
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΑΝΙΧΝΕΥΣΗ ΕΙΣΒΟΛΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΒΑΘΙΑΣ ΚΑΙ ΜΗ
ΚΕΝΤΡΙΚΟΠΟΙΗΜΕΝΗΣ ΜΑΘΗΣΗΣ

του

Ηλία Σινιόσογλου
1074

Επιβλέπων Καθηγητής: Επίκουρος Καθηγητής Παναγιώτης Σαρηγιαννίδης

ΙΟΥΝΙΟΣ 2020, ΚΟΖΑΝΗ

UNIVERSITY OF WESTERN MACEDONIA

DEPARTMENT OF COMPUTER SCIENCE AND TELECOMMUNICATION ENGINEERING

Diploma Thesis

INTRUSION DETECTION USING DEEP AND FEDERATED LEARNING

by

ILIAS SINIOSOGLOU
1074

Supervisor: Assistant Professor Panagiotis Sarigianidis

JUNE 2020, KOZANI

c© Copyright by ILIAS SINIOSOGLOU, 2020
All Rights Reserved

Copying, storing and/or distributing the contents of this work as a part or its entirety for
commercial use is strictly prohibited. This work may be used for non-profit, research or
educational purposes so long as it is adequately cited. For commercial use, the rightful
author of this work must be contacted. This work presents the pursue, evaluation and
findings of the author and it does not, in any way, represent the official stand of the

University of Western Macedonia.

ACKNOWLEDGMENT

The last five years, in which I have completed the span of my degree studies, have been

eventful and colorful with unexpected iridescence moments and have been full of knowledge.

Finishing this long journey and stepping onward to an unexplored future, I find myself

thankful to the Institution, the University of Western Macedonia, and its faculty that guided

me on this course.

As such, I would firstly like to thank my supervisor, Assistant Professor Panagiotis Sari-

gianidis, for his continuous support and guidance that he offered for this work and beyond.

Secondly I would like to thank Assistant Professor Stamatia Bibi for her insightful input and

comments in this work. Moreover, I would like to express my deep gratitude to Professor

Vasilis Argyriou for his critical input and reference in the field of this thesis.

Finally, I want to give my appreciation to everyone that helped me and supported me

through my journey.

iii

Abstract

In the frantic momentum that today’s technology is rapidly progressing, both people, atom-

ically, and organizations are trying to keep up with the latest and safest ways to procure

their everyday interactions with the digital world. More often than not, though, malicious

entities, those being socioeconomical or deterministic elements, try to undermine the normal

way that systems work and to actively exploit users or companies by overcoming the security

mechanisms that protect their privacy and function.

To tackle this problem and ensure the protection of the privacy and safe operation of

digital services, the field of cybersecurity strives to minimize the invasion of malicious entities

into personal or commercial networks. One of the implemented techniques used in the field

of cybersecurity are the Intrusion Detection Systems (IDS) that stand to recognize and in

extend prevent an attack to protect digital resources. By using already known digital system

interaction and through the methods of Machine Learning and Deep Learning, build and train

models that detect such attacks. A problem that arises, though, with the anonymization of

the data used to train IDS systems. Federation Learning, a novel decentralized method of

training and communicating deep learning models addresses this problem by decoupling the

data from the training process of centralized systems. This work delves into the building

of Intrusion Detection systems with deep learning algorithms and adapting them to the

powerful collective process of Federation Learning.

Abbreviations

ID - Intrusion Detection

IDS - Intrusion Detection System

AI - Artificial Intelligence

ML - Machine Learning

DL - Deep Learning

FL - Federated Learning

LAN - Local Area Network

MAN - Metropolitan Area Network

WAN - Wide Area Network

PLC - Programmable Logic Controller

RTU - Remote Terminal Unit

HMI - Human Machine Interface

MAC - Media Access Control

IPS - Intrusion Prevention System

IDPS - Intrusion Detection and Prevention System

NIDS - Network Intrusion Detection System

NBA - Network Behavior Analysis

AD - Anomaly Detection

AC - Anomaly Classification

API - Application Programming Interface

TP - True Positive

TN - True Negative

v

FP - False Positive

FN - False Negative

FID - Fréchet Inception Distance

GAN - Generative Adversarial Network

RNN - Recurring Neural Network

ACC - Accuracy

TPR - True Positive Rate

FPR - False Positive Rate

F1 - F1-Score

ABOD - Angle-Based Outlier Detection

Iforest - Isolation Forest

PCA - Principal Component Analysis

MCD - Minimum Covariance Determinant

LOF - Local Outlier Factor

LDA - Linear Discriminant Analysis

NB - Naive Bayes

SVM - Support Vector Machine

SVM RBF - Radial Basis Function Support Vector Machine

MLP - Multilayer Perceptron

AdaBoost - Adaptive Boosting

DNN - Deep Neural Network

ANN - Artificial Neural Network

IoT - Internet of Things

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT . iii

ABSTRACT . iv

ABBREVIATIONS . v

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF EQUATIONS . xvi

CHAPTER

1 Introduction . 1
1.1 A short story on Intrusion Detection . 1
1.2 Motivation . 2
1.3 Thesis Structure . 3

2 Network Elements . 4
2.1 Computer Networks Categories . 4
2.2 Industrial Networks . 6
2.3 Network Traffic . 7

2.3.1 Common Protocols . 7
2.3.2 Industrial Protocols . 9

2.3.2.1 Modbus Protocol . 10
2.3.3 Network Flows . 11

2.4 Industrial Operational Data . 11
2.5 Malicious Activity . 12

2.5.1 Indicators . 13

vii

2.5.1.1 Network Traffic Indicators 13

2.5.1.2 Operational Data Traffic Indicators 13
2.5.2 Attack Taxonomy . 14
2.5.3 Repercussions . 15

3 Introduction To Intrusion Detection Methodology 16
3.1 Intrusion Detection Systems . 16

3.1.1 Network Interaction . 18
3.2 Intrusion Detection Methods . 18

3.2.1 Signature Based Intrusion Detection 18
3.2.2 Anomaly Detection & Anomaly Classification 19
3.2.3 Stateful Protocol Analysis . 19
3.2.4 Used in this Work . 20

4 Deep Learning . 21
4.1 Summary . 21
4.2 Machine Learning . 21

4.2.1 Intro To Machine Learning . 22
4.2.2 Machine Learning Categories . 22

4.3 Deep Learning & Intrusion Detection . 23
4.4 Artificial Neural Networks . 24

4.4.1 Architecture . 24

4.4.1.1 Neuron . 24

4.4.1.2 Multi-layer Networks . 25

4.4.1.3 Activation Functions . 26

4.4.1.4 Loss Functions . 27

4.4.1.5 Forward Propagation . 27

4.4.1.6 Back Propagation . 27

4.4.1.7 Optimizers . 28
4.4.2 Training & Testing . 28
4.4.3 Metrics . 30

4.4.3.1 TP/TN - FP/FN . 30

4.4.3.2 Accuracy . 31

viii

4.4.3.3 Precision . 31

4.4.3.4 Recall . 31

4.4.3.5 F1-Score . 32

4.4.3.6 FID Score . 32
4.5 Federated Learning . 33
4.6 Tools and Frameworks . 34

5 ADA-CLA-GAN Design & Implementation 38
5.1 Design . 38

5.1.1 Basis . 38

5.1.1.1 Literature Review . 38

5.1.1.2 The GAN Architecture 39

5.1.1.3 The Autoencoder Architecture 40

5.1.1.4 The AnoGan Architecture 40
5.1.2 ADA-GAN Design and Specifications 41

5.1.2.1 Input Layer . 42

5.1.2.2 Generator-Decoder Module 43

5.1.2.3 Discriminator-Encoder Module 44
5.1.3 CLA-GAN Design and Specifications 45

5.1.3.1 Input Layer . 47

5.1.3.2 Generator-Decoder Module 47

5.1.3.3 Discriminator-Encoder Module 49
5.2 Implementation . 49

5.2.1 Development Environment . 50

5.2.1.1 Language . 50

5.2.1.2 Test Bed . 51
5.2.2 ADA-GAN . 51

5.2.2.1 Class Organization . 51

5.2.2.2 Modulation . 53

5.2.2.3 Data Preprocessing . 54

ix

5.2.2.4 ADA-GAN Initialization 54

5.2.2.5 ADA-GAN Training . 55

5.2.2.6 ADA-GAN Testing . 56

5.2.2.7 Produced Model . 57
5.2.3 CLA-GAN . 57

5.2.3.1 Class Organization . 58

5.2.3.2 Data Preprocessing . 60

5.2.3.3 CLA-GAN Initialization 60

5.2.3.4 CLA-GAN Training . 60

5.2.3.5 CLA-GAN Testing . 61

5.2.3.6 Produced Model . 61

6 ADA-CLA-GAN Experimental Results 63
6.1 Evaluation . 63

6.1.1 Dataset . 63

6.1.1.1 Anomaly Detection Data 64

6.1.1.2 Anomaly Classification Data 65
6.1.2 Metrics Comparison . 66

6.1.2.1 ADA-GAN Comparison 67

6.1.2.2 CLA-GAN Comparison 69
6.2 Experimental Configuration . 73

6.2.1 ADA-GAN Configuration . 73

6.2.1.1 Number of Epochs . 73

6.2.1.2 Batch Size . 73
6.2.2 CLA-GAN Configuration . 73

6.2.2.1 Number of Epochs . 73

6.2.2.2 Batch Size . 74

7 Federated Learning Extension - Design & Implementation 75
7.1 Design . 75

7.1.1 Basis . 75

x

7.1.1.1 Orchestrator . 76

7.1.1.2 Worker . 77
7.1.2 Federated Testbed . 77
7.1.3 Literature Review . 78

7.2 Implementation . 79
7.2.1 Federated Learning Convention . 79
7.2.2 Pre-Federation Training . 80
7.2.3 Dataset Federation . 80
7.2.4 Federated Model Training . 80
7.2.5 Results . 81

8 Conclusion & Future Work . 82
8.1 Conclusion . 82
8.2 Future Work . 84

xi

LIST OF TABLES

6.1 Attack Classes . 66

6.2 PDP01 Anomaly Detection Results . 67

6.3 PDP02 Anomaly Detection Results . 67

6.4 PDP03 Anomaly Detection Results . 68

6.5 PDP04 Anomaly Detection Results . 68

6.6 ADA-GAN Metric Statistics . 69

6.7 PDP01 Anomaly Classification Results . 70

6.8 PDP02 Anomaly Classification Results . 70

6.9 PDP03 Anomaly Classification Results . 71

6.10 PDP04 Anomaly Classification Results . 71

6.11 CLA-GAN Metric Statistics . 72

7.1 ADA-GAN Federated Results . 81

xii

LIST OF FIGURES

2.1 Local Area Network - (LAN) . 5

2.2 Metropolitan Area Network - (MAN) . 5

2.3 Wide Area Network - (WAN) . 6

2.4 Industrial Network Architecture . 7

2.5 OSI Network Model . 9

2.6 Modbus payload architecture . 11

2.7 Network Flow Model . 12

3.1 Intrusion Detection System . 17

3.2 Network Intrusion Detection System . 18

4.1 Biological Neuron . 25

4.2 Artificial Neuron . 25

4.3 3-layered Perceptron . 26

4.4 Forward Propagation . 28

4.5 Backward Propagation . 29

4.6 Anomaly Detection Neural Network - Loss History 30

4.7 Federated Learning Flow . 33

xiii

4.8 Tensorflow Library . 35

4.9 Keras API . 35

4.10 Scikit-learn Library . 36

4.11 Pytorch Library . 36

4.12 NumPy Library . 36

4.13 Pandas Library . 37

4.14 Matplotlib Library . 37

4.15 PySyft Library . 37

5.1 ADA-GAN Architecture . 42

5.2 Uniform Noise Distribution . 43

5.3 Generator-Decoder Structure . 44

5.4 Discriminator-Encoder Structure . 45

5.5 CLA-GAN Architecture . 46

5.6 Normal Noise Distribution . 47

5.7 Generator-Decoder Structure . 48

5.8 Discriminator-Encoder Structure . 50

5.9 Python Language . 51

5.10 Ubuntu OS . 51

5.11 ADA-GAN Class . 52

5.12 ADA-GAN Class Python . 53

5.13 ADA-GAN Class Mounting . 54

5.14 Generator Initialization . 55

xiv

5.15 Discriminator Initialization . 55

5.16 ADA-GAN Training . 56

5.17 ADA-GAN Testing . 57

5.18 CLA-GAN Class . 59

5.19 CLA-GAN Class Python . 59

5.20 Generator Initialization . 60

5.21 Discriminator Initialization . 60

5.22 CLA-GAN Training . 61

5.23 CLA-GAN High-level Evaluation . 62

6.1 Normal . 64

6.2 Abnormal . 64

6.3 PDP03 Readings . 64

6.4 Normal . 65

6.5 Abnormal . 65

6.6 PDP04 Readings . 65

6.7 ADA-GAN Accuracy Comparison . 68

6.8 ADA-GAN F1-Score Comparison . 68

6.9 ADA-GAN TPR Comparison . 69

6.10 ADA-GAN FPR Comparison . 69

6.11 CLA-GAN Accuracy Comparison . 71

6.12 CLA-GAN F1-Score Comparison . 71

6.13 CLA-GAN TPR Comparison . 71

xv

6.14 CLA-GAN FPR Comparison . 71

6.15 Anomaly Detection F1-Score Curve - PDP04 74

7.1 Federated Flow . 76

7.2 Federated Topology . 78

7.3 Dataset Federation - Pytorch API . 80

LIST OF EQUATIONS

4.1 General Accuracy . 31

4.2 Classification Accuracy . 31

4.3 Precision . 31

4.4 Recall/Sensitivity . 32

4.5 F1-Score . 32

4.6 Fréchet Inception Distance . 32

5.1 GAN Mathematical Model . 40

5.2 Autoencoder Output Formula . 40

5.3 Adversarial Loss . 41

5.4 Tanh Equation . 43

5.5 General Binanry Cross-Entropy Formula . 44

5.6 Sigmoid Equation . 45

5.7 Class Identification Formula . 47

5.8 Categorical Crossentropy . 48

xvi

Dedication

This thesis is dedicated to my mother and father who

persevered through my fantastical daydreaming, my sister that kept a straight face

through my unending whining, my friends without whom I would still be struggling

with basic math and lastly my professors who taught me to strive for success even in the

twilight of uncertainty.

xvii

Chapter One

Introduction

1.1 A short story on Intrusion Detection

Intrusion Detection (ID), as defined in [1], is the ceaseless effort to detect incoming attempts

of intrusion in a system. In the world of computer science, Intrusion Detection Systems are

specialized systems or services that work towards uncovering intrusive actions, by a third

malicious party, with the goal of exploiting of infliction damage to a system, an individual

or an organization.

The concept of IDS’s was introduced by James P. Anderson, in 1980, in his paper "How

to use accounting audit files to detect unauthorized access" some years after the USAF

introduced the problem of digital information security and privacy concerns in 1972. The first

rule based IDS was later developed in 1984-1986 by Dorothy Denning and Peter Neumann.

