MNANEHNIETHMIO AYTIKHE MAKEAONTAX
IIOAYTEXNIKH £XOAH
TMHMA HAEKTPOAOI'ON MHXANIKQN KAI MHXANIKOQN YIIOAOT'TETON

Mimdopotikny Epyacia

Evopymotpomon [lopov pe Xpion Teyvikov Mnyoviking Madnong

Amo tov portnty:
Amootordxog Tpoemv

AEM: 1137

Empiénawv KoOnyntng:
Xapnywavviong Hoavaywotng
Avaminpotic Kabnyntc

TovMog 2021, Kolavn






UNIVERSITY OF WESTERN MACEDONIA
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Diploma Thesis

Resource Orchestration using Machine Learning Techniques

By:
Apostolakos Tryfon

Supervisor:

Panagiotis Sarigiannidis

Associate Professor

July 2021, Kozani






Hepiinyn

2V Topovca SUMAMUATIKY] €£PYOCio. UEAETMVTIOL Ol EQOUPUOYEG MOG VENG TEYVOAOYING
EIKOVOTOINGNG TOP®V, O TEPLEKTEG, KOl TTMOG UTOPOVV VO EVOPYNOTP®OOVV GE GEVAPLL EPYACIHOV
UNYOVIKY padnong. Apywkd, oty gloaymyn eEnyovviol €1 PABoG o1 VITAPYOVCES TEXVOAOYiEG
EIKOVOTOINGNG TOP®V, Ol EIKOVIKEG UNYOVES, KOL OTNV GLVEXELWN €l0qyeTon Kot eEnyeiton m
Aertovpyio tov Teplektdv. TEALOG, GLYKPIVOVTOL 01 VO AVTEG TEYVOAOYIES GE OGOVE KOVOUG AEOVES
£YOLV Kol TOPOLGLALOVTOL GOVTOLLO TO TAEOVEKTILOTO KOl LELOVEKTILOTOL TNG KOOEULHG.

H dwmhopatikn Eexvael pe v mopovcioon e véag Hebddov ekovomoinong tdépwv, Tovg
TEPLEKTEC. LTNV GLVEYELN, AVAPEPETOL KO ETEENYEITOL £Vl OAOKANP®UEVO EPYOAELD YO dloryElpiom
HOVTEL®V pnyavikn udonong, to TensorFlow. Zvykekpiuévo, 610 GOGTNLO TOV AVATTOGOETOL GTA
TAaicl TG mapovcog, ypnowonoteitar to TensorFlow og éva katavepmuévo mepifdilov,
EMOEKVOOVTOS £TGL KUPIMG TOL TAEOVEKTNLOTO TOV TEPLEKTOV, UETAED TV omoimv, 1 E0KOAN
EVOPYNOTPMOT] KOl KAMUAKMGY] TOLG, AVAAOYQ LLE TIG AOUTNOELS TG KaBE epyaciog.

O o10yog ™G mapovoag, €ivor M avdmtuén evOog GLGTNUATOS, TO Omoio Vo umopel va
enefepyaotel povtéda unyavikng pdbnong, amd v ekmaidevon pExpt v amodnkevon Kot tnv
Bedtioon pe KoTOVEUNUEVO TPOTO, YPNOLLOTOLOVTOG EVOPYNOTPOOCT TEPLEKT®V. Ot mePLEKTEG
eMAEYOMKAY S10TL EPOVY AVENUEVEG EMOOCELS GE GUYKPIOT LE TIC EWKOVIKES UNYXOVES, EVD
JTNPOVV TNV EVKOAID GTNV UETAPEPCIUOTNTO KO TV KMUAKwon tove. 'Etot, to cuotnpa mov
vAomoteitor €xel eMOOCELS CLYKPIGIUES LE AVTES €VOG QUOIKOD GUOTNUOTOG, KOl SUVATOTITEG
EVOPYNOTPMOTG TOV EIKOVIKMV TOV TOPMV TEPIGCOTEPES AMO EKEIVEC TV EIKOVIKMV UNYOVAOV.

210 Tpito KEPAANI0, EKTAOELOVTAL APYIKA £VO, KOl GTNV GLVEYELD dVO HOVTEAD UNYOVIKNG
puéBnong 6to GLOTNUO TAVTOYPOVA, KATOYPAPOVTOS TIC EMOOCELS TOV EKAGTOTE VITOAOYICTH GTO
oVOTNUO. AQOV OTEIKOVIGTOVV KOl GYOALIGTOVV TO ATOTEAECLATO, CLYKPIVOVTOL LE V0L GUOTN LA
avapopds To 0moio OevV YPNOOTOLEL TEPEKTEG, KOl AP OV €lvol E0KOAN KAMUAKOVUEVO, KOl
vroAoYyiletan  S10popa GTNV ATOS00T).

A£Eerg KAheo1d

Ewovomoinom mopwv, Teplékteg, EVOPYNoTP®OT TOPMV, UNXAVIKT Ladnon.



Abstract

This dissertation examines a novel way of resource visualization via containers and
orchestration. The method used for simulating a workload is training Machine Learning models.
The introduction of this dissertation elaborates on the existing techniques of resource visualization,
virtual machines. Sequentially, containers are introduced and elucidated further. Finally, these two
technologies are compared on their similarities, and some advantages and disadvantages of each
method are presented.

This dissertation starts with a description of containers as a way of resource visualization.
Following this description, TensorFlow, a complete machine learning library, is introduced and
shortly explained. More specifically, this dissertation aims at developing a distributed testbed, with
each computer acting as a TensorFlow worker node. This testbed accentuates the significant
benefits of using containers; these benefits include, but are not limited to, ease of orchestration,
high scalability and availability, depending on each processes' needs.

This thesis aims at developing a testbed able to handle the complete lifecycle of a machine
learning model, from its training and storage on disk to its loading and tuning. All of its lifecycle
maintenance will be done distributed, managing the workflow with an appropriate orchestrator
software. Containers were selected due to their increased performance compared to virtual
machines; while still maintaining their transferability and scalability. The resulting system has
performance comparable to a bare-metal system while still having all of the features of virtual
machines.

In the third chapter, the testbed is benchmarked on two scenarios; one consisting of a single
model and the nodes, and one composed of two models simultaneously. After elaborating on the
results, they are compared to a reference system running the same processes natively, not having
the advantages of containers. Along with each test case, resource utilization is monitored and
visualized of each node in the system. The performance drop is calculated and visualized for each
scenario.

Keywords
Virtualization, containers, orchestration, machine learning.
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Chapter One

Introduction

1.1 Virtual machines, a way of virtualizing resources.

Traditionally, users interfaced with a computing system, widely known as a computer, via the
Operating System (OS). Thus, the user interacted with the computer's hardware via the operating
system's interface (graphical or not).

The primary objective of Virtual Machines (VMs) is to virtualize hardware resources so that
the user will be able to program the computer for its desired purpose, not depending on the specifics
of the system's hardware [1]. To achieve that purpose, virtual machines abstract physical resources
and enable users to access them via a virtual OS, running as an application on the main one. The
primary operating system is called host OS, while the OS within the virtual machine is called guest
OS. By implementing this abstraction, virtual machines enable users to work on multiple guest
operating systems, aside from the guest OS, simultaneously, each for a different purpose and with
a different number of resources. This way, users can select how many resources (CPU, RAM,
storage) each machine should have, depending on the purpose of each device. An abstract
architecture is shown in Figure 1. The aforementioned features increase the availability of the
services running on the system, since the failure of one VM does not disrupt the operation of the
whole system. Furthermore, VMs enable users to write programs otherwise not compatible with
their host, possibly due to a restriction of their operating system. Using VM, users can develop
using a device with a different architecture, achieving their desired goal without tweaking their
host computer [2], [3].

