
University of Western Macedonia

Thesis Work

Design and Implementation of a Soft
Processor with a Custom FPU Addition

Author:

Angelos-Eystathios Ntasios

Supervisor:

Minas Dasygenis

Department of Informatics and telecommunications

July 7, 2014

Declaration of Authorship

I, Angelos-Eystathios Ntasios, declare that this thesis titled, ”Design, Implementation

and Verification of a Soft Processor with FPU Support” and the work presented in it

are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a degree at this

University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

”I would like to thank my family for their support during my academic years. I would

also like to express my gratitude for my supervising professor, Dr. Minas Dasygenis,

without whom I would not be able to fulfil this thesis.”

Angelos Ntasios

Abstract

The ever growing need for flexibility and low production cost in hardware implemen-

tations, has led to a wider use of reprogrammable and reconfigurable hardware such

as PLDs and FPGAs, which can be programmed with hardware description languages.

Using reconfigurable hardware provides the option to customize existing soft-cores and

soft processors in order to adapt to different design requirements.

In this thesis, an implementation of a processor based on the PLX 1.1 instruction set is

presented. Since the processor is intended for multimedia data processing, it is necessary

to include a floating point arithmetic unit. All the required steps that had to be taken in

order to embed a floating point unit in the processor are described in detail. The whole

design and implementation process of the soft core microprocessor as well as the FPU

are presented, along with the customization by embedding the double precision FPU. All

the stages of the work are accompanied by simulation results and FPGA implementation

metrics.

Περίληψη

Η ολοένα και αυξανόμενη ανάγκη για ευελιξία και χαμηλό κόστος παραγωγής σε υλοποι-

ήσεις υλικού, οδήγησε σε μία ευρύτερη χρήση επαναπρογραμμαζιζόμενου και επαναδιαμορ-

φούμενου εξοπλισμού, όπως FPGAs και PLDs, τα οποία μπορούν να προγραμματιστούν

με γλώσσες περιγραφής υλικού. Η χρήση του επαναπρογραμματιζόμενου υλικού προσφέρει

την επιλογή της προσαρμογής ήδη υπαρχόντων επεξεργαστών έτσι ώστε να προσαρμοτούν

σε διαφορετικές σχεδιαστικές ανάγκες.

Σε αυτή την πτυχιακή, παρουσιάζεται μία υλοποίηση ενός επεξεργαστή που βασίζεται στο

σύνολο εντολών PLX 1.1 . Από τη στιγμή που ο επεξεργαστής προορίζεται για επεξερ-

γασία δεδομένων πολυμέσων , είναι αναγκαίο να περιλαμβάνει και μονάδα επεξεργασίας

αριθμών κινητής υποδιαστολής. ΄Ολα τα απαραίτητα βήματα που έπρεπε να παρθούν έτσι

ώστε να προσαρμόσουμε μία τέτοια μονάδα περιγράφονται λεπτομερώς. Η όλη σχεδίαση

και υλοποίηση του επεξεργαστή και της μονάδας επεξεργασίας αριθμών κινητής υποδιαστο-

λής παρουσιαζονται, μαζί με την διαδικασία προσαρμογής του επεξεργαστή έτσι ώστε να

μπορέσει να λειτουργήσει με τη νέα μονάδα. ΄Ολα τα στάδια της εργασίας συνοδεύονται με

αποτελέσματα προσομοίωσης και με στατιστικά από την υλοποίηση σε FPGA.