Today, the field of Intrusion Detection constitutes a rapidly advancing topic in the field

of cybersecurity and many infrastructures, either personal, commercial or industrial, depend

heavily on it. Using continuously evolving new technologies in almost every field of computer

science, such as Data Science, Logistics, Machine Learning (ML), Deep Learning (DL),

Software Defined Networking and many more, the field of Intrusion Detection is building

an arsenal of defending against malicious attacks that undermine the normal function of

digital services. Intrusion Detection Systems are described in depth in section 3.1: Intrusion

1

Detection Systems.

1.2 Motivation

In recent years, the abundance of information traded daily on both private and public net-

works, as well as the constant evolution of mechanisms for invading and intercepting this

information, have made intrusion detection systems necessary to ensure the privacy of users’

data. The techniques that malicious adversaries use to infiltrate and exploit private data

and services are ever-evolving and harder to detect and prevent.

The use of machine learning, specifically neural networks, in intrusion detection systems

is a field that has developed greatly in recent years due to its versatile method of producing

results. However, the mechanism of their training and operation often raises questions about

the privacy and concealment of the data required for this process. This problems tackles

an emerging field of machine learning and decentralized ML and DL data transfer method,

Federated Learning.

In this dissertation, an intrusion detection system using neural networks and the Feder-

ated Learning technique is investigated. This system aims to optimize the method detecting

anomalies in an industrial network running the modbus protocol and subsequently classify-

ing them while ensuring the privacy of users’ data during the optimization of the intrusion

detection deep learning model produced through non-centralized Learning. The objectives of

this work are to i) develop a novel method of detecting and classifying anomalies in a network

running the modbus protocol, ii) develop, train and evaluate a deep neural network using

the aforementioned method, iii) extent the designed architecture to accommodate Federated

Learning techniques and finally iv) test the produced system in a unified testing network

topology.

2

1.3 Thesis Structure

From this point on, this work is organized as follows. Chapters 2-4 give an extensive back-

ground to the architectures, tools and methods used to produce this work. Specifically,

Chapter 2 described the network elements, protocols and tools that contribute or are con-

nected with this work, Chapter 3 defines the Intrusion Detection field and its characteristics,

Chapter 4 gives an in depth description of the Deep Learning technology and methods.

Chapter 5 defines the basic concept of this work and depicts the architectural design and

principles. Moreover it illustrates the development of the mentioned system and each of its

separate branches. Chapter 6 evaluates this work and produces its results. Additionally,

Chapter 7 outlines the implemented extension of the proposed architecture to the Federated

Learning Environment. Finally, Chapter 8 concludes this work and presents possible future

extensions.

3

Chapter Two

Network Elements

Computer Networks form a fundamental pillar of today’s communication and global inter-

connection. They contribute in the transfer of enormous amounts of information and it is

that through them a lot of aspects of modern life have advanced so rapidly and successfully,

as they offer multilateral communication of that information all around the world. Modern

computer networks consist of a plethora of hardware and subsequently software elements

that communicate with each other.

2.1 Computer Networks Categories

There are a lot of different categories of computer networks, the major and most important

of which are:

• Local Area Network (LAN): These networks are typically small and encapsulate

a relatively small number of devices. They are implemented in small topologies like

homes, offices, schools, etc. and are defined by a small internal speed. These networks

are mostly isolated from the wide web and contain personal devices and devices of

interest. These networks are not restricted to wired connections only but can contain

wireless elements also.

4

Figure 2.1 Local Area Network - (LAN) [2]

• Metropolitan Area Network (MAN): MAN’s are bigger than LAN networks that

connect smaller networks together. They are defined by a bigger speed and bandwidth

and usually connect a amalgam of LAN networks in a specific area. MAN networks

are usually wide node networks in a wide area like a part of a city.

Figure 2.2 Metropolitan Area Network - (MAN) [3]

• Wide Area Network (WAN): WAN networks are larger than the aforementioned

categories. They connect all other categories of networks over great distances that can

cover from a town to a whole continent and more.

5

Figure 2.3 Wide Area Network - (WAN) [4]

2.2 Industrial Networks

There is a more strictly defined supercategory of LAN and WAN Networks that is the

Industrial Network. Industrial Networks can span the distance of both LAN and WAN

networks and can contain both categories in a unified network. As the name implies, they

are designed for commercial use in industries and organizations. They differ from normal

networks in the fact that most of the devices connected in the network are of industrial

use, such as, industrial sensors, field devices, controllers, servers, data centers and so on,

intended for industrial use and that they are designed to transfer in real time huge amounts

of information and accommodate a big number of these devices over great distances. This

means that the basic interactions within the network, but also the information transfer and

the access to the network components are strictly defined and specific to their function in

contrast to a personal network.

6

Figure 2.4 Industrial Network Architecture [5]

2.3 Network Traffic

Network Traffic is defined as the measure of the transferred information in a network in a

given time. Specifically, the total number of exchanged packets of the devices in the network.

The network traffic consists of packets of transmitted or received information of any given

device in the network, utilizing a specific communication protocol in a given network stack

layer.

2.3.1 Common Protocols

Network protocols constitute the basic communication interfaces in a computer network.

There are a lot of network communication protocols used to transfer information in a network.

Each protocol is communicated in a specific layer of the network communication architecture

as can be seen in figure 2.5 which depicts the Open Systems Interconnection (OSI) network

model. OSI is only one of the commonly used network models but there are more, each used

in a different implementation scheme. Some of the common protocols used in most of the

computer networks are:

• Internet Protocol (IP): It is the predominant network protocol used to facilitate

other transport protocols on top of it. Its function is to interface and route information

across networks.

7

• Transmission Control Protocol (TCP): TCP is a message transfer protocol used

for short information exchanges in a network. It is the dominant transfer protocol used

over networks and the world wide web. It is a connection oriented protocol running on

top of the IP protocol and is located in the transport network stack layer.

• User Datagram Protocol (UDP): UDP is a transfer protocol located in the trans-

port network layer. It is a connectionless protocol and thus unreliable and is responsible

for transferring continuous bursts of data like realtime data, media data and so on.

• Hypertext Transfer Protocol (HTTP): HTTP is a generic information exchange

protocol in the application layer. It is used by the majority of services allowing the

independent construction of system with a collaborative information exchange baseline.

• File Transfer Protocol (FTP): FTP is a protocol running on top of TCP/IP to

provide file transfer between system over the network.

• Domain Name System (DNS): DNS is the protocol responsible for translating and

matching domains to ip addresses so that the exchanging information can be routed

to the correct source.

• Address Resolution Protocol (ARP): ARP is a link layer protocol used for re-

solving internal network ip addresses to MAC addresses for information exchange in a

network.

• Simple Network Management Protocol (SNMP): SNMP is an application layer

protocol responsible for transferring management information on top of TCP/IP.

• Internet Control Message Protocol (ICMP): The ICMP is an internet layer

protocol responsible for control information messages. Its role is to diagnose and

inform about network communication issues and errors.

8

There are a lot more crucial network protocols that are not mentioned. The mentioned

protocols are the most commonly interacted protocols for malicious intents and are mentioned

as a preamble.

Figure 2.5 OSI Network Model [6]

2.3.2 Industrial Protocols

In Industrial Networks, except the common network protocols, there is also a wide range of

specialized industrial protocols that target and orchestrate information packing and routing

between industrial devices and service that function outside the scope of normal data com-

munication. Explicitly, they handle structured information payloads that refer to specific

processed and organization patterns, handling realtime data transferring, event notifying,

error posting and more. Even though there are protocols running in different network layers,

with the evolution of networks, most of these protocols run on top of the application network

layer. Some examples of industrial protocols are:

• Modbus

9

• DNP3

• RS-232

• Backnet

• IEC 104

2.3.2.1 Modbus Protocol

Modbus [7] is an open protocol, widely used in industrial applications. It is a simple protocol,

developed to be used with PLCs to control industrial network entities over serial commu-

nication and later RTUs developing also a Transmission Control Protocol (TCP) wrapper

scheme to be used over modern networks. In this work the ModbusTCP module is utilized.

The basic Modbus entities in a network are i) Modbus Clients, ii) Modbus Servers and iii)

Modbus Slaves. The Client is a remote query terminal, such as an Human-Machine Interface

(HMI), requesting information from the Modbus servers and sending control information

to them. Servers usually represent either PLC or RTU controllers in the network. Those

controllers supervise Modbus Slave entities, such as Acquisition Blocks, that oversee the field

devices. Each Server can have multiple Slaves with unique slave IDs attached to them. In the

Modbus protocol the data are stored in four tables in each device. Each table corresponds to

the Discrete inputs and outputs (COILS) and Numerical inputs and outputs (REGISTERS)

respectively, in Modbus memory addresses.For the request and responses specific Function

Codes (FC) serve to signal the devices about the payload of the incoming package. The

most common function codes are a) Read Coil Status (FC01), b) Read Input Status (FC02),

c) Read Holding Registers (FC03), d) Read Input Registers (FC04), f) Force Single Coil

(FC05), g) Preset Single Register (FC06), h)Force Multiple Coils (FC15), i) Preset Multiple

Registers (FC16).

A Modbus TCP packet consist of the TCP protocol wrapper and the Modbus packet.The

Modbus packet encapsulates information about a) the Slave ID, b) the Function Code, c) the

10

Starting Address of the address frame requested for information or change, d) the number

of addresses following the Starting Address.

Figure 2.6 Modbus payload architecture

2.3.3 Network Flows

As network flows are defined a number of aggregated computer network traffic, packet trans-

missions with a sum of mutual characteristics [8]. Usually, these mutual elements are a) the

Source IP, b) the Destination IP, c) the Source Port and d) the Destination Port. Depending

on the level of abstraction that the flow is extracted from, a flow can be classified as one-way

or as two-way flow [9]. Moreover, individual network flows are described, usually, by the

same protocol. As will be seen in section 6.1.1.2 - Anomaly Classification Data, Modbus

network flows from industrial applications are used to provide the data needs for this work.

Figure 2.7, shows the structure of a network flow model.

2.4 Industrial Operational Data

One category of the network elements of Industrial Networks contains the field equipment, as

shown in 2.4. The field devices represent serve as the edges of an industrial establishment and

are either passive monitoring devices (e.g., sensors, meters, etc) or functional devices (e.g.,

Actuators). Commonly, the field equipment measures the performance of its designed task.

11

Figure 2.7 Network Flow Model [10]

Especially in the case of monitoring devices, they return a large number of task related data.

In Industrial facilities these data can be voltage measurements, water/liquid levels, pressure

and other invaluable information for the auditing of the normal operation of the said facility.

This information circulates through the network, using some of the protocols described above

back to the main facility systems to be checked and, in case of an abnormality, for a correct

action to be taken accordingly. These data belong to the time-series category, meaning

that they are time-dependant. In contrast with flow-based data that rely on the statistical

information offered by a given frame of information, the time-series data offer time correlated

arrangements that can be used for identifying patterns in the data.

2.5 Malicious Activity

In a computer network, malicious activity is every process that takes place in that network

contrary to its normal and established function, caused by a third party. Commonly, and

depending to the network, a third party might try to exploit information and processes

withing the structure. These actions can have catastrophic consequences both to the network

and the person or organization that holds it. The same can be said about the Industrial

12

Operational Data. A third party, using the network as a channel, can target the operation

of a facility’s device in order to cause malevolent abnormalities.

2.5.1 Indicators

2.5.1.1 Network Traffic Indicators

Malicious network activity comes in all shapes and forms. Since computer network archi-

tecture is multilayered, there are different attacks and approaches to infiltrate and exploit

different parts of a network [11]. From individual packets to aggregated flows, the indica-

tors may vary. Another factor that plays a part for the indication of abnormal activity in

a network is the perspective of the third party’s view of the network, i.e., from within the

network, from affiliate networks or outside of the network. Nevertheless, the most common

indicators for anomalous activity are actions that contrast the normal activity of the network.

These, actions may be an atypical communication from unrelated devices, a weirdly elevated

number of transmitted or received packets in total or from a specific protocol, authorization

access of key elements and more. Section 3.2 describes frequently used intrusion detection

methods based on key indicators.

2.5.1.2 Operational Data Traffic Indicators

When talking about malicious activity indicators in the data send by the field devices it is

meant the abnormal readings that a monitoring device obtains. If there is a surge in the

activity of the equipment that contrasts its normal behaviour that is a serious indication that

something is wrong. Be that it is caused by a malfunction in the equipment or, somehow,

a third party found its way into the network and meddled with the function of the devices,

the system should be checked to avoid possibly catastrophic results. Anomaly Detection in

Operational Data is often used as a mean to indirectly detect Intrusions in an Industrial

Network.

13

2.5.2 Attack Taxonomy

There is a big variety of cyber attacks in different fields of computer science. These attacks

are the means to infiltrate and in extend exploit a system or a service. In networking most

attacks have a goal of getting access to the network and intercept information withing that

network or manipulate a process of a single or a group of network elements. Depending on

their target, method or outcome these attacks are separated in some major attack categories

[12] and [13].

• Viruses: Malicious programs that intercept or damage information and interfere with

services and propagate through infected files

• Worms: Self-propagating malware that spreads through a network without the need

of infected files

• Denial of service: Process through which a target service becomes unavailable due

to resource depletion

• Network attacks: Network implemented attack that exploit resources within the

network

• Physical attacks: Attacks that damage physical hardware

• Password attacks: Process aiming to uncover a password and obtain access to infor-

mation

• Information gathering attacks: Indirect process through which an attacker gathers

information used to implement other attacks or directly exploit individuals

Though Intrusion Detection is implemented in almost all of the attack classes mentioned,

in this work the attack category of interest is the Network Attack category. Network attacks

can be branched into sub categories, describing specific methodologies.

14

2.5.3 Repercussions

With the rapid advance of the digital world and the global interconnection through the

web as well as the increasing dependency on virtual means of controlling processes that

have an impact on the physical world, the real world implications of a possible malicious

exploitation become increasingly worrisome. Especially, in Critical Infrastructures (ICs) like

electrical grids or gas pipelines, constituted by Industrial networks, that depend heavily on

the precise and timely transfer of control and data of interest information, the consequences of

a successful cyber attack can bring catastrophic results. An example of these repercussions

took place in Western Ukraine on December 23rd, 2015 when the electrical network was

disabled leaving a big number of commercial areas and critical services without power [14].

15

Chapter Three

Introduction To Intrusion Detection

Methodology

As mentioned before, the rapid advancements in modern technological means and method-

ologies, as well as the volatile evolution of malevolent efforts to intrude and exploit these

means make the need for state-of-the-art security measures in order to fortify the continua-

tion of the privacy and integrity of digital services ever more essential. As such, the field of

Intrusion Detection takes over the role of timely identifying abnormal phenomenae in order

to consequently prevent and secure the target systems. Thus, ID is defined as the process

of monitoring and identifying events in computer systems and networks and analyzing them

in an effort to identify anomalous signs indicating possible intrusions [15].

3.1 Intrusion Detection Systems

The work in [16], defines an IDS as a software or hardware system that, using the methodolo-

gies defined in the field of ID, automates the process of monitoring and analyzing events in

a computer system or network towards identifying a possible intrusion. Usually, IDSs extent

or rather incorporate the function of Intrusion Prevention Systems (IPSs) and are called

Intrusion Detection and Prevention Systems (IDPSs). There are four main IDPS categories.