Virtual Virtual Virtual
Machine 1 Machine 1 Machine 1

Figure 1 - Virtual Machine Architecture.



Historically, the term VM was first mentioned around 1960-1970. That was followed by an
initial spread and adoption of that technology. One of the first instances of virtual machines is in
the 1960s; they attempted to time-schedule resource utilization for different tasks [4]. Back in
those days, when a user wanted to program a computer to perform a specific job (for example,
complex mathematical calculations), they needed to use the provided interface, commonly the OS,
to do so. As deduced, the user should know the underlying hardware specifications of the system
to program it correctly [5]. To name a few, IBM System 360 and IBM System 370 are some
systems of that era [6], [7].

It was only later adopted, around 2000-2005, when the technology matured enough, and
processors, memory, and storage devices could handle the amount of multitasking required.
Between 2000 and 2010, some major free software suites were released on the internet, enabling
everyday users (not only programmers) to use virtual machines at home, with commercial off-the-
shelf hardware2. Nowadays, the virtual machine has a large chunk of the market share, as far as
servers are concerned. Specifically, 92% of companies use virtualization on their servers as of
2020 [8].

Despite the multiple advantages of this new technology, there also exist some disadvantages.
Firstly, the most important one being the performance impact on the host OS, also called overhead
[9]. Consequently, this performance reduction also affects the guest machines, compared to the
same machine running on bare-metal. For example, an Ubuntu VM has diminished performance
compare to an actual Ubuntu host running on real hardware. This reduction in performance occurs
because virtual machines set up an entire OS stack containing the kernel, Instruction Set
Architecture (ISA), drivers, libraries, Graphical User Interfaces (GUISs), file system. The decreased
performance becomes even more noticeable the more complex the desired task gets. Additionally,
every VM is always at risk of getting infected with malware from the internet (as a typical machine
would) while also from the host machine; having one more attack vector needs to be taken care of
to ensure the virtual machine's healthy state.

In order for VMs to work, the host OS needs to install specialized software. This software is
responsible for creating, managing, and scheduling tasks regarding virtual machines. This software
is called a hypervisor and can be further identified as type-1 or type -2 hypervisors. The type -1
hypervisor runs on bare metal and manages all the virtual machines it creates. The type-2
hypervisor runs on an existing OS. The critical difference is that type-1 hypervisors have full
access to the hardware since they are the closest to it, while type-2 request access to the hardware
from the OS they are installed. Most software aimed at consumers or home users is type-2 since
home users want a host OS to use their computer. On the other hand, type-1 are aimed at enterprise
applications. From now on, when mentioning hypervisors, type-2 hypervisors are implied.

1 https://www.virtualbox.org/
2 https://www.vmware.com/products/workstation-pro.html
14
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Virtual
Machine 1

Virtual
Machine 1

Virtual
Machine 1

Virtual
Machine 1

Virtual
Machine 1

Virtual
Machine 1

Hypervisor Type-2

Hypervisor Type-1

Figure 2 - Hypervisor types.

Hypervisors, as shown in Figure 2, act as a middleman for the hardware and the guest OS.
However, hypervisors, being applications on the host OS, need to run on the userspace, a dedicated
virtual memory segment for storing non-kernel information, since kernel processes strictly must
run on an isolated memory segment for security reasons. Thus, when VMs request resources, this
request has to go through the guest OS and its kernel, and the hypervisor, in turn, must request
from the host OS and its kernel the resources. For this to be achievable, a portion of RAM has to
be reserved. This portion is increasing as the CPU for each VM increases. This reservation is called
overhead and affects every virtual machine to this day. Table 1 summarizes the aforementioned

remarks.

Type-1 Hypervisors

Type-2 Hypervisors

It runs on bare metal, has no OS as a
middleman.

Are installed and run inside the OS.

Have direct access to the underlying hardware,
thus creating VMs with direct access to it.

VMs created from type-2 have indirect access
to the hardware.

Increased speed and security since no host OS
IS present to be exploited.

Lower speed and security since OS can still be
vulnerable.

It should be installed on systems with
appropriate hardware and require more
configuring.

Easier, install-and-run, supporting the vast
majority of commercially available hardware.

Have higher scalability and availability
compared to type-2.

Due to OS restrictions, it cannot scale that
efficiently.

Table 1 - Hypervisor types.
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1.2 Containers, a novel way of virtualizing resources.

In the last decade, a new virtualization method has been under development, aiming to address
some of the VM issues. Its purpose is not to replace virtual machines entirely, but to enable users
to virtualize resources in a different, less isolated, but much more efficient approach. Though
containers are fundamentally different, they share some similarities with virtual machines. With
this novel method of virtualizing resources, the guest subsystem, now called a container, shares
the same kernel with the host operating system [10]. The resulting container is a semi-isolated
system since it has the same kernel and operating system as the host. However, each container
creates a new filesystem and a network stack. The significant difference from virtual machines is
the lack of isolation between the host and guest OS and kernel. This different approach in their
architecture is shown in Figure 3.

Figure 3 - Container Architecture.

Containers achieve minimal overhead on the system and increase the overall performance,
while decreasing the impact on the host OS. However, it is noteworthy that containers' purpose is
not just to abstract the underlying hardware from the user to allow them to make their goals more
attainable. As their names suggest, containers enable users to easily compile all their source code
or libraries into one or more easily manageable, highly scalable and available components. The
containers can be deployed, moved, and deleted dynamically and promptly. Users can pack a
whole application with its dependencies and libraries as a service and deploy it to many replicas
within containers. In addition, users can also decouple the libraries or part of the service, as a
whole, and deploy it distributed, the pieces of which are called microservices. Either way, each
component is running on a container, which is an isolated environment with a dedicated file system
and network stack, sharing the host OS and kernel. As deduced from their purpose, containers are
created and removed dynamically and are designed to be easily replaceable.

Summarizing, the leverage of containers can provide several advantages. Firstly, since
containers share the underlying OS and kernel, there is no need to boot an entire OS with drivers
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and libraries. As a result, containers have negligible bootup and shutdown times. Moreover, they
usually occupy less disk space, compared to a traditional VM, which can take up a couple of
gigabytes. Another significant advantage of containers is the lack of memory overhead on the
system. As containers share the same kernel, any request for hardware resources does not have to
go through two kernels to be accepted. The container runtime software (the equivalent of the
hypervisor software in virtual machines) is usually lightweight with no Graphical User Interface
(GUI), thus improving the overall performance of the containers. Each container's prototype
contains the instructions and the purpose of the container, and what to run when started. It is stored
in an image, similar to .iso files on virtual machines. The only difference is that these images are
minimal in size.

1.3 Comparison between virtual machines and containers.

Table 2 contains a summary of the significant advantages of each virtualization method,
namely VMs and containers. On the other hand, Table 3 summarizes the corresponding
disadvantages [11]-[14]. It is imperative to understand that, due to their fundamental differences
in their architecture and their purpose, containers cannot be compared on their entirety of features
to VMs [11]. Also, containers were not created to replace or make virtual machines better; instead,
they mainly aim at abstracting a problem to solve it more easily. However, both technologies share
some similarities. In some cases, a user may have to decide which virtualization method should
choose, since both VMs and containers can perform the same tasks. For these reasons, the
following comparison is presented [12], [13].

Advantages of Virtual Machines

Advantages of Containers

More robust isolation enhanced security.
Ability to create a virtual machine with a
different OS architecture of the host (for
example, one can make a Unix VM on a Linux
host).

Ideal for a monolithic application that is
required to run on one specific host.

Very portable, due to their small size on disk.
Highly portable, since the only thing required
to be transferred to another host is an online
repository (or a physical medium) and a
container runtime engine.