Contents

Declaration of Authorship i

Abstract iii

Abstract greek iv

List of Figures viii

List of Tables x

Abbreviations xi

1 Introduction 1

1.1 Embedded Systems . 1

1.2 Intellectual Property Cores . 3

1.3 Soft Microprocessors . 4

1.3.1 The Picoblaze Soft Microprocessor 5

1.3.2 The Microblaze Soft Microprocessor 5

1.3.3 The Xtensa Microprocessors . 6

1.3.4 LEON Microprocessor . 6

1.3.5 The OpenRISC Microprocessor . 7

1.4 Floating point arithmetic . 7

1.4.1 Trade offs between range and precision 9

1.4.2 The floating point representation 9

1.4.3 The IEEE 754 standard . 10

1.4.4 Basic IEEE 754 formats . 11

1.5 The IEEE 754 double precision floating point format 11

1.5.1 The sign bit . 11

1.5.2 The exponent . 12

1.5.3 The significand . 12

1.5.4 Floating point normalization . 12

1.6 The goals of the thesis . 13

1.7 The Following work structure . 14

2 The processor 15

2.1 Architecture Highlights . 15

v

Contents vi

2.1.1 Datapath Size . 16

2.1.2 Subword Parallelism . 16

2.1.3 Predication . 17

2.2 Processor Implementation . 18

2.3 The first pipeline stage . 18

2.3.1 The Program Counter . 18

2.3.2 Program Counter Metric Statistics 19

2.3.3 The Instruction Memory . 20

2.3.4 The data multiplexers . 20

2.3.5 The stage 1 data flow . 21

2.4 The second pipeline stage . 21

2.5 The third pipeline stage . 22

2.5.1 The Arithmetic Logic Unit(ALU) 22

2.5.2 The Multiplier . 24

2.5.3 The Mix Unit . 26

2.5.4 The Shifter Unit . 27

2.5.5 Predicate File, Sign Extension Unit and multiplexers 28

2.6 The fourth Pipeline . 28

2.7 The Fifth Pipeline Stage . 29

2.7.1 The register Input Unit . 29

2.8 The control Unit . 29

2.8.1 The operation decoder . 30

2.8.2 The stall unit . 31

2.8.3 The Flag Unit . 32

2.9 The processor top module . 33

2.10 Hazards and data corruption . 34

2.10.1 Read after write hazard . 34

2.10.2 Branch Hazards . 34

2.10.3 Structural Hazards . 35

2.10.4 Pipeline bubbling . 35

2.10.5 Register Forwading . 36

3 The Floating Point Unit(FPU) 37

3.1 Floating point addition-subtraction . 38

3.1.1 FPU Adder testbench . 39

3.2 Floating point multiplication . 41

3.3 Floating point division . 42

3.4 The FPU Top Module . 44

4 The Processor Customization 48

4.1 Compatibility . 48

4.2 ISA Customization . 49

4.3 Wiring and stalling . 50

4.4 Processor Testing . 51

4.4.1 Data Synchronization . 51

4.4.2 Execution Testing . 53

Contents vii

5 Tools Utilized 56

5.1 VHDL . 56

5.1.1 The IEEE standard . 57

5.1.2 Advantages . 58

5.2 FPGAs . 58

5.2.1 History . 60

5.2.2 Modern developments . 61

5.3 The Xilinx Virtex ML605 . 62

5.4 Xilinx ISE . 63

5.4.1 The CORE Generator . 64

5.5 Modelsim Simulation Program . 67

6 Conclusions 68

6.1 Acknowledgements and Compromises . 68

6.2 Future Work . 69

A RTL schematics 70

B PLX 1.1 Instruction Set Architecture 78

C Segments of Code 80

D Module control signals 85

Bibliography 89

List of Figures

1.1 Embedded Systems market share . 2

1.2 The double precision floating point format 11

2.1 Addition between the whole 64bit words 16

2.2 Addition between the two 32bit words . 17

2.3 Addition between the four 16bit . 17

2.4 Addition between the 8 8bit words . 17

2.5 PC simulation . 19

2.6 Register File Simulation . 22

2.7 ALU simulating an addi operation . 24

2.8 Carry out drive between two 64 bit numbers 25

2.9 Carry out drive between four 32 bit numbers 25

2.10 Multiplier Simulation . 25

2.11 Odd indexed multiplication . 26

2.12 Even indexed multiplication . 26

2.13 Mix Unit Simulation . 27

2.14 Shifter Unit Simulation . 27

2.15 The ”jump” instruction decoding . 30

3.1 The .bat program . 40

3.2 The random vector generator . 40

3.3 The two conversion functions . 41

3.4 The FPU multiplier simulation . 43

3.5 The FPU divider simulation . 45

3.6 The Divisor module . 45

4.1 Stage 2 of the pipeline . 50

4.2 Stage 2 of the pipeline . 52

4.3 Mirror RTL schematic for data propagation 52

4.4 Mirror RTL simulation . 52

4.5 The ”and” machine code . 53

4.6 The processor initialization process . 53

4.7 The execution completion stage . 54

4.8 The register file values . 55

5.1 FPGA block array. 59

5.2 The basic block of a Xilinx XC4000 FPGA 60

5.3 The Virtex 6 FPGA board . 62

5.4 Block memory generator . 65

viii

List of Figures ix

5.5 The instruction memory . 65

5.6 The instruction memory VHDL interface 65

5.7 The data memory . 66

5.8 The data memory VHDL interface . 66

A.1 The CPU RTL schematic . 71

A.2 The PC RTL schematic . 72

A.3 The ALU adder RTL Schematic . 72

A.4 The control RTL Schematic . 73

A.5 The FPU adder . 74

A.6 The FPU multiplier . 75

A.7 The FPU divider . 76

A.8 The FPU RTL schematic . 77

C.1 The FPU instruction signals . 83

C.2 The RTL mirror design . 84

List of Tables

1.1 The IEEE 754 floating point format . 11

2.1 Device Utilization Summary for the Program Counter 19

2.2 The Instruction Memory Ports . 20

2.3 The program counter ports . 20

2.4 The Register File Ports . 22

2.5 The ALU Ports . 23

2.6 The multiplier ports . 25

2.7 The Mix Unit ports . 27

2.8 The Shifter Unit ports . 28

2.9 The OP Decoder Unit ports . 31

2.10 The Stall Unit ports . 31

2.11 The Control Unit ports . 32

2.12 The Flag Unit ports . 33

2.13 Read after write hazard example . 34

2.14 Branch Hazard example . 35

2.15 The Bypassing unit . 36

3.1 Device Utilization Summary for the FPU adder 40

3.2 Device Utilization Summary for the FPU multiplier 42

3.3 Device Utilization Summary for the FPU Divider 43

3.4 Detailed device utilization summary for FPU 47

5.1 std logic values . 57

B.1 Main Instructions and Mnemonics . 79

D.1 ALU control signals . 86

D.2 FPU Control Signals . 87

D.3 Shifter Control Signals . 87

D.4 Mix Unit Control Signals . 88

D.5 Multiplier Control Signals . 88

x

Abbreviations

ALU Arithmetic Logic Unit

FPU Floating Point arithmetic Unit

FPGA Field Programmable Gate Array

HDL Hardware Description Language

ISA Instruction Set Architecture

LSB Least Significant Bit

MSB Most Significant Bit

MHz Mega Heartz

PC Program Counter

PLD Programmable Logic Device

PROM Programmable Read Only Memmory

VLSI Very Large Scale Integration

xi

Chapter 1

Introduction

The modern trend in digital circuits and modern data processing, is gradually mov-

ing away from inflexible and big circuits such as desktop computer processors and is

rapidly turning to more compact, adaptable and cheaper implementations. The field of

embedded systems focuses in the construction of a computer system with a dedicated

function, which is a crucial component of a larger installment, i.e. it is embedded within

a larger system[1]. Usually these systems are in the form of micro-controllers which are

processors along with all the required peripheral units, such as memory and external

chips, already installed.

1.1 Embedded Systems

The key factor in embedded systems is their flexibility. Engineers can adapt the design

very easily in order to meet certain requirements. These requirements can come in the

form of area or power restrictions. Since these installments are often used in areas where

the environment places a lot of restrictions, these easily adjustable systems are the go-to

choice. As it is clearly evident the utilization spectrum is vast, ranging from cars and

household equipment to satellites and space shuttles[2] Figure1.1.

The embedded systems design requires fast system prototyping to validate the feasibility

of various implementations and to guide toward the optimal selection. In this context,

almost every embedded system engineer has at his arsenal one or more re-programmable

FPGA hardware circuits. Re-programmable hardware is a term used to describe a

1

Chapter 1. Introduction 2

Figure 1.1: Embedded Systems market share

certain class of circuits. These circuits do not implement any specific function, but they

have the potential to implement any hardware block, according to size constrains. They

can be described as vast arrays of circuit blocks, each capable of functioning in various

ways. By providing a specific bitstream configuration, the complete array can operate

as the desired circuit e.g. processor, signal processing unit and many others. In fact

there is almost no limit as to what can be implemented on these devices. Compared

to the application specific integrated circuits (ASICs), they are more flexible, providing

lower engineering cost, reduced development time, reduced debugging time and lower

implementation risk .

The usage spectrum of FPGAs is mainly focused in areas where flexibility, low cost and

rapid prototyping is mandatory. Such examples vary from radio-astronomy and particle

physics to chip multiprocessor emulation and derivative pricing. All those fields have

a common factor, which is the dynamic environment and alternating circumstances. It

is clear that in such situations adapting, combining and incorporating IP-cores to large

scale projects is mandatory.

Chapter 1. Introduction 3

1.2 Intellectual Property Cores

With the advancement of the embedded systems market, the complexity of many designs

has increased since an even wider variety of peripherals and components had to be

supported. FPGAs play a major role in this advancement since the flexibility they offer

allows the engineer to constantly adapt and improve his designs in order fit to different

circumstances. Many modules designed and created in HDLs , are often created for a

similar purpose. The ease of use offered by software allows users to easily share and even

sell their work, in this case software described hardware. This gave rise to the IP-core

market.

IP-cores are modules written in a hardware description language implementing a certain

circuit. They can be reused and acquired either commercially or free of charge and can

be used as an embedded feature in another design. The increasing complexity of the

designs has rendered the usage of IP-cores a viable alternative[3]. One can simply acquire

an IP-core and use it at will in his work. For example one can buy a random number

generator and use it as is, in an implementation for network security. The advantages

of using IP-cores are huge, as they are a solid answer to the problem of time-to-market

reduction, which requires the fastest possible design and creation of a project. This is

achieved because by using a preprogrammed and pretested module, there is no need of

designing and debugging.

IP-cores in the electronic design industry have had a profound impact on the design of

systems on a chip. By licensing a design multiple times, an IP core licensor spreads

the cost of development among multiple chip makers. IP cores for standard processors,

interfaces, and internal functions have enabled chip makers to put more of their resources

into developing the differentiating features of their chips. As a result, chip makers have

developed innovations more quickly.