16

These are:

• Network-Based: They monitor network traffic and network elements of interest in a

variety of network topologies and deployments

• Host-Based: As the name implies they monitor single hosts of interest, auditing

behaviours of key system elements, processes and services within that host. Host-

Based systems are the most common category of IDS for securing targeted systems

• Network Behavior Analysis (NBA): Specified for monitoring network behaviours

and policy violations by analyzing flows or key network-specific features

• Wireless: Specialized in analyzing wireless network traffic and protocols specifically

used in wireless communication

It is important to note that in this work an IDS is not either designed or implemented.

Rather than the system, intrusion detection methodologies, as described below, used in

an IDS are developed. Nevertheless, it is deemed essential to delineate the structure and

workings of IDSs since they constitute the elements that adapt and utilize the proposed

techniques.

Figure 3.1 Intrusion Detection System [17]

17

3.1.1 Network Interaction

IDSs, most of the time are used in parallel with the network in which they are installed.

This happens due to the fact that some IDSs don’t or can’t analyze all of the observed traffic

of the network and if they can it is logical that they create a form of a bottleneck in that

network. Thus, traffic mirroring and packet sampling techniques are often used to provide

the necessary data to the detection system.

Figure 3.2 Network Intrusion Detection System [18]

3.2 Intrusion Detection Methods

The authors in [19] define the major ID methodologies that are used in modern IDPS systems.

There are three significant ID methods used to identify impending or in motion attacks in a

system or network, namely, a)Signature Based Intrusion Detection, b) Anomaly Detection

& Anomaly Classification and c) Stateful Protocol Analysis. These methods are described

below.

3.2.1 Signature Based Intrusion Detection

Signature Based Intrusion Detection is a method of recognizing known and documenting

attack patterns used by malicious elements. This is the simplest of the ID methodologies

18

and relies heavily on already documented patterns and deviations. Due to this fact it is

ineffective in recognizing novel or zero-day attacks.

3.2.2 Anomaly Detection & Anomaly Classification

Anomaly Detection (AD) is the process of observing the function of a system and detecting

atypical to that system behavior. Anomaly detection systems work by registering a system’s

normal behaviour definitions and then using that definition to compare ongoing operations.

If the current behaviour does not conform with the normal behaviour definition then it is

considered an anomaly and is treated as such. Anomaly based detection is a very powerful

tool that can detect novel and previously unseen attacks. One of the most major step backs of

this method, though, is that if the normal definition is contaminated with malicious samples

then it becomes vulnerable to that category of malicious attacks.

Even though Anomaly Classification (AC) isn’t included in the ID techniques, it can

be said that it is a different method of anomaly detection. It is part of the classification

problems category in the field of machine learning as the name reveals. It works by, in

contrast with Anomaly Detection, learning to distinguish between the different classes of

intrusions by assimilating profiles of all the provided attacks. This means that this process

gives the ability to not only detect an attack but also clarify it in a specific category. It works

in a similar manner as the Anomaly Detection methodology but in a more strictly defined

frame. Due to this fact, this method is vulnerable to unknown definitions and usually this

results in wrongly classifying a novel attack to a defined category, even if this category is

the "Normal" one.

3.2.3 Stateful Protocol Analysis

Stateful Protocol Analysis is a technique that utilizes predefined profiles, usually vendor

based in contrast to Anomaly based methods that are host or network-specific, describing

19

benign activities and behaviours. It compares these predefined profiles with currently ob-

served behaviours and detects those who significantly deviate from the generally accepted

model or protocol correlated with a specific profile. It has the ability to distinguish be-

tween levels of authorization, defined in the corresponding profile, and thus is effective in

universally used systems or services. The downside of this method is that, if the standard

describing the profile of a certain behaviour or protocol is not correctly defined or complete,

there is a high risk of bypassing its alertness.

3.2.4 Used in this Work

In this work, both an Anomaly Detection and Anomaly Classification methods for intru-

sion detection, primarily in Industrial Networks and Critical Infrastructures, are designed,

researched and developed. These implementations rely on the Deep Learning and Federated

Learning technologies. The reason behind the choice of these two methodologies is that

they offer a flexible way to recognize both new and documented attacks using novel machine

learning approaches that do not rely on predefined standards.

20

Chapter Four

Deep Learning

4.1 Summary

Deep Learning (DL), in the science of Artificial Intelligence (AI), is a sub-category of Machine

Learning that specializes in the accumulation of big data into models that target distinct

implementations. Specifically, it solves the problem of computer knowledge representation.

It uses complex structures to represent data into simpler representations [20]. DL takes its

principles from the workings of the human brain, mimicking the way that neurons handle

information. Structures named artificial neural networks learn from large amounts of data,

aiming to solve complex problems that normal ML implementations can’t. In this chapter,

the technology of Deep Learning is described in-depth, since it constitutes the main tool and

focus of this work.

4.2 Machine Learning

Machine Learning is an application of the algorithms and techniques of the science of AI

in order to produce systems capable of learning and adapting in an independent manner,

without being explicitly programmed to do so and by providing them with data in the form

of abstract observations.

21

4.2.1 Intro To Machine Learning

The field of Machine Learning started its upbringing in the 1950s by Arthur Samuel of IBM.

Until the change of the century a big portion of the foundations had been laid in the fields of

computer science and mathematics to support its life-changing ideals. It wasn’t though until

the bloom of the data revolution, magnifying the transfer and handling of huge amounts of

data, that ML started to be applied in complex real-world scenarios and get on its way to

commercial use.

As mentioned, ML is the science of creating self-sufficient and independent systems that

are able to learn from experience and use this experience to an end. Specifically, depending

on the use case of the applied ML algorithm, using mathematical tools like functions, models

and transformations, the ML systems produce a mathematical model related to the input

data. This model is then used to solve a targeted problem. These problems can be categorized

into three separate cases as described in the next section.

4.2.2 Machine Learning Categories

Depending on the problem, the problem parameters, the way the given data are obtained

but also on the nature of the said data, ML problems can be separated into three major

categories. Based on these categories, a different and unique implementation of the ML

theory is applied to solve the given problem. These categories mainly describe the relation

that the model will have with the input data and are called i) Supervised Learning, ii)

Semi-supervised Learning and finally iii) Unsupervised Learning.

• Supervised Learning: In Supervised Learning a mathematical model is produced

that correlates the possible input with a series of labeled outcomes. It is established

as the most common ML category based on its practicality in modern data-oriented

problems. This category encapsulates the practices of data classification and regression

22

• Semi-supervised Learning: Semi-supervised Learning is a byproduct of Supervised

Learning. It is used to correlate the problem’s input with a number of predefined

outputs, but in this case there may be a number of possible outcomes that are not

previously defined in the known outputs

• Unsupervised Learning: This type of learning is oriented in recognizing and group-

ing input data that are not labeled. It is used in problems that have the outcome is

not categorized and as such there is a need for clustering the problem’s variables into

groups to produce a solution

This work delves into two of the defined categories. AD is a Semi-supervised Learning

problem since it is tasked in recognizing abnormal samples in a dataset while the normal

samples have been defined and are used to produce the given model. AC is a Supervised

Learning problem since it corresponds to a given input with a given output.

4.3 Deep Learning & Intrusion Detection

Lately, and with the advancements in the DL technology, a big interest has been observed

in using the DL methodologies in the field of Intrusion Detection. The goal of using DL in

Intrusion Detection is to overcome the challenges of designing and developing an efficient

Network Intrusion Detection System (NIDS) [21], but also to tackle the main problems

that ML applications in the field bring, with the versatile nature of Deep Learning Systems

[22]. Specifically, in ID the branch of Deep Learning is utilized to overcome the need to

discretized and in sequence specify the features on which the learning will occur. Utilizing

its complex and powerful mathematical basis, the DL implementation helps in avoiding the

clustering of features but rather uses their full extent to learn the best possible correlations

of the given data so that it may recognize and in extent classify intrusions correctly. To

that end, modern processes have been created and common DL methodologies are used to

23

supplement the support of Intrusion Detection in modern IDSs. Some of these methodologies

are thoroughly used as a base to construct the DL models discussed in this thesis.

4.4 Artificial Neural Networks

Artificial Neural Networks (ANN) are mathematical-based, connection-oriented systems that

try to imitate the workings of biological neurons [23]. They work by building a numeric

adaptation of a given input learning from experience, trying to imitate the process of natural

knowledge acquisition. By implementing a set of interconnected layers of neurons or units,

each containing given weights on which the new knowledge is aggregated on the previous one,

they learn the relation of the given input by the means of mathematical processes specifically

created to help correlate the relationships of data. Assisting in this process, every network

contains a number of hyperparameters, defines as core node configurations that have a big

impact in a Neural Network’s aspect. Examples of hyperparameters are the learning rate of

a network, the neuron bias and others.

4.4.1 Architecture

4.4.1.1 Neuron

A neuron is a unit mathematical function that takes one or multiple inputs, multiplies them

with a set of weights and outputs their aggregation through a given non-linear activation

function. In every aggregation there is also provided a bias value for each neuron, that helps

with the accumulation of the data. The simplest and most fundamental form of a neural

network is a single Perceptron network, created by Frank Rosenblatt in 1958, being a one

neuron network able to learn. Figure 4.2 depicts the structure of an artificial neuron, while

figure 4.1 shows a biological neuron.

24

Figure 4.1 Biological Neuron [24]
Figure 4.2 Artificial Neuron [24]

4.4.1.2 Multi-layer Networks

Even though Rosenblatt’s single perceptron network is a functional example of a system

that successfully accumulates data it is not applicable in real world deep learning problems,

except in the case of binary classification of small problems (Support Vector Machine -

SVM algorithm). Modern neural networks are composed of multiple layers of interconnected

neurons, called hidden layers. By increasing the number of connected neurons an ANN is

able to accumulate a big amount of data and achieves its intended purpose with good results.

As such, ANNs are considered acyclic graph structures. Figure 4.3 shows a simple 3-layered

network containing the input layer, 2 hidden connected layers and the output layer. There

are different kinds of layers, the most common of which are the fully connected or Dense

layers. In a network there is no need for all of the layers to be connected with each other

or have the same number of neurons. Also, an ANN can have multiple inputs and multiple

outputs. The structure of the network depends on the use case and the architectural axes

that it follows.

25

Figure 4.3 3-layered Perceptron

In the various frameworks that support deep learning there is a variety of predefined layers

that are designed to have a distinct effect on the training process of a network. These layers

emerge from the research done in the field of applied mathematics and artificial intelligence

and can be found in the corresponding literature. This work utilized the said layers as a

means to achieve a better outcome.

4.4.1.3 Activation Functions

Activation functions are mathematical tools, also called non-linearities, that affect the output

of a neuron. For any given input, after the computation of the weighted sum in a neuron,

an activation function is the deciding factor based on which the neuron "fire" or activates,

or not. Since given that a computation in a neuron can have variable results in a wide range

between −∞ to ∞, it needs a way to know if the output is in a certain range to let it pass.

In all, an activation function work on the output of the neuron to help decide the activation

of the specific neuron. Below is a list of activation functions used in this work.

• Sigmoid

• Tanh

• Softmax

26

The usage of these functions is explained in the following sections.

4.4.1.4 Loss Functions

A Loss function can be described as the computed error between two values under compar-

ison. In ML and DL, the loss function measures the deviation of the predicted values of a

structure from the real given data, through a mathematical relation. Neural Networks use

these functions to help optimize the learning process and produce a better output, but also

to monitor the learning curve of a given network. Examples of Loss functions also used in

this work are the ReLU and LeakyReLU functions.

4.4.1.5 Forward Propagation

The Forward Propagation or Forward Pass is the process through which a Neural Network

accumulates the inputted data in a single epoch or iteration and produces and output. The

process dictated that the input is pipelined through the different layers of the network,

each layer accepting its input, processing and passing the output to the next, as they are

connected. During the Forward Pass, the data flow in the forward direction but not in the

reverse, as it would produce a cyclic loop. After the training of the network this process

is used to produce the outcome of the network. Figure 4.4 shows the Forward Propagation

process.

4.4.1.6 Back Propagation

Back Propagation is the process through which the fine-tuning of the network is realized.

By feeding the computed gradient of the functions used in the Forward pass in a chain rule,

the weights are updated in a way that produces a better loss score. This process ensures the

better learning of the network. The Back Propagation phase can be seen in figure 4.5.

27

Figure 4.4 Forward Propagation

4.4.1.7 Optimizers

Bach Propagation is an essential process for the optimization of the learning process of a

Neural Network and its generalization. This means that a method to procure this optimiza-

tion has to be developed and establish. Due to the fact, though, that the range of problems

that Deep Learning tries to solve is only constrained by the accompanying data, there is

not one global, catholic optimization method. For each different problem and data, a dif-

ferent optimization method should be applied. Thus, Optimizers offer distinct optimization

methods, developed to adhere to a variety of problems. There are a lot of Optimizers, some

examples of which are a) Stochastic Gradient Descent [25], b) Adam [26], c) RMSProp [27],

d)Adadelta [28] and more. This work relies heavily on optimizers to train the developed

networks in an optimal way.

4.4.2 Training & Testing

As mentioned before, to prepare an Artificial Neural Network and optimize it to produce

the desired results, it has to go through an accumulative process to learn the input data.

This process is call Training and it helps the network to learn from experience and generalize

the information it is fed. The training process is an essential part of Deep Learning. It is

28

Figure 4.5 Backward Propagation

comprised of a certain number of N iterations called epochs. In each epoch the network

takes an input of a portion of the data called a Batch that consists of K samples of the

input, usually selected randomly. Both the number of epochs and the batch sized are chosen

through an experimental process to find the optimal solution for the specific network. There

are some predefined methods for selecting these quantities, i.e. the number constitutes a

power of 2 and increments as such (24, 28, etc) but it still depends on the variables of the

problem. The training process encapsulates both the Forward Pass and Back Propagation

steps in each iteration. Through the monitoring of the loss scores, computed in every epoch

and by visualizing them, the learning process can be supervised and audited. an example of

a Training’s loss history is given in figure 4.6.

Figure 4.6 depicts the exponential decrease in the loss between the data predicted by the

Neural Network and the real data while the epochs increase.

The Testing phase usually occurs either between training sessions or in the end of the

training of a Neural Network. In this stage the network is tested in a set of data that was

not part of the training, to evaluate the overall performance of the network against the given

problem. Since the data were not part of the training procedure, the output of the testing

29

Figure 4.6 Anomaly Detection Neural Network - Loss History

gives a representative picture of the network’s capability to produce the desired results.

Depending on the problem category, i.e. Classification, which is a Supervised Learning

problem, a distinct testing method is followed, accompanied by the corresponding data.

During the Testing phase, a set of tools are used to measure the performance of the Neural

Network. These tools are called Metrics and are explained in the following section.

4.4.3 Metrics

In order to evaluate a Neural Network, a series of quantitative metrics are utilized to quantify

and compare the produced results. These metrics are commonly mathematical tools that

measure the performance of a given network by comparing information around its intended

purpose. These tools give meaning to the Accuracy, Precision, Sensitivity, Specificity and

other aspects of the network and help to recognize penitential flaws, diagnose and, in extend,

optimize that network. The most basic metrics that are also used in this work are explained

in the following sub-sections.