Very light on resources, especially RAM, since
there is little to no overhead and a small
footprint on storage space.

It can be booted and shut down in a matter of
seconds.

Their CPU performance is closer to bare metal
compared to virtual machines.

Table 2 - Advantages of each virtualization method.

Disadvantages of Virtual Machines

Disadvantages of Containers

Significant footprint on storage, RAM, and
CPU performance. The existence of overhead

Fundamental lack of security due to the lack of
isolation between kernel space and userspace



further hinders their performance. on the host and guest.

Their size on disk can be many gigabytes. Containers must use the host OS kernel, thus
depending on the host OS architecture. For
example, cannot create a Windows OS
container in a Linux host OS.

Boot up time and shutdown time dependent on = Harder to store and transfer files from and to

the disk speeds. host OS. Containers were created to be
ephemeral, so extra effort needs to be made to
create persistent volumes.

Table 3 - Disadvantages of each virtualization method.

1.4 Overlay networks, a way of virtualizing networks.

In recent years, to overcome specific difficulties of traditional networks, new methods of
implementing networks were developed [14]-[16]. Nowadays, it is common for a set of services
to run on a network with no direct physical infrastructure, broadly called a Software Defined
Network (SDN) [17]-[23]. The idea behind an SDN is to abstract the physical layer of a network
and program the desired behaviour on the network. This topic is relevant in containers and
orchestration since when a network within a swarm is created, the architect must decide on its
driver. The most common driver is called "overlay.” An overlay Software Defined Network is
created, and the desired services are attached and operate on it.

Firstly, the abstract architecture of SDNs is visualized in Figure 4. It should be noted that the
architecture depicted in Figure 4 is not the complete architecture. Some components, such as the
Management Layer, that span across all other layers, are not shown since they are not in the scope
of this dissertation. As shown in Figure 4, SDNs consist of multiple layers, each having its
responsibilities within its scope. Most notably, distinct layers are the Application, Control, and
Infrastructure layers. Starting from the bottom, the Data Plane contains the underlying hardware
infrastructure such as switches. The Control layer contains a running instance of the software that
enables the programming of the underlying infrastructure. This software is called an SDN
Controller and is also responsible for translating high-level requests, created from the Application
Layer, via the Northbound Application Programming Interface (API), into lower-level commands
of the protocols that are supported by the Data Plane. Lastly, the Application Layer commonly
contains the high-lever services or applications that communicate with the infrastructure via the
SDN Controller [24].
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Figure 4 - SDN Architecture.

Next, the incorporation of Overlay networks in Docker Swarm mode is examined. Swarm
mode allows the rapid creation of disposable networks. Three drivers are available when creating
a network, the default being bridged. The other option is an overlay driver, and the last is a custom
network driver. The overlay option that creates an SDN Overlay network is selected and further
explained.

Figure 5 depicts an abstracted architecture of an Overlay network. As can be deduced, Overlay
networks are a way of virtualizing networks and giving them a programmable logic. Overlay
networks hide the physical infrastructure by creating layers of abstractions and installing software
called acting as an "agent" that manages the created SDN Overlay.
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Figure 5 - Abstract architecture of an Overlay network.

Docker Engine further hides this architecture and simplifies the use of SDN Overlays. A stack
consists of many services in Docker swarm, where each service can be a business application, a
database, a website; each service can be connected to one or more networks. Based on the container
architecture, as shown in Figure 6, a set of Swarm workers as three physical machines connected
to a cluster in Docker Swarm mode can be seen. Each worker has a set of running services, with
each service containing a different number of replicas of a container. Each service has a different
color, while services 1, 3, and 5 are considered to be of high importance. These services, for
example, could be connected to an overlay network. Thus, the containers these services would
spawn would also be connected to an overlay network. Within that network, services 2, 4, and 6
are not known and cannot be reached. This way, within the overlay created for services 1, 3, and
5, a graph of the network is shown in Figure 7.

S —

. Service #4
Service #2

i Service #6
Service #1 Service #3

Service #5

Swarm Worker #2 Swarm Worker #2

Figure 6 - A cluster with three nodes and some running services.
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Figure 7 - Inside a Swarm Overlay network.

Docker Swarm allows the creation of a cluster, in which many computers can join as nodes.
Every node can have two distinct roles, those being a worker or a manager node. Worker nodes
simply take on a workload and process it, while manager nodes have some added responsibilities.
These include maintaining the stability of the cluster, ensuring services are running where they
should and are responsive, and, lastly, serving HTTP APIs.

Manager nodes use a version of Raft Consensus Protocol [25]. This algorithm enables the high
availability of the cluster through fault tolerance. Fault tolerance allows for the existence of many
managers in a swarm in case one or more fails. This way, even if some managers fail, the cluster
will elect another manager, and its availability will not change. To achieve this functionality,
docker uses two distinct networks, listening to different ports. One is for managers to communicate
and maintain the state of the cluster; one for the worker nodes to exchange information regarding
their running services. The first is called Raft Consensus Group, while the workers' network is
called the Gossip network. That is why in Figure 6, the Gossip network encloses all the workers
[26].

1.5 Tensorflow, a complete Machine Learning Python library.

Tensorflow? is a machine learning library built for the Python* programming language [27]-
[33]. At the time of writing this thesis, the current version is 2.4.1, which is officially supported
on python versions 3.6, 3.7, and 3.8. Tensorflow provides all the needed tools for creating, training,
storing, loading, and modifying machine learning models[34]-[38].

A typical TensorFlow workflow is shown in Figure 8. Firstly, the dataset for the specific
problem must be acquired. This dataset can further be preprocessed for enhanced training. Such
actions could include splitting the dataset into smaller portions, one for training and one for testing.

3 https://www.tensorflow.org/
4 https://www.python.org/
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The utilized model can be an entirely new model built from scratch or an existing model that has
been tuned accordingly. TensorFlow has its repository for trained models®. At this point, it should
be noted that before TensorFlow 2.0, some problems could be solved with TensorFlow Estimators.
However, as per the documentation, new code should ideally be written with the tf.keras API
instead. After the model and the dataset are established, a distribution strategy should be selected.

Tensorflow has a built-in API allowing the training of models across different host machines,
each with its dedicated resources. The name of its API is tf.distribute.Strategy, containing various
types of training strategies, depending on the needs of each scenario. Tensorflow supports Tensor
Processing Units (TPUs), as well as Graphics Processing Unit (GPUs) and CPUs. The first has the
best performance per watt [39], [40].

The aim of this thesis is not to create a novel machine-learning algorithm or optimize an
existing one. Instead, it leverages machine learning workflows to develop a novel, highly
performing, and easily scalable (horizontally or vertically) testbed that can orchestrate machine
learning workloads using containerization. The dataset and the model trained in the following
chapters have been studied extensively, are part of the official documentation of Tensorflow, and
are used as an introduction to machine learning. Tensorflow requires pip® to be installed and
updated. Finally, Ubuntu Desktop 20.047 has been selected as the host OS.

5 https://www.tensorflow.org/hub

5 https://pypi.org/project/pip/
7 https://ubuntu.com/download/desktop
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Figure 8 - Typical TensorFlow workflow.

23



1.6 Aim of this Thesis and a short description of the testbed.

This thesis aims to create a novel testbed able to handle machine learning workloads and train
models in a distributed way. By leveraging containers, the testbed can scale vertically and
horizontally. Vertical scaling implies changing the size of each container CPU, RAM, and disk. In
the case of vertical scaling, the number of available instances is modified. In addition to these, the
testbed will maintain acceptable performance, near bare-metal, yet still be highly available and
easy to orchestrate.