The licensing and use of IP-cores in chip design came into common practice in the 1990s.

There were many licensors and also many foundries competing on the market. Today,

the most widely licensed IP-cores are from Synopsys, Imagination Technology, Cadence

Design and ARM Holdings[4].

Typically IP-cores are offered as Soft cores or Hard cores. Soft cores are offered as

synthesizable RTL designs, usually in a HDL such as Verilog or VHDL. IP cores are

Chapter 1. Introduction 4

also sometimes offered as generic gate-level netlists. The netlist is a boolean-algebra

representation of the IP’s logical function implemented as generic gates or process specific

standard cells. An IP core implemented as generic gates is portable to any process

technology. A gate-level netlist is analogous to an assembly-code listing in the field of

computer programming. A netlist gives the IP core vendor reasonable protection against

reverse engineering. Both netlist and synthesizable cores are called ”soft cores”, as both

allow a synthesis, placement and route (SPR) design flow. Hard cores on the other hand

are offered by their physical low-level description, thus making them more predictable in

terms of timing performance and area utilization.Such cores, whether analog or digital,

are called ”hard cores” (or hard macros), because the core’s application function cannot

be meaningfully modified by chip designers. Transistor layouts must obey the target

foundry’s process design rules, and hence, hard cores delivered for one foundry’s process

cannot be easily ported to a different process or foundry.

1.3 Soft Microprocessors

As mentioned earlier, embedded systems are a vital part of our everyday interaction

with technology. These systems often have special restrictions, mainly in power con-

sumption and cost. Usually these systems contain embedded processors either in the

form of micro-controllers or soft processors. In addition to these constraints, many em-

bedded system developers are faced with tight timeto- market deadlines. Hence, the

hardware/software codesign methodology is often used to design embedded systems in

order to help reduce the amount of time spent on development and debugging. Soft

microprocessor is a microprocessor solely implemented using logic synthesis and HDLs.

They can be implemented in varisous reprogrammable semiconductor devices such as

FPGAs, PLDs, ASICs. The use of soft-core processors holds many advantages for the

designer of an embedded system. First, soft-core processors are flexible and can be cus-

tomized for a specific application with relative ease. Second, since soft-core processors

are technology independent and can be synthesized for any given target ASIC or FPGA

technology, they are therefore more immune to becoming obsolete when compared with

circuit or logic level descriptions of a processor. Finally, since a softcore processor’s

architecture and behavior are described at a higher abstraction level using an HDL, it

becomes much easier to understand the overall design.[3]

Chapter 1. Introduction 5

1.3.1 The Picoblaze Soft Microprocessor

Picoblaze is a soft microprocessor offered by Xilinx. It is based on an 8-bit RISC

architecture and can reach speeds up to 100 MIPS on the Virtex 4 FPGA’s family. The

processor has an 8-bit address and data port for access to a wide range of peripherals.

The license of the cores allows their free use, albeit only on Xilinx devices, and they come

with development tools. The PicoBlaze microcontroller core is totally embedded within

the target FPGA and requires no external resources. The basic functionality is easily

extended and enhanced by connecting additional FPGA logic to the microcontroller’s

input and output ports. the PicoBlaze peripheral set can be customized to meet the

specific features, function, and cost requirements of the target application. Because the

PicoBlaze microcontroller is delivered as synthesizable VHDL source code, the core is

future-proof and can be migrated to future FPGA architectures, effectively eliminating

product obsolescence fears. Being integrated within the FPGA, the processor reduces

board space, design cost, and inventory[5].

1.3.2 The Microblaze Soft Microprocessor

MicroBlaze is a 32-bit RISC Harvard architecture soft processor core which is created

and offered for free by Xilinx. They key feature of this processor is its high customiz-

ability and flexibility. MicroBlaze contains over 70 user-configurable options, enabling

virtually any processor use case from a very small footprint state machine or micro-

controller to a high performance compute-intensive micrprocessor-based system running

Linux, operating in either 3-stage pipeline mode to optimize size, or 5-stage pipeline

mode to optimize speed. These parameters include an optional IEEE-754 compatible

single precision FPU, a hardware divider, a barrel shifter, data and instruction caches,

exception handling capabilities, hardware debug logic and many more[3]. Both Picoblaze

and Microblaze come freely with the Embedded Development Kit (EDK) which is of-

fered from Xilinx. Both of these processors are small and focus mainly in flexibility and

low power consumption.

Chapter 1. Introduction 6

1.3.3 The Xtensa Microprocessors

Tensilica’s Xtensa technology provides a variety of soft processors for embedded systems.

This processor family is focused mainly in flexibility and customizability. A series of

options is offered from which to choose the ones that are needed. One important key

feature is that they are extensible in that custom instructions and custom units can be

added to the processor. This feature is supported by a custom Verilog language created

by Tensilica, the Tensilica Instruction Extension, which is used to describe the new

instructions[3]. An automated HDL generator is also available for this processor, which

creates HDL modules of the customized processor.

1.3.4 LEON Microprocessor

LEON is a 32-bit CPU microprocessor core, based on the SPARC-V8 RISC architecture

and instruction set. It was originally designed by the European Space Research and

Technology Centre (ESTEC), part of the European Space Agency (ESA), and after that

by Gaisler Research. It is described in synthesizable VHDL. LEON has a dual license

model: An LGPL/GPL FLOSS license that can be used without licensing fee, or a

proprietary license that can be purchased for integration in a proprietary product. The

core is configurable through VHDL generics, and is used in system-on-a-chip (SOC)

designs both in research and commercial settings.

The LEON project was started by the European Space Agency (ESA) in late 1997 to

study and develop a high-performance processor to be used in European space projects.

The objectives for the project were to provide an open, portable and non-proprietary

processor design, capable to meet future requirements for performance, software com-

patibility and low system cost. Another objective was to be able to manufacture in a

Single event upset (SEU) sensitive semiconductor process. To maintain correct opera-

tion in the presence of SEUs, extensive error detection and error handling functions were

needed. The goals have been to detect and tolerate one error in any register without

software intervention, and to suppress effects from Single Event Transient (SET) errors

in combinational logic.

The LEON family includes the first LEON1 VHSIC Hardware Description Language

(VHDL) design that was used in the LEONExpress test chip developed in 0.25 μm

Chapter 1. Introduction 7

technology to prove the fault-tolerance concept. The second LEON2 VHDL design

was used in the processor device AT697 from Atmel (F) and various system-on-chip de-

vices. These two LEON implementations were developed by ESA. Gaisler Research, now

Aeroflex Gaisler, developed the third LEON3 design and has announced the availability

of the fourth generation LEON, the LEON4 processor[6].

1.3.5 The OpenRISC Microprocessor

OpenRISC is the original flagship project of the OpenCores community. This project

aims to develop a series of general purpose open source RISC CPU architectures. The

first (and currently only) architectural description is for the OpenRISC 1000, describing

a family of 32 and 64-bit processors with optional floating point and vector processing

support.

A team from OpenCores provided the first implementation, the OpenRISC 1200, written

in the Verilog hardware description language. The hardware design was released under

the GNU Lesser General Public License (LGPL), while the models and firmware were

released under the GNU General Public License (GPL). A reference SoC implementa-

tion based on the OpenRISC 1200 was developed, known as ORPSoC (the OpenRISC

Reference Platform System-on-Chip).

