
ΠΑΝΕΠΙΣΤΉΜΙΟ ΔΥΤΙΚΉΣ ΜΑΚΕΔΟΝΊΑΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Διπλωματική Εργασία

Ενορχήστρωση Πόρων με Χρήση Τεχνικών Μηχανικής Μάθησης

Από τον φοιτητή:

Αποστολάκος Τρύφων

ΑΕΜ: 1137

Επιβλέπων Καθηγητής:

Σαρηγιαννίδης Παναγιώτης

Αναπληρωτής Καθηγητής

Ιούλιος 2021, Κοζάνη

2

3

UNIVERSITY OF WESTERN MACEDONIA

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Diploma Thesis

Resource Orchestration using Machine Learning Techniques

By:

Apostolakos Tryfon

Supervisor:

Panagiotis Sarigiannidis

Associate Professor

July 2021, Kozani

4

5

Περίληψη

Στην παρούσα διπλωματική εργασία μελετώνται οι εφαρμογές μιας νέας τεχνολογίας

εικονοποίησης πόρων, οι περιέκτες, και πως μπορούν να ενορχηστρωθούν σε σενάρια εργασιών

μηχανική μάθησης. Αρχικά, στην εισαγωγή εξηγούνται εις βάθος οι υπάρχουσες τεχνολογίες

εικονοποίησης πόρων, οι εικονικές μηχανές, και στην συνέχεια εισάγεται και εξηγείται η

λειτουργία των περιεκτών. Τέλος, συγκρίνονται οι δυο αυτές τεχνολογίες σε όσους κοινούς άξονες

έχουν και παρουσιάζονται σύντομα τα πλεονεκτήματα και μειονεκτήματα της καθεμιάς.

Η διπλωματική ξεκινάει με την παρουσίαση της νέας μεθόδου εικονοποίησης πόρων, τους

περιέκτες. Στην συνέχεια, αναφέρεται και επεξηγείται ένα ολοκληρωμένο εργαλείο για διαχείριση

μοντέλων μηχανική μάθησης, το TensorFlow. Συγκεκριμένα, στο σύστημα που αναπτύσσεται στα

πλαίσια της παρούσας, χρησιμοποιείται το TensorFlow σε ένα κατανεμημένο περιβάλλον,

επιδεικνύοντας έτσι κυρίως τα πλεονεκτήματα των περιεκτών, μεταξύ των οποίων, η εύκολη

ενορχήστρωσή και κλιμάκωσή τους, ανάλογα με τις απαιτήσεις της κάθε εργασίας.

Ο στόχος της παρούσας, είναι η ανάπτυξη ενός συστήματος, το οποίο να μπορεί να

επεξεργαστεί μοντέλα μηχανικής μάθησης, από την εκπαίδευση μέχρι την αποθήκευση και την

βελτίωση με κατανεμημένο τρόπο, χρησιμοποιώντας ενορχήστρωση περιεκτών. Οι περιέκτες

επιλέχθηκαν διότι φέρουν αυξημένες επιδόσεις σε σύγκριση με τις εικονικές μηχανές, ενώ

διατηρούν την ευκολία στην μεταφερσιμότητα και την κλιμάκωσή τους. Έτσι, το σύστημα που

υλοποιείται έχει επιδόσεις συγκρίσιμες με αυτές ενός φυσικού συστήματος, και δυνατότητες

ενορχήστρωσης των εικονικών του πόρων περισσότερες από εκείνες των εικονικών μηχανών.

Στο τρίτο κεφάλαιο, εκπαιδεύονται αρχικά ένα, και στην συνέχεια δυο μοντέλα μηχανικής

μάθησης στο σύστημα ταυτόχρονα, καταγράφοντας τις επιδόσεις του εκάστοτε υπολογιστή στο

σύστημα. Αφού απεικονιστούν και σχολιαστούν τα αποτελέσματα, συγκρίνονται με ένα σύστημα

αναφοράς το οποίο δεν χρησιμοποιεί περιέκτες, και άρα δεν είναι εύκολα κλιμακούμενο, και

υπολογίζεται η διαφορά στην απόδοση.

Λέξεις κλειδιά
Εικονοποίηση πόρων, περιέκτες, ενορχήστρωση πόρων, μηχανική μάθηση.

6

Abstract

This dissertation examines a novel way of resource visualization via containers and

orchestration. The method used for simulating a workload is training Machine Learning models.

The introduction of this dissertation elaborates on the existing techniques of resource visualization,

virtual machines. Sequentially, containers are introduced and elucidated further. Finally, these two

technologies are compared on their similarities, and some advantages and disadvantages of each

method are presented.

This dissertation starts with a description of containers as a way of resource visualization.

Following this description, TensorFlow, a complete machine learning library, is introduced and

shortly explained. More specifically, this dissertation aims at developing a distributed testbed, with

each computer acting as a TensorFlow worker node. This testbed accentuates the significant

benefits of using containers; these benefits include, but are not limited to, ease of orchestration,

high scalability and availability, depending on each processes' needs.

This thesis aims at developing a testbed able to handle the complete lifecycle of a machine

learning model, from its training and storage on disk to its loading and tuning. All of its lifecycle

maintenance will be done distributed, managing the workflow with an appropriate orchestrator

software. Containers were selected due to their increased performance compared to virtual

machines; while still maintaining their transferability and scalability. The resulting system has

performance comparable to a bare-metal system while still having all of the features of virtual

machines.

In the third chapter, the testbed is benchmarked on two scenarios; one consisting of a single

model and the nodes, and one composed of two models simultaneously. After elaborating on the

results, they are compared to a reference system running the same processes natively, not having

the advantages of containers. Along with each test case, resource utilization is monitored and

visualized of each node in the system. The performance drop is calculated and visualized for each

scenario.

Keywords
Virtualization, containers, orchestration, machine learning.

7

Δήλωση Πνευματικών Δικαιωμάτων

Δηλώνω ρητά ότι, σύμφωνα με το άρθρο 8 του Ν. 1599/1986 και τα άρθρα 2,4,6 παρ. 3 του Ν.

1256/1982, η παρούσα Διπλωματική Εργασία με τίτλο

“ Ενορχήστρωση Πόρων με Χρήση Τεχνικών Μηχανικής Μάθησης.”

καθώς και τα ηλεκτρονικά αρχεία και πηγαίοι κώδικες που αναπτύχθηκαν ή τροποποιήθηκαν

στα πλαίσια αυτής της εργασίας και αναφέρονται ρητώς μέσα στο κείμενο που συνοδεύουν, και

η οποία έχει εκπονηθεί στο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

του Πανεπιστημίου Δυτικής Μακεδονίας, υπό την επίβλεψη του μέλους του Τμήματος κ.

Σαρηγιαννίδη Παναγιώτη αποτελεί αποκλειστικά προϊόν προσωπικής εργασίας και δεν

προσβάλλει κάθε μορφής πνευματικά δικαιώματα τρίτων και δεν είναι προϊόν μερικής ή ολικής

αντιγραφής, οι πηγές δε που χρησιμοποιήθηκαν περιορίζονται στις βιβλιογραφικές αναφορές

και μόνον. Τα σημεία όπου έχω χρησιμοποιήσει ιδέες, κείμενο, αρχεία ή / και πηγές άλλων

συγγραφέων, αναφέρονται ευδιάκριτα στο κείμενο με την κατάλληλη παραπομπή και η σχετική

αναφορά περιλαμβάνεται στο τμήμα των βιβλιογραφικών αναφορών με πλήρη περιγραφή.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή

τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για

σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να

αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν

τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον

συγγραφέα και μόνο.

Copyright (C) Apostolakos Tryfon, Panagiotis Sarigiannidis , 2021 , Kozani

Υπογραφή Φοιτητή:

8

Ευχαριστίες

Θα ήθελα αρχικά να ευχαριστήσω την οικογένειά μου για την υποστήριξη που μου

παρείχε κατά την φοίτησή μου.

Ακόμη θα ήθελα να ευχαριστήσω την κοπέλα και τους στενούς μου φίλους, που με

υποστήριξαν στην προσπάθειά μου, καθ’ όλη την διάρκεια της φοίτησής μου.

Τέλος, θα ήθελα να ευχαριστήσω τον επιβλέπων κ. Σαρηγιαννίδη, Αναπληρωτή

Καθηγητή του Τμήματος, τον κ. Λάγκα Θωμά, Επίκουρο Καθηγητή του Διεθνές Πανεπιστημίου

Ελλάδος, καθώς και τους Υποψήφιους Διδάκτορες του Τμήματος Λιατίφη Αθανάσιο και

Πλιάτσιο Δημήτριο για την καθοδήγηση τους από την σύλληψη του θέματος έως και την

ολοκλήρωση της διπλωματικής.