In the scope of this dissertation, multiple files have been developed aiming to assist with the
orchestration of the cluster. Namely, the files created from scratch are parse_ips.py,
start_cluster.sh, docker-compose.yml, Dockerfile, mystatsl .csv, run_workload.sh. These files
were created to automate orchestrating tasks, such as creating, updating, and monitoring the
cluster. In addition to these, cAdvisor and docker-stats are utilized to debug issues during the
testbed development.

Three virtual hosts are deployed, with each one having two virtual CPUs (vCPUs) and 4GB of
virtual RAM (VRAM). All traffic is permitted (inbound and outbound) between these hosts on all
ports. Each host, as mentioned above, is running the latest version of Ubuntu Desktop 20.04. Each
host has the latest Docker Engine® and Docker Compose® installed. Each host can support multiple
containers, while each container is based on a custom TensorFlow image. The custom image
developed adds some more tools to the existing TensorFlow image found in their dockerhub?®
repository.

8 https://docs.docker.com/engine/
% https://docs.docker.com/compose/install/
10 https://hub.docker.com/r/tensorflow/tensorflow

24


https://docs.docker.com/engine/
https://docs.docker.com/compose/install/
https://hub.docker.com/r/tensorflow/tensorflow

Chapter Two

2.1 Installing and configuring Docker engine and verifying Swarm mode

operation.
Firstly, the latest version of Docker Engine is installed on all three hosts. Detailed instruction
can be found on the official documentation in the following link:

https://docs.docker.com/engine/install/ubuntu/

The testbed uses the apt version of Docker Engine with root privileges given to the daemon,
as described in the following link. After installing docker, its correct installation can be confirmed
with the command docker --version. In Figure 9, the result of that command being run in one
of the hosts is seen.

https://docs.docker.com/engine/install/linux-postinstall/

4 docker --version

Docker version 20.10.7, build fOdf350

Figure 9 - Docker version.
Next, docker-compose should be installed and verified with the following command.
docker-compose -v
A successful run of a version command for docker-compose is shown in Figure 10.

https://docs.docker.com/compose/install/

$ docker compose -v

Docker version 20.10.7, build fOdf3is56

Figure 10 - docker-compose version.

This project is based on the TensorFlow image, which can be found in the following dockerhub
repository. To pull thisimage, docker pull TensorFlow/TensorFlow is issued on each host.
The custom TensorFlow image that was created to fit the needs of this testbed is called tf-custom
and is shown alongside the TensorFlow image as shown in Figure 11.
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tf-custom 800db49dd34d 2 weeks ago

tensorflow/tensorflow 1d932048a281 7 weeks ago
Figure 11 - Available Docker images.
The base TensorFlow image has been cloned, while the installation of Docker Engine and
docker-compose have been verified. The last step is to create a cluster containing the three hosts
discussed earlier. A cluster is defined as a set of nodes (hosts) in swarm mode of docker, running

Docker Engine. In a cluster, the first to create it is declared a manager, and the others to join are
called workers.

To create a swarm with one node as the manager, the following command is issued to one host.
docker swarm init --advertise-addr [IPV4_ADDR]
docker swarm join \

--token SWMTKN-1-3pubhszjasl9xyp7ghgosyx9k8atbfcr8p2is99znpy26u2lkl-
lawxwuwd3z9j1z3puu7rcgdbx \

[IPv4_ADDR]:2377

The init command returns a join token and the appropriate command, which in turn is run to
the other two hosts, allowing them to join the cluster as workers. After running the join command
in the other two hosts, a three-node cluster has been successfully created. To get some basic
information about the nodes and their overall status, docker node 1s can be issued and get the
results shown in Figure 12.

Optionally, running docker node promote ubuntul, and Docker node promote
ubuntu2

:~% docker node 1s
1D HOSTNAME  STATUS AVAILABILITY  MANAGER STATUS  ENGINE VERSION

nBvlc3q67ck3zjtfhgdoudl76 *  ubuntu Ready Active Leader
ldiifupkcp3t937ucelyffyla ubuntul Ready Active
upt2m8nnz45lzxafmjpdtmoga ubuntu2 Ready Active

Figure 12 - Available nodes before promotion to managers.
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promotes all the nodes to managers. docker node 1s returns what is shown in Figure 13.

:~% docker node 1s
ID HOSTNAME ~ STATUS AVAILABILITY  MANAGER STATUS  ENGINE VERSION
nBvlc3gb7ck3zjtfhgdoudl?6 *  ubuntu Ready Active Leader 20.10.7

ldiifupkcp3t937ucelyffyla ubuntul Ready Activ Reachable 20,10.7
upt2m8nnz45lzxafmjpdtmoga ubuntu2 Ready Activ Reachable 20.108.7

Figure 13 - Available nodes after promotion to managers.

The next step is to construct a Dockerfile containing all the changes made and compiled to a new
image of TensorFlow. The contents are shown below.

FROM tensorflow/tensorflow
RUN mkdir script

RUN apt install nmap -y \
&& python -m pip install pip==21.0.1 \
&& pip install -U setuptools \
&& pip install wheel \
&& pip install numpy \
&& pip install matplotlib \
&& pip install pandas \
&& pip install scipy \
&& pip install scikit-learn \
&& pip install tensorflow \
&& pip install python-mnist \
&& pip install Keras

RUN pip install python3-nmap \
&& pip install -U psutil

WORKDIR /script

CMD /script/start cluster.sh

The base image, as mentioned, is the latest version of TensorFlow/TensorFlow. Then, a
directory under root is created. It is named /script, as seen in the first RUN command, and in the
subsequent two RUN commands, some additional tools are installed and updated. Finally, the
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current directory is changed to /script, and the wrapper script that creates the cluster is executed in
the final CMD command.

2.2 Creating a Swarm cluster with three hosts, able to process machine learning
models.

In this chapter, the orchestration of the cluster is documented, As mentioned in the previous
section, containers are a novel way of virtualizing resources more efficiently by breaking down
rather large monolithic components into smaller entities, called microservices. Since containers
are ephemeral and easily replaceable, their lifecycle from the inception of the cluster to its
deployment, its update, and scaling should be closely monitored and strictly defined. Container
orchestration is the practice of automating most of the aforementioned tasks and further enabling
CI/CD pipelines. Many orchestration tools exist nowadays, including Kubernetes!, Docker
Swarm*? Apache Mesos®®, RedHat OpenShift*.

In this dissertation, Docker Swarm is selected for having higher overall performance due to its
integration into the Docker engine. Orchestration occurs when creating the cluster description and
consecutively when adding a second workload as another cluster. In addition to that, orchestration
includes scaling the workload. For example, should more resources become available, the updating
of the cluster towards utilizing more resources is considered an orchestration task.

Up to this point, a custom TensorFlow image tailored to the needs of the testbed has been
created. The specifications of this image have been discussed in the aforementioned Dockerfile.
The cluster has also been initialized, and the node connectivity has been verified. There are two
methods to deploy an application to the cluster and orchestrate it, namely the imperative and
declarative methods. Using the imperative method, the corresponding commands should be
entered into the terminal. On the other hand, using the declarative method, the user provides a
description of the cluster's desired state, while the orchestrator carries out the required operations
to shift the cluster to that state. The latter method is also called self-healing and is generally the
preferred way of orchestrating a cluster and is implemented in this testbed, using a docker-
compose.yml file.

YAML® is a way of describing the desired state by introducing services. Swarm services are
entities containing information regarding the behaviour, networking, file structure, and runtime of
a set of containers. Each service effectively is a set of replicate containers with the same
description. Each service can be based on a different image. For example, service A could be a

11 https://kubernetes.io/

12 https://docs.docker.com/engine/swarm/
13 https://mesos.apache.org/

14 https://www.openshift.com/

15 https://yaml.org/
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database, while service B a web server. These descriptions are written onto YAML files that can
be passed to docker stack and deployed to a swarm. Docker stack deploy disregards build
instructions, so it helps test the system with docker-compose since the same YAML file can be
passed to docker stack.