The instruction set is a reasonably simple MIPS-like traditional RISC using a 3-operand

load-store architecture, with 16 or 32 general-purpose registers and a fixed 32-bit instruc-

tion length. The instruction set is mostly identical between the 32 and 64 bit versions

of the specification, the main difference being the register width (32 or 64 bits) and

pagetable layout. The OpenRISC specification includes all features common to mod-

ern desktop/server processors: a supervisor mode and virtual memory system, optional

read, write and execute control for memory pages, and instructions for synchronization

and interrupt handling between multiple processors[7].

1.4 Floating point arithmetic

In computer science the programs or the circuits that are implemented to deal wih

calculations, always deal with natural numbers. Since the fundamental basis of the

Chapter 1. Introduction 8

calculations is the bit, all other numbers such as rational, fractions and irrational are

represented, and often represented by an approximation, by real numbers. As it is clear

a standard had to be established in order to represent these numbers so as to be used

in computer science. The term floating point refers to the fact that a number’s radix

point in computers, can ”float”. That is, it can be placed anywhere relative to the

significant digits of the number. This position is indicated as the exponent component

in the internal representation, and floating point can thus be thought of as a computer

realization of scientific notation. All floating point numbers are represented with the

following formula:

SignificantDigits ∗ baseexponent (1.1)

The numbers are, in general, represented approximately to a fixed number of significant

digits (the significand) and scaled using an exponent. The base for the scaling is normally

2, 10 or 16. The idea of floating-point representation over intrinsically integer fixed-point

numbers, which consist purely of significand, is that expanding it with the exponent

component achieves greater range. For instance, to represent large values, e.g. distances

between galaxies, there is no need to keep all 39 decimal places down to femtometre-

resolution (employed in particle physics). Assuming that the best resolution is in light

years, only the 9 most significant decimal digits matter, whereas the remaining 30 digits

carry pure noise, and thus can be safely dropped. This represents a savings of 100 bits

of computer data storage. Instead of these 100 bits, much fewer are used to represent

the scale (the exponent), e.g. 8 bits or 2 decimal digits. Given that one number can

encode both astronomic and subatomic distances with the same nine digits of accuracy,

but because a 9-digit number is 100 times less accurate than the 11 digits reserved

for scale, this is considered a trade-off exchanging range for precision. The example

of using scaling to extend the dynamic range reveals another contrast with fixed-point

numbers: Floating-point values are not uniformly spaced. Small values, close to zero,

can be represented with much higher resolution (e.g. one femtometre) than large ones

because a greater scale (e.g. light years) must be selected for encoding significantly

larger values.[1] That is, floating-point numbers cannot represent point coordinates with

atomic accuracy at galactic distances, only close to the origin.

Chapter 1. Introduction 9

1.4.1 Trade offs between range and precision

It is crucial to point out that by using the floating point representation we have not

managed to represent more numbers. If for example we use a 64 bit floating point we

can still represent only 264 distinct numbers. However we have spread those distinct

representations to a wider range.

There will always be a compromise between the range and the desired precision. Since

there is only a given number of representation bits, by increasing the number of the

exponent bit we achieve a greater range however there is a significand loss of precision

as to which numbers in this range we can represent. Likewise by increasing the number

of bits in the significand part we increase the precision but there is a smaller range of

numbers to represent[8].

1.4.2 The floating point representation

A number representation specifies a way of storing a number in the form of a string of

digits. There are several mechanics by which strings of digits can represent numbers.

the digit string can be of any length, and the location of the radix point is indicated

by placing an explicit ”point” character (dot or comma) there. If the radix point is not

specified then it is implicitly assumed to lie at the right end of the string. In fixed-point

systems, some specific assumption is made about where the radix point is located in

the string. For example, the convention could be that the string consists of 8 decimal

digits with the decimal point in the middle, so that ”00012345” has a value of 1.2345.

In scientific notation, the given number is scaled by a power of 10 so that it lies within a

certain range—typically between 1 and 10, with the radix point appearing immediately

after the first digit. The scaling factor, as a power of ten, is then indicated separately

at the end of the number.

The floating point representation, as shown in 1.1, consists of three parts.

• A signed string of digits of a given length, that represent the base of the number.

It is usually referred to as the significand or mantissa. The length of this string

determines the precision of the representation to be implemented. For example a

Chapter 1. Introduction 10

10 digit string can represent a value up to 10 digits worth of accuracy. I.e. the

number 1/3 would be equal to 0.3333333333.

• A signed string of digits that represent the exponent, that modifies the magnitude

of the number. The length of the string represents the range of the numbers that

can be represented.

• An unsigned number which represents the base which is usually the number 2.

To derive the value of the floating-point number, one must multiply the significand by

the base raised to the power of the exponent, equivalent to shifting the radix point from

its implied position by a number of places equal to the value of the exponent to the right

if the exponent is positive or to the left if the exponent is negative.

1.4.3 The IEEE 754 standard

The most used floating point format used today is the IEEE 754. The IEEE has stan-

dardized the representation used in most today’s computers with some exceptions. The

technical standard was established in 1985 and defines the following:

• arithmetic formats: sets of binary and decimal floating-point data, which consist

of finite numbers (including signed zeros and subnormal numbers), infinities, and

special ”not a number” values (NaNs)

• interchange formats: encodings (bit strings) that may be used to exchange floating-

point data in an efficient and compact form

• rounding rules: properties to be satisfied when rounding numbers during arith-

metic and conversions

• operations: arithmetic and other operations on arithmetic formats

• exception handling: indications of exceptional conditions (such as division by zero,

overflow, etc.)

Chapter 1. Introduction 11

Figure 1.2: The double precision floating point format

1.4.4 Basic IEEE 754 formats

The standard defines five basic formats, which differ in that each has a different length

in the strings of the significand and the exponent. Two of these format refer to a

decimal representation but they are not going to be described here. The three binary

representations are encoded with 32, 64, 128 bits respectively.

Table 1.1: The IEEE 754 floating point format

Name Common name Base Digits E min E max Decimal digits Decimal E max
binary16 Half precision 2 10+1 -14 +15 3.31 4.51
binary32 Single precision 2 23+1 -126 +127 7.22 38.23
binary64 Double precision 2 52+1 -1022 +1023 15.95 307.95
binary128 Quadruple precision 2 112+1 -16382 +16383 34.02 4931.77
decimal32 10 7 -95 +96 7 96
decimal64 10 16 -383 +384 16 384
decimal128 10 34 -6143 +6144 34

1.5 The IEEE 754 double precision floating point format

Since in our implementation we use a double precision floating point arithmetic unit, we

will explain in more details the double precision format. The double precision format

uses 64 bits in total to represent floating point numbers. Figure 1.2 displays the format

of the number.

1.5.1 The sign bit

The first bit of the 64 bits, or the most significand bit, is used to represent the sign of

the number. Zero is used to represent positive numbers and one to represent negative

numbers.