4.4.3.1 TP/TN - FP/FN

One of the most fundamental and important metrics, when it comes to Deep Learning, and

Machine Learning in general, is the TP/TN - FP/FN quantification. The True Positive

30

(TP), True Negative (TN), False Positive (FP) and False Negative (FN) represent the four

basic elements that the performance of a system like the Neural Network that tries to predict

the meaning of the input information, can be described in. They are leveraged to present the

number of rightly or wrongly predicted (and labeled) samples that the network outputs. A

confusion matrix of size [N xM | can be abstracted to these four basic elements. Furthermore,

a lot of more complex metrics use these four elements to describe more complicated and

representative measures.

4.4.3.2 Accuracy

Accuracy or Classification Accuracy is the quantitative metric describing the ratio of correctly

predicted samples to the total number of input samples [29]. The generalized expression for

calculating the Accuracy score is given by (4.1).

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(4.1)

For classification problems the formula is (4.2).

Accuracy =
TP + TN

TP + FP + FN + TN
(4.2)

4.4.3.3 Precision

Precision describes the ratio between the correctly classified sample against the number of

classified samples in that specific category [29]. The formula is depicted in equation (4.3).

Precision =
TP

TP + FP
(4.3)

4.4.3.4 Recall

Recall or Sensitivity is the metric that defines the ration between the correctly classified

positive sample against all the samples that are in actuality positive [29]. (4.4) shows the

31

expression through which we can calculate the Recall score.

Recall =
TP

TP + FN
(4.4)

4.4.3.5 F1-Score

the F1-Score describes the weighted average of the precision and recall of the produced

results. This measure indicated how many samples were correctly predicted but also how

accurate it is, i.e. the amount of missed samples. Its range is confined in [0, 1]. This metric

is one of the primary indicators that the network is robust and produces good results. Its

formula is described in (4.5).

F1-Score = 2
1

1
Precision

+ 1
Recall

(4.5)

4.4.3.6 FID Score

The Fréchet Inception Distance (FID score)[30] [31], is a high-level quantitative metric that

reveals the similarity between two datasets of images. It is a useful tool utilized to compare

the output of a specific category of Neural Networks called Generative Adversarial Networks

(GANs). Since in this work the GAN architecture is used to produce the described networks,

the FID score will be used to measure the performance of the developed Neural Networks.

The FID score, equation (4.6), is derived by adding the sum squared difference of the means

of the real data vector µr and the predicted data vector µp and adding the double of the

squared root of the covariance matrices of the aforementioned vectors Σr and Σp, respectively.

FID = ||µr − µp||2 + tr(Σr + Σp − 2
√

(Σr · Σp)) (4.6)

32

4.5 Federated Learning

As the demand for more sophisticated Machine Learning algorithms became a demand but

also the size of the data began to expand in size, arose the need for a system that can

handle big models that require monumental amounts of data across the cloud. Federated

Learning is a stochastic distributed learning and privacy-preserving method that undertakes

the distribution, orchestration, learning and aggregation of Deep Learning model across

a big corpus of devices or edge nodes in the cloud [32] [33]. It works by stochastically

disbursing a central Deep Learning model over a given corpus of devices. When received by

the edge nodes, the model is trained locally on-device with the data collected by the given

device and then, either the model or a targeted model update, is collected by the central

system. Consequently, a technique called Federated Averaging [34], which is defined as the

aggregation of the edge-computed weights with the central model, takes place. Figure, 4.7

presents the Federated Learning flow architecture as defined by the Google Research team.

Figure 4.7 Federated Learning Flow [34]

Except the decentralized learning, Federated Learning offers yet another powerful advan-

tage. By distributing and training the models locally on the edge devices there is no longer

33

the need to transfer the datasets to the central system. Since data privacy has been a major

concern from when the internet was engineered and put into commercial use, this imple-

mentation actively comforts the concerns for interception by just transferring the models to

be trained. Moreover, a wide range of implementations have been proposed for securing the

Deep Learning model transit and handling to further fortify the process. Finally, without the

need for large data communication, the possible ramifications of network bottleneck and slow

data transfer are avoided. These characteristics make the decentralized Federated Learning

method a powerful tool for Machine and Deep Learning cloud interconnection.

4.6 Tools and Frameworks

To realize the proposed work, a certain set of tools must be leveraged. There is a big variety

of tools available for Deep Learning as well as Data Manipulation and Visualization, each

with its own perspective to the implementation. This work relies heavily on such frameworks

to facilitate the base of the concept and the realization of the work described in each part of

this thesis. The following list describes the main Machine and Deep Learning specific and

supporting tools used in this work.

• Tensorflow: Tensorflow is an open-source programming symbolic math framework

containing a range of libraries for dala flow and differentiable programming tasks. It

is logged under the Apache License 2.0 License. The Framework is Python friendly,

the core programming language primarily used in this work. It also supports GPU

acceleration for heavy computations across clusters with CUDA support. It is used for

Machine Learning in the field of Artificial Neural Networks.

34

Figure 4.8 Tensorflow Library [35]

• Keras: Keras is an open-source API that focuses on Deep Learning. It is registered

under the MIT License. It is able to run on top of TensorFlow, Microsoft Cognitive

Toolkit, R, Theano, or PlaidML. It offers a large number of tools and building elements

to research, construct and test Artificial Neural Networks and is designed to be mod-

ular, user friendly, easy to integrate and extend. Most of the modern Deep Learning

applications in Python are using Keras with a Tensorflow backend to establish their

designs.

Figure 4.9 Keras API [36]

• Scikit-learn: Scikit-learn is a free Machine Learning library, featuring a plethora of

tools for designing, implementing and testing ML applications. It supports a number

of programming languages, namely, Python, Cython, C, C++ and is registered under

the New BSD License License. It offers a variety of ready to deploy Machine Learning

algorithms for Classification, Regression, Clustering and others. It also supports tools

for measuring the performance of these algorithms like the metrics described in the

previous sub-section.

• Pytorch: Pytorch is an open-source programming library, extending the Torch library.

Developed by Facebook’s AI Research lab, cointains multiple tools for the development

35

Figure 4.10 Scikit-learn Library [37]

of Artificial Intelligence related applications like natural laguage processing, computer

reading and more. It is licensed under the BSD License. Moreover, it is developed for

using with Python but also supports GPU acceleration for heavy computations with

CUDA and can be used with the C++ programming language.

Figure 4.11 Pytorch Library [38]

• Numpy: Numpy is a Python mathematical library oriented in data handling in multi-

dimensional arrays and matrices and supports an array of high-level mathematical

functions for operating on these data . It is defined under the BSD Licence.

Figure 4.12 NumPy Library [39]

• Pandas: Pandas is a high-level data manipulation library, commonly used in Data

Science. It offers a modular, high performance and easy to use data handling and data

analysis tools. In Machine Learning it is used to analyze, transform and format the

data fed into the ML and DL algorithms.

36

Figure 4.13 Pandas Library [40]

• Matplotlib: Matplotlib is an extension of NumPy used in the Python programming

language. It is a data visualization library, primarily utilized for plotting mathematical

data and provides a collection of tools and methods for formatting the said visualiza-

tions.

Figure 4.14 Matplotlib Library [41]

• PySyft: PySyft is a library that extents the Tensorflow, Pytorch and Keras frame-

works. It is intended for remote management of Machine and Deep Learnign applica-

tions, on-device prediction, privcy preserving and other communication and security

functions.It’s under the Apache License 2.0 license and can be used to develop Feder-

ated Learning Environments.

Figure 4.15 PySyft Library [42]

37

Chapter Five

ADA-CLA-GAN Design &

Implementation

5.1 Design

In this section is collocated the basic design principles of the ADA-GAN and the CLA-GAN

proposed architectures. They are analyzed and their configuration is described in depth.

5.1.1 Basis

5.1.1.1 Literature Review

In this part, work in Deep Learning Intrusion Detection is outlined.

In [43], a Deep Learning Intrusion Detection System, named RNN-IDS, is researched

for use in commercial networks. The authors with the use of Recurring Neural Networks

(RNNs) implement an IDS system for binary and multiclass classification. They evaluate

the proposed network and try to optimize the hyperparameters that compose it. Moreover,

they compare the proposed network with a number of known Machine and Deep Learning

algorithms and produce their results.

In [44] the authors develop a Deep Neural Network-based IDS system that is trained to

detect computer network anomalies. The network is trained to be able to detect and classify

38

novel and zero-day cyber-attacks. The developed model is trained using the KDDCup-99

dataset and is evaluated by testing it on a number of publicly available anomalous network

datasets in order to evaluate its performance and further optimize it. The authors ex-

tend their work by proposing a scalable multi-DNN IDS, called Scale-Hybrid-IDS-AlertNet

(SHIA), for real-time operation.

The work conducted in [45] produces an IDS system for in-vehicle networks, using the

Generative Adversarial Network (GAN) architecture. The produced system called "GIDS"

is able to detect novel unseen attacks in the network. By leveraging the utility of two

discriminator module, for known and unknown attack classification respectively, it can reach

high accuracy percentages in the novel attack detection.

The authors in [46] present an anomaly-based intrusion detection system that relies on

two Deep Neural Networks. The featured networks, namely, Levenberg-Marquardt and Error

BackPropagation, leverage the use of data extracted by a window-based feature extraction

process training, testing and evaluation. The data are composed of both normal and abnor-

mal traffic. The produced models are also evaluated on publicly available network intrusion

datasets. The resulting performance evaluation shows a perfect detection score for the given

attacks.

5.1.1.2 The GAN Architecture

A Generative Adversarial Network (GAN) architecture [47, 48] relies on two sub-neural net-

works, the Generator G and the Discriminator D. The Generator takes an input of random

noise and generates data similar to the real data. On the other hand, the Discriminator

inputs a sample of data and tries to classify them as real or fake. GAN’s aim is to push both

sub-networks, that rival each other, to train to a point that the Generator can produce data

that the Discriminator can’t distinguish from the real ones. Equation (5.1) below presents

the relation of G and D.

39

min
G
max
D
V (G,D) = min

G
max
D
Ex∼pdata [log(D(x))] + Ez∼pz [log(1−D(G(z)))] (5.1)

G accumulates noise z from space Z mapping it to the space X from which D inputs x.

pdata(x) and pz(z) denote the probabilistic distribution of Spaces X and Z respectively.

5.1.1.3 The Autoencoder Architecture

Autoencoders are networks that learn to mimic the input data by a process of compressing

them and consequently inflating them in a multilayer pipeline. Specifically, the network con-

sists of two sub-networks, the Encoder and the Decoder. The Encoder network compresses

the input data of space X to a manifold F . In contrast, the Decoder module inflates the

data of manifold F to a sample P , where P ∼ X. The aim of the Autoencoder architecture

is to help the network, through the training process, produce samples p that are similar to

the given real data r. After the training process, the network inputs unseen data and pro-

duces similar to the training. Equation (5.2) presents the data pipeline of the Autoencoder

architecture.

r, p : argmin
r,p

∥∥∥∥X − (p ◦ r)X
∥∥∥∥2 , r : X → F, p : F → P (5.2)

5.1.1.4 The AnoGan Architecture

In this work, the aforementioned deep neural network architectures are merged to produce a

unified neural network architecture used for anomaly detection and anomaly classification.

This is achieved by encapsulating the Autoencoder architecture into the structure of the

GAN network. GAN’s Generator takes the form of the Decoder while the Discriminator

takes the structure of the Encoder module. In this schema, the Generator takes an input of

a noise sample N ×M , where N is the number of noise points in a sample and M is the

number of input samples. The Generator then inflates those samples to produce samples that

40

mimic the desired data, like the normal GAN architecture. The Discriminator compresses

the output that the Generator produced into a single point, which is the validity label of

the sample. This is used to discriminate between real and fake samples. An intermediate

model is exported after the training from the Discriminator module. This model is the part

of the Discriminator from the input up to a latent layer before the output sequence of the

network and is used for the anomaly detection process. Specifically, it is used to reduce

the input dimension of the intake into a specified latent space. Two samples pass through

the intermediate model, a real data sample and a generated sample. At this point, the

Generator has learned to generate close to real data that mimic the normal samples. To

calculate the anomaly score for the real sample, the Adversarial Loss of the two samples is

taken. The Adversarial Loss is the difference between the generated and the real sample.

Since the generator has learned to produce normal samples, the greater the Adversarial loss

the bigger the probability of the real sample being abnormal. The equation below describes

the Adversarial Loss as

AdvL(x) = ‖dr − dp‖ (5.3)

where AdvL(x) is the adversarial loss score of the function, dr and dp is the prediction of

the latent model on the real and generated sample respectively. To extend this methodology

to include anomaly classification also, a second novel implementation of the first proposed

system is devised. The Anomaly Classification system presented utilizes a lightweight GAN-

Autoencoder architecture that effectively classifies the intake data into separate anomalies.

Both the proposed anomaly detection and the anomaly classification architectures are de-

scribed below.

5.1.2 ADA-GAN Design and Specifications

In this instance of the aforementioned joined architecture, the network works as an anomaly

detector. It is trained on a set of normal samples and as so can distinguish abnormal outlier

41

samples in a dataset containing both normal and abnormal samples. The layout of the

network can be separated into three components, the input layer, the Generator and the

Discriminator module. Figure 5.1 presents the ADA-GAN deep neural network structure.

Figure 5.1 ADA-GAN Architecture

5.1.2.1 Input Layer

The input layer represents the input of the proposed deep neural network. The layer takes

as input a noise vector of size N . The random noise vector is generated using a uniform

distribution with a minimum value of 0 and a maximum of 1 from a uniform distribution

with mean µ and standard deviation σ. Figure 5.2 shows the noise distribution of the noise

vector.

42

Figure 5.2 Uniform Noise Distribution

5.1.2.2 Generator-Decoder Module

In this proposed implementation, the Generator is in charge of inflating a random noise input

vector of size z = 10 to a size M , where M is the number of features, while the generated

data mimic the real ones. Since the use case for this network is anomaly detection, the

Generator is trained on producing normal samples. The Generator’s structure consists of

thirteen layers, an input layer, an output Tanh layer and a sequence of Dense, ReLU ,

LeakyReLU , Batch Normalization and Dropout layers in between.

tanh(x) = 2s(2x)− 1, tanh→ [−1, 1] (5.4)

where equation (5.4) describes the Tanh function. tanh(x) is the output of the tanh function,

s(x) is a Sigmoid function (5.6) and x is the input vector.

An explanatory depiction of the Generator’s structure is shown in Figure 5.3. This module

is compiled with the Binary Cross-Entropy function (5.5) and the RMSprop optimizer with

a learning rate parameter of lr = 0.0002. The Binary Cross-Entropy function is defined as

follows. N is the number of samples given, y is the label, in this case, a random sample. p(yi)

is the probability of the sample being a match to the label sample when 1 − p(yi) presents

43

the inverse of that probability. Finally, H represents the result of the Binary Cross-Entropy

loss at a given point.

Hp(q) = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (5.5)

Figure 5.3 Generator-Decoder Structure

5.1.2.3 Discriminator-Encoder Module

The Discriminator module takes an input vector ofM features, which is a vector representing

a data instance sample. It then compresses the data through a multi-layer pipeline to a single

point representing the validity layer, i.e. the classification of the sample being real or fake.