The contents of docker-compose.yml are shown. This file contains both build instructions for
the images and a description of services passed to both docker-compose and docker stack for
deployment. Firstly, three similar services are created, with the only difference being that each
service (and its replicas) is bound to spawn containers on one of the three nodes. This strategy is
implemented to maximize the utilization of the resources while controlling the scale of the testbed
more easily. If one service with three replicas were used, it would be harder to manage the
networking of the containers that would be created. Each service uses the tf-custom image, and it
builds it; however, the build commands are skipped when deploying to a stack. In addition, it
mounts the script folder created in the Dockerfile to a script folder in the current directory of the
node. All services are then connected to a custom overlay network called clust_net, which is
specified at the end of the file. Finally, each service is ordered to spawn containers only to one of
the nodes.

: tf-custom

- ./script/:/script/
: [node.hostname == ubuntu]

: tf-custom

- ./script/:/script/




: [node.hostname == ubuntul]

: tf-custom

- ./script/:/script/

: [node.hostname == ubuntu2]

: overlay

: 192.168.0.0/24

2.3 Configuring correct IPv4 addressing in the cluster.

One of the challenges of the testbed is setting up the networking of the containers dynamically.
As containers are created at runtime, their Internet Protocol (IP) addresses cannot be predefined.
To address this issue, each container, at startup, performs a fast one-port Nmap*® scan and saves
the active hosts to an XML file. This file is parsed in a python function. Based on the scan results,
the hosts in the same network are passed on to the TensorFlow strategy for the training to occur.
Of note, a potential alternative would be to perform an arp table scan or create another container
to manage all the networking. Arp is not suitable because arp tables refresh dynamically and cannot
be relied upon. Additionally, creating a container dedicated to IP allocation would be resource-
intensive and highly inefficient.

16 https://nmap.org/
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The fast execution of the Nmap scan is ensured by only scanning one port on the subnetwork
of each potential host, with the scan taking about 3-4 seconds to finish. The port used is 4789 since
both managers and workers use it for the overlay network traffict’. Firstly, each host scans the
subnetwork. Sequentially, each result is saved to a different XML and parsed by a copy of the
python script. The scan is performed in the start_cluster.sh file, the contents of which are shown
below.

echo "Starting Nmap scan for docker-engine compatible hosts."
rm -r keras-model/ >/dev/null 2>&1

rm ips.xml >/dev/null 2>&1

sleep 20
nmap -p 4789 192.168.0.0/24 -oX ips.xml

echo "Starting cluster."

python main.py

The first rm lines remove old residual data from potential previous tests of the cluster. Then
the script waits 20 seconds for the containers to start; each container requires approximately 2-3
seconds, and they begin almost simultaneously. Twenty seconds was chosen to err on the side of
caution. Then the scan is performed in 3-4 seconds, with each output saved to the file ips.xml.
Finally, the main.py script starts the parsing of the XML and then the training.

Parsing takes place in a function defined in parse_ips.py. This function first opens the file
ips.xml, starts reading it from its root, and searches for tags containing hosts. After finding a host
tag, it goes a level deeper and searches for a non-empty hostname tag. If it reads non-empty
hostname tags, it saves the IP address of the tag in a temporary variable. Finally, it creates the list
with the nodes alive in the network and returns it. The code is shown below.

import xml.etree.ElementTree as ET

parse_ips():

mytree = ET.parse('ips.xml")
myroot = mytree.getroot()

17 https://docs.docker.com/engine/swarm/swarm-tutorial/#open-protocols-and-ports-between-the-hosts
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possible ips=1ist()
final ips=1ist()
hosts found=1ist()

cnt=0

for i in myroot.findall("host"):

for j in i:
if j.tag == "address":

possible_ips.append(j.attrib["addr"])

if j.tag == "hostnames":
for k in j:

hosts found.append(cnt)
cnt+=1
print(hosts_found)
del possible ips[1::2]

for i in hosts_found:
final ips.append(possible ips[i])

return final ips




As shown in Figure 13, ips.xml contains various hosts, some of which have been expanded.
Each host is described with a host tag, and inside contains multiple other tags. The hosts that
contain a non-empty body on the hostnames tag are the nodes that are parsed and saved. In Figure
14, two hosts can be seen, with 192.168.0.9 and 192.168.0.3 as their respective IPs.

1  «<?uxml version="1.8" encoding="UTF-8"?%>

2  <!DOCTYPE nmaprunz

3  <?xml-stylesheet href="file:///usr/bin/../share/nmap/nmap.xs1" type="text/xs1"?>

4 «<l-- Nmap 7.6@8 scan initiated Fri May 7 16:41:26 2821 as: nmap -p 4789 -oX ips.xml 192.168.8.8
J24 --»

5~ <nmaprun scanner="nmap" args="nmap -p 4789 -oX ips.wxml 192.168.8.8/24" start="1628485685"
startstr="Fri May 7 16:41:26 2821" version="7.60" mmloutputversion="1.84">

6 ¢scaninfo type="syn" protocol="tcp"” numservices="1" services="4733"/»
7 <verbose lewel="8"/>
8 <debugging level="8"/>
9+ | <host starttime="1628485636" endtime="16208485691">E</host>
22 <host starttime="16208485686" endtime="16208485691">E0</host>
35+ <host starttime="1628485686" endtime="1628485691">E=</host>
48+ <host starttime="1628485586" endtime="1628485691"E=]</ host>
61+ <host starttime="16208485636" endtime="1628485601">E</host>
7B+ <host starttime="1628485686" endtime="1628485691">E=</host>
89+ <host starttime="1628485686" endtime="1628485691">E=)</ host>
12 - <host starttime="1628485686" endtime="1628485691">
183 <status state="up" reason="arp-response” reason_ttl="8"/>
184 <address addr="192.168.8.9" addrtype="ipwv4"/>
185 <address addr="82:42:C8:48:808:89" addrtype="mac"/>
166 - <hostnames:
187 <hostname name="klus_tf-custom2.l.ibrsv7lywmgSdoeriecyj7jf8.klus_clust_net™ type
="PTR"/>
183 </hostnames:
189 ~ {ports>
116 - ¢port protocol="tcp" portid="4789":
111 <state state="closed" reason="reset” reason_ttl="64"/>
112 <service name="vxlan" method="table"™ conf="3"/>
113 </port>
114 «/ports:
115 <times srtt="249" rttvar="3233" to="100088" />
116 </host>
117+ <host starttime="1628485586" endtime="1628485691"E=]</ host>
138 - <host starttime="1628485691" endtime="1628485691">
131 <status state="up" reason="localhost-response" reason_ttl="@"/>
132 <address addr="192.168.8.3" addrtype="ipv4"/>
133 - <hostnames:>
134 <hostname name="dd2bfbaeefeb™ type="PTR"/>
135 </hostnames>
136 ~ <ports>
137 - <{port protocol="tcp" portid="4739">
138 <state state="closed" reason="reset" reason_ttl="s4"/>
139 ¢service name="vxlan" method="table"™ conf="3"/>
148 </port:>
141 </portss
142 <times srtt="63" rttvar="568808" to="106668"/ >
143 </host>
144 + <runstats>E=l</runstats>

Figure 14 - Structure of ips.xmi.
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2.4 File and folder structure of the testbed.