Chapter 1. Introduction 12

1.5.2 The exponent

The next 11 bits are used to represent the exponent. It is crucial to mention here that

the actual value of the exponent is not the value that is stored. For E the value stored

the true value of the exponent is given by equation 1.2, Ebias is the number 1023. In

order to represent negative as well as positive numbers the number 1023 is subtracted

from the number to get the real value. With 11 bits the largest number that can be

represented is 2047 and the lowest 0, after the bias subtraction we get 1024 as the highest

value and -1023 as the lowest that can be represented.

e = E − Ebias (1.2)

1.5.3 The significand

The significand of the floating point number is represented by a string of 52 bits. However

the actual number is not just these 52 bits. The fraction f stored in these 52 bits is in

the range [0-1). The significand S is calculated with the equation 1.3. A more detailed

explanation of the leading ’1’ digit follows in the next section.

S = 1.f (1.3)

1.5.4 Floating point normalization

As mentioned earlier the actual bits of the significand part of the number are 53 and

not 52. This happens because the MSB is always assumed to be one and therefore

does not need to be stored which leads to storing area reduction. The final result of the

calculation of any two floating point numbers, must have the MSB of the significand part

equal to 1. However after a calculation it is often that the MSB will not be equal to 1, in

which case the number must be normalised so as to change the MSB to 1. If the number

is not normalized there are two possibilities, one the MSB is zero and second an overflow

has occurred and a extra bit has been concatenated to the left of the significand. If the

second has occurred no actual normalization has to take place regarding the significand

part of the number however the exponent should be right shifted by one(A more detailed

Chapter 1. Introduction 13

explanation is given in chapter ******* about the Floating point implementation). If

the MSB is zero then the significand must be shifted left by one and a zero must be

concatenated to the right of the LSB as displayed in figure 1.4.

left shift by one←−−−−−−−−−−
64 bits︷ ︸︸ ︷

0.111010100...111

64 bits︷ ︸︸ ︷
1.111010100...110

a zero has been concatenated←−−−−−−−−−−−−−−−−−− (1.4)

1.6 The goals of the thesis

It is crucial at this point to mention the goal of the work implemented as well as the

motivation. This thesis work presents a way of designing and creating a soft processor

which is based on ISA PLX 1.1[9]. Furthermore it is also important to highlight the

flexibility of soft processors and for this reason, we implemented a customization on this

processor by adding a custom FPU core. The whole process is described in full detail in

the following chapters.

The full methodology of how to customize an IP-core and adjust it to someone’s needs

is presented, allowing someone by using it to create and customize his own cores. This is

very important since it can save up valuable time which would be otherwise spent in an

effort to figure out the most efficient way to accomplish the creation and customization

of a module.

A complete implementation of a Floating Point Arithmetic Unit is also presented, pro-

viding a clear picture as to how it was implemented and tested. An existing design,

specifically created to target FPGA devices, was used[10] and implemented. A test-

bench was also created allowing the user to verify the integrity of some features of the

FPU.

Chapter 1. Introduction 14

1.7 The Following work structure

The following paper is structured as follows: Chapter 2 describes the processor imple-

mented and its main characteristics as well as the key features and the goals behind the

design. Chapter 3 describes the implementation of the FPU as well as the verification.

Chapter 4 describes the processor customization in order to augment the FPU module as

well as the testing of the processor. Chapter 5 describes all the necessary programming

tools that were used along with the hardware. Chapter 6 is the epilogue with suggestions

for improvements and acknowledged compromises of the design.

Chapter 2

The processor

In this chapter the whole process of designing and implementing the processor that was

used is explained in detail. Most of the soft processors available, are general purpose with

a main focus in flexibility and an all around usability. However all of these processors are

well understood and developed and there is very little room for customization. Almost all

the popular softcores have a development environment that fully supports customization.

As a result the processor chosen to be implemented here is based on ISA PLX 1.1[9],

an instruction set developed by professor Ruby B. Lee from Princeton University. It

is a small processor that supports parallel subword instructions and is intended for

multimedia processing. The full instruction set encoding tables can be found here [11].

Where needed the assumed register order in the instruction encoding tables is as follows:

1) Register Rd, 2) Register Rs1, 3) Register Rs3.

2.1 Architecture Highlights

The instruction set is designed for RISC architecture implementation. It is optimized for

high speed multimedia processing. There are two features that distinguish multimedia

processors from simple general purpose processors: Large amounts of parallel subword

data processing and use of low precision data[12]. Both of these features are charac-

teristics of the PLX instruction set. The processor utilizes 32 general-integer registers

numbered R0 to R31. The register size is the same as the word width and an be 32, 64

or 128 bits long. Adjusting the size does not require any changes to the instruction set.

15

Chapter 2. The processor 16

Figure 2.1: Addition between the whole 64bit words

2.1.1 Datapath Size

The datapath size chosen for the soft processor is 64 bits wide. The ISA itself supports

32, 64 and 128 bits datapaths, however the 64 bit wide is the silver lining among the

other two[12]. Another feature that led to the decision of the 64bit wide datapath is

the fact that the FPU implementation described at chapter 3 is a double precision one,

hence the 64 bits. This is yet another example of the flexibility that is offered by soft

core implementations; designers are free to choose the datapath and experiment with

various sizes and make the best decision for their design. Smaller datapath reduces

consumption and cost, while larger datapaths increase the performance. Register R0

is hardwired to 0 meaning that no changes can be made to this register and the value

returned when requested will always be zero. R31 is the designated jump register used

for the jump instructions.

2.1.2 Subword Parallelism

The key characteristic of the processor is the subword parallelism support. This means

that certain instructions can be executed simultaneously to all the subwords of the 64bit

word. The subword size can be chosen by the program and is 8, 16, 32 or 64 bit long.

For example when executing the addition instruction between two words a choice can

be made so as to add the two 64 bit words or add separately their subwords as displayed

in figures 2.1, 2.2, 2.3, 2.4. Subword parallelism can increase the speed by up to 8 times

depending on the word size chosen. However it is evident that there is a significand loss

in precision when using the parallel instructions, but multimedia processing has a large

margin for these kinds of precision losses.

Chapter 2. The processor 17

Figure 2.2: Addition between the two 32bit words

Figure 2.3: Addition between the four 16bit

Figure 2.4: Addition between the 8 8bit words

2.1.3 Predication

All the instructions in PLX are predicated. This means that every instruction has a

flag bit attached, if this bit is one then the instruction is executed else it is not. This

results in the processor not having branch instructions or branch hazards. All of the

instructions are propagated through the pipeline and those that have a zero predicate

flag are simply not executed. There are eight 1-bit predicate registers, numbered P0 to

P7. There are 16 of there 1byte predicate registers forming the predicate file. At any

given time only one register is active which is chosen by software. P0 is hardwired to 1

meaning that all instructions assigned to this predicate register will be executed.

Chapter 2. The processor 18

2.2 Processor Implementation

The main goals for the implementation were efficiency in terms of speed and area con-

sumption. It is crucial at this point to mention that the goals set are solely for edu-

cational purposes and no actual research was done in order to determine the optimal

designing goals.

The first step is to choose the overall design method for the processor. A five stage

pipelined non-superscalar design was chosen. The five stages were chosen in order to

isolate time consuming components, such as the memory access and data processing.

After many experiments the five stage pipeline was found to be the most ideal choice.