9

TABLE OF CONTENTS

Abbreviations ... 10

Table of Figures .. 11

List of Tables .. 12

Chapter One ... 13

Introduction .. 13

1.1 Virtual machines, a way of virtualizing resources. .. 13

1.2 Containers, a novel way of virtualizing resources. .. 16

1.3 Comparison between virtual machines and containers. ... 17

1.4 Overlay networks, a way of virtualizing networks. .. 18

1.5 Tensorflow, a complete Machine Learning Python library. ... 21

1.6 Aim of this Thesis and a short description of the testbed. ... 24

Chapter Two ... 25

2.1 Installing and configuring Docker engine and verifying Swarm mode operation. 25

2.2 Creating a Swarm cluster with three hosts, able to process machine learning models. 28

2.3 Configuring correct IPv4 addressing in the cluster. ... 29

2.4 File and folder structure of the testbed. .. 34

2.5 Starting the testbed, training, and saving a model. ... 35

Chapter Three .. 41

3.1 Monitoring and visualizing the performance of the cluster during training. 41

3.2 Training and comparison of a single workload on the cluster. .. 42

3.3 Training multiple Machine Learning models simultaneously on the cluster and visualizing

the results. ... 47

3.4 Comparison of average training times. ... 51

Chapter Four .. 55

4.1 Conclusions. ... 55

4.2 Future work. ... 55

References .. 57

10

Abbreviations

AI Artificial Intelligence

API Application Programable Interface

ARP Address Resolution Protocol

CI/CD Continuous Integration, Continuous

Development/Deployment

CPU Central Processing Unit

GPU Graphics Processing Unit

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

IoT Internet of Things

IP Internet Protocol

IPv4 Internet Protocol Version 4

ISA Instruction Set Architecture

MEC Mobile Edge Computing

ML Machine Learning

OS Operating System

RAM Random Access Memory

RL Reinforcement Learning

SDN Software Defined Networks

TPU Tensor Processing Units

vCPU Virtual Central Processing Unit

VM Virtual Machine

vRAM Virtual Random Access Memory

XML Extensible Markup Language

YAML YAML Ain't Markup Language

11

Table of Figures

Figure 1 - Virtual Machine Architecture. ... 13

Figure 2 - Hypervisor types. ... 15

Figure 3 - Container Architecture. .. 16

Figure 4 - SDN Architecture. .. 19

Figure 5 - Abstract architecture of an Overlay network. .. 20

Figure 6 - A cluster with three nodes and some running services. ... 20

Figure 7 - Inside a Swarm Overlay network. .. 21

Figure 8 - Typical TensorFlow workflow. .. 23

Figure 9 - Docker version. .. 25

Figure 10 - docker-compose version... 25

Figure 11 - Available Docker images. .. 26

Figure 12 - Available nodes before promotion to managers. .. 26

Figure 13 - Available nodes after promotion to managers. .. 27

Figure 14 - Structure of ips.xml. ... 33

Figure 15 - File structure of the testbed. ... 34

Figure 16 - Iteration times, with containers, node #1. .. 42

Figure 17 - Iteration times, with containers, node #2. .. 42

Figure 18 - Iteration times, with containers, node #3. .. 43

Figure 19 - Iteration times, without containers, node #1. ... 44

Figure 20 - Iteration times, without containers, node #2. ... 44

Figure 21 - Iteration times, without containers, node #3. ... 45

Figure 22 - Single Workload training times. .. 46

Figure 23 - Single workload, step response. ... 47

Figure 24 - Iteration times, with containers, node #1, first workload. .. 48

Figure 25 - Iteration times, with containers, node #1, second workload. 48

Figure 26 - Iteration times, without containers, node #1, first workload. 49

Figure 27 - Iteration times, without containers, node #1, second workload. 49

Figure 28 - Workload #1 training time. .. 51

Figure 29 - Workload #1 step response. ... 52

Figure 30 - Workload #2 training time ... 52

Figure 31 - Workload #2, step response. .. 53

Figure 32 - Average training time comparison. .. 53

Figure 33 - Average step response comparison. ... 54

file:///C:/Users/MS_GAMIESAI/Desktop/Thesis%20stin%20thesis%20na%20valw%20vathmo%20thesis%20k%20vathmo%20ptyxiou/Apostolakos_Thesis.docx%23_Toc76390364
file:///C:/Users/MS_GAMIESAI/Desktop/Thesis%20stin%20thesis%20na%20valw%20vathmo%20thesis%20k%20vathmo%20ptyxiou/Apostolakos_Thesis.docx%23_Toc76390365

12

List of Tables

Table 1 - Hypervisor types. ... 15

Table 2 - Advantages of each virtualization method. ... 17

Table 3 - Disadvantages of each virtualization method. ... 18

Table 4 - Results with one workload on both setups. ... 46

Table 5 - Results of Workload #1 on both setups. .. 50

Table 6 - Results of Workload #2 on both setups. .. 50

13

Chapter One

Introduction

1.1 Virtual machines, a way of virtualizing resources.

Traditionally, users interfaced with a computing system, widely known as a computer, via the

Operating System (OS). Thus, the user interacted with the computer's hardware via the operating

system's interface (graphical or not).

The primary objective of Virtual Machines (VMs) is to virtualize hardware resources so that

the user will be able to program the computer for its desired purpose, not depending on the specifics

of the system's hardware [1]. To achieve that purpose, virtual machines abstract physical resources

and enable users to access them via a virtual OS, running as an application on the main one. The

primary operating system is called host OS, while the OS within the virtual machine is called guest

OS. By implementing this abstraction, virtual machines enable users to work on multiple guest

operating systems, aside from the guest OS, simultaneously, each for a different purpose and with

a different number of resources. This way, users can select how many resources (CPU, RAM,

storage) each machine should have, depending on the purpose of each device. An abstract

architecture is shown in Figure 1. The aforementioned features increase the availability of the

services running on the system, since the failure of one VM does not disrupt the operation of the

whole system. Furthermore, VMs enable users to write programs otherwise not compatible with

their host, possibly due to a restriction of their operating system. Using VM, users can develop

using a device with a different architecture, achieving their desired goal without tweaking their

host computer [2], [3].

Figure 1 - Virtual Machine Architecture.

14

Historically, the term VM was first mentioned around 1960-1970. That was followed by an

initial spread and adoption of that technology. One of the first instances of virtual machines is in

the 1960s; they attempted to time-schedule resource utilization for different tasks [4]. Back in

those days, when a user wanted to program a computer to perform a specific job (for example,

complex mathematical calculations), they needed to use the provided interface, commonly the OS,

to do so. As deduced, the user should know the underlying hardware specifications of the system

to program it correctly [5]. To name a few, IBM System 360 and IBM System 370 are some

systems of that era [6], [7].

It was only later adopted, around 2000-2005, when the technology matured enough, and

processors, memory, and storage devices could handle the amount of multitasking required.

Between 2000 and 2010, some major free software suites were released on the internet, enabling

everyday users (not only programmers) to use virtual machines at home, with commercial off-the-

shelf hardware1,2. Nowadays, the virtual machine has a large chunk of the market share, as far as

servers are concerned. Specifically, 92% of companies use virtualization on their servers as of

2020 [8].

Despite the multiple advantages of this new technology, there also exist some disadvantages.

Firstly, the most important one being the performance impact on the host OS, also called overhead

[9]. Consequently, this performance reduction also affects the guest machines, compared to the

same machine running on bare-metal. For example, an Ubuntu VM has diminished performance

compare to an actual Ubuntu host running on real hardware. This reduction in performance occurs

because virtual machines set up an entire OS stack containing the kernel, Instruction Set

Architecture (ISA), drivers, libraries, Graphical User Interfaces (GUIs), file system. The decreased

performance becomes even more noticeable the more complex the desired task gets. Additionally,

every VM is always at risk of getting infected with malware from the internet (as a typical machine

would) while also from the host machine; having one more attack vector needs to be taken care of

to ensure the virtual machine's healthy state.

In order for VMs to work, the host OS needs to install specialized software. This software is

responsible for creating, managing, and scheduling tasks regarding virtual machines. This software

is called a hypervisor and can be further identified as type-1 or type -2 hypervisors. The type -1

hypervisor runs on bare metal and manages all the virtual machines it creates. The type-2

hypervisor runs on an existing OS. The critical difference is that type-1 hypervisors have full

access to the hardware since they are the closest to it, while type-2 request access to the hardware

from the OS they are installed. Most software aimed at consumers or home users is type-2 since

home users want a host OS to use their computer. On the other hand, type-1 are aimed at enterprise

applications. From now on, when mentioning hypervisors, type-2 hypervisors are implied.

1 https://www.virtualbox.org/
2 https://www.vmware.com/products/workstation-pro.html

https://www.virtualbox.org/
https://www.vmware.com/products/workstation-pro.html

15

Figure 2 - Hypervisor types.

Hypervisors, as shown in Figure 2, act as a middleman for the hardware and the guest OS.

However, hypervisors, being applications on the host OS, need to run on the userspace, a dedicated

virtual memory segment for storing non-kernel information, since kernel processes strictly must

run on an isolated memory segment for security reasons. Thus, when VMs request resources, this

request has to go through the guest OS and its kernel, and the hypervisor, in turn, must request

from the host OS and its kernel the resources. For this to be achievable, a portion of RAM has to

be reserved. This portion is increasing as the CPU for each VM increases. This reservation is called

overhead and affects every virtual machine to this day. Table 1 summarizes the aforementioned

remarks.

Type-1 Hypervisors Type-2 Hypervisors

It runs on bare metal, has no OS as a

middleman.

Are installed and run inside the OS.

Have direct access to the underlying hardware,

thus creating VMs with direct access to it.

VMs created from type-2 have indirect access

to the hardware.

Increased speed and security since no host OS

is present to be exploited.

Lower speed and security since OS can still be

vulnerable.

It should be installed on systems with

appropriate hardware and require more

configuring.

Easier, install-and-run, supporting the vast

majority of commercially available hardware.

Have higher scalability and availability

compared to type-2.

Due to OS restrictions, it cannot scale that

efficiently.
Table 1 - Hypervisor types.

16

1.2 Containers, a novel way of virtualizing resources.
In the last decade, a new virtualization method has been under development, aiming to address

some of the VM issues. Its purpose is not to replace virtual machines entirely, but to enable users

to virtualize resources in a different, less isolated, but much more efficient approach. Though

containers are fundamentally different, they share some similarities with virtual machines. With

this novel method of virtualizing resources, the guest subsystem, now called a container, shares

the same kernel with the host operating system [10]. The resulting container is a semi-isolated

system since it has the same kernel and operating system as the host. However, each container

creates a new filesystem and a network stack. The significant difference from virtual machines is

the lack of isolation between the host and guest OS and kernel. This different approach in their

architecture is shown in Figure 3.

Figure 3 - Container Architecture.

Containers achieve minimal overhead on the system and increase the overall performance,

while decreasing the impact on the host OS. However, it is noteworthy that containers' purpose is

not just to abstract the underlying hardware from the user to allow them to make their goals more

attainable. As their names suggest, containers enable users to easily compile all their source code

or libraries into one or more easily manageable, highly scalable and available components. The

containers can be deployed, moved, and deleted dynamically and promptly. Users can pack a

whole application with its dependencies and libraries as a service and deploy it to many replicas

within containers. In addition, users can also decouple the libraries or part of the service, as a

whole, and deploy it distributed, the pieces of which are called microservices. Either way, each

component is running on a container, which is an isolated environment with a dedicated file system

and network stack, sharing the host OS and kernel. As deduced from their purpose, containers are

created and removed dynamically and are designed to be easily replaceable.

