experiment, will give us an idea of

the extreme exploitation of the proposed Long Short-Term Memory Recurrent Neural

Network architecture.

Another significant task, is to take into account seasonality. Exploiting seasonality

in extreme detail, may give an even more accurate insight in future traffic predictions.

Complete seasonality model separation between workdays and weekends, can make

it easier for neural network to distinct and learn human mobility patterns. The same

concept should be applied for daily seasonality, in order to explore every possible

combination that returns higher accuracy.

Understanding and forecasting cellular network traffic data, can have a dominant

impact on the operation and Quality of Service1 provided to the users every single

day and this sets a direction for exploring further this issue.

1Quality of service, or QoS for short, is the description or measurement of the overall performance
of a service.
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7.2 Summary

In this work we focused on developing a Traffic-Aware, Subscriber Internet generated

traffic forecasting mechanism, based on Long-Sort Term Memory Recurrent Neural

Networks, that can be implemented on the current cellular network architecture.

The proposed Neural Network mechanism is capable to recognize typical patterns

and the overall trend for each base station, by using embedded computing network

devices called Intelligent Agents. Since it is a centralized system, it can offload the

resource demanding task of training to proper hardware and leaves the forecasting to

the energy efficient Intelligent Agents of the base stations.

The idea is to implement this scheme in order to give the ability to the network to

configure itself and to propose intelligent solutions based on future traffic demands.

We believe that the contributions given on this work can be used to offer a solution

for service providers to enhance cellular network performance, by utilizing effectively

all available resources with smart strategic planning, that uses predictions by the

proposed mechanism of this Thesis.
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