The data and instruction memories as well as the shifting unit were the slowest com-

ponents and had to be isolated. Further increase in the number of pipeline stages was

unnecessary and would result in no gain, because the memory access and the shifting

unit operations could not be divided further. Thus, by isolating all the data processing

units, along with the shifting module, we achieved the best performance, than every

other number of pipeline stages. Since the project targets an FPGA board, area was of

utmost importance so the superscalar approach was ignored. Appendix A Figure A.1

displays the RTL implementation of the PLX processor, using 5 pipeline stages.

2.3 The first pipeline stage

The first stage of the pipeline contains the program counter and the instruction memory.

The program counter is responsible for providing the proper address of the Instruction

Memory, that contains the next instruction to be fetched and executed by the processor.

Appendix A Figure A.2 displays the RTL schematic of the program counter.

The module has seven ports, 6 input ports and 1 output which is the value of the

program counter. Table 2.3 shows the ports of the program counter module.

2.3.1 The Program Counter

Depending on the instruction, the program counter increments by 1, by the value ”Imm”

provided by the instruction or by the value stored in the Rd register. The value 1 is the

Chapter 2. The processor 19

Figure 2.5: PC simulation

Table 2.1: Device Utilization Summary for the Program Counter

Logic Utilization Used Available Utilization

Number of Slice Registers 64 93120 0%
Number of slice LUTs 134 46560 0%

Number of used LUT-FF pairs 64 134 47%
Number of bonded IOBs 156 240 65%

Number of BUFG/BUFGCTRLs 1 32 3%

default value added to the current PC to calculate the next address of the Instruction

Memory since the width of the memory is 32bits which is equal to the instruction word

size. As a result there is one instruction per line stored in the memory and the program

counter needs to increment by one to point to the next instruction. Some instructions

require the program counter to increment by a certain value; this value can be stored

either in the specified register Rd or it can be acquired directly from the instruction

stored in the instruction memory (input Imm). The width size of the program counter

value is 9 bits since the instruction memory size is 512 words. The value of the program

counter is reset either by an external signal or if the value reaches 512.

After the design of the module, it needs to be verified for proper functioning. The

program ”Modelsim PE student edition” was used to simulate the design and test the

correct functionality. In figure 2.5 a short simulation is displayed where the counter

increases for 5 cycles and in the sixth a constant value is added via the ”Imm” value.

2.3.2 Program Counter Metric Statistics

The maximum achieved frequency is 294.638MHz1. The size of this module is very small

since it only consists of a 64bit adder, a 64bit register and 3 multiplexers. Table 2.1

shows the device utilization summary as generated by the ISE development kit. The

total power consumption is 1.293Watts.

1The device used for the implementation is the Xilinx Virtex ML605; more details provided in Chapter
6

Chapter 2. The processor 20

Table 2.2: The Instruction Memory Ports

Name Type Size Explanation

clka input signal 1 clock signal
wea input signal 1 memory initialization signal

addra input signal 32 memory address
dina input signal 32 input data

douta output signal 1 output data

Table 2.3: The program counter ports

Name Type Size Explanation

Sin input signal 2 functionality signals
Rd input signal 64 Rd register value

Imm input signal 23 immediate value
clk input signal 1 clock signal
res input signal 1 reset signal

stall input signal 1 stall signal
PC output signal 64 program counter output

2.3.3 The Instruction Memory

The instruction memory used is a 512x32bits block memory as mentioned earlier. The

memory is generated be the Xilinx CORE Generator System[13]. This tool provides an

easy way to communicate with the on-board memory found on the FPGA used. A more

thorough explanation for the tool is given in chapter 6. This module has 3 ports plus

two ”hidden”. The 3 standard ports are a 9bit address input port, a 32bit output data

port and a 1bit clock input port. The ”hidden” ports are the ones used to initialize the

memory, i.e. to store the program to be executed. There is a 1bit initialization signal

which stalls the memory and the processor and a 32bit signal carrying one instruction

per clock cycle. To initialize the memory one simply has to raise the initialization signal

to high, which automatically stalls the processor, and then input the instructions one

per clock cycle to subsequent addresses. The standard frequency for the memory module

is 144MHz. Table 2.2 displays all the port signals of the Instruction Memory.

2.3.4 The data multiplexers

Stage one of the pipeline contains two multiplexers that provide the two addresses re-

quired for the register file. Multiplexer M1 provides the address for the Rs2 or Rd

register depending on the instruction. There are three possible locations in the instruc-

tion word: a) bits 12 down to 8, b) bits 17 down to 13, c) bits 22 down to 18. Multiplexer

Chapter 2. The processor 21

M2 provides the address for the Rs1 register and the value is either in bits 17 down to

13 or in bits 22 down to 18. Both multiplexers are controled by the control unit and

their value is automatically provided.

2.3.5 The stage 1 data flow

Stage one operates in one clock cycle. The program counter operates on the falling

edge of the clock and provides the new value when clock has value ’0’. The instruction

memory operates on opposite clock cycle, i.e. rising edge of the clock. This allows

the instruction memory to provide the new instruction in the same clock cycle as the

program counter produces the new value, merging the two components in one stage. As

soon as the clock takes the low value the program counter provides a new 64bit value.

However only the 9 least significand bits are used to acquire the new instruction memory

since its size is 512 words, hence 9 bits are required to encode all the addresses. The

program counter produces a 64 bit value because the value needs to be used in the next

stages. As soon as the instruction memory receives a new value it provides the new

instruction which is driven in the control unit. The value that is fed in the control unit

is the concatenation of the following bit strings: a) 28 down to 23, b) 17 down to 16, c)

7 down to 0. Bits 22 down to 0 and 31 down to 29 are driven to the multiplexers M1

and M2. The control unit provides the proper signals for this stage immediately after

the new value is provided by the instruction memory.

2.4 The second pipeline stage

The second stage contains the reading part of the register file and the two data mul-

tiplexers. The register file stores 32 64bit words. Table 2.4 displays all the ports for

the register file. The reading of the data in the register file is done in the falling edge

of the clock while the writing, which is done in stage 5, is done in the rising edge so

as to avoid data corruption in case a read an write instruction of the same register is

performed simultaneously. This stage also contains the two bypassing multiplexers M3

and M4, more details about the data bypassing in the Hazard Dealing section.

Figure 2.6 displays a short simulation of the Register File. After the module is being reset

two values 1024 and 1025 are driven to the addresses 13 and 14 respectively. However

Chapter 2. The processor 22

Figure 2.6: Register File Simulation

Table 2.4: The Register File Ports

Name Type Size Explanation

Rs1 read addr input signal 5 read address
Rs2 read addr input signal 5 read address
Rs1 write addr input signal 5 write address
Rs2 write addr input signal 5 write address
Rs1 data write input signal 64 write data
Rs2 data write input signal 64 write data
write enable 1 input signal 1 write enable
write enable 2 input signal 1 write enable

reset input signal 1 reset
clk input signal 1 clock signal

Rs1 data read output signal 64 data read output
Rs2 data read output signal 64 data read output

the read ports do not register any change until the write enable signals are activated.