The Discriminator is trained alongside the Generator, but receiving both real and generated

samples, each with a ground truth label. The ground truth labels for the samples given as

input to the Discriminator are a label of tl → 1 for the Generator’s output and fl → 0

for the real sample, so to be trained to classify them properly. In the training process

Discriminator’s training ability is deactivated when the Generator is training.

44

From this module, the intermediate latent model is extracted later, as described above.

This module is also compiled with the Binary Cross-Entropy function (5.5) and the RMSprop

optimizer with a learning rate parameter of 0.0002. The thirteen layers consisting of the

Discriminator are an input layer, an output Sigmoid layer (5.6) and a sequence of Dense,

ReLU, Leaky ReLU, Batch Normalization and Dropout layers in between. Figure 5.4 presents

the Discriminator’s architecture.

s(x) =
1

1 + e−x
, s→ [0, 1] (5.6)

Equation (5.6) describes the sigmoid function. s(x) is the output of the sigmoid function

and x is the input vector.

Figure 5.4 Discriminator-Encoder Structure

5.1.3 CLA-GAN Design and Specifications

The second proposed architecture is a derivation of the ADA-GAN architecture described pre-

viously. This implementation combines both the process of anomaly detection and anomaly

45

classification into a single deep neural network structure. Specifically, it produces three

separate ground-truth label points, one for the validity of the sample, one for the anomaly

approximation and lastly one describing the anomaly class of the sample. This architecture

can also be discretized into three different sub-modules, the Input layer, the Generator-

Decoder module and the Discriminator-Encoder module. The layout of this proposed deep

neural network architecture is depicted in figure 5.5. The main difference with the ADA-

GAN architecture is that this network is less specific, more lightweight and is designed to

handle multiclass data with fewer features, whereas the ADA-GAN is designed to handle

one class and data with a large number of features.

Figure 5.5 CLA-GAN Architecture

46

5.1.3.1 Input Layer

The input layer takes a noise vector input of size N and a vector containing the class

representation of the sample. The elements of the random noise vector follows a normal

distribution with mean µ and standard deviation σ, 0 and of 1 respectively. In figure 5.6 the

distribution of the random noise input vector can be seen. The label vector with a dimension

of [1 x C], where C is the number of classes that exist in the given dataset, is a zero vector

with a 1 in the position of the class. The class of the sample is represented by cp which is

derived by the following formula.

cp = argmax(Vlabel) (5.7)

where Vlabel is the label vector.

Figure 5.6 Normal Noise Distribution

5.1.3.2 Generator-Decoder Module

The Generator module in the anomaly classification case is a modified version of the Gen-

erator module used in the ADA-GAN architecture. The module is a Decoder adapted to

the Generator structure. In this instance, the Generator inputs the two vectors explained

47

in the Input Layer and concatenates them so to pass through the Generator’s structure. Its

structure consists of 9 layers, an input layer, an output Relu layer and a sequence of Dense

and ReLU layers in between. The Generator’s structure is shown in Figure 5.7. This module

is compiled with the Categorical Cross-Entropy function (5.8) and the Adadelta optimizer

[28]. During training, the Generator learns tho reproduce the data representing every class

in the dataset, represented by a given label vector. This means that it produces a sample of

a certain class that is inputted as a label vector. The output of this module is a vector of

size M , where M is the number of features of the sample.

Lcc(r, p) = −
M∑
j=0

N∑
i=0

(rij ∗ log(pij)) (5.8)

The above equation denotes the Categorical Cross-Entropy loss function, used to compile

the Generator. Lcc(y, p) is the Categorical Cross-Entropy output, r is the real sample and p

is the generated sample.

Figure 5.7 Generator-Decoder Structure

48

5.1.3.3 Discriminator-Encoder Module

The Discriminator module takes an input vector of M features, which represents a data

sample. Since this proposed architecture produces not only the validity approximation but

also the anomaly classification of the inputted sample, the output of the Discriminator

module is divided into two parts. The first part is the validity label of the given sample,

which highlights the sample as real or fake. The second part is a label vector, as described

above, that denotes the processed classification of the sample to the separate classes given

in the dataset. This vector of size C contains the numbers predicted by the Discriminator

in the range of [0, 1], using the Softmax activation function.

The class of the sample is considered the position of the highest value in that vector, as

described in (5.7). As in the proposed ADA-GAN architecture, the Discriminator is trained

alongside the Generator, but receiving both real and generated samples, each with a ground

truth label and a label vector. The ground truth labels for the samples given as input to

the Discriminator are a label of tl → 1 for the Generator’s output and fl → 0 for the real

sample. In the case of the label vectors, for the real sample the corresponding label vector is

given as input to the Discriminator, while for the fake or predicted sample, a vector with a

random label is given. As before, the Discriminator’s training ability is deactivated when the

Generator is training. The Discriminator module is compiled with the Binary Cross-Entropy

(5.5) for the validity and the Categorical Cross-Entropy (5.8) for the classification part and

the Adadelta optimizer [28].

5.2 Implementation

In this section, the proposed architectures are implemented. Below are presented the work-

ings of the created networks, the training and testing phases of those networks and the way

they were developed.

49

Figure 5.8 Discriminator-Encoder Structure

5.2.1 Development Environment

Both described Neural Networks were developed under the same system specifications. Some

fundamental tools were used to implement the design and run the architecture, that are

outlined below.

5.2.1.1 Language

In order to develop the described architectures and the system that handles and feeds data

to the Neural Networks but also handles the results, an adequate programming language

supporting Deep Learning and the corresponding tools, mentioned in section 4.6, should

be used. The Python (5.9) programming language offers the aforementioned functionalities

and thus was selected to realize this work. Specifically, the Python 3 (3.6-1.8) is utilized to

script the Neural Networks and the accompanying systems. Python is a high-level scripting

language that supports a wide variety of scientific tools used for Deep Learning development.

It also offers the advantage of system interconnection and cross-platform support, leaving

50

space for the proposed work to be tested and evaluated in different systems.

Figure 5.9 Python Language [49]

5.2.1.2 Test Bed

Training and Testing the produced ADA-GAN and CLA-GAN architectures a testbed is

needed. Both networks were built and ran on the Ubuntu Operating System. Ubuntu Linux

provides a versatile and modular system that helps in developing and debugging the created

application. The system utilizes an Intel(R) Core(TM) i7-8550U CPU - 1.80GHz with an

8GB Ram memory. This work was tested on both the Ubuntu 18.04.4 LTS Bionic Beaver

and the Ubuntu 20.04 LTS Focal Fossa releases.

Figure 5.10 Ubuntu OS

5.2.2 ADA-GAN

5.2.2.1 Class Organization

To offer a function of modality and extensibility this architecture was implemented as a

class structure. Firstly the core ADA-GAN class contains two sub-functions encapsulating

the structure of the two fundamental components of a GAN architecture, the Generator

and the Discriminator. When an ADA-GAN object is created, the module initializes the

51

two sub-networks but it doesn’t compile them until the fitting process is started. This

is done so the module creating an ADA-GAN object can have the ability to change the

network’s dependencies and their hyperparameters before the training process. As shown in

figure 5.11 the module also consists of some core and some helper functions. The function

fit() is a wrapper of the training function that is responsible for initializing the new Neural

Network for the first time. This includes defining the loss functions and optimizers for

the two sub-networks and, after the training phase, evaluating the point and returning the

threshold with which the anomaly detection should be conducted. The evaluation() function

evaluates the performance of the trained network and either produces metrics related to its

performance on a given dataset or returns the aforementioned threshold. All this with the

help the metricsAnalysis() functions that take over, analyzing either in high-level or in

deep inspection the produced metrics, depending on the mode with which it was called with.

The Ladv() function calculates and returns the Adversarial Loss of the inputted data, as

described in (5.3). The Ladv() function depends on the featureextractor() function that,

as the name suggests, extracts the latent model with the Adversarial Loss will be computed

with.

Figure 5.11 ADA-GAN Class

52

Figure 5.12 ADA-GAN Class Python

Finally, there are two predicting functions, the predictano() and the predictdis() the

former returning the anomaly score of each sample based on the Adversarial Loss, while the

latter used the role of the Discriminator module to predict irregular samples.

5.2.2.2 Modulation

The reason behind the modular composition of the ADA-GAN network is that it is designed

to be mounted on a separate independent system and be ready-to-deploy without imposing

on the host system’s architecture, as depicted in figure 5.13.

53

Figure 5.13 ADA-GAN Class Mounting

5.2.2.3 Data Preprocessing

Data preprocessing is one of the most important steps of Machine and Deep Learning. Often,

the incoming data are in their raw and unprocessed form. A system like ADA-GAN is not

developed with the purpose of handling any kind of input, even though it can handle any

given dataset in the correct form. As such a correct method to normalize and clean the

input data is needed. Since the preprocessing is algorithm and data specific, a custom

implementation was realized for this network. The Operational Data that was used to

train and test the ADA-GAN architecture against anomalous behaviour, in its raw form

it represents field device voltage sensor readings. This is a time-dependent dataset that is

described by time series. Since an impending attack is possibly going to have slow results,

projected as long term voltage fluctuations, the data were combined in a sliding window

of 30 samples per window. Also, to help the detector network accumulate the data better,

a normalization of the data in the range of (0, 1). The null and infinite values were also

dropped from the dataset.

5.2.2.4 ADA-GAN Initialization

For the network to be effective in its intended purpose, Anomaly Detection, it has to go

through a correctly laid out training procedure, so to have accumulated the corresponding

54

Figure 5.14 Generator Initialization
Figure 5.15 Discriminator Initializa-
tion

experience, accordingly. When an ADA-GAN object is initialized, depending on the given

verbosity level, it informs about its given characteristics, like, the Generator and Discrimi-

nator structures and other useful information. At the same time, the come parameters and

modules are defined, figure 5.14 and 5.15. As mentioned, even though the two sub-networks

are initialized, but not compiled with the correct parameters. This occurs just before the

Training process begins for practical reasons.

5.2.2.5 ADA-GAN Training

The ADA-GAN Training is the process that helps the network accumulate the input data and

reach its intended purpose. The training takes place in a number of iterations, each session

given a sample batch with a predefined batch size. Both the training epochs and batch size

are found through experimenting and are described in the Results, chapter 6. Just before the

training is begun, the ADA-GAN object compiles its networks with the given dependencies

and hyperparameters. This is realized in this step, because the training process can take place

multiple times, either from scratch or from a pre-trained ADA-GAN network. This gives the

parent of the network the ability to handle the network’s core characteristics on demand.

55

The training step also needs two sets of data, the Training Set and its accompanying Ground-

truth labels to train the network properly. Finally, the training function’s wrapper, the fit()

function, acts as a conduit for centralizing the production of the important features of the

ADA-GAN network. When completed it returns the two trained sub-networks, it extracts

the latent model, needed for the Anomaly Detection, returns the needed threshold with

which the samples are classified and lastly it evaluates the produced network’s performance.

A snapshot of the Training process can be seen in 5.16.

Figure 5.16 ADA-GAN Training

5.2.2.6 ADA-GAN Testing

The ADA-GAN Testing is a straightforward operation. It is realized at the end of the

Training phase or independently on demand by the evaluation() function. It takes in two

sets of data, the Testing Set and its corresponding labels. This step informs about the

network’s performance and evaluates its ability to function properly and fulfill its intended

56

goal. Figure 5.17 shows the results of a high-level evaluation.

Figure 5.17 ADA-GAN Testing

5.2.2.7 Produced Model

When the ADA-GAN module has finished the Training and Testing and is ready for appli-

cation there are a number of ways for utilizing it. Since the GAN architecture consists of

two sub-networks, it makes the handling of the whole structure dependant on the use case.

If only one of the two models is needed, the ADA-GAN module can save them as separate

binary models in a .h5 configuration, which is a product of the HDF5 extension for big data

persistence. As it can do the same with the joint network. Finally, the whole ADA-GAN

object can be serialized, so as to keep and transfer its ADA-GAN characteristics.

5.2.3 CLA-GAN

As described in the Design and Specification section, both the ADA-GAN and CLA-GAN

structures share the same Deep Learning architecture. The GAN architecture offers a power-

ful function by utilizing the agency of two competing Neural Network structures to optimize

the generalization of the produced model. As such, the CLA-GAN network is based on this

principle to successfully classify incoming data.

57

5.2.3.1 Class Organization

The class design of the CLA module follows the same organization as the ADA-GAN module.

It’s developed to be modal and extensible and to be able to mount on host systems with

the same suppleness. The core CLA-GAN class contains two sub-networks, the Generator

and the Discriminator. Figure 5.18 reveals the class structure of the encapsulated modules.

Due to its more complex nature, except the fit(), metricsAnalysis(), Ladv(), evaluation()

functions that were explained in the ADA-GAN module implementation, it also contains fur-

ther functionalities oriented in helping with its classification property. Specifically, since the

main purpose of the CLA-GAN network is to classify correctly the input data, it needs tools

to configure and evaluate the accumulating data. The network’s input is a batch of samples

accompanied from their respective ground-truth label which is a vector of the class identity,

described by (5.7). Since the labels in the input dataset, usually, represent the class in a nu-

meric or nominal form, the vectorizeLabels() function takes over the conversion of the labels

to the correct form. Also, since the CLA-GAN module also offers an Anomaly Detection

method to further detect abnormal samples, there was devised a method, Mul2BinLabels(),

for converting the multiclass labels to binary for the anomaly analysis. To evaluate the clas-

sification results the classificationMetricAnalysis() function is designed specifically for

classification metrics analysis. Lastly, the remaining functions are training specific and need

not be mentioned.

58

Figure 5.18 CLA-GAN Class

Figure 5.19 CLA-GAN Class Python

59

5.2.3.2 Data Preprocessing

In this instance, the input data are primarily network flows. The preprocessing firstly drops

the nominal features of the dataset, like, timestamps, flow directions and so on, and proceeds

to fill or drop the null and infinite values. After that, The data are normalized in the range of

(0, 1) using a Min-Max Scaler. The ground-truth labels need also be preprocessed. A function

in the host system converts the labels from nominal to numerical, e.g., ”Normal” → 0.

The rest of the data processing takes place inside the CLA-GAN module, like vectorizing

the numerical labels with the vectorizeLabels() function when needed for computational

reasons.

5.2.3.3 CLA-GAN Initialization

When the CLA-GANmodule is initialized, depending on the given verbosity level, it produces

debug information about its given characteristics, like, the Generator and Discriminator

structures, figures 5.20 and 5.21. Like the ADA-GAN module, the core parameters of CLA-

GAN are set just before training.

5.2.3.4 CLA-GAN Training

Before Training, when the fit() wrapper is called by the host system, the core parameters and

dependencies of the CLA-GAN object are set. During Training, the network accumulates the

input data and trains the sub-networks for classifying the input correctly, but it also trains

Figure 5.20 Generator Initialization
Figure 5.21 Discriminator Initializa-
tion

60

the Discriminator to detect anomalies. The training is completed in a number of epochs,

each session given a sample batch with a predefined batch size. Both the training epochs

and batch size are found through experimenting and are described in the Results, chapter 6.

In 5.22 a CLA-GAN instance is depicted.