Summarizing, the leverage of containers can provide several advantages. Firstly, since

containers share the underlying OS and kernel, there is no need to boot an entire OS with drivers

17

and libraries. As a result, containers have negligible bootup and shutdown times. Moreover, they

usually occupy less disk space, compared to a traditional VM, which can take up a couple of

gigabytes. Another significant advantage of containers is the lack of memory overhead on the

system. As containers share the same kernel, any request for hardware resources does not have to

go through two kernels to be accepted. The container runtime software (the equivalent of the

hypervisor software in virtual machines) is usually lightweight with no Graphical User Interface

(GUI), thus improving the overall performance of the containers. Each container's prototype

contains the instructions and the purpose of the container, and what to run when started. It is stored

in an image, similar to .iso files on virtual machines. The only difference is that these images are

minimal in size.

1.3 Comparison between virtual machines and containers.
Table 2 contains a summary of the significant advantages of each virtualization method,

namely VMs and containers. On the other hand, Table 3 summarizes the corresponding

disadvantages [11]-[14]. It is imperative to understand that, due to their fundamental differences

in their architecture and their purpose, containers cannot be compared on their entirety of features

to VMs [11]. Also, containers were not created to replace or make virtual machines better; instead,

they mainly aim at abstracting a problem to solve it more easily. However, both technologies share

some similarities. In some cases, a user may have to decide which virtualization method should

choose, since both VMs and containers can perform the same tasks. For these reasons, the

following comparison is presented [12], [13].

Advantages of Virtual Machines Advantages of Containers

More robust isolation enhanced security. Very portable, due to their small size on disk.

Ability to create a virtual machine with a

different OS architecture of the host (for

example, one can make a Unix VM on a Linux

host).

Highly portable, since the only thing required

to be transferred to another host is an online

repository (or a physical medium) and a

container runtime engine.

Ideal for a monolithic application that is

required to run on one specific host.

Very light on resources, especially RAM, since

there is little to no overhead and a small

footprint on storage space.

 It can be booted and shut down in a matter of

seconds.

 Their CPU performance is closer to bare metal

compared to virtual machines.
Table 2 - Advantages of each virtualization method.

Disadvantages of Virtual Machines Disadvantages of Containers

Significant footprint on storage, RAM, and

CPU performance. The existence of overhead

Fundamental lack of security due to the lack of

isolation between kernel space and userspace

18

further hinders their performance. on the host and guest.

Their size on disk can be many gigabytes. Containers must use the host OS kernel, thus

depending on the host OS architecture. For

example, cannot create a Windows OS

container in a Linux host OS.

Boot up time and shutdown time dependent on

the disk speeds.

Harder to store and transfer files from and to

host OS. Containers were created to be

ephemeral, so extra effort needs to be made to

create persistent volumes.
Table 3 - Disadvantages of each virtualization method.

1.4 Overlay networks, a way of virtualizing networks.
In recent years, to overcome specific difficulties of traditional networks, new methods of

implementing networks were developed [14]–[16]. Nowadays, it is common for a set of services

to run on a network with no direct physical infrastructure, broadly called a Software Defined

Network (SDN) [17]–[23]. The idea behind an SDN is to abstract the physical layer of a network

and program the desired behaviour on the network. This topic is relevant in containers and

orchestration since when a network within a swarm is created, the architect must decide on its

driver. The most common driver is called "overlay." An overlay Software Defined Network is

created, and the desired services are attached and operate on it.

Firstly, the abstract architecture of SDNs is visualized in Figure 4. It should be noted that the

architecture depicted in Figure 4 is not the complete architecture. Some components, such as the

Management Layer, that span across all other layers, are not shown since they are not in the scope

of this dissertation. As shown in Figure 4, SDNs consist of multiple layers, each having its

responsibilities within its scope. Most notably, distinct layers are the Application, Control, and

Infrastructure layers. Starting from the bottom, the Data Plane contains the underlying hardware

infrastructure such as switches. The Control layer contains a running instance of the software that

enables the programming of the underlying infrastructure. This software is called an SDN

Controller and is also responsible for translating high-level requests, created from the Application

Layer, via the Northbound Application Programming Interface (API), into lower-level commands

of the protocols that are supported by the Data Plane. Lastly, the Application Layer commonly

contains the high-lever services or applications that communicate with the infrastructure via the

SDN Controller [24].

19

Figure 4 - SDN Architecture.

Next, the incorporation of Overlay networks in Docker Swarm mode is examined. Swarm

mode allows the rapid creation of disposable networks. Three drivers are available when creating

a network, the default being bridged. The other option is an overlay driver, and the last is a custom

network driver. The overlay option that creates an SDN Overlay network is selected and further

explained.

Figure 5 depicts an abstracted architecture of an Overlay network. As can be deduced, Overlay

networks are a way of virtualizing networks and giving them a programmable logic. Overlay

networks hide the physical infrastructure by creating layers of abstractions and installing software

called acting as an "agent" that manages the created SDN Overlay.

20

Figure 5 - Abstract architecture of an Overlay network.

Docker Engine further hides this architecture and simplifies the use of SDN Overlays. A stack

consists of many services in Docker swarm, where each service can be a business application, a

database, a website; each service can be connected to one or more networks. Based on the container

architecture, as shown in Figure 6, a set of Swarm workers as three physical machines connected

to a cluster in Docker Swarm mode can be seen. Each worker has a set of running services, with

each service containing a different number of replicas of a container. Each service has a different

color, while services 1, 3, and 5 are considered to be of high importance. These services, for

example, could be connected to an overlay network. Thus, the containers these services would

spawn would also be connected to an overlay network. Within that network, services 2, 4, and 6

are not known and cannot be reached. This way, within the overlay created for services 1, 3, and

5, a graph of the network is shown in Figure 7.

Figure 6 - A cluster with three nodes and some running services.

21

Figure 7 - Inside a Swarm Overlay network.

Docker Swarm allows the creation of a cluster, in which many computers can join as nodes.

Every node can have two distinct roles, those being a worker or a manager node. Worker nodes

simply take on a workload and process it, while manager nodes have some added responsibilities.

These include maintaining the stability of the cluster, ensuring services are running where they

should and are responsive, and, lastly, serving HTTP APIs.

Manager nodes use a version of Raft Consensus Protocol [25]. This algorithm enables the high

availability of the cluster through fault tolerance. Fault tolerance allows for the existence of many

managers in a swarm in case one or more fails. This way, even if some managers fail, the cluster

will elect another manager, and its availability will not change. To achieve this functionality,

docker uses two distinct networks, listening to different ports. One is for managers to communicate

and maintain the state of the cluster; one for the worker nodes to exchange information regarding

their running services. The first is called Raft Consensus Group, while the workers' network is

called the Gossip network. That is why in Figure 6, the Gossip network encloses all the workers

[26].

1.5 Tensorflow, a complete Machine Learning Python library.
Tensorflow3 is a machine learning library built for the Python4 programming language [27]–

[33]. At the time of writing this thesis, the current version is 2.4.1, which is officially supported

on python versions 3.6, 3.7, and 3.8. Tensorflow provides all the needed tools for creating, training,

storing, loading, and modifying machine learning models[34]–[38].

A typical TensorFlow workflow is shown in Figure 8. Firstly, the dataset for the specific

problem must be acquired. This dataset can further be preprocessed for enhanced training. Such

actions could include splitting the dataset into smaller portions, one for training and one for testing.

3 https://www.tensorflow.org/
4 https://www.python.org/

https://www.tensorflow.org/
https://www.python.org/

22

The utilized model can be an entirely new model built from scratch or an existing model that has

been tuned accordingly. TensorFlow has its repository for trained models5. At this point, it should

be noted that before TensorFlow 2.0, some problems could be solved with TensorFlow Estimators.

However, as per the documentation, new code should ideally be written with the tf.keras API

instead. After the model and the dataset are established, a distribution strategy should be selected.

Tensorflow has a built-in API allowing the training of models across different host machines,

each with its dedicated resources. The name of its API is tf.distribute.Strategy, containing various

types of training strategies, depending on the needs of each scenario. Tensorflow supports Tensor

Processing Units (TPUs), as well as Graphics Processing Unit (GPUs) and CPUs. The first has the

best performance per watt [39], [40].

The aim of this thesis is not to create a novel machine-learning algorithm or optimize an

existing one. Instead, it leverages machine learning workflows to develop a novel, highly

performing, and easily scalable (horizontally or vertically) testbed that can orchestrate machine

learning workloads using containerization. The dataset and the model trained in the following

chapters have been studied extensively, are part of the official documentation of Tensorflow, and

are used as an introduction to machine learning. Tensorflow requires pip6 to be installed and

updated. Finally, Ubuntu Desktop 20.047 has been selected as the host OS.

5 https://www.tensorflow.org/hub
6 https://pypi.org/project/pip/
7 https://ubuntu.com/download/desktop

https://www.tensorflow.org/hub
https://pypi.org/project/pip/
https://ubuntu.com/download/desktop

23

Figure 8 - Typical TensorFlow workflow.

24

1.6 Aim of this Thesis and a short description of the testbed.
This thesis aims to create a novel testbed able to handle machine learning workloads and train

models in a distributed way. By leveraging containers, the testbed can scale vertically and

horizontally. Vertical scaling implies changing the size of each container CPU, RAM, and disk. In

the case of vertical scaling, the number of available instances is modified. In addition to these, the

testbed will maintain acceptable performance, near bare-metal, yet still be highly available and

easy to orchestrate.

In the scope of this dissertation, multiple files have been developed aiming to assist with the

orchestration of the cluster. Namely, the files created from scratch are parse_ips.py,

start_cluster.sh, docker-compose.yml, Dockerfile, mystats1_.csv, run_workload.sh. These files

were created to automate orchestrating tasks, such as creating, updating, and monitoring the

cluster. In addition to these, cAdvisor and docker-stats are utilized to debug issues during the

testbed development.