As soon as the write enable signals are activated the data read ports provide the value

in the next clock cycle. The register file operates at a maximum frequency of 382,117

MHz and occupies less than 1% of the FPGA

2.5 The third pipeline stage

The third stage of the pipeline is the data processing stage. Here all the data processing

takes place and all the data processing units are contained. This stage is the most time

consuming since it contains the slowest unit which is the shifter. This stage also contains

the predicate file and a sign extension unit along with some multiplexers.

2.5.1 The Arithmetic Logic Unit(ALU)

The ALU is responsible for the basic calculations(add, subtract), the comparisons and

the logic calculations. The top level design contains two components, the adder and the

logic calculations module as well as some logic for the calculation of the test bit. Table

Chapter 2. The processor 23

Table 2.5: The ALU Ports

Name Type Size Explanation

Rs1 input signal 64 Rs1 register data
Rs2 input signal 64 Rs2 register data
S input signal 1 operation signals

clk input signal 1 clock input
enable input signal 1 enable signal
reset input signal 1 reset signal
Rd output signal 64 Result data
trap output signal 1 trap flag
OVF output signal 8 overflow/underflow flag
T F output signal 1 true/false flag

2.5 displays the ports used by the ALU module.This unit is responsible for the results

from the following instructions: Addi, And, Andcm, Andi, Cmp, Cmpi, Not, Or, Ori,

Padd, Paddincr, Pavg, Pcmp, Pmax, Pmin, Psub, Psubavg, Psubdecr, Psubavg, Subi,

Testbit, Xor, Xori.

ALU operates in one, two or three cycles depending on the operation. All the logic

calculations(or,nor,xor,not,and) require one cycle. Addition is performed also in one

cycle with the exception of the addincr instruction, which adds two values and increments

the result by one, which is done in two cycles. Subtraction is performed in two clock

cycles, since the subtraction is performed with an adder the two’s compliment method

is used. The value to be subtracted is first converted to its two’s compliment negative

equivalent, this is done using the formula 2.1 where n the two’s compliment number and

b the original number. In the first cycle a ’1’ is subtracted from the numbers’ compliment

and in the second cycle the addition takes place. Similarly if the number needs to be

decremented by 1 the operation takes up one more clock cycle. The ALU operates at

218,627 MHz and occupies 1% of the FPGA slices.

n = b̄− 1 (2.1)

The actual adder of the ALU is an array of 8 1byte adders. Since the addition can be

performed on a varying word size the smallest possible word size adder must be used.

The basic 1byte full adder is a standard full adder with the exception of providing an

extra output the carry out of the 6th half adder. This carry out is required in order

to detect overflows in signed calculations. Each adder has the carry out connected to

Chapter 2. The processor 24

Figure 2.7: ALU simulating an addi operation

the next adder as well as the proper adders required when executing subword additions.

For example if the addition is performed between 4 32bit size words, the fourth adders’

carry out will be driven to the first adder and the 8th adder’s carry out will be driven to

the 5th adder as displayed in Figure 2.8 and 2.9. This carry out propagation is required

only for the modular addition where the carry out is fed back to the carry in. The adder

can perform signed/unsigned and modular/non-modular additions/subtractions.

The comparator performs all the basic comparisons(equality, comparison, minimum,

maximum) between the two 64bit words as well as between all the subwords separately

depending on the instruction.

Figure 2.7 displays an example of the simulation of the ALU. Presenting here every

single instruction and subword combination is not possible, however all instructions have

been simulated and verified. Appendix D provides a full list with all the components,

including the ALU, and their signal encoding according to the instructions; refer to this

table to set the proper signals in the simulations.

2.5.2 The Multiplier

The multiplier performs all the basic multiplying instructions. It can perform signed or

unsigned multiplications between 16bit size words. These words can be either the odd

Chapter 2. The processor 25

Figure 2.8: Carry out drive between two 64 bit numbers

Figure 2.9: Carry out drive between four 32 bit numbers

Figure 2.10: Multiplier Simulation

Table 2.6: The multiplier ports

Name Type Size Explanation

Rs1 input signal 64 Rs1 register data
Rs2 input signal 64 Rs2 register data
S input signal 7 operation signals

enable input signal 1 enable signal
Rd output signal 64 Result data

or even indexed subwords as shown in figures 2.11 and 2.12. The two 32bit size products

of the multiplication form the new result. The multiplier performs the multiplication

instructions, which are the following: Pmul, Pmulshr. Table 2.6 displays the list of the

ports used by the multiplier module.

Figure 2.10 displays a simulation of the multiplier. The pmul.odd instruction is executed

where the odd indexed subwords(63 donwto 48 and 31 downto 16) of each of the values

in Rs1 and Rs2 are multiplied and the two 32 bit results are written to the left and right

half word respectively. Since the multiplier does not operate with a clock the maximum

frequency is calculated from the maximum propagation delay and is found to be 177,366

MHZ and it takes 1% of the FPGA area.

Chapter 2. The processor 26

Figure 2.11: Odd indexed multiplication

Figure 2.12: Even indexed multiplication

2.5.3 The Mix Unit

The Mix Unit is responsible for all the mix and multiplex instructions. It is basically

a series of multiplexers and depending on the instruction it receives two inputs and

rearranges the subwords accordingly. The mix unit performs the following mixing op-

erations: Mix, Mux, Perm. Table 2.7 displays the list of the ports used by the Mix

Unit.

Figure 2.13 displays the simulation of the Mix unit. A mix.l.4 instruxtion is executed

where odd-indexed subwords are selected alternately from Rs1 and Rs2, and written to

Rd. The first subword of Rd is the first subword of Rs1. The maximum frequency is

found from the propagation delay and is calculated to be 269,759 MHz. The occupied

area is 1%.

Chapter 2. The processor 27

Figure 2.13: Mix Unit Simulation

Table 2.7: The Mix Unit ports

Name Type Size Explanation

Rs1 input signal 64 Rs1 register data
Rs2 input signal 64 Rs2 register data
S input signal 5 operation signals

enable input signal 1 enable signal
Rd output signal 64 Result data

Figure 2.14: Shifter Unit Simulation

2.5.4 The Shifter Unit

The shifter performs logic and arithmetic parallel shifts. The shifts can be either left or

right and the shift amount is determined by the instruction. The shifter consists of an

array of 8 barrel shifters. The formation is similar to that of the parallel adder since the

output bit of each 1byte shifter is redirected to the input of a specific shifter depending

on the subword size. The Shift unit is responsible for the shift instructions: Pshift,

Pshiftadd, Shrp, Slli, Srai, Srli. Table 2.8 displays all the ports used by the shifter unit.

Figure 2.14 displays an example simulation of the shifter where the pshift.l.8 instruction

is executed, where subwords of Rs1 are logically shifted to the left by Rs2 bits. The

maximum frequency is found from the propagation delay and is calculated to be 133,832

MHz. The occupied area is 1%.