Figure 5.22 CLA-GAN Training

5.2.3.5 CLA-GAN Testing

The Testing phase utilizes the evaluation function and, by providing a Testing dataset,

it evaluates the performance of the produced network with unseen data. By calling the

metricsAnalysis() and classificationMetricAnalysis() methods and depending on the

evaluation mode, a high-level, figure 5.19, or deep metrics inspection can be performed

on the Neural Network.

5.2.3.6 Produced Model

When the CLA-GAN module has passed the Trining and the evaluation phases and is ready

for deployment, depending on its use-case it can be handled accordingly. Since CLA-GAN

also follows the GAN architecture, it consists of two sub-networks. If only one of the two

models is needed, the CLA-GAN module can save them as separate binary models in a .h5

61

Figure 5.23 CLA-GAN High-level Evaluation

configuration. The same can be done with the joint network. Finally, like the ADA-GAN

object, the CLA-GAN can be serialized and be transported as a class object.

62

Chapter Six

ADA-CLA-GAN Experimental Results

6.1 Evaluation

The evaluation of a Neural Network is the process through which the performance of a

given network is scrutinized in order to prove the viability of its function. In this work, the

proposed networks are analyzed and compared against other Machine Learning and Deep

Learning algorithms of their respective field of use. Bellow follows the description of the

data used to develop and train the Deep Neural Networks in this work.

6.1.1 Dataset

In order to train and evaluate the two deep neural network architectures, namely, a) the ADA-

GAN and b) the CLA-GAN, two different datasets were leveraged. These data represent key

information about the internal processes of critical infrastructures and serve as a fundamental

conduit for anomaly detection and anomaly classification research. Though the described

neural networks can be used with a plethora of datasets, as described in their corresponding

implementation, both for anomaly detection and anomaly classification, data that originate

from critical infrastructures in Industrial Networks were chosen. Specifically, of the two

datasets, the first describes power utility information of power distribution installations and

the second network flow data from those industrial infrastructures.

63

Figure 6.1 Normal Figure 6.2 Abnormal

Figure 6.3 PDP03 Readings

6.1.1.1 Anomaly Detection Data

For the ADA-GAN network that conforms with the Anomaly Detection function, the Op-

erational dataset was used. This data category contains power usage information from four

power distribution facilities. They are identified as, i) Power Distribution Plant 01 (PDP01),

ii) Power Distribution Plant 02 (PDP02), iii) Power Distribution Plant 03 (PDP03) and iv)

Power Distribution Plant 04 (PDP04), respectively. The values represent real-time voltage

readings from the sensors and field devices throughout each facility’s network. In every

dataset, the number of features and their corresponding values as well as the meaning of

those readings, vary depending on each independent facility. The data are composed of

normal and abnormal power readings, the former describing the normal function of each

facility and the latter, the effort of a malicious entity altering those readings by exploiting

the operation of the facilities’ devices. Normal power readings of those facilities can be seen

in figures 6.1 and 6.4, while abnormal power reading are depicted in figures 6.2 and 6.5.

Each set is separated in the training data, which contains normal power readings and the

testing-evaluation data that contain both normal and abnormal readings.

64

Figure 6.4 Normal Figure 6.5 Abnormal

Figure 6.6 PDP04 Readings

6.1.1.2 Anomaly Classification Data

For the CLA-GAN that adheres to the Anomaly Classification case, the latter data category

was used. The data describe Modbus network flows circulating in each of the mentioned

facilities’ computer networks. Each set is separated into a training and testing-evaluation

set. Both sets contain normal and abnormal network flow samples, accompanied by a ground-

truth label describing the attack category of the sample. The captured flows contain a specific

number of features that do not change in the different datasets. Table 6.1 lists the attack

classes used in the datasets as well as their enumeration and vectorization.

These data are preprocessed as described in section 5.2.3.2. The nominal features are

dropped and the rest of the features are normalized in a given range. In this work, the

normalization range is [0,1]. For the purpose of feeding the data into the proposed classifier,

the attack classes are enumerated and then vectorized, as described in the implementation

section. An example of the attack vectors is seen in table 6.1.

65

No. Attack Class Attack Vector

0 Normal [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

1 modbus/dos/writeSingleCoils [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0]

2 modbus/dos/writeSingleRegister [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]

3 modbus/function/readCoils [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0]

4 modbus/function/readCoils (DoS) [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]

5 modbus/function/readDiscreteInput [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]

6 modbus/function/readDiscreteInputs (DoS) [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]

7 modbus/function/readHoldingRegister [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]

8 modbus/function/readHoldingRegister (DoS) [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]

9 modbus/function/readInputRegister [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]

10 modbus/function/readInputRegister (DoS) [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]

11 modbus/function/writeSingleCoils [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]

12 modbus/function/writeSingleRegister [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]

13 modbus/scanner/getfunc [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]

14 modbus/scanner/uid [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

Table 6.1 Attack Classes

6.1.2 Metrics Comparison

To Evaluate the proposed work, in their respective cases, a number of tools were used. Specif-

ically, a series of quantitative metrics were utilized to quantify and compare the produced

results on the problems of anomaly detection and anomaly classification. Of the metrics used

in problems of machine learning and deep learning, in this work four representative ones were

chosen to quantify the measured results, namely, a) Accuracy (ACC), b) True Positive Rate

(TPR), c) False Positive Rate (FPR), and d) F1 Score (F1). From the metrics used, the ACC

score describes the fraction of correctly classified samples, the TPR describes the number of

detected or classified anomalies in both problems, the FPR describes the wrongly classified

samples and lastly, the F1 describes the weighted average of the precision and recall of the

produced results.

To establish the function of the two designed and implemented Deep Neural Network

architectures and validating the results they produce, the outcome of the evaluation process

66

Model ACC TPR FPR F1

ABOD 0.2966 1.0000 0.8678 0.3501

Iforest 0.7692 0.9763 0.2792 0.6158

PCA 0.8594 0.9763 0.1679 0.7246

LOF 0.5703 1.0000 0.5301 0.4686

MCD 0.7293 0.9921 0.3321 0.5813

Iforestv2 0.7493 0.9789 0.3044 0.5966

LOFv2 0.1894 1.0000 1.0000 0.3185

ADA-GAN 0.9432 0.9079 0.0486 0.8582

Table 6.2 PDP01 Anomaly De-
tection Results

Model ACC TPR FPR F1

ABOD 0.2966 1.0000 0.8678 0.3501

Iforest 0.7692 0.9763 0.2792 0.6158

PCA 0.8594 0.9763 0.1679 0.7246

LOF 0.5703 1.0000 0.5301 0.4686

MCD 0.7293 0.9921 0.3321 0.5813

Iforestv2 0.7493 0.9789 0.3044 0.5966

LOFv2 0.1894 1.0000 1.0000 0.3185

ADA-GAN 0.9432 0.9079 0.0486 0.8582

Table 6.3 PDP02 Anomaly De-
tection Results

each network is consequently compared against known machine learning and deep learning

algorithms.

6.1.2.1 ADA-GAN Comparison

In the case of Anomaly detection, the algorithms used to compare with the ADA-GAN net-

work are i) Angle-Based Outlier Detection (ABOD) [50] [51], ii) Isolation Forest (Iforest) [52]

[53], iii) Principal Component Analysis (PCA) [54], iv) Iforestv2, v) Minimum Covariance

Determinant (MCD) [55] [56], vi) Local Outlier Factor (LOF) [57], vii) LOFv2.

In the tables 6.2-6.5, the Anomaly Detection results are depicted. In respect to the

best detector, the proposed ADA-GAN Anomaly Detector, in most cases, produces a higher

score on the detection of abnormal samples with a lower FPR rate. Specifically, it produces

a higher Accuracy, True Positive Rate and F1 score with a lower False Positive rate in all

cases, tables 6.2, 6.3, 6.4, except one where the LOF algorithm has a better performance, as

can be seen in table 6.5.

67

Model ACC TPR FPR F1

ABOD 0.8391 0.9959 0.2003 0.7135

Iforest 0.8502 0.9510 0.1751 0.7186

PCA 0.8474 0.9612 0.1813 0.7169

LOF 0.8732 0.9939 0.1572 0.7592

MCD 0.8223 0.9918 0.2203 0.6918

Iforestv2 0.6976 0.9714 0.3713 0.5636

LOFv2 0.6422 0.9959 0.4468 0.5281

ADA-GAN 0.9432 0.9079 0.0486 0.8582

Table 6.4 PDP03 Anomaly De-
tection Results

Model ACC TPR FPR F1

ABOD 0.5813 0.9939 0.5220 0.4874

Iforest 0.7169 0.9484 0.3410 0.5730

PCA 0.7455 0.9788 0.3129 0.6063

LOF 0.5791 0.9970 0.5256 0.4868

MCD 0.7338 0.2103 0.1352 0.2403

Iforestv2 0.5319 0.9778 0.5797 0.4555

LOFv2 0.5256 0.9970 0.5924 0.4570

ADA-GAN 0.8836 0.8716 0.1134 0.7499

Table 6.5 PDP04 Anomaly De-
tection Results

A comparison between the proposed ADA-GAN architecture can also be observed in

figures 6.7 and 6.8, where the produced metrics have been visualized and compared per

metric category. In the former, the accuracy of the four datasets can be seen, with respect

to the utilized models. The ADA-GAN architecture has a visually higher score than the rest

of the algorithms. The same can be seen in the case of the figure 6.8, where the F1-Score is

depicted.

Figures 6.9 and 6.10, also, reveal the TPR and FPR of the compared algorithms. When

it comes to the TRP metric, ADA-GAN shows a relatively low score. This is due to the fact

that the network has a low Sensitivity, or rather that is generalization is higher than the rest

of the algorithms. In the case of the FPR, it shows the lowest score. This means that it is

Figure 6.7 ADA-GAN Accuracy
Comparison

Figure 6.8 ADA-GAN F1-Score
Comparison

68

Figure 6.9 ADA-GAN TPR Com-
parison

Figure 6.10 ADA-GAN FPR Com-
parison

more difficult for the network to falsely classify abnormal data as normal than, in correlation

with the TPR, to classify normal data as abnormal. In the case of Intrusion Detection this

is an acceptable contrast.

A statistical analysis of the quantitative metrics was performed. Table 6.6 lists the mean,

variance and standard deviation of the ADA-GAN produced metrics. It can be seen that

the ADA-GAN system keeps a high, or low, score depending on the metric, while on the

same time keeping a stable output range. Specifically, the standard deviation reveals only a

maximum of about 5% deviation of the metrics on the four different datasets.

6.1.2.2 CLA-GAN Comparison

For the Anomaly Classification use case the algorithms used for the comparison are i) Logis-

tic Regression [58], ii) Linear Discriminant Analysis (LDA) [59], iii) Decision Tree Classifier

Mean Variance Standard Deviaton

ACC 0.9181 0.001791534875 0.0423

TPR 0.8594 0.009922230038 0.0996

FPR 0.0670 0.001368770842 0.0370

F1 0.8104 0.009937333983 0.0997

Table 6.6 ADA-GAN Metric Statistics

69

Model ACC TPR FPR F1

Logistic Regression 0.9433 0.6030 0.0305 0.6030

LDA 0.9435 0.6046 0.0304 0.6046

Decision Tree Classifier 0.9642 0.7493 0.0193 0.7493

Gaussian NB 0.9283 0.4979 0.0386 0.4979

SVM RBF 0.9181 0.4266 0.0441 0.4266

SVM Linear 0.9219 0.4533 0.0421 0.4533

Random Forest 0.9477 0.6337 0.0282 0.6337

MLP 0.9387 0.5707 0.0330 0.5707

AdaBoost 0.8878 0.2143 0.0604 0.2143

Quadratic Discriminant Analysis 0.9420 0.5939 0.0312 0.5939

Dense DNN ReLU 0.9456 0.6191 0.0293 0.6191

Dense DNN Tanh 0.9456 0.6194 0.0293 0.6194

CLA-GAN 0.9668 0.7679 0.0179 0.7679

Table 6.7 PDP01 Anomaly
Classification Results

Model ACC TPR FPR F1

Logistic Regression 0.9450 0.6148 0.0296 0.6148

LDA 0.9441 0.6086 0.0301 0.6086

Decision Tree Classifier 0.9642 0.7496 0.0193 0.7496

Gaussian NB 0.9381 0.5665 0.0333 0.5665

SVM RBF 0.9313 0.5189 0.0370 0.5189

SVM Linear 0.9301 0.5110 0.0376 0.5110

Random Forest 0.9473 0.6314 0.0284 0.6314

MLP 0.9406 0.5843 0.0320 0.5843

AdaBoost 0.9183 0.4281 0.0440 0.4281

Quadratic Discriminant Analysis 0.9447 0.6131 0.0298 0.6131

Dense DNN ReLU 0.9456 0.6191 0.0293 0.6191

Dense DNN Tanh 0.9444 0.6111 0.0299 0.6111

CLA-GAN 0.9656 0.7592 0.0185 0.7592

Table 6.8 PDP02 Anomaly
Classification Results

[60], iv) Gaussian Naive Bayes (Gaussian NB) [61], v) Radial Basis Function Support Vector

Machine (SVM RBF) [62], vi) Linear Support Vector Machine (SVM Linear) [62], vii) Ran-

dom Forest [63], viii) Multilayer Perceptron (MLP) [64], ix) Adaptive Boosting (AdaBoost)

[65], x) Quadratic Discriminant Analysis [66], xi) Dense DNN ReLU [67] [68] and xii) Dense

DNN Tanh [67].

In the tables 6.7, 6.8, 6.9, and 6.10, in the Anomaly Classification problem, the proposed

CLA-GAN classifier archives the highest score between all of the datasets. It surpasses the

best classifier by 0.1-0.4% in Accuracy and up to 0.9-3% in F1 score, while keeping a high

TP and low FP rate. Tables 6.7, 6.8, 6.9, 6.10 show the classification metric comparison.

In the case of the CLA-GAN architecture, not much can be said about the accuracy

comparison of the algorithms. All of the utilized models show a small variance in the accuracy

score as see in figure 6.11, with the CLA-GAN network having the highest accuracy score

between the tested algorithms. In figure 6.12, though, an increased F1-Score for the CLA-

GAN in all of the tested datasets, can be observed. This proves that CLA-GAN is more

robust than the commonly used classification algorithms when used with Modbus network

flow data.