Having resolved the networking between hosts, the cluster can now start, train a model, and
save the output to one of the nodes. Figure 15 depicts the files that need to be replicated to all of
the hosts, with the only exception being the docker-compose.yml and the run_workload.sh files
that only need to be to the swarm manager. The manager runs the swarm, which, in turn, deploys
the stack to the cluster, and each node instantiates one or more depending on the workloads,
containers.

v workload_1

Vv script

> __pycache__

> keras-model

2 ipsxml

% main.py

® mnist.py

@ parse_ips.py

start_cluster.sh

# docker-compose.yml
# Dockerfile

B mystats1_.csv

run_workload.sh
> workload_2

Figure 15 - File structure of the testbed.

The functionality of each folder and file is described as follows:

script/ is a folder containing all necessary files required inside the containers. This folder
is bind mount to the container, as described in docker-compose. Files outside that folder
are running on the host machine and do not interact with the containers directly.
__pycache__/ is a folder containing bytecode to optimize startup. It can safely be ignored
or deleted and does not impact the functionality of the system.

keras-model/ is a folder containing the trained model created from the dataset. It includes
the architecture of the model (layers, connections), the weight values, and other
information relevant to the trained model. Each time old models are deleted, and new ones
will be instantiated; however, this can change quickly to fit any needs.

ips.xml, parse_ips.py, start_cluster.sh, docker-compose.yml, and Dockerfile have been
documented in sections 2.1, 2.2, and 2.3, respectively.

main.py and mnist.py are created according to the official documentation for TensorFlow's
Multi Worker Mirrored Strategy. Expressly, mnist.py is provided as a ready training loop
that has been tailored to work in a cluster. More documentation can be found at the
following link and its sublinks:
https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWWorkerMirroredStrateqy
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e run_workload.sh is a wrapper file starting the swarm and monitoring the performance of
the node.

e mystatsl .csv contains the output of the docker stats command with some special
formatting, making it easier to read during debugging. It is primarily used for debugging
purposes during orchestration and as such, will not be further discussed in this thesis.

2.5 Starting the testbed, training, and saving a model.

Finally, having prepared the testbed, a model can be trained, and the cluster's performance
monitored. To start the cluster, the manager node, in this case, "ubuntu”, as shown in Figure 14,
has to run its run_workload.sh script, which wraps the deployment of the stack and the monitoring.
Its contents are shown below.

docker stack deploy --prune -c /media/hdd/edw/workload_1/docker-
compose.yml workloadl

while true
do
docker stats -a --no-stream --

format "table {{.Name}}\t{{.NetIO}}" >> /media/hdd/edw/workload_1/mystatsl_.csv
echo "Saving stats to file mystats.csv."

echo "Press Ctrl+C to exit."

done

This file uses the YAML file created earlier to deploy a stack, a sum of services, each
running on a different host. In addition, it monitors the network throughput and saves it to the file
mystatsl_.csv. To start the cluster, one must execute run_workload.sh by running the following
command.

./run_workload.sh

It should also be noted that this file prints directly to the terminal until closed, so it either can
be modified to run in the background, or have it manually set as a background job, or open a new
terminal. In any case, after starting the cluster, the file can be closed by pressing Ctrl+C. After
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checking the logs of any of the manager nodes, a folder named keras-model should be created
under script/. This folder contains the model that was saved after the training.

Main.py is responsible for initializing each distributed node with the correct IPs, as extracted
from parse_ips.py. After calling parse_ips() as a function and sorting them, it loads the dataset,
creates the model, calculates each worker's batch sizes, and starts the distributed training. Main.py
acts as a wrapper to mnist.py, transforming traditional monolithic training workload into a
distributed one. Finally, it should be noted that instructions on how to structure main.py and the
mnist.py workload are provided in the official TensorFlow documentation®®. It is also
noteworthy, that any workload can be performed in a distributed environment with minimal
changes to the existing code; that is the job of the provided main.py.

The code for mnist.py and main.py with comments and documentation is shown below.

import os
import tensorflow as tf
import numpy as np

mnist dataset(batch_size):
(x_train, y_train), _ = tf.keras.datasets.mnist.load_data()

x_train = x_train / np.float32(255)
y_train = y train.astype(np.int64)
train_dataset = tf.data.Dataset.from tensor slices(
(x_train, y_train)).shuffle(60000).repeat().batch(batch_size)
return train_dataset

build and compile cnn_model():

model = tf.keras.Sequential([
tf.keras.Input(shape=(28, 28)),
tf.keras.layers.Reshape(target_shape=(28, 28, 1)),
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation="relu'),
tf.keras.layers.Dense(10)

D

model.compile(
loss=tf.keras.losses.SparseCategoricalCrossentropy(from logits=
optimizer=tf.keras.optimizers.SGD(learning rate=0.001),
metrics=["accuracy'])

18 https://www.tensorflow.org/api docs/python/tf/distribute/MultiWorkerMirroredStrategy
19 https://www.tensorflow.org/tutorials/distribute/multi worker with ctl
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import json

import mnist

import os

import time

import sys

import socket

import parse_ips as parsr
import tensorflow as tf
from time import sleep

def is chief(task type, task id):
return (task_type == 'worker' and task_id == @) or task_type is None

_get_temp_dir(dirpath, task_id):

base_dirpath = "workertemp ' + str(task_id)
temp_dir = os.path.join(dirpath, base_dirpath)
tf.io.gfile.makedirs(temp_dir)

return temp dir

write_filepath(filepath, task_type, task_id):
dirpath = os.path.dirname(filepath)
base = os.path.basename(filepath)
if not _is chief(task type, task id):

dirpath = _get temp_dir(dirpath, task_id)
return os.path.join(dirpath, base)

run_strat():
"'"'This function encapsulates all the functionalities of the main program.

Firstly, it discovers the IP of the current node and next calls the parse_ips
() function

from the respective files. Next, it sorts the IPs that are returned, and sets
up the tf config

accordingly. Then it creates the distributed strategy and calls the already c
onfigured mnist.py file. Finally,

it saves the model on the master node, which is defined as the one with a tas
k index of @.




host_address = socket.gethostbyname(socket.gethostname())

ip_list=parsr.parse_ips()

ips_sorted=1ist()
for i,val in enumerate(ip_list):
ips_sorted.append(ip list[i].split('."))

ips_sorted=[[int(y) for y in x] for x in ips_sorted]

ips_sorted = sorted(ips_sorted, key= item: item[-1])

tf _config = {

"cluster': {
‘worker': ['',""',""]
}s
"task': {'type': 'worker', 'index': 99}

for i in range(@,len(ips_sorted)):
tf _config['cluster']['worker'][i]=".".join(str(x) for x in ips_sorted[i])
':5001"

if host_address == '.'.join(str(x) for x in ips_sorted[i]):




tf config[ 'task']['index'] = i

os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

os.environ.pop('TF_CONFIG',

if 'L sys.path:
sys.path.insert(@, '.")

os.environ[ "TF_CONFIG'] = json.dumps(tf_config)
batch_worker = 64

strategy = tf.distribute.MultiWorkerMirroredStrategy()

tf config json.loads(os.environ.get('TF_CONFIG"))
worker_cnt = len(tf_config[ 'cluster'][ 'worker'])
total batch = batch_worker * worker_ cnt

dataset = mnist.mnist dataset(total batch)

with strategy.scope():

model = mnist.build _and_compile_cnn_model()
model.fit(dataset, epochs=12, steps_per_epoch=70)




current_path = '/script/keras-model'’

task_type, task id = (strategy.cluster resolver.task type,
strategy.cluster_resolver.task id)

write path = write filepath(current_path, task type, task id)

model.save(write_path)

if _is chief(task _type, task id):
tf.io.gfile.rmtree(os.path.dirname(write_path))

__main__":

if  name__ ==

run_strat()
while

print("Finished Training. Remove the docker stack and save the model.")

time.sleep(50)
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Chapter Three

3.1 Monitoring and visualizing the performance of the cluster during training.

In this chapter, the performance of the testbed is evaluated. In this direction, a comparison with
the bare-metal execution of the same workload in a distributed manner will be performed. In the
first test case, one workload is run five times to calculate an average run time; a comparison is
performed on its performance when running bare-metal versus in the container testbed. The second
test case has two workloads run simultaneously on all hosts. Similarly, a comparison of the average
times of each epoch and the total average time will be presented. An introduction of a delay is
expected when using the docker swarm cluster. However, this delay enables the orchestration of
the testbed, which in the long term, will be time-efficient. The benefits of using containers and
thus orchestrating them with a tool are described in sections 1.3 and 1.4. It should be noted that
the performance in the cluster can be further increased by removing the monitoring tools that were
employed (i.e., cAdvisor and docker stats).