Three virtual hosts are deployed, with each one having two virtual CPUs (vCPUs) and 4GB of

virtual RAM (vRAM). All traffic is permitted (inbound and outbound) between these hosts on all

ports. Each host, as mentioned above, is running the latest version of Ubuntu Desktop 20.04. Each

host has the latest Docker Engine8 and Docker Compose9 installed. Each host can support multiple

containers, while each container is based on a custom TensorFlow image. The custom image

developed adds some more tools to the existing TensorFlow image found in their dockerhub10

repository.

8 https://docs.docker.com/engine/
9 https://docs.docker.com/compose/install/
10 https://hub.docker.com/r/tensorflow/tensorflow

https://docs.docker.com/engine/
https://docs.docker.com/compose/install/
https://hub.docker.com/r/tensorflow/tensorflow

25

Chapter Two

2.1 Installing and configuring Docker engine and verifying Swarm mode

operation.
Firstly, the latest version of Docker Engine is installed on all three hosts. Detailed instruction

can be found on the official documentation in the following link:

https://docs.docker.com/engine/install/ubuntu/

The testbed uses the apt version of Docker Engine with root privileges given to the daemon,

as described in the following link. After installing docker, its correct installation can be confirmed

with the command docker --version. In Figure 9, the result of that command being run in one

of the hosts is seen.

https://docs.docker.com/engine/install/linux-postinstall/

Figure 9 - Docker version.

Next, docker-compose should be installed and verified with the following command.

docker-compose -v

A successful run of a version command for docker-compose is shown in Figure 10.

https://docs.docker.com/compose/install/

Figure 10 - docker-compose version.

This project is based on the TensorFlow image, which can be found in the following dockerhub

repository. To pull this image, docker pull TensorFlow/TensorFlow is issued on each host.

The custom TensorFlow image that was created to fit the needs of this testbed is called tf-custom

and is shown alongside the TensorFlow image as shown in Figure 11.

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/compose/install/

26

Figure 11 - Available Docker images.

The base TensorFlow image has been cloned, while the installation of Docker Engine and

docker-compose have been verified. The last step is to create a cluster containing the three hosts

discussed earlier. A cluster is defined as a set of nodes (hosts) in swarm mode of docker, running

Docker Engine. In a cluster, the first to create it is declared a manager, and the others to join are

called workers.

To create a swarm with one node as the manager, the following command is issued to one host.

docker swarm init --advertise-addr [IPV4_ADDR]

docker swarm join \

--token SWMTKN-1-3pu6hszjas19xyp7ghgosyx9k8atbfcr8p2is99znpy26u2lkl-

1awxwuwd3z9j1z3puu7rcgdbx \

[IPv4_ADDR]:2377

The init command returns a join token and the appropriate command, which in turn is run to

the other two hosts, allowing them to join the cluster as workers. After running the join command

in the other two hosts, a three-node cluster has been successfully created. To get some basic

information about the nodes and their overall status, docker node ls can be issued and get the

results shown in Figure 12.

Optionally, running docker node promote ubuntu1, and Docker node promote

ubuntu2

Figure 12 - Available nodes before promotion to managers.

27

promotes all the nodes to managers. docker node ls returns what is shown in Figure 13.

The next step is to construct a Dockerfile containing all the changes made and compiled to a new

image of TensorFlow. The contents are shown below.

#Dockerfile

FROM tensorflow/tensorflow

#base image of tensorflow

RUN mkdir script

#script is created under /, being bind mount in the yml file

RUN apt install nmap -y \

 && python -m pip install pip==21.0.1 \

 && pip install -U setuptools \

 && pip install -U wheel \

 && pip install -U numpy \

 && pip install -U matplotlib \

 && pip install -U pandas \

 && pip install -U scipy \

 && pip install -U scikit-learn \

 && pip install -U tensorflow \

 && pip install -U python-mnist \

 && pip install -U Keras

#updating these tools and installing some

#not all of the are needed, however in future update might be utilized, so are ke

pt

RUN pip install python3-nmap \

 && pip install -U psutil

#psutil is a performance monitor tool

WORKDIR /script

#change dir and start wrapper script

CMD /script/start_cluster.sh

The base image, as mentioned, is the latest version of TensorFlow/TensorFlow. Then, a

directory under root is created. It is named /script, as seen in the first RUN command, and in the

subsequent two RUN commands, some additional tools are installed and updated. Finally, the

Figure 13 - Available nodes after promotion to managers.

28

current directory is changed to /script, and the wrapper script that creates the cluster is executed in

the final CMD command.

2.2 Creating a Swarm cluster with three hosts, able to process machine learning

models.
In this chapter, the orchestration of the cluster is documented, As mentioned in the previous

section, containers are a novel way of virtualizing resources more efficiently by breaking down

rather large monolithic components into smaller entities, called microservices. Since containers

are ephemeral and easily replaceable, their lifecycle from the inception of the cluster to its

deployment, its update, and scaling should be closely monitored and strictly defined. Container

orchestration is the practice of automating most of the aforementioned tasks and further enabling

CI/CD pipelines. Many orchestration tools exist nowadays, including Kubernetes11, Docker

Swarm12 Apache Mesos13, RedHat OpenShift14.

In this dissertation, Docker Swarm is selected for having higher overall performance due to its

integration into the Docker engine. Orchestration occurs when creating the cluster description and

consecutively when adding a second workload as another cluster. In addition to that, orchestration

includes scaling the workload. For example, should more resources become available, the updating

of the cluster towards utilizing more resources is considered an orchestration task.

Up to this point, a custom TensorFlow image tailored to the needs of the testbed has been

created. The specifications of this image have been discussed in the aforementioned Dockerfile.

The cluster has also been initialized, and the node connectivity has been verified. There are two

methods to deploy an application to the cluster and orchestrate it, namely the imperative and

declarative methods. Using the imperative method, the corresponding commands should be

entered into the terminal. On the other hand, using the declarative method, the user provides a

description of the cluster's desired state, while the orchestrator carries out the required operations

to shift the cluster to that state. The latter method is also called self-healing and is generally the

preferred way of orchestrating a cluster and is implemented in this testbed, using a docker-

compose.yml file.

YAML15 is a way of describing the desired state by introducing services. Swarm services are

entities containing information regarding the behaviour, networking, file structure, and runtime of

a set of containers. Each service effectively is a set of replicate containers with the same

description. Each service can be based on a different image. For example, service A could be a

11 https://kubernetes.io/
12 https://docs.docker.com/engine/swarm/
13 https://mesos.apache.org/
14 https://www.openshift.com/
15 https://yaml.org/

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://mesos.apache.org/
https://www.openshift.com/
https://yaml.org/

29

database, while service B a web server. These descriptions are written onto YAML files that can

be passed to docker stack and deployed to a swarm. Docker stack deploy disregards build

instructions, so it helps test the system with docker-compose since the same YAML file can be

passed to docker stack.

The contents of docker-compose.yml are shown. This file contains both build instructions for

the images and a description of services passed to both docker-compose and docker stack for

deployment. Firstly, three similar services are created, with the only difference being that each

service (and its replicas) is bound to spawn containers on one of the three nodes. This strategy is

implemented to maximize the utilization of the resources while controlling the scale of the testbed

more easily. If one service with three replicas were used, it would be harder to manage the

networking of the containers that would be created. Each service uses the tf-custom image, and it

builds it; however, the build commands are skipped when deploying to a stack. In addition, it

mounts the script folder created in the Dockerfile to a script folder in the current directory of the

node. All services are then connected to a custom overlay network called clust_net, which is

specified at the end of the file. Finally, each service is ordered to spawn containers only to one of

the nodes.

#docker_compose.yml

version: "3.9"

services:

#late version 3 is used for futureproofing and simply because it works

 tf-custom1_0:

 image: tf-custom

 build: .

 #build instructions are ignored by swarm deploy

 volumes:

 - ./script/:/script/

 networks:

 clust_net:

 deploy:

 placement:

 constraints: [node.hostname == ubuntu]

 #each service's containers ought to run onto a different host

 #for easier debugging, management and scalability

 tf-custom1_1:

 image: tf-custom

 build: .

 volumes:

 - ./script/:/script/

 networks:

 clust_net:

30

 deploy:

 placement:

 constraints: [node.hostname == ubuntu1]

 tf-custom1_2:

 image: tf-custom

 build: .

 volumes:

 - ./script/:/script/

 networks:

 clust_net:

 deploy:

 placement:

 constraints: [node.hostname == ubuntu2]

networks:

 clust_net:

 driver: overlay

 #the network is fundamentally a sdn network giving many security benefits

 #in addition to the layer of abstraction, it introduces

 ipam:

 config:

 - subnet: 192.168.0.0/24

 #we define the subnetwork to make scanning with nmap easier

2.3 Configuring correct IPv4 addressing in the cluster.
One of the challenges of the testbed is setting up the networking of the containers dynamically.

As containers are created at runtime, their Internet Protocol (IP) addresses cannot be predefined.

To address this issue, each container, at startup, performs a fast one-port Nmap16 scan and saves

the active hosts to an XML file. This file is parsed in a python function. Based on the scan results,

the hosts in the same network are passed on to the TensorFlow strategy for the training to occur.

Of note, a potential alternative would be to perform an arp table scan or create another container

to manage all the networking. Arp is not suitable because arp tables refresh dynamically and cannot

be relied upon. Additionally, creating a container dedicated to IP allocation would be resource-

intensive and highly inefficient.

16 https://nmap.org/

https://nmap.org/

31

The fast execution of the Nmap scan is ensured by only scanning one port on the subnetwork

of each potential host, with the scan taking about 3-4 seconds to finish. The port used is 4789 since

both managers and workers use it for the overlay network traffic17. Firstly, each host scans the

subnetwork. Sequentially, each result is saved to a different XML and parsed by a copy of the

python script. The scan is performed in the start_cluster.sh file, the contents of which are shown

below.