70

Model ACC TPR FPR F1

Logistic Regression 0.9452 0.5889 0.0294 0.5889

LDA 0.9372 0.5290 0.0336 0.5290

Decision Tree Classifier 0.9608 0.7061 0.0210 0.7061

Gaussian NB 0.9417 0.5631 0.0312 0.5631

SVM RBF 0.9314 0.4855 0.0368 0.4855

SVM Linear 0.9326 0.4946 0.0361 0.4946

Random Forest 0.9452 0.5889 0.0294 0.5889

MLP 0.9413 0.5596 0.0315 0.5596

AdaBoost 0.9111 0.3333 0.0476 0.3333

Quadratic Discriminant Analysis 0.9372 0.5289 0.0336 0.5289

Dense DNN ReLU 0.9438 0.5781 0.0301 0.5781

Dense DNN Tanh 0.9403 0.5526 0.0320 0.5526

CLA-GAN 0.9641 0.7307 0.0192 0.7307

Table 6.9 PDP03 Anomaly
Classification Results

Model ACC TPR FPR F1

Logistic Regression 0.9463 0.5972 0.0288 0.5972

LDA 0.9397 0.5480 0.0323 0.5480

Decision Tree Classifier 0.9605 0.7034 0.0212 0.7034

Gaussian NB 0.9421 0.5658 0.0310 0.5658

SVM RBF 0.9292 0.4686 0.0380 0.4686

SVM Linear 0.9336 0.5023 0.0356 0.5023

Random Forest 0.9497 0.6230 0.0269 0.6230

MLP 0.9417 0.5627 0.0312 0.5627

AdaBoost 0.9111 0.3333 0.0476 0.3333

Quadratic Discriminant Analysis 0.9372 0.5291 0.0336 0.5291

Dense DNN ReLU 0.9488 0.6163 0.0274 0.6163

Dense DNN Tanh 0.9402 0.5516 0.0320 0.5516

CLA-GAN 0.9647 0.7350 0.0189 0.7350

Table 6.10 PDP04 Anomaly
Classification Results

Figure 6.11 CLA-GAN Accuracy
Comparison

Figure 6.12 CLA-GAN F1-Score
Comparison

Figure 6.13 CLA-GAN TPR Com-
parison

Figure 6.14 CLA-GAN FPR Com-
parison

71

Additionally, both the TPR and FPR scores of the CLA-GAN’s architecture, in figures

6.13 and 6.14, are higher and lower respectively. As so, the CLA-GAN has a lower possibility

of wrongly classifying a sample in the wrong class. Specifically, in the case of the TPR, it

possesses a higher rate among the tested methods, that gives the CLA-GAN network the

ability correctly classify each sample to its own category. Since the TPR does not fluctuate

between the different datasets provided, it reveals a certain stability in this ability. In table

6.11 are presented the mean, variance and standard deviation. Like in the case of ADA-

GAN, this network also shows good and consistent results regarding the produced metrics.

In this instance, it is important to point out the variance of the network’s metrics. As

mentioned before, the data have a consistent number of features that are not unique to the

specific dataset studied. Due to this, the produced metrics, and output of the network, are

more robust and versed that the ADA-GAN network. As so, the variance for the CLA-GAN

metrics is minimal.

From the produced results it is clear that both the ADA-GAN detector and the CLA-

GAN classifier constitute adequate tools to tackle a variety of anomaly detection and anomaly

classification problems around their respective use cases.

Mean Variance Standard Deviaton

ACC 0.9653 0.000001447175008 0.0012

TPR 0.7482 0.000330270653 0.0182

FPR 0.0186 0.0000003578668212 0.0006

F1 0.7482 0.000330270653 0.0182

Table 6.11 CLA-GAN Metric Statistics

72

6.2 Experimental Configuration

Through experimentation during the different simulations run on the networks, the value of

certain parameters and hyperparameters was obtained. To monitor the results of the Neural

Networks a Tensorboard system was initialized. Tensorboard system is able to project in

real-time certain plots encapsulated in the networks’ training process.

6.2.1 ADA-GAN Configuration

6.2.1.1 Number of Epochs

The ADA-GAN network was set to run continuously for the duration of 2500 epochs on the

four different Operational Data datasets. In contrast with the network flow data described

bellow, the ADA-GAN network on the Operational Data reached quickly a saturation effect

after only 160 epochs. The peak of its accumulation was reached at around 130-157 epochs,

depending on the dataset.

6.2.1.2 Batch Size

The batch size of the ADA-GAN network is dependant on the number of features on the

Operational Data. A number of 32, 64 and 128 were measured to have a steady effect on

the Training process on the different datasets. Unfortunately, since this category of data

possesses huge differences in size because of the different configuration of each Industrial

facility, a general number of epochs cannot be extracted from these results.

6.2.2 CLA-GAN Configuration

6.2.2.1 Number of Epochs

The CLA-GAN network was set to also run continuously for the duration of 2500 epochs

over the four different Modbus network flow datasets. Though almost all of the metrics

73

described up to now were measured and plotted, the key metric that the number of epochs

were decided on was the F1-Score. Figure 6.15 depicts the F1-Score curve throughout the

epochs on the PDP04 dataset. 10 Training sessions on all four datasets were realized to

obtain an overview of the performance.

Figure 6.15 Anomaly Detection F1-Score Curve - PDP04

As can be seen, after about 1700 to 1800 iterations the networks begin to saturate with

minimal progress. So it was decided that the optimal number of epochs for the ADA-GAN

network on the Operational Data is in the range of eε[1700, 1800].

6.2.2.2 Batch Size

After a number of simulations with different configurations, it was decided that a number

of 256 is the optimal batch size for this network architecture. Usually, the batch size is a

number in the power of 2, hence 256. Any batch size under 256 underfits the network, while

any over 256 severally over-trains the network to the point of data memorization.

74

Chapter Seven

Federated Learning Extension - Design

& Implementation

7.1 Design

In this section, the Federated Learning design of this work is described. The architectures

that were developed in chapter 5: Federated Learning Extension - Design & Implementa-

tion, present only a centralized solution to be conducted in the heart of a security system.

It doesn’t have the ability to train in a distributed environment. By implementing the

mentioned architectures with the Federated Learning model, the distributed learning of the

classifications is possible with the added privacy preservation fortification that this process

offers.

7.1.1 Basis

The Federated Learning methodology consists of a number of specialized systems that allow

the interconnection, communication, organization and implementation of its intended pur-

pose. In this section, two important modules are described. These modules, namely, the

Orchestrator and the Worker, implemented in the Federated Learning Extension of this work

are responsible for completing the aforementioned functions and constitute the main pillars

75

of operation in this work.

7.1.1.1 Orchestrator

An Orchestrator is the module responsible for planning the training of the central model to

the edge nodes and disperses either the model, or in the simulation of this work, both the

data and the model to the distributed devices [69]. This system can be the central system of

a Federated architecture or it can be an intermediate that works under it. In bigger systems

there can be numerous Orchestrators, each responsible for different tasks.

In the Federated Learning part of this work, one Orchestrator was realized for each

architecture, the ADA-GAN and the CLA-GAN. The module takes over pre-training the

model before the Federated Training phase, distributing the respective datasets to the edge

nodes, imposing the remote training process and finally, collecting the models and aggregat-

ing them through the Federated Averaging operation. Moreover, an evaluation function has

been added to the Orchestrator to audit the performance of the aggregated models. The

process of the Orchestrator as well as the data flow can be seen in figure 7.1.

Figure 7.1 Federated Flow

76

7.1.1.2 Worker

A remote client or worker is the edge node of a Federated Learning cluster. It’s the device on

which the central system will send the model for training and will then collect to aggregate

over the rest of the model from other edge nodes. A worker can be any device that has the

capability to collect data and perform the computations required to train the given model.

In this work, as will be explained in the layout of the experiment testbed, virtual workers

were used. Virtual workers are a part of the framework used to realize the Federated Learning

extension of this work and have the same functionality as a normal worker, though they are

spawn by the Orchestrator as a means to test the developing application. Since virtual

workers are non-corporeal, meaning they do not own their own code base, they share a part

of the main application, specifically designed to serve this purpose.

In this implementation, the remote workers first receive a portion of the dataset to be used

in the training via a Federation dispersal and then receive a pre-trained model. The model

was shortly trained on the centralized system and then sent to the workers for specification

training. After the training process on the remote workers, the models are sent back to the

Orchestrator which aggregates the model to its own, to produce a generalized model.

7.1.2 Federated Testbed

The Testbed of the Federated Learning operation is composed of a main Orchestrator, con-

ducting the correct function for each of the use-cases, ADA-GAN and CLA-GAN, and two

remote workers. The workers were given the names bob and alice, in respect to the involved

APIs. The network topology of the testbed and the dataflow is depicted in figure 7.2.

77

Figure 7.2 Federated Topology

7.1.3 Literature Review

Federated Learning is a relatively new and unexplored field of theoretical and applied dis-

tributed learning. Because of this fact, the literature targeting specific regions of computer

science is all but limited. To conduct the Federated Extension of this work, a portion of the

available literature was reviewed. This section summarizes the main related work to support

the proposed architecture.

The authors in [70], propose a novel methodology for Federated Learning implementa-

tion for remote learning. They audit this methodology through an empirical performance

evaluation of four common Deep Learning algorithms, deducing that through the Federated

Averaging process, robust and high quality models can be extracted.

In [71], the authors develop a novel autonomous system able to detect compromised

IoT devices. By utilizing device-specific profiles, acquired autonomously form the network,

and by leveraging the Federated Training method to create a unified model, the system is

successful in recognizing known and new, zero-day attacks, achieving a high accuracy score.

In [72] an Anomaly Detection system utilizing Deep Neural Autoencoders is presented.

The system accumulated attack indicators, learning to identify possible attacks. At the same

78

time, the proposed system tries to optimize network utilization for use with the Federated

Learning methodology.

7.2 Implementation

In this section, the Implementation of the Federated Learning extension of this work is

described.

7.2.1 Federated Learning Convention

The defined network architectures that were outlined in the previous chapters, namely, the

ADA-GAN and the CLA-GAN structures, were developed and tested using the Keras and

Tensorflow frameworks that were analyzed in the Tools & Frameworks section. Even though

these two tools constitute powerful tools for Deep Learning applications and have a wide

range of applicability, they offer limited support for Federated Learning development, as of

yet, that is only oriented in simulating the process. Because of this, to extend the proposed

architectures to envelop the Federated Learning utility, the PyTorch and Syft frameworks

were leveraged. To correlate with the functional APIs of both these tools, the produced Deep

Neural Networks were re-written in using the PyTorch APIs. A lot of problems arose when

following the transference procedure so certain conventions were made in order to present

the following work as a proof of concept. These conventions are that a) the performance

of the produced networks using the PyTorch framework is lower than the fully researched

TensorFlow one, b)even though the datasets used are of the Anomaly Detection and Anomaly

Classification use-cases, they are not necessarily the same and c) this extension is used to

simulate a Federated Environment and is treated as a real one.

79

7.2.2 Pre-Federation Training

Before the Federated disbursal of the model to the corresponding virtual workers the both

of the ADA-GAN and CLA-GAN networks are trained locally at the Orchestrator [34]. The

process of training both of the networks is the same as implemented in section 5.2.2.5 and

5.2.3.4 respectively.

7.2.3 Dataset Federation

In a real Federated Environment, the models would be sent from the Orchestrator to the edge

nodes and would train with the data collected by each device separately. In the simulation

tested in this work, because the topology is virtual, there are no collected data from the

virtual devices. To properly train the networks a dataset is sent, prior to the training

process, to each virtual node to simulate a normal Federated Learning flow. Before sending,

the data are sampled and separated into two different sets each for one of the machines so

as to not train on the exact same data. This has no effect in the training process, though

because the data come from the same source there is a certain homogeneity in the produced

model and result. Figure 7.3 shows the use of the PyTorch API to Federate the dataset to

each worker.

Figure 7.3 Dataset Federation - Pytorch API

7.2.4 Federated Model Training

The process of the Federated Training takes place after the model has firstly trained on

the central machine. The operation starts by Federating the models to the according edge

80

Accuracy Recall Precision F1 Score AUC

Pre-Feterated 0.9131 0.8057 1.0000 0.8924 0.9028

Federated 0.9185 0.8236 1.0000 0.9033 0.9118

Table 7.1 ADA-GAN Federated Results

nodes. Then, since the data on which the models will be trained are already on the devices,

it trains locally on these devices following the same training algorithm that it followed on

the non-Federated Training process. Consequently, the models are collected by the central

machine and go under the Federated Averaging process which aggregates the models into

one main model. This procedure is repeated for a given number of Federated epochs.

7.2.5 Results

After the Federated Training process of the proposed networks, certain outcomes were ob-

served. Firstly, the performance of the networks before the Federated operation and after

remain almost the same. This is due to the fact that the virtual device corpus is too small

for the Federated process to produce solid and advancing results. Another reason is that

the utilized dataset is the same. An example is given in table 7.1 where the results before

and after the Federated process, for the ADA-GAN networks, can be seen, respectively.

Furthermore, it was also observed that due to the complex nature of the GAN’s training

procedure, a standard delay was introduced in the model and data communication to the

remote workers. The synchronous nature of the implemented training process produces a

standard training delay per model training iteration depending on the model size, training

algorithm and data size. Because the testbed is virtual and realizes a simulation of the

Federated Environment and also uses the same data samples as the non-Federated training,

the evaluation has not produced satisfactory metric results, though the Federated procedure

is successfully completed.

81

Chapter Eight

Conclusion & Future Work

8.1 Conclusion

In the modern digital age, data communication and transit collocate the majority of the

digital processes. These data, coming in various forms, most of the time represent sensitive

commercial or personal information. If this information falls into the hands of malicious third

parties that try to exploit such data for malevolent purposes the results can be catastrophic.

Especially in the Industrial application field, data privacy and preservation constitute one

fundamental need for their correct and integral operation. To fortify their normal function,

ID(P)S systems are employed to try and detect and in extent prevent the intrusion of possible

attackers in their networks. They achieve this by leveraging algorithms from the field of

Machine and Deep Learning, producing models trained specifically for detecting possible

intrusions by classifying, predicting, or just detecting abnormal activity.

In this work two separate Deep Learning Neural Network architectures were designed,

developed and tested, addressing a different part of Anomaly Detection or Anomaly Clas-

sification in the Industrial Environment operation. By using either network flow data or

operational measurements from Industrial networks or equipment, they were trained to de-

tect anomalous behaviour by learning from experience using abstract representations from

previously detected intrusions. Their performance evaluation on the data of four different

82

industrial facilities demonstrated that both network architectures are able to detect the ma-

jority of abnormalities with high evaluation metrics. Specifically, the networks were actively

compared against several common and widespread Machine and Deep Learning algorithms

that are often used to solve the aforementioned problems. In the case of Anomaly Detection,

it was observed that the ADA-AGN architecture achieves a higher score in the produced

metrics in all the cases except one, in which it is surpassed by the LOF algorithm. In the

Anomaly Classification the CLA-GAN network produces higher metric scores that all of the

tested algorithms. A consequent statistical analysis of the resulting metrics followed. This

analysis pointed to the robustness of the proposed networks and their ability to produce con-

sistent results throughout the different datasets given. In both cases, the networks showed

a tendency to generalize that indicates the reason for their high capacitance to classify the

anomalies in the correct way and produces a more robust and reliable model for the two

architectures.

Furthermore, to consolidate the preservation of the privacy and anonymity of the data

needed to train such Neural Networks, their architecture was extended to envelop the de-

centralized training method of Federated Learning. By distributing the models to a corpus

of remote devices and consequently training them locally at those devices, the need for data

collection for unified centralized training becomes obsolete. Through the implementation

of a virtual corpus topology, it was deducted that the Federated Learning method can be-

come a powerful tool for decentralized Deep Learning and can evolve the notion of remote

network protection through the use of Artificial Intelligence. The ability to disburse the

produced models to remote edge nodes for on-device training was realized and tested. Even

though, due to physical topology and data variety, the produced Federated metric results

had a slight or none progress in contrast to the non-Federated results, a critical insight to the

Federated process of the two networks was acquired. The process was realized successfully,

by distributing, training and then collecting the produced models back to the centralized

system.