In the docker cluster, "docker stats" is used to measure the bandwidth consumed. This variable
is expected to remain the same independently of which environment the workload is run. In
addition, a container named cAdvisor?°, developed by Google, was used to visualize some metrics
dynamically. This docker image, when downloaded, can be used to create a container that
automatically sets up a dashboard on the localhost. Some visualization options supported include
Grafana?* and Prometheus?2. This tool was primarily used to develop the testbed as a debugging
tool since it can show advanced metrics such as core utilization and specific network interface
throughput. However, it can only serve as a convenient debugging tool unless modified correctly.
As a proof of concept, the times of each epoch and the total time calculated from the debugging
messages will be shown in the following sections.

20 hitps://github.com/google/cadvisor
21 hitps://grafana.com/
22 hitps://prometheus.io/
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3.2 Training and comparison of a single workload on the cluster.

In this section, there will be a presentation of the resulting training times of the testbed. These
results will be compared with the results of training the same model, only this time without the
abstraction of the containers.

18s 211lms/step

214ms/step

155 213ms/step

s 21ldms/step
16s 232ms/step
215ms/step

155 217ms/step
225ms/step
21bms/step

215ms/step

Figure 17 - Iteration times, with containers, node #2.
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21l4ms/step
213ms/step
232ms/step
214ms/step
217ms/step
224ms/step
216ms/step
215ms/step

206ms/step

212ms/step

Figure 18 - Iteration times, with containers, node #3.

Figures 16 to 18 show the elapsed time for every epoch of training, as well as for every step.
The training time of each iteration is measured in seconds (s), while the step in milliseconds (ms).
Each figure represents one node of the system, while these figures were selected as representatives
of the average time calculated. It should be briefly noted, that each node requires the same time
for each iteration since training happens in a distributed manner. The per-step times vary between
nodes, and that is the reason these figures are shown.

Figures 19 to 21 show each node's respective times for the same model, only when the
workload is run without the cluster. It is noteworthy that in the scenario without the swarm, one
must configure every time the IP addresses inside main.py manually since, due to the hosts being
in a LAN network, these addresses could change.
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Figure 19 - Iteration times, without containers, node #1.
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Figure 20 - Iteration times, without containers, node #2.
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Figure 21 - Iteration times, without containers, node #3.

In Figures 19 to 21, when using containers, a constant increase in the average elapsed training
and step time. Similarly to Figures 16 to 21, Table 4 summarizes the comparison results between
the two cases, i.e., with or without container orchestration. The total time of training can be
calculated by summing each epoch's times. Alternatively, this time can be calculated by obtaining
the start time and the stop time of the training, as is provided in the debugging logs at runtime. By
checking the records, the total training time without using the orchestrated cluster is 2 minutes
and 30 seconds, while the respective time for the same model with the same resources, only this
time with the help of orchestration, is 3 minutes and 5 seconds. These numbers verify what was
already predicted that a minor delay would occur when using orchestration. This delay of 35
seconds in training that lasted 150 seconds is approximately a 20% increase [41]. Finally, Figures
22 to 23 visualize the training times and step responses.
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Epoch #

Time(s)/Step(ms), without containers

Time(s)/Step(ms), with containers

Node #1 Node #2 Node #3 Node #1 Node #2 Node #3
1 12/152 13/163 12/152 18/211 18/219 18/211
2 15/208 14/202 15/209 15/214 15/208 15/215
3 11/155 11/150 11/155 15/213 14/207 15/214
4 10/148 11/159 10/148 15/214 16/222 15/213
5 10/144 10/139 10/143 16/232 16/224 16/232
6 12/170 11/164 12/170 15/215 16/223 15/214
7 10/143 11/155 10/143 15/217 15/210 15/217
8 15/216 15/211 15/217 16/225 16/233 16/224
9 17/245 17/250 17/245 15/216 15/209 15/216
10 10/143 10/139 10/143 15/215 16/224 15/215
11 12/167 11/163 12/167 14/207 14/200 14/206
12 14/198 14/205 14/198 15/213 15/221 15/212

20,00
18,00
16,00
14,00
12,00
10,00

8,00

6,00

Training time (s), lower is better

4,00

2,00

Table 4 - Results with one workload on both setups.

Single Workload.

2

Epoch #

—@— Without containers

With containers

Figure 22 - Single Workload training times.

46

10

12

14




Single Workload.

0,300
0,250 /\
0,200
0,150
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0,050

Epoch #
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Figure 23 - Single workload, step response.

3.3 Training multiple Machine Learning models simultaneously on the cluster

and visualizing the results.

This section presents the results of running and evaluating two models simultaneously. Both
models use the mnist.py source code, and each model is set to run in a different port. Some benefits
of implementing this system with containers were seen in this scenario. Firstly, to orchestrate the
container testbed, the only changes to the existing testbed are changing the network address of the
new overlay network, for example, from 192.168.0.0/24 to 10.10.0.0/24. Finally, in main.py, for
clarity reasons, the port of each worker was changed although not needed, since they are on a
different network.

On the other hand, the second workload on the bare metal required an alternative port since
the first port was bound for the first workload. Some logs were left out to avoid repetitiveness in
this section. The corresponding results are summarized in Table 5 and Table 6 and are further
elaborated on in Section 3.4. Figures 24 to 27 depict the logs that were included as samples of this
scenario.
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Figure 25 - Iteration times, with containers, node #1, second workload.
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Figure 26 - Iteration times, without containers, node #1, first workload.

249ms/step
ms/step

244ms/step

245ms/step

ms/step

Figure 27 - Iteration times, without containers, node #1, second workload.
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Epoch # | Time(s)/Step(ms), without containers | Time(s)/Step(ms), with containers
Node #1 Node #2 Node #3 Node #1 Node #2 Node #3
1 25/334 24/325 25/334 26/323 26/314 26/322
2 24/340 24/343 24/339 26/371 26/374 26/371
3 23/330 23/335 23/330 26/368 26/372 26/369
4 22/308 21/300 22/308 26/367 26/370 26/367
5 17/239 17/246 17/239 26/370 26/359 26/371
6 17/244 17/237 17/244 26/366 26/370 26/365
7 17/245 18/252 17/245 26/370 26/373 26/370
8 16/235 16/228 17/235 26/366 26/369 26/366
9 17/243 17/236 17/243 26/371 25/358 26/371
10 17/240 17/246 17/239 26/373 26/376 26/373
11 17/242 16/235 17/242 25/364 26/370 26/364
12 18/250 18/256 17/249 26/377 27/379 26/377

Table 5 - Results of Workload #1 on both setups.