#!/bin/bash

#start_cluster.sh

echo "Starting Nmap scan for docker-engine compatible hosts."

rm -r keras-model/ >/dev/null 2>&1

#remove old model if it exists, and silence all outputs, stderr and stdout

rm ips.xml >/dev/null 2>&1

#remove old xml of hosts if it exists, and silence all outputs, stderr and stdout

sleep 20

#we wait 10s before starting the scan, to ensure all hosts are up.

nmap -p 4789 192.168.0.0/24 -oX ips.xml

#we port scan the 192.168.0.0/24 subnet and save the output to an xml file

echo "Starting cluster."

python main.py

The first rm lines remove old residual data from potential previous tests of the cluster. Then

the script waits 20 seconds for the containers to start; each container requires approximately 2-3

seconds, and they begin almost simultaneously. Twenty seconds was chosen to err on the side of

caution. Then the scan is performed in 3-4 seconds, with each output saved to the file ips.xml.

Finally, the main.py script starts the parsing of the XML and then the training.

Parsing takes place in a function defined in parse_ips.py. This function first opens the file

ips.xml, starts reading it from its root, and searches for tags containing hosts. After finding a host

tag, it goes a level deeper and searches for a non-empty hostname tag. If it reads non-empty

hostname tags, it saves the IP address of the tag in a temporary variable. Finally, it creates the list

with the nodes alive in the network and returns it. The code is shown below.

#parse_ips.py

import xml.etree.ElementTree as ET

def parse_ips():

 #open file and start iterating from root

 mytree = ET.parse('ips.xml')

 myroot = mytree.getroot()

17 https://docs.docker.com/engine/swarm/swarm-tutorial/#open-protocols-and-ports-between-the-hosts

https://docs.docker.com/engine/swarm/swarm-tutorial/#open-protocols-and-ports-between-the-hosts

32

 possible_ips=list()

 final_ips=list()

 hosts_found=list()

 #initialize misc variables

 cnt=0

 #cnt will be used to save the index of each host found independently of the o

utside for's

 for i in myroot.findall("host"):

 #take each host

 for j in i:

 if j.tag == "address":

 #for each address that is found, save it at the table possible_ip

s

 possible_ips.append(j.attrib["addr"])

#instead of deleting each mac separately, I could possibly only save IPS, modifyi

ng 17-20 lines to check if the type of addr is ipv4 and not mac

 if j.tag == "hostnames":

 for k in j:

 #when we find a non-

empty hostnames body of that tag, we have found a live host

 #saving its index to the hosts found

 hosts_found.append(cnt)

 cnt+=1

 print(hosts_found)

 del possible_ips[1::2]

 #since for each host there corresponds one IP and one MAC, we delete every se

cond element of possible_ips

 #to rid it of MACs

 for i in hosts_found:

 final_ips.append(possible_ips[i])

 #finally we the index of every live host, to get its corresponding IP saving

it to final_ips

 #and returing it

 #print(final_ips)

 return final_ips

33

As shown in Figure 13, ips.xml contains various hosts, some of which have been expanded.

Each host is described with a host tag, and inside contains multiple other tags. The hosts that

contain a non-empty body on the hostnames tag are the nodes that are parsed and saved. In Figure

14, two hosts can be seen, with 192.168.0.9 and 192.168.0.3 as their respective IPs.

Figure 14 - Structure of ips.xml.

34

2.4 File and folder structure of the testbed.
Having resolved the networking between hosts, the cluster can now start, train a model, and

save the output to one of the nodes. Figure 15 depicts the files that need to be replicated to all of

the hosts, with the only exception being the docker-compose.yml and the run_workload.sh files

that only need to be to the swarm manager. The manager runs the swarm, which, in turn, deploys

the stack to the cluster, and each node instantiates one or more depending on the workloads,

containers.

Figure 15 - File structure of the testbed.

The functionality of each folder and file is described as follows:

• script/ is a folder containing all necessary files required inside the containers. This folder

is bind mount to the container, as described in docker-compose. Files outside that folder

are running on the host machine and do not interact with the containers directly.

• __pycache__/ is a folder containing bytecode to optimize startup. It can safely be ignored

or deleted and does not impact the functionality of the system.

• keras-model/ is a folder containing the trained model created from the dataset. It includes

the architecture of the model (layers, connections), the weight values, and other

information relevant to the trained model. Each time old models are deleted, and new ones

will be instantiated; however, this can change quickly to fit any needs.

• ips.xml, parse_ips.py, start_cluster.sh, docker-compose.yml, and Dockerfile have been

documented in sections 2.1, 2.2, and 2.3, respectively.

• main.py and mnist.py are created according to the official documentation for TensorFlow's

Multi Worker Mirrored Strategy. Expressly, mnist.py is provided as a ready training loop

that has been tailored to work in a cluster. More documentation can be found at the

following link and its sublinks:

https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy

https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy

35

• run_workload.sh is a wrapper file starting the swarm and monitoring the performance of

the node.

• mystats1_.csv contains the output of the docker stats command with some special

formatting, making it easier to read during debugging. It is primarily used for debugging

purposes during orchestration and as such, will not be further discussed in this thesis.

2.5 Starting the testbed, training, and saving a model.
Finally, having prepared the testbed, a model can be trained, and the cluster's performance

monitored. To start the cluster, the manager node, in this case, "ubuntu", as shown in Figure 14,

has to run its run_workload.sh script, which wraps the deployment of the stack and the monitoring.

Its contents are shown below.

#!/bin/bash

#run_workload.sh

docker stack deploy --prune -c /media/hdd/edw/workload_1/docker-

compose.yml workload1

#delete previous stats if they exist and start the cluster

while true

do

docker stats -a --no-stream --

format "table {{.Name}}\t{{.NetIO}}" >> /media/hdd/edw/workload_1/mystats1_.csv

echo "Saving stats to file mystats.csv."

echo "Press Ctrl+C to exit."

done

while the cluster is running, output the results of docker stats onto a mystats

.csv

#note that docker stats allow us

to format the output, and we use it to get only the data needed

 This file uses the YAML file created earlier to deploy a stack, a sum of services, each

running on a different host. In addition, it monitors the network throughput and saves it to the file

mystats1_.csv. To start the cluster, one must execute run_workload.sh by running the following

command.

./run_workload.sh

It should also be noted that this file prints directly to the terminal until closed, so it either can

be modified to run in the background, or have it manually set as a background job, or open a new

terminal. In any case, after starting the cluster, the file can be closed by pressing Ctrl+C. After

36

checking the logs of any of the manager nodes, a folder named keras-model should be created

under script/. This folder contains the model that was saved after the training.

Main.py is responsible for initializing each distributed node with the correct IPs, as extracted

from parse_ips.py. After calling parse_ips() as a function and sorting them, it loads the dataset,

creates the model, calculates each worker's batch sizes, and starts the distributed training. Main.py

acts as a wrapper to mnist.py, transforming traditional monolithic training workload into a

distributed one. Finally, it should be noted that instructions on how to structure main.py and the

mnist.py workload are provided in the official TensorFlow documentation18,19. It is also

noteworthy, that any workload can be performed in a distributed environment with minimal

changes to the existing code; that is the job of the provided main.py.

The code for mnist.py and main.py with comments and documentation is shown below.

import os

import tensorflow as tf

import numpy as np

def mnist_dataset(batch_size):

 (x_train, y_train), _ = tf.keras.datasets.mnist.load_data()

 # The `x` arrays are in uint8 and have values in the range [0, 255].

 # You need to convert them to float32 with values in the range [0, 1]

 x_train = x_train / np.float32(255)

 y_train = y_train.astype(np.int64)

 train_dataset = tf.data.Dataset.from_tensor_slices(

 (x_train, y_train)).shuffle(60000).repeat().batch(batch_size)

 return train_dataset

def build_and_compile_cnn_model():

 model = tf.keras.Sequential([

 tf.keras.Input(shape=(28, 28)),

 tf.keras.layers.Reshape(target_shape=(28, 28, 1)),

 tf.keras.layers.Conv2D(32, 3, activation='relu'),

 tf.keras.layers.Flatten(),

 tf.keras.layers.Dense(128, activation='relu'),

 tf.keras.layers.Dense(10)

])

 model.compile(

 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

 optimizer=tf.keras.optimizers.SGD(learning_rate=0.001),

 metrics=['accuracy'])

18 https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy
19 https://www.tensorflow.org/tutorials/distribute/multi_worker_with_ctl

https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy
https://www.tensorflow.org/tutorials/distribute/multi_worker_with_ctl

37

 return model

#main.py

import json

import mnist

import os

import time

import sys

import socket

import parse_ips as parsr

import tensorflow as tf

from time import sleep

def _is_chief(task_type, task_id):

 return (task_type == 'worker' and task_id == 0) or task_type is None

def _get_temp_dir(dirpath, task_id):

 base_dirpath = 'workertemp_' + str(task_id)

 temp_dir = os.path.join(dirpath, base_dirpath)

 tf.io.gfile.makedirs(temp_dir)

 return temp_dir

def write_filepath(filepath, task_type, task_id):

 dirpath = os.path.dirname(filepath)

 base = os.path.basename(filepath)

 if not _is_chief(task_type, task_id):

 dirpath = _get_temp_dir(dirpath, task_id)

 return os.path.join(dirpath, base)

def run_strat():

 '''This function encapsulates all the functionalities of the main program.

 Firstly, it discovers the IP of the current node and next calls the parse_ips

() function

 from the respective files. Next, it sorts the IPs that are returned, and sets

 up the tf_config

 accordingly. Then it creates the distributed strategy and calls the already c

onfigured mnist.py file. Finally,

 it saves the model on the master node, which is defined as the one with a tas

k index of 0.

 '''

38

 host_address = socket.gethostbyname(socket.gethostname())

 #socket library is used to get the self IP

 ip_list=parsr.parse_ips()

 #we call the parse_ips and then attemp to sort them

 ips_sorted=list()

 for i,val in enumerate(ip_list):

 ips_sorted.append(ip_list[i].split('.'))