Chapter 2. The processor 28

Table 2.8: The Shifter Unit ports

Name Type Size Explanation

Rs1 input signal 64 Rs1 register data
Rs2 input signal 64 Rs2 register data
S input signal 8 operation signals

Imm input signal 13 Immediate value input
enable input signal 1 enable signal

Rd output signal 64 result output value

2.5.5 Predicate File, Sign Extension Unit and multiplexers

Stage 4 contains also a Sign extension unit which performs a sign, zero or one extension

to provide a 64bit output. The Predicate File is also in the fourth stage. Since the

predicate file is updated according to the compare instructions which are executed by

the ALU, this update is performed in the same cycle as the comparisons take place

eliminating any data hazard potentials that could arise from a reference to a predicate

signal not yet set properly. Stage 4 contains 3 data multiplexers and one predicate

multiplexer. The M5 and M6 data multiplexers drive the proper data to the processing

units. Since only one unit can be active at any time all the processing units receive

the same inputs. Multiplexers M7 and M8 drive the proper result form the processing

units to the next stage. The Predicate Multiplexer provides the predicate signal which

is attached to the specific instruction. This bit is driven to the next stages where the

data update takes place.

2.6 The fourth Pipeline

Stage four contains the access to data memory. The memory has only one port so in a

clock cycle either a read or a write is performed. It contains 1024 words with a word

size of 64 bits and it is always enabled. In order for the memory to write or update a

value the ”Write Enable(WE)” signal must be activated. This signal is the ”and” of the

control unit signal that activates the write in the memory and the predicate signal. If

the predicate signal is not 1 there will not be any update on the memory and therefore

the instruction is presumed as not executed. The memory is automatically produced by

the CORE Generator System provided by Xilinx in order to use the FPGA on board

memory. Its maximum frequency os 144MHz and it operates in the falling edge of the

clock cycle.

Chapter 2. The processor 29

2.7 The Fifth Pipeline Stage

Stage five is the write back stage where the register file is updated. It is critical to point

out that if the predicate bit of the instruction is zero at this point no update will take

place. The register file write back operates in the rising edge of the clock to avoid data

corruption in case the same register is read and written in the same clock cycle.

2.7.1 The register Input Unit

This unit is used to execute the instructions ”extract”, ”deposit” and ”loadi” which

require, besides the standard Rs1 or Rs2 registers, also the Rd register to be processed.

As a result the Rd register needs to be read and written in the same instruction. This is

achieved by having the Rs1 processed normally and the Rd read and propagated through

the pipeline to the register input unit. Here all the necessary replacements take place

according to the instruction executed. The other option would be to make the register

file in such way to have the ability to update specific bits and bytes from various words

which would make it even more time consuming and area inefficient.

2.8 The control Unit

The control unit is responsible for monitoring the proper function of the processor and

sending the proper signals to all the stages. The control unit implemented is a hard-

wired control unit. This means that generally it uses sequential logic units, featuring a

finite number of gates that can generate specific results based on the instructions that

were used to invoke those responses. Hardwired control units are generally faster than

microprogrammed designs. The hardwire feature of the control unit renders it fast but

inflexible. However its easier to implement in a reprogrammable environment such as

the FPGA and much faster. Figure A.4 Appendix A, displays the RTL schematic of the

control unit. Table 2.11 displays all the ports used by the control unit.

The control unit contains 6 components:

• The operation decoder. Responsible for decoding the instructions.

• The Bypass Unit. Responsible for data bypassing and forwarding.

Chapter 2. The processor 30

architecture op_dcdr of op_decoder is

begin

process(op, subop)

begin

case op(15 downto 10) is

when "000000" =>--jmp

PC_control_signals <= "10";

ALU_control_signals <= "0 XXXXXXXXXXXXXXXXXXX ";

MULT_control_signals <= "0 XXXXXXX ";

SHIFT_control_signals <= "0 XXXXXXXX ";

MIX_control_signals <= "0XXXXX ";

FPU_control_signals <= "0XXX";

SIGN_EXT_control_signals <= ’X’;

DATA_MEM_control_signals <= "00000000";

REGISTER_F_control_signals <= "00";

PREDICATE_control_signals <= "000";

REG_INPUT_control_signals <= "0000";

illegal <= ’0’;

Figure 2.15: The ”jump” instruction decoding

• The predicate signals unit. Responsible for controlling the predicate file and

each signals.

• The stall unit. Responsible for the stall signals.

• The illegal flags unit. This unit produces the system flags that are sent to the

program to determine program flaws such us overflows and underflows.

• The Multiplexers unit. This unit controls all the multiplexers of the processor.

2.8.1 The operation decoder

This unit is responsible for decoding the instruction arriving from the instruction mem-

ory and dispatching the appropriate signals. This module is purely composed of combi-

national logic and the input and output ports can be seen at table 2.9. The decoder is

a vast array of decoders and multiplexers. It’s a very simple circuit in the design but a

very extensive one. A future addition could be to be automatically generated by another

software program. The way it operates is the following. For every unique combination

of the operation and sub-operation it receives it produces the respective unique output

signals. Figure one shows a sample code for the ”jump” instruction. The MSB of ev-

ery output signal is the ”enable” signal, ’1’ for enabled ’0’ for disabled. Since only the

program counter is involved in the ”jump” instructions all the modules are disabled but

the PC. The rest of the bits are the control signals of each module which can be seen in

D.

Chapter 2. The processor 31

Table 2.9: The OP Decoder Unit ports

Name Type Size Explanation

op input signal 16 operation signals
subop input signal 3 sub-operation signals

PC control signals output signal 2 program counter signals
ALu control signals output signal 20 ALU signals

MULT control signals output signal 8 multiplier signals
SHIFT control signals output signal 9 shifter
MIX control signals output signal 6 MIX signals
FPU control signals output signal 4 FPU signals

SIGN ext control signals output signal 1 sign extension signals
DATA MEM control signals output signal 8 data memory signals

REGISTER F control signals output signal 2 register file signals
PREDICATE control signals output signal 3 predicate file signals
REG INPUT control signals output signal 4 register input signals

illegal output signal 1 illegal operation flag

Table 2.10: The Stall Unit ports

Name Type Size Explanation

st 1 op input signal 6 stage 1 operation
st 2 op input signal 6 stage 2 operation
st 3 op input signal 6 stage 3 operation

subop st 3 input signal 6 stage 3 sub-operation
clk input signal 1 clock signal

reset input signal 1 reset signal
trap input signal 1 trap signal

illegal input signal 1 illegal flag input
FPU done input signal 1 FPU done signal
PC Stall output signal 1 PC stall

Global stall output signal 1 Global stall
Reg flush st 1 output signal 1 register flush stage 1

2.8.2 The stall unit

This unit is responsible for stalling the processor when necessary in order to avoid

hazards. Stalling is enabled in multi-cycle operations, jump instructions and load in-

structions. There are two kinds of stalling implemented. The first is the global stall

where all the stages of the processor halt execution indefinitely and the second is the

PC stall where the program counter is stalled and a NOP instruction is inserted in the

pipeline. The stall unit is aware at any given time of the operations executed in stage 1,

stage 2 and stage 3 of the processor so as to assess the situation and stall if necessary.

Table 2.10 displays the port list used by the module.

Chapter 2. The processor 32

Table 2.11: The Control Unit ports

Name Type Size Explanation

op input signal 16 The operation to be executed
subop input signal 3 Sub-operation(required for some instructions)

Rs1A st2 input signal 5 Rs1 stage 2 address
Rs2A st2 input signal 5 Rs1 stage 2 address
Rda st3 input signal 5 Rd stage 3 address
Rda st4 input signal 5 Rd stage 4 address
Rda st5 input signal 5 Rd stage 5 address
Pd st3 input signal 1 predicate