Epoch # | Time(s)/Step(ms), without containers | Time(s)/Step(ms), with containers
Node #1 Node #2 Node #3 Node #1 Node #2 Node #3
1 30/378 31/382 30/397 26/336 26/327 26/336
2 26/368 25/357 26/368 25/353 25/357 25/353
3 26/372 26/374 26/372 24/336 24/339 24/335
4 26/364 26/369 26/365 20/287 20/280 20/287
5 26/365 26/369 26/366 17/247 10/253 17/247
6 27/383 26/371 27/385 17/242 17/249 17/243
7 25/352 25/355 25/352 17/249 17/242 17/249
8 26/370 26/373 26/370 16/233 17/241 16/233
9 26/372 26/376 26/371 17/244 17/239 17/245
10 27/381 27/385 27/381 17/238 17/244 17/237
11 26/375 26/365 26/374 17/245 17/237 17/244
12 21/304 22/309 21/304 17/238 17/246 17/238

Table 6 - Results of Workload #2 on both setups.

50




3.4 Comparison of average training times.

This section will present and comment on the graphs extracted from the tables found in Section
3.2 and Section 3.3. Firstly, Figure 28 shows the training time of workload 1, with and without the
abstraction of containers, while Figure 29 shows the respective step response time of workload #1.
Similarly, Figure 30 and Figure 31 show the same result for workload #2 in the same manner. It is
noteworthy that workload #2 seemed to perform significantly better with the orchestrated container
cluster, while workload #1 markedly worse with the cluster.

Workload #1.

30,00

25,00

20,00

15,00

10,00

5,00

Training time(s), lower is better

Epoch #

—@— \With containers Without containers

Figure 28 - Workload #1 training time.
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Step response (s), lower is better

Training time (s), lower is better
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35,00

30,00

25,00

20,00

15,00

10,00

5,00

Workload #1.

——o—o—0—o o—"—o—°

Epoch #

—@— With containers  —@— Without containers

Figure 29 - Workload #1 step response.

Workload #2.

Epoch #

—@— with containers  —@— without containers

Figure 30 - Workload #2 training time.
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Step response (s), lower is better

Training time(s), lower is better
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Workload #2.

Epoch #
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Figure 31 - Workload #2, step response.

Average time of the two workloads.

Epoch #

—@— with containers  —@— without containers

Figure 32 - Average training time comparison.

53

12

12

14

14



Average time of the two workloads.
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Figure 33 - Average step response comparison.

The calculated average training time for the cluster is 5 minutes and 18 seconds, compared to
3 minutes and 5 seconds when training one workload. As for the bare metal, the average time is 4
minutes and 10 seconds, compared to 2 minutes and 30 seconds when training one model. The
introduced delay of 20% remains the same on the simultaneous training. Therefore, it is evident
that even when scaling the workload, the delay remains the same in both scenarios. However, what
is easily noticed is the fact that when scaling the workload, the training time does not double. The
training should last approximately 6 minutes and 10 seconds for the cluster and 5 minutes for the
bare metal scenario if it doubled. Instead, it lasts about 1 minute less for the swarm and 50 seconds
less for the bare metal. This time difference further demonstrates that the testbed performs well
under load, compared to the bare metal, while still maintaining all the features orchestration has.

Finally, Figure 32 and Figure 33 demonstrate the times of the two workloads for the two
scenarios. As deduced, for each epoch or step, both the bare metal and the orchestrated cluster
perform roughly the same, within a 5% margin. The significant difference in the total training time
in the multiple workloads scenario is because loading, saving, and exchanging variables takes more
time in the orchestrated cluster. This difference is not apparent neither in Tables 5 and 6 nor in
Figures and 33, but rather is seen at runtime.
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Chapter Four

4.1 Conclusions.

In the digital age, virtualization is being adapted rapidly to address problems otherwise solved
inefficiently. Employing virtualization can be done either via VMs, which are monolithic OS
stacks running on one or more host devices. An alternative way of virtualizing resources is via
containers, which are smaller and more lightweight than VMs. The broader architecture that
utilizes containers is called Microservice architecture. In a microservice model, the problem is
broken down into smaller loosely connected services. Each service solves a part of the problem
efficiently with a light footprint on the underlying OS. One advantage of a microservice
architecture over a monolithic approach is that the system becomes hardware-independent via
abstracting the underlying hardware.

In the Machine Learning (ML) domain, distributed learning has been an appealing solution to
pooling resources from different machines into training a specific model. As expected, to utilize
distributed learning, each machine must be configured in the same way, most easily by cloning an
existing working machine. However, this process takes time and effort while also being hardware-
specific, making the scaling of the existing system challenging. To this end, several solutions have
been developed to address this problem. A widely adopted approach is the use of VMs. However,
VMs introduce a significant amount of overhead, reducing as such the overall performance. On
the other hand, containers are being incorporated in many end products, thus abstracting the
underlying hardware and enabling the engineers to tailor their workloads without any difficulties.

In this thesis, a novel way of orchestrating a system able to process machine learning
workflows was presented. A cluster with Docker Swarm was created and initialized. In general,
orchestrating the cluster takes place in the following steps. Firstly, the cluster structure was defined
declaratively using the docker-compose.yml file. Furthermore, the defined architecture was
deployed to the swarm cluster. Next, resolving networking was addressed, since containers are
ephemeral and cannot be bound to a static IP address. Appropriate python scripts and bash wrapper
scripts were developed to automate this process. Finally, bash scripts on both the host machine and
all the containers were written to automate other processes such as creating a cluster, giving the
correct IP addresses to each worker, and starting the workload. Finally, a cAdvisor container, along
with docker stats were primarily used for debugging purposes as a way of monitoring the
performance of the cluster. Other orchestration actions that could be performed on-demand would
be to scale up or down the cluster if more resources were available.

Finally, a performance evaluation and comparison between the cluster and a bare-metal
implementation was presented. In this direction, the workload was modified to run on the bare-
metal system, while each system was then given two scenarios to process. The first scenario
constitutes the training of the same model on the bare-metal system and comparing the metrics to
the created cluster. In the second scenario, two models were trained simultaneously and the
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respective metrics were compared. According to the results, the cluster introduced a slight delay
to the training.

The delay introduced is the overhead of container orchestration, which reduced by at least 20%
the man-hours required to set up the testbed. In addition, from this point onwards, every time a
scale up, scale down, or maintenance needs to take place, the time required will be reduced by 10-
20% compared to bare-metal. It should also be noted that, in the bare-metal scenario everything
must be performed manually on each system. This manual reconfiguration means that many
repetitive man-hours must be allocated and requires exact knowledge of how each machine is set
up, as well as the physical details of each host for the system to be reconfigured. These downsides
of bare-metal systems were reduced to almost zero by implementing resource abstraction with
containers, and therefore orchestration of the cluster. Finally, it should be noted that workloads
that run distributed exacerbate the downsides of monolithic systems, and as such, monolithic
approaches should usually be avoided [15].

Systems such as these can further enhance the efficiency of emerging technologies, such as
MEC and, more broadly, 10T environments [42]-[44], [45]-[49]. An example of such use could
be deploying an ML model onto a MEC network based on the users' needs. In a MEC network
where hosts used video streaming mainly, an ML model would be deployed and trained to optimize
the video quality and buffering times.

4.2 Future work.

The work performed in this dissertation can be further extended in the field of container
orchestration alongside ML workflows. In this respect, five research directions are discussed as
follows:

e Cluster security, taking into consideration all best practices as far as security of the cluster
is concerned. This direction should be expanded should the system go into production.

e Expanding the supported workloads by incorporating additional workloads resembling
real-life scenarios.

e Benchmarking of the system in a much larger environment to verify its performance.
Additionally, alternative workloads can be considered to further ensure its
performance[50].

e Optimization of the testbed by switching to GPUs or TPUs and appropriate routing to
reduce training times and latencies as much as possible.

e Integration of autonomous capabilities that enable the testbed to make decisions and
change its ideal state, as described in the docker-compose.yml. Such decisions could be the
result of an RL model acting as the orchestrator.
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