 #in the for above, we split each IP when we encounter a '.' for example 192.1

68.0.3 would be split into four string each containing one octet

 ips_sorted=[[int(y) for y in x] for x in ips_sorted]

 #casting each octet of the IP to string

 ips_sorted = sorted(ips_sorted, key=lambda item: item[-1])

 #sorting each IP based on the last (int) element of the list it is in

 #for example we have the following IPS [[192,168,0,6], [192,168,0,3], [192,16

8,0,11]]

 #each sublist will be sorted according to its last element, in this example 6

,3,11, thus getting the sublist containing 3 first

 #print(ips_sorted)

 tf_config = {

 'cluster': {

 'worker': ['','','']

 },

 'task': {'type': 'worker', 'index': 99}

 }

 #tf_config = {

 # 'cluster': {

 # 'worker': ['', '']

 # },

 # 'task': {'type': 'worker', 'index': 99}

 #}

 #notice how cluster does not contain valid workers and index, that is to make

 debugging easier

 for i in range(0,len(ips_sorted)):

 tf_config['cluster']['worker'][i]='.'.join(str(x) for x in ips_sorted[i])

+':5001'

 #first we add each worker in the cluster, concatenating the port in the e

nd (:5001)

 if host_address == '.'.join(str(x) for x in ips_sorted[i]):

 #to specify the index of each node dynamically we simply take the sel

f IP we saved

39

 #and compare it with the position of that particular IP in the sorted

 IP list.

 #for example if the IP of this node is 192.168.0.6 and the list conta

ins three IPS in this order

 #['192.168.0.3', '192.168.0.6', '192.168.0.11'] the index for this pa

rticular host will be 1

 #since it is in the second position

 tf_config['task']['index'] = i

 #print(tf_config)

 #if tf_cfg['cluster']['worker'][2] == '':

 # print("ERROR")

 # return -1

 os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

 #in this specific testbed, not CUDA cores are available so each node only use

s CPU power

 os.environ.pop('TF_CONFIG', None)

 #it is important to clear the operating system

 #environment variable TF_CONFIG before saving the one we created

 if '.' not in sys.path:

 sys.path.insert(0, '.')

 os.environ['TF_CONFIG'] = json.dumps(tf_config)

 batch_worker = 64

 strategy = tf.distribute.MultiWorkerMirroredStrategy()

 #at this point, we initialize the distributed strategy

 #in order for the above line to work, tf_config must have been initialized

 #correctly. Otherwise, when strategy starts, it effectively runs in a single

node system.

 tf_config = json.loads(os.environ.get('TF_CONFIG'))

 worker_cnt = len(tf_config['cluster']['worker'])

 total_batch = batch_worker * worker_cnt

 dataset = mnist.mnist_dataset(total_batch)

 with strategy.scope():

 #Model building/compiling need to be within `strategy.scope()`.

 model = mnist.build_and_compile_cnn_model()

 model.fit(dataset, epochs=12, steps_per_epoch=70)

40

 current_path = '/script/keras-model'

 task_type, task_id = (strategy.cluster_resolver.task_type,

 strategy.cluster_resolver.task_id)

 write_path = write_filepath(current_path, task_type, task_id)

 model.save(write_path)

 if not _is_chief(task_type, task_id):

 tf.io.gfile.rmtree(os.path.dirname(write_path))

 #loaded_model = tf.keras.models.load_model(current_path)

 # Restoring the model in case we need to train it again.

 #loaded_model.fit(single_worker_dataset, epochs=2, steps_per_epoch=20)

if __name__ == "__main__":

 run_strat()

 while True:

 print("Finished Training. Remove the docker stack and save the model.")

 time.sleep(50)

41

Chapter Three

3.1 Monitoring and visualizing the performance of the cluster during training.
In this chapter, the performance of the testbed is evaluated. In this direction, a comparison with

the bare-metal execution of the same workload in a distributed manner will be performed. In the

first test case, one workload is run five times to calculate an average run time; a comparison is

performed on its performance when running bare-metal versus in the container testbed. The second

test case has two workloads run simultaneously on all hosts. Similarly, a comparison of the average

times of each epoch and the total average time will be presented. An introduction of a delay is

expected when using the docker swarm cluster. However, this delay enables the orchestration of

the testbed, which in the long term, will be time-efficient. The benefits of using containers and

thus orchestrating them with a tool are described in sections 1.3 and 1.4. It should be noted that

the performance in the cluster can be further increased by removing the monitoring tools that were

employed (i.e., cAdvisor and docker stats).

In the docker cluster, "docker stats" is used to measure the bandwidth consumed. This variable

is expected to remain the same independently of which environment the workload is run. In

addition, a container named cAdvisor20, developed by Google, was used to visualize some metrics

dynamically. This docker image, when downloaded, can be used to create a container that

automatically sets up a dashboard on the localhost. Some visualization options supported include

Grafana21 and Prometheus22. This tool was primarily used to develop the testbed as a debugging

tool since it can show advanced metrics such as core utilization and specific network interface

throughput. However, it can only serve as a convenient debugging tool unless modified correctly.

As a proof of concept, the times of each epoch and the total time calculated from the debugging

messages will be shown in the following sections.

20 https://github.com/google/cadvisor
21 https://grafana.com/
22 https://prometheus.io/

https://github.com/google/cadvisor
https://grafana.com/
https://prometheus.io/

42

3.2 Training and comparison of a single workload on the cluster.
In this section, there will be a presentation of the resulting training times of the testbed. These

results will be compared with the results of training the same model, only this time without the

abstraction of the containers.

Figure 16 - Iteration times, with containers, node #1.

Figure 17 - Iteration times, with containers, node #2.

43

Figure 18 - Iteration times, with containers, node #3.

Figures 16 to 18 show the elapsed time for every epoch of training, as well as for every step.

The training time of each iteration is measured in seconds (s), while the step in milliseconds (ms).

Each figure represents one node of the system, while these figures were selected as representatives

of the average time calculated. It should be briefly noted, that each node requires the same time

for each iteration since training happens in a distributed manner. The per-step times vary between

nodes, and that is the reason these figures are shown.

Figures 19 to 21 show each node's respective times for the same model, only when the

workload is run without the cluster. It is noteworthy that in the scenario without the swarm, one

must configure every time the IP addresses inside main.py manually since, due to the hosts being

in a LAN network, these addresses could change.

44

Figure 19 - Iteration times, without containers, node #1.

Figure 20 - Iteration times, without containers, node #2.

45

Figure 21 - Iteration times, without containers, node #3.

In Figures 19 to 21, when using containers, a constant increase in the average elapsed training

and step time. Similarly to Figures 16 to 21, Table 4 summarizes the comparison results between

the two cases, i.e., with or without container orchestration. The total time of training can be

calculated by summing each epoch's times. Alternatively, this time can be calculated by obtaining

the start time and the stop time of the training, as is provided in the debugging logs at runtime. By

checking the records, the total training time without using the orchestrated cluster is 2 minutes

and 30 seconds, while the respective time for the same model with the same resources, only this

time with the help of orchestration, is 3 minutes and 5 seconds. These numbers verify what was

already predicted that a minor delay would occur when using orchestration. This delay of 35

seconds in training that lasted 150 seconds is approximately a 20% increase [41]. Finally, Figures

22 to 23 visualize the training times and step responses.

46

Epoch # Time(s)/Step(ms), without containers Time(s)/Step(ms), with containers

 Node #1 Node #2 Node #3 Node #1 Node #2 Node #3

1 12/152 13/163 12/152 18/211 18/219 18/211

2 15/208 14/202 15/209 15/214 15/208 15/215

3 11/155 11/150 11/155 15/213 14/207 15/214

4 10/148 11/159 10/148 15/214 16/222 15/213

5 10/144 10/139 10/143 16/232 16/224 16/232

6 12/170 11/164 12/170 15/215 16/223 15/214

7 10/143 11/155 10/143 15/217 15/210 15/217

8 15/216 15/211 15/217 16/225 16/233 16/224

9 17/245 17/250 17/245 15/216 15/209 15/216

10 10/143 10/139 10/143 15/215 16/224 15/215

11 12/167 11/163 12/167 14/207 14/200 14/206

12 14/198 14/205 14/198 15/213 15/221 15/212
Table 4 - Results with one workload on both setups.

Figure 22 - Single Workload training times.

 -

 2,00

 4,00

 6,00

 8,00

 10,00

 12,00

 14,00

 16,00

 18,00

 20,00

0 2 4 6 8 10 12 14

Tr
ai

n
in

g
ti

m
e

(s
),

 lo
w

er
 is

 b
et

te
r

Epoch #

Single Workload.

Without containers With containers

47

Figure 23 - Single workload, step response.

3.3 Training multiple Machine Learning models simultaneously on the cluster

and visualizing the results.
This section presents the results of running and evaluating two models simultaneously. Both

models use the mnist.py source code, and each model is set to run in a different port. Some benefits

of implementing this system with containers were seen in this scenario. Firstly, to orchestrate the

container testbed, the only changes to the existing testbed are changing the network address of the

new overlay network, for example, from 192.168.0.0/24 to 10.10.0.0/24. Finally, in main.py, for

clarity reasons, the port of each worker was changed although not needed, since they are on a

different network.

On the other hand, the second workload on the bare metal required an alternative port since

the first port was bound for the first workload. Some logs were left out to avoid repetitiveness in

this section. The corresponding results are summarized in Table 5 and Table 6 and are further

elaborated on in Section 3.4. Figures 24 to 27 depict the logs that were included as samples of this

scenario.

 -

 0,050

 0,100

 0,150

 0,200

 0,250

 0,300

0 2 4 6 8 10 12 14

St
ep

 r
es

p
o

n
se

 (
s)

, l
o

w
er

 is
 b

et
te

r

Epoch #

Single Workload.

Without Containers With containers

48

Figure 24 - Iteration times, with containers, node #1, first workload.

Figure 25 - Iteration times, with containers, node #1, second workload.

49

Figure 26 - Iteration times, without containers, node #1, first workload.

Figure 27 - Iteration times, without containers, node #1, second workload.