83

8.2 Future Work

The work performed in this thesis can be extended and become a stepping stone for further

research in the field of Intrusion Detection using Deep Learning and Federated Learning

IDSs. Some of the possible improvements that can be realized based on this work are the

following:

• Further experiment with the structures of the ADA-GAN and CLA-GAN networks to

possibly optimize the produced metrics and each network’s generalization

• Extend the architectures of the produced Neural Networks to support more industrial

communication protocols, like, the a) IEC-104, b) BackNet, c)MQTT, d) Profinet

protocols or other forms of timeseries data like the Operational Data.

• Build and test the algorithms in a real Federated Learning Environment and corpus

populated from a large number of remote devices

• Reinforce the Federated Learning technique with more efficient data privacy and secu-

rity protocols

84

REFERENCES

[1] Paul Innella. The Evolution of Intrusion Detection Systems. Jan. 2006.

[2] router-switch.com. What is a LAN: Concept, Features, Topologies and Setting. url:
https://www.router-switch.com/faq/what-is-lan-concept-features-topology-setting.
html (visited on 05/26/2020).

[3] router-switch.com. What is metropolitan area network? url: https ://www.router-
switch.com/faq/metropolitan-area-network-definition.html (visited on 05/26/2020).

[4] Network Encyclopedia.What is a Wide Area Network (WAN)? url: https://networkencyclopedia.
com/wide-area-network-wan/ (visited on 05/26/2020).

[5] Markel Sainz Oruna, Mikel Iturbe, Iñaki Garitano, and Urko Zurutuza. “Software
Defined Networking Opportunities for Intelligent Security Enhancement of Industrial
Control Systems”. In: (Jan. 2018), pp. 577–586. doi: 10.1007/978-3-319-67180-2_56.

[6] Vangie Beal. The 7 Layers of the OSI Model. url: https://www.webopedia.com/
quick_ref/OSI_Layers.asp (visited on 05/26/2020).

[7] Peter Huitsing, Rodrigo Chandia, Mauricio Papa, and Sujeet Shenoi. “Attack tax-
onomies for the Modbus protocols”. In: International Journal of Critical Infrastructure
Protection 1 (Dec. 2008), pp. 37–44. doi: 10.1016/j.ijcip.2008.08.003.

[8] B Claise, Brian Trammell, and P Aitken. “Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of Flow Information”. In: (Sept. 2013).

[9] Brian Trammell and Elisa Boschi. “Bidirectional Flow Export Using IP Flow Informa-
tion Export (IPFIX)”. In: (Jan. 2008).

[10] Andreas Fink and Torsten Reiners. “Modeling and solving the short-term car rental
logistics problem”. In: Transportation Research Part E: Logistics and Transportation
Review 42 (July 2006), pp. 272–292. doi: 10.1016/j.tre.2004.10.003.

[11] Jun li, Shunyi Zhang, Yanqing Lu, and Junrong Yan. “Real-Time P2P Traffic Identi-
fication”. In: (Jan. 2008), pp. 2474–2478. doi: 10.1109/GLOCOM.2008.ECP.475.

[12] Simon Hansman and Ray Hunt. “A taxonomy of network and computer attacks”. In:
Computers Security 24 (Feb. 2005), pp. 31–43. doi: 10.1016/j.cose.2004.06.011.

85

[13] Chris Simmons, Charles Ellis, S. Shiva, Dipankar Dasgupta, and Chase Wu. “AVOIDIT:
A Cyber Attack Taxonomy”. In: (Jan. 2009).

[14] CSIS. "Significant Cyber Incidents". url: https://www.csis.org/programs/technology-
policy-program/significant-cyber-incidents (visited on 05/26/2020).

[15] Hung-Jen Liao, Chun-Hung Lin, Ying-Chih Lin, and Kuang-Yuan Tung. “Intrusion
detection system: A comprehensive review”. In: Journal of Network and Computer
Applications 36 (Jan. 2013), pp. 16–24. doi: 10.1016/j.jnca.2012.09.004.

[16] Rebecca Bace and Peter Mell. Intrusion Detection Systems. 2001.

[17] LLC SolarWinds Worldwide. IDS vs. IPS: What’s the Difference? url: https://www.
dnsstuff.com/ids-vs-ips.

[18] Eric Conrad, Seth Misenar, and Joshua Feldman. Eleventh Hour CISSP, Third Edition:
Study Guide. 3rd. Syngress Publishing, 2016. isbn: 0128112484.

[19] Karen Scarfone and Peter Mell. Recommendations of the National Institute of Stan-
dards and Technology. 2007. doi: 10.6028/NIST.SP.800-94.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[21] Ahmad Javaid, Quamar Niyaz, Weqing Sun, and Mansoor Alam. “A Deep Learning
Approach for Network Intrusion Detection System”. In: EAI Endorsed Transactions
on Security and Safety 3 (Dec. 2015). doi: 10.4108/eai.3-12-2015.2262516.

[22] Tuan Tang, Lotfi Mhamdi, Des McLernon, Syed Ali Raza Zaidi, and Mounir Ghogho.
“Deep Learning Approach for Network Intrusion Detection in Software Defined Net-
working”. In: (Oct. 2016). doi: 10.1109/WINCOM.2016.7777224.

[23] Mohamad H. Hassoun. “Fundamentals of Artificial Neural Networks”. In: Proceedings
of the IEEE 84.6 (1996), pp. 906–.

[24] CS231n Convolutional Neural Networks for Visual Recognition. url: https://cs231n.
github.io/neural-networks-1/.

[25] Quoc Le, Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, and Andrew
Ng. “On Optimization Methods for Deep Learning”. In: Proceedings of the 28th In-
ternational Conference on Machine Learning (ICML-11) 2011 (Jan. 2011), pp. 265–
272.

[26] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
International Conference on Learning Representations (Dec. 2014).

86

[27] Olga Wichrowska, Niru Maheswaranathan, Matthew Hoffman, Sergio Gómez, Misha
Denil, Nando Freitas, and Jascha Sohl-Dickstein. “Learned Optimizers that Scale and
Generalize”. In: (Mar. 2017).

[28] Matthew Zeiler. “ADADELTA: An adaptive learning rate method”. In: 1212 (Dec.
2012).

[29] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Min-
ing, (First Edition). USA: Addison-Wesley Longman Publishing Co., Inc., 2005. isbn:
0321321367.

[30] Shane Barratt and Rishi Sharma. “A Note on the Inception Score”. In: (Jan. 2018).

[31] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. “Self-Attention
Generative Adversarial Networks”. In: (May 2018).

[32] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloe Kiddon, Jakub Konečný, Stefano Mazzocchi, H. McMahan,
Timon Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. “Towards
Federated Learning at Scale: System Design”. In: (Feb. 2019).

[33] Arjun Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. “Analyzing
Federated Learning through an Adversarial Lens”. In: (Nov. 2018).

[34] Brendan McMahan and Daniel Ramage. Federated Learning: Collaborative Machine
Learning without Centralized Training Data. 2017. url: https://ai.googleblog.com/
2017/04/federated-learning-collaborative.html.

[35] An end-to-end open source machine learning platform. url: https://www.tensorflow.
org/.

[36] Simple. Flexible. Powerful. url: https://keras.io/.

[37] scikit-learn Machine Learning in Python. url: https://scikit-learn.org/stable/.

[38] FROM RESEARCH TO PRODUCTION. url: https://pytorch.org/.

[39] The fundamental package for scientific computing with Python. url: https://numpy.
org/.

[40] Pandas. url: https://pandas.pydata.org/.

[41] Matplotlib: Python plotting — Matplotlib 3.2.2 documentation. url: https://matplotlib.
org/.

[42] ANSWER QUESTIONS USING DATA YOU CANNOT SEE. url: https ://www.
openmined.org/.

87

[43] Yin Chuan-long, Zhu Yue-fei, Fei Jin-long, and He Xin-zheng. “A Deep Learning Ap-
proach for Intrusion Detection Using Recurrent Neural Networks”. In: IEEE Access PP
(Oct. 2017), pp. 1–1. doi: 10.1109/ACCESS.2017.2762418.

[44] R Vinayakumar, Alazab Mamoun, Kp Soman, Poornachandran Prabaharan, A. Al-
Nemrat, and Venkatraman Sitalakshmi. “Deep Learning Approach for Intelligent In-
trusion Detection System”. In: IEEE Access PP (Apr. 2019), pp. 1–1. doi: 10.1109/
ACCESS.2019.2895334.

[45] Eunbi Seo, Hyun Song, and Huy Kang Kim. “GIDS: GAN based Intrusion Detection
System for In-Vehicle Network”. In: (July 2019).

[46] Ondrej Linda, Todd Vollmer, and Milos Manic. “Neural Network based Intrusion De-
tection System for critical infrastructures”. In: Proceedings of the International Joint
Conference on Neural Networks (June 2009), pp. 1827–1834. doi: 10.1109/IJCNN.
2009.5178592.

[47] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta,
and Anil Bharath. “Generative Adversarial Networks: An Overview”. In: IEEE Signal
Processing Magazine 35 (Oct. 2017). doi: 10.1109/MSP.2017.2765202.

[48] Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, and Sungroh Yoon. “How Generative
Adversarial Nets and its variants Work: An Overview of GAN”. In: ACM Computing
Surveys 52 (Nov. 2017). doi: 10.1145/3301282.

[49] Python.org. url: https://www.python.org/.

[50] Ninh Pham and Rasmus Pagh. “A near-linear time approximation algorithm for angle-
based outlier detection in high-dimensional data”. In: Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Aug. 2012). doi:
10.1145/2339530.2339669.

[51] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. “Angle-based outlier de-
tection in high-dimensional data”. In: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Aug. 2008), pp. 444–452. doi:
10.1145/1401890.1401946.

[52] Fei Tony Liu, Kai Ting, and Zhi-Hua Zhou. “Isolation Forest”. In: (Jan. 2009), pp. 413–
422. doi: 10.1109/ICDM.2008.17.

[53] Zhiguo Ding and Minrui Fei. “An Anomaly Detection Approach Based on Isolation
Forest Algorithm for Streaming Data Using Sliding Window”. In: (Sept. 2013), pp. 12–
17. doi: 10.3182/20130902-3-CN-3020.00044.

[54] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and Liwu Chang. “A Novel
Anomaly Detection Scheme Based on Principal Component Classifier”. In: Proceedings
of International Conference on Data Mining (Jan. 2003).

88

[55] Peter Rousseeuw and Katrien Driessen. “A Fast Algorithm for the Minimum Covari-
ance Determinant Estimator”. In: Technometrics 41 (Aug. 1999), pp. 212–223. doi:
10.1080/00401706.1999.10485670.

[56] Johanna Hardin and David Rocke. “Outlier detection in the multiple cluster setting
using the minimum covariance determinant estimator”. In: Computational Statistics
Data Analysis 44 (Jan. 2004), pp. 625–638. doi: 10.1016/S0167-9473(02)00280-3.

[57] David Pokrajac, Aleksandar Lazarevic, and Longin Jan Latecki. “Incremental Local
Outlier Detection for Data Streams”. In: Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Data Mining, CIDM 2007 (Jan. 2007), pp. 504–515.
doi: 10.1109/CIDM.2007.368917.

[58] Yun Wang. “A multinomial logistic regression modeling approach for anomaly intrusion
detection”. In: Computers Security 24 (Nov. 2005), pp. 662–674. doi: 10.1016/j.cose.
2005.05.003.

[59] Kang Kim, Heung Choi, Chang Moon, and Chi-Woong Mun. “Comparison of k-nearest
neighbor, quadratic discriminant and linear discriminant analysis in classification of
electromyogram signals based on the wrist-motion directions”. In: Current Applied
Physics - CURR APPL PHYS 11 (May 2011), pp. 740–745. doi: 10.1016/j.cap.2010.
11.051.

[60] Muhammad Shafiq, Xiangzhan Yu, Asif Laghari, Lu Yao, Nabin Karn, and Foudil
Abdessamia. “Network Traffic Classification techniques and comparative analysis us-
ing Machine Learning algorithms”. In: (Oct. 2016), pp. 2451–2455. doi: 10 . 1109 /
CompComm.2016.7925139.

[61] Nigel Williams, Sebastian Zander, and Grenville Armitage. “A Preliminary Perfor-
mance Comparison of Five Machine Learning Algorithms for Practical IP Traffic Flow
Classification”. In: SIGCOMM Comput. Commun. Rev. 36.5 (Oct. 2006), pp. 5–16.
issn: 0146-4833. doi: 10 . 1145/1163593 .1163596. url: https : //doi . org/10 .1145/
1163593.1163596.

[62] Michaela Bray and Dawei Han. “Identification of support vector machines for runoff
modelling”. In: Journal of Hydroinformatics 6 (Oct. 2004), pp. 265–280. doi: 10.2166/
hydro.2004.0020.

[63] Yaping Chang, Wei Li, and Zhongming Yang. “Network Intrusion Detection Based
on Random Forest and Support Vector Machine”. In: (July 2017), pp. 635–638. doi:
10.1109/CSE-EUC.2017.118.

[64] Zahra Jadidi, Vallipuram Muthukkumarasamy, Elankayer Sithirasenan, and Mansour
Sheikhan. “Flow-Based Anomaly Detection Using Neural Network Optimized with
GSA Algorithm”. In: Proceedings - International Conference on Distributed Computing
Systems (July 2013), pp. 76–81. doi: 10.1109/ICDCSW.2013.40.

89

[65] Weiming Hu, Wei Hu, and Stephen Maybank. “AdaBoost-Based Algorithm for Network
Intrusion Detection.” In: IEEE Transactions on Systems, Man, and Cybernetics, Part
B 38 (Apr. 2008), pp. 577–583.

[66] Sheraz Naseer, Dr. Yasir Saleem, Shehzad Khalid, Mr Khawar, Jihun Han, M Iqbal, and
Kijun Han. “Enhanced Network Anomaly Detection Based on Deep Neural Networks”.
In: IEEE Access (Aug. 2018), pp. 1–1. doi: 10.1109/ACCESS.2018.2863036.

[67] Jin Kim, Nara Shin, Seung Jo, and Sang Kim. “Method of intrusion detection using
deep neural network”. In: (Feb. 2017), pp. 313–316. doi: 10.1109/BIGCOMP.2017.
7881684.

[68] Abien Fred Agarap. “Deep Learning using Rectified Linear Units (ReLU)”. In: (Mar.
2018).

[69] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,
Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel
Cummings, Rafael G. L. D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner,
Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser,
Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu,
Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra
Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek
Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova,
Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U.
Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao.
“Advances and Open Problems in Federated Learning”. In: (2019). arXiv: 1912.04977
[cs.LG].

[70] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera
y Arcas. “Communication-Efficient Learning of Deep Networks from Decentralized
Data”. In: (2016). arXiv: 1602.05629 [cs.LG].

[71] Thien Nguyen, Samuel Marchal, Markus Miettinen, Hossein Fereidooni, N. Asokan, and
Ahmad-Reza Sadeghi. “DÏoT: A Federated Self-learning Anomaly Detection System
for IoT”. In: (July 2019), pp. 756–767. doi: 10.1109/ICDCS.2019.00080.

[72] Joseph Schneible and Alex Lu. “Anomaly detection on the edge”. In: (Oct. 2017),
pp. 678–682. doi: 10.1109/MILCOM.2017.8170817.

90