50

Epoch # Time(s)/Step(ms), without containers Time(s)/Step(ms), with containers

 Node #1 Node #2 Node #3 Node #1 Node #2 Node #3

1 25/334 24/325 25/334 26/323 26/314 26/322

2 24/340 24/343 24/339 26/371 26/374 26/371

3 23/330 23/335 23/330 26/368 26/372 26/369

4 22/308 21/300 22/308 26/367 26/370 26/367

5 17/239 17/246 17/239 26/370 26/359 26/371

6 17/244 17/237 17/244 26/366 26/370 26/365

7 17/245 18/252 17/245 26/370 26/373 26/370

8 16/235 16/228 17/235 26/366 26/369 26/366

9 17/243 17/236 17/243 26/371 25/358 26/371

10 17/240 17/246 17/239 26/373 26/376 26/373

11 17/242 16/235 17/242 25/364 26/370 26/364

12 18/250 18/256 17/249 26/377 27/379 26/377
Table 5 - Results of Workload #1 on both setups.

Epoch # Time(s)/Step(ms), without containers Time(s)/Step(ms), with containers

 Node #1 Node #2 Node #3 Node #1 Node #2 Node #3

1 30/378 31/382 30/397 26/336 26/327 26/336

2 26/368 25/357 26/368 25/353 25/357 25/353

3 26/372 26/374 26/372 24/336 24/339 24/335

4 26/364 26/369 26/365 20/287 20/280 20/287

5 26/365 26/369 26/366 17/247 10/253 17/247

6 27/383 26/371 27/385 17/242 17/249 17/243

7 25/352 25/355 25/352 17/249 17/242 17/249

8 26/370 26/373 26/370 16/233 17/241 16/233

9 26/372 26/376 26/371 17/244 17/239 17/245

10 27/381 27/385 27/381 17/238 17/244 17/237

11 26/375 26/365 26/374 17/245 17/237 17/244

12 21/304 22/309 21/304 17/238 17/246 17/238
Table 6 - Results of Workload #2 on both setups.

51

3.4 Comparison of average training times.
This section will present and comment on the graphs extracted from the tables found in Section

3.2 and Section 3.3. Firstly, Figure 28 shows the training time of workload 1, with and without the

abstraction of containers, while Figure 29 shows the respective step response time of workload #1.

Similarly, Figure 30 and Figure 31 show the same result for workload #2 in the same manner. It is

noteworthy that workload #2 seemed to perform significantly better with the orchestrated container

cluster, while workload #1 markedly worse with the cluster.

Figure 28 - Workload #1 training time.

 -

 5,00

 10,00

 15,00

 20,00

 25,00

 30,00

0 2 4 6 8 10 12 14

Tr
ai

n
in

g
ti

m
e(

s)
,

lo
w

er
 is

 b
et

te
r

Epoch #

Workload #1.

With containers Without containers

52

Figure 29 - Workload #1 step response.

Figure 30 - Workload #2 training time.

 -

 0,050

 0,100

 0,150

 0,200

 0,250

 0,300

 0,350

 0,400

0 2 4 6 8 10 12 14

St
ep

 r
es

p
o

n
se

 (
s)

, l
o

w
er

 is
 b

et
te

r

Epoch #

Workload #1.

With containers Without containers

 -

 5,00

 10,00

 15,00

 20,00

 25,00

 30,00

 35,00

0 2 4 6 8 10 12 14

Tr
ai

n
in

g
ti

m
e

(s
),

 lo
w

er
 is

 b
et

te
r

Epoch #

Workload #2.

with containers without containers

53

Figure 31 - Workload #2, step response.

Figure 32 - Average training time comparison.

 -

 0,050

 0,100

 0,150

 0,200

 0,250

 0,300

 0,350

 0,400

 0,450

0 2 4 6 8 10 12 14

St
ep

 r
es

p
o

n
se

 (
s)

, l
o

w
er

 is
 b

et
te

r

Epoch #

Workload #2.

With containers Without containers

 -

 5,00

 10,00

 15,00

 20,00

 25,00

 30,00

0 2 4 6 8 10 12 14

Tr
ai

n
in

g
ti

m
e(

s)
,

lo
w

er
 is

 b
et

te
r

Epoch #

Average time of the two workloads.

with containers without containers

54

Figure 33 - Average step response comparison.

The calculated average training time for the cluster is 5 minutes and 18 seconds, compared to

3 minutes and 5 seconds when training one workload. As for the bare metal, the average time is 4

minutes and 10 seconds, compared to 2 minutes and 30 seconds when training one model. The

introduced delay of 20% remains the same on the simultaneous training. Therefore, it is evident

that even when scaling the workload, the delay remains the same in both scenarios. However, what

is easily noticed is the fact that when scaling the workload, the training time does not double. The

training should last approximately 6 minutes and 10 seconds for the cluster and 5 minutes for the

bare metal scenario if it doubled. Instead, it lasts about 1 minute less for the swarm and 50 seconds

less for the bare metal. This time difference further demonstrates that the testbed performs well

under load, compared to the bare metal, while still maintaining all the features orchestration has.

Finally, Figure 32 and Figure 33 demonstrate the times of the two workloads for the two

scenarios. As deduced, for each epoch or step, both the bare metal and the orchestrated cluster

perform roughly the same, within a 5% margin. The significant difference in the total training time

in the multiple workloads scenario is because loading, saving, and exchanging variables takes more

time in the orchestrated cluster. This difference is not apparent neither in Tables 5 and 6 nor in

Figures and 33, but rather is seen at runtime.

 -

 0,050

 0,100

 0,150

 0,200

 0,250

 0,300

 0,350

 0,400

0 2 4 6 8 10 12 14

St
ep

 r
es

p
o

n
se

 (
s)

, l
o

w
er

 is
 b

et
te

r

Epoch #

Average time of the two workloads.

with containers without containers

55

Chapter Four

4.1 Conclusions.
In the digital age, virtualization is being adapted rapidly to address problems otherwise solved

inefficiently. Employing virtualization can be done either via VMs, which are monolithic OS

stacks running on one or more host devices. An alternative way of virtualizing resources is via

containers, which are smaller and more lightweight than VMs. The broader architecture that

utilizes containers is called Microservice architecture. In a microservice model, the problem is

broken down into smaller loosely connected services. Each service solves a part of the problem

efficiently with a light footprint on the underlying OS. One advantage of a microservice

architecture over a monolithic approach is that the system becomes hardware-independent via

abstracting the underlying hardware.

In the Machine Learning (ML) domain, distributed learning has been an appealing solution to

pooling resources from different machines into training a specific model. As expected, to utilize

distributed learning, each machine must be configured in the same way, most easily by cloning an

existing working machine. However, this process takes time and effort while also being hardware-

specific, making the scaling of the existing system challenging. To this end, several solutions have

been developed to address this problem. A widely adopted approach is the use of VMs. However,

VMs introduce a significant amount of overhead, reducing as such the overall performance. On

the other hand, containers are being incorporated in many end products, thus abstracting the

underlying hardware and enabling the engineers to tailor their workloads without any difficulties.

In this thesis, a novel way of orchestrating a system able to process machine learning

workflows was presented. A cluster with Docker Swarm was created and initialized. In general,

orchestrating the cluster takes place in the following steps. Firstly, the cluster structure was defined

declaratively using the docker-compose.yml file. Furthermore, the defined architecture was

deployed to the swarm cluster. Next, resolving networking was addressed, since containers are

ephemeral and cannot be bound to a static IP address. Appropriate python scripts and bash wrapper

scripts were developed to automate this process. Finally, bash scripts on both the host machine and

all the containers were written to automate other processes such as creating a cluster, giving the

correct IP addresses to each worker, and starting the workload. Finally, a cAdvisor container, along

with docker stats were primarily used for debugging purposes as a way of monitoring the

performance of the cluster. Other orchestration actions that could be performed on-demand would

be to scale up or down the cluster if more resources were available.

Finally, a performance evaluation and comparison between the cluster and a bare-metal

implementation was presented. In this direction, the workload was modified to run on the bare-

metal system, while each system was then given two scenarios to process. The first scenario

constitutes the training of the same model on the bare-metal system and comparing the metrics to

the created cluster. In the second scenario, two models were trained simultaneously and the

56

respective metrics were compared. According to the results, the cluster introduced a slight delay

to the training.

The delay introduced is the overhead of container orchestration, which reduced by at least 20%

the man-hours required to set up the testbed. In addition, from this point onwards, every time a

scale up, scale down, or maintenance needs to take place, the time required will be reduced by 10-

20% compared to bare-metal. It should also be noted that, in the bare-metal scenario everything

must be performed manually on each system. This manual reconfiguration means that many

repetitive man-hours must be allocated and requires exact knowledge of how each machine is set

up, as well as the physical details of each host for the system to be reconfigured. These downsides

of bare-metal systems were reduced to almost zero by implementing resource abstraction with

containers, and therefore orchestration of the cluster. Finally, it should be noted that workloads

that run distributed exacerbate the downsides of monolithic systems, and as such, monolithic

approaches should usually be avoided [15].

Systems such as these can further enhance the efficiency of emerging technologies, such as

MEC and, more broadly, IoT environments [42]–[44], [45]–[49]. An example of such use could

be deploying an ML model onto a MEC network based on the users' needs. In a MEC network

where hosts used video streaming mainly, an ML model would be deployed and trained to optimize

the video quality and buffering times.

4.2 Future work.
The work performed in this dissertation can be further extended in the field of container

orchestration alongside ML workflows. In this respect, five research directions are discussed as

follows:

• Cluster security, taking into consideration all best practices as far as security of the cluster

is concerned. This direction should be expanded should the system go into production.

• Expanding the supported workloads by incorporating additional workloads resembling

real-life scenarios.

• Benchmarking of the system in a much larger environment to verify its performance.

Additionally, alternative workloads can be considered to further ensure its

performance[50].

• Optimization of the testbed by switching to GPUs or TPUs and appropriate routing to

reduce training times and latencies as much as possible.

• Integration of autonomous capabilities that enable the testbed to make decisions and

change its ideal state, as described in the docker-compose.yml. Such decisions could be the

result of an RL model acting as the orchestrator.

57

References
[1] Y. Li, W. Li, and C. Jiang, “A Survey of Virtual Machine System: Current Technology and

Future Trends,” Electronic Commerce and Security, International Symposium, vol. 0, pp. 332–

336, Jul. 2010, doi: 10.1109/ISECS.2010.80.

[2] J. E. Smith and R. Nair, “The architecture of virtual machines,” Computer, vol. 38, no. 5,

2005, doi: 10.1109/MC.2005.173.

[3] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: current technology and future

trends,” Computer, vol. 38, no. 5, 2005, doi: 10.1109/MC.2005.176.

[4] “What is virtualization?” https://www.redhat.com/en/topics/virtualization/what-is-

virtualization (accessed Jun. 15, 2021).

[5] “TIME-SHARING SYSTEMS: VIRTUAL MACHINE CONCEPT VS.

CONVENTIONAL APPROACH.” https://web.mit.edu/smadnick/www/papers/J004.pdf

(accessed Jun. 15, 2021).

[6] “IBM Archives: System/360 Dates and characteristics,” Jan. 23, 2003.

https://www.ibm.com/ibm/history/exhibits/mainframe/mainframe_FS360.html (accessed Jun. 15,

2021).

[7] “IBM System/370 Principles of Operation.”

http://www.bitsavers.org/pdf/ibm/370/princOps/GA22-7000-

0_370_Principles_Of_Operation_Jun70.pdf (accessed Jun. 15, 2021).

[8] “Virtualization - Statistics & Facts,” Statista.

https://www.statista.com/topics/6795/virtualization/ (accessed Jun. 15, 2021).

[9] “Overhead Memory on Virtual Machines.” https://docs.vmware.com/en/VMware-

vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-B42C72C1-F8D5-40DC-93D1-

FB31849B1114.html (accessed Jun. 15, 2021).

[10] D. Merkel, “Docker: lightweight linux containers for consistent development and

deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[11] P. E. N, F. J. P. Mulerickal, B. Paul, and Y. Sastri, “Evaluation of Docker containers based

on hardware utilization,” 2015. doi: 10.1109/ICCC.2015.7432984.

[12] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance comparison

of virtual machines and Linux containers,” 2015. doi: 10.1109/ISPASS.2015.7095802.

[13] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O. Kwon, and B. Kim, “Performance Comparison

Analysis of Linux Container and Virtual Machine for Building Cloud,” 2014. doi:

10.14257/ASTL.2014.66.25.

58

[14] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research Opportunities,” IEEE

Internet of Things Journal, vol. 3, no. 6, pp. 854–864, Dec. 2016, doi:

10.1109/JIOT.2016.2584538.

[15] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts, Applications and Issues,”

in Proceedings of the 2015 Workshop on Mobile Big Data, Hangzhou China, Jun. 2015, pp. 37–

42. doi: 10.1145/2757384.2757397.

[16] A. Yousefpour et al., “All one needs to know about fog computing and related edge

computing paradigms: A complete survey,” Journal of Systems Architecture, vol. 98, pp. 289–330,

Sep. 2019, doi: 10.1016/j.sysarc.2019.02.009.

[17] S. Sezer et al., “Are we ready for SDN? Implementation challenges for software-defined

networks,” IEEE Communications Magazine, vol. 51, no. 7, pp. 36–43, Jul. 2013, doi:

10.1109/MCOM.2013.6553676.

[18] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an intellectual history of

programmable networks,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, pp. 87–98, Apr.

2014, doi: 10.1145/2602204.2602219.

[19] K. Kirkpatrick, “Software-defined networking,” Commun. ACM, vol. 56, no. 9, pp. 16–19,

Sep. 2013, doi: 10.1145/2500468.2500473.

[20] N. M. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,” Computer

Networks, vol. 54, no. 5, 2010, doi: 10.1016/j.comnet.2009.10.017.

[21] H. Kim and N. Feamster, “Improving network management with software defined

networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 114–119, Feb. 2013, doi:

10.1109/MCOM.2013.6461195.

[22] J. G. Jimenez and A. G. Cervero, “Overview and Challenges of Overlay Networks: A

Survey,” International Journal of Computer Science & Engineering Survey, vol. 2, no. 1, 2011,

doi: 10.5121/ijcses.2011.2102.

[23] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and S.

Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proceedings of the IEEE, vol.

103, no. 1, pp. 14–76, Jan. 2015, doi: 10.1109/JPROC.2014.2371999.

[24] K. Cabaj, J. Wytrębowicz, S. Kuklinski, P. Radziszewski, and K. Dinh, SDN Architecture

Impact on Network Security. 2014. doi: 10.15439/2014F473.

[25] D. Ongaro and J. Ousterhout, “In Search of an Understandable Consensus Algorithm,” p.

18.

[26] R. van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure detection service,” in

Proceedings of the IFIP International Conference on Distributed Systems Platforms and Open

Distributed Processing, Berlin, Heidelberg, Nov. 2009, pp. 55–70.

59

[27] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,”

Science, vol. 349, no. 6245, pp. 255–260, Jul. 2015, doi: 10.1126/science.aaa8415.

[28] D. Demirović, E. Skejić, and A. Šerifović–Trbalić, “Performance of Some Image

Processing Algorithms in Tensorflow,” in 2018 25th International Conference on Systems, Signals

and Image Processing (IWSSIP), Jun. 2018, pp. 1–4. doi: 10.1109/IWSSIP.2018.8439714.

[29] A. Jain, A. A. Awan, Q. Anthony, H. Subramoni, and D. K. D. Panda, “Performance

Characterization of DNN Training using TensorFlow and PyTorch on Modern Clusters,” in 2019

IEEE International Conference on Cluster Computing (CLUSTER), Sep. 2019, pp. 1–11. doi:

10.1109/CLUSTER.2019.8891042.

[30] C. Jia et al., “Improving the Performance of Distributed TensorFlow with RDMA,” Int J

Parallel Prog, vol. 46, no. 4, pp. 674–685, Aug. 2018, doi: 10.1007/s10766-017-0520-3.

[31] P. Louridas and C. Ebert, “Machine Learning,” IEEE Software, vol. 33, no. 5, pp. 110–

115, Sep. 2016, doi: 10.1109/MS.2016.114.

[32] Y. J. Mo, J. Kim, J.-K. Kim, A. Mohaisen, and W. Lee, “Performance of deep learning

computation with TensorFlow software library in GPU-capable multi-core computing platforms,”

in 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), Jul. 2017,

pp. 240–242. doi: 10.1109/ICUFN.2017.7993784.

[33] J. Dean, D. Patterson, and C. Young, “A New Golden Age in Computer Architecture:

Empowering the Machine-Learning Revolution,” IEEE Micro, vol. 38, no. 2, pp. 21–29, Mar.

2018, doi: 10.1109/MM.2018.112130030.

[34] J. Lawrence, J. Malmsten, A. Rybka, D. A. Sabol, and K. Triplin, “Comparing TensorFlow

Deep Learning Performance Using CPUs, GPUs, Local PCs and Cloud,” p. 8.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi:

10.1145/3065386.

[36] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998, doi:

10.1109/5.726791.

[37] C. Wick, C. Reul, and F. Puppe, “Calamari − A High-Performance Tensorflow-based Deep

Learning Package for Optical Character Recognition,” p. 12.

[38] A. Jain, A. A. Awan, H. Subramoni, and D. K. Panda, “Scaling TensorFlow, PyTorch, and

MXNet using MVAPICH2 for High-Performance Deep Learning on Frontera,” in 2019

IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS), Nov. 2019, pp. 76–83.

doi: 10.1109/DLS49591.2019.00015.

[39] D. Cavdar et al., “Densifying Assumed-sparse Tensors: Improving Memory Efficiency and

MPI Collective Performance during Tensor Accumulation for Parallelized Training of Neural

60

Machine Translation Models,” arXiv:1905.04035 [cs], May 2019, Accessed: Jul. 06, 2021.

[Online]. Available: http://arxiv.org/abs/1905.04035

[40] A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni, and D. K. Panda, “Scalable Distributed

DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and

Performance Evaluation,” 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGRID), pp. 498–507, May 2019, doi: 10.1109/CCGRID.2019.00064.

[41] P. Mendki, “Docker container based analytics at IoT edge Video analytics usecase,” in

2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-

SIU), Feb. 2018, pp. 1–4. doi: 10.1109/IoT-SIU.2018.8519852.

[42] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mobile Edge Computing: Survey

and Research Outlook,” p. 31.

[43] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-Edge

Computing Architecture: The role of MEC in the Internet of Things,” IEEE Consumer Electronics

Magazine, vol. 5, no. 4, pp. 84–91, Oct. 2016, doi: 10.1109/MCE.2016.2590118.

[44] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A Survey on Mobile Edge

Computing: The Communication Perspective,” IEEE Communications Surveys Tutorials, vol. 19,

no. 4, pp. 2322–2358, Fourthquarter 2017, doi: 10.1109/COMST.2017.2745201.

[45] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and Challenges,” in 2010 24th

IEEE International Conference on Advanced Information Networking and Applications, Apr.

2010, pp. 27–33. doi: 10.1109/AINA.2010.187.

[46] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi, “Cloud computing —

The business perspective,” Decision Support Systems, vol. 51, no. 1, pp. 176–189, Apr. 2011, doi:

10.1016/j.dss.2010.12.006.

[47] L. Wang et al., “Cloud Computing: a Perspective Study,” New Gener. Comput., vol. 28,

no. 2, pp. 137–146, Apr. 2010, doi: 10.1007/s00354-008-0081-5.

[48] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and research

challenges,” J Internet Serv Appl, vol. 1, no. 1, pp. 7–18, May 2010, doi: 10.1007/s13174-010-

0007-6.

[49] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of

Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communications

Surveys Tutorials, vol. 17, no. 4, pp. 2347–2376, Fourthquarter 2015, doi:

10.1109/COMST.2015.2444095.

[50] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep learning in

TensorFlow,” arXiv:1802.05799 [cs, stat], Feb. 2018, Accessed: Jul. 06, 2021. [Online].

Available: http://arxiv.org/abs/1802.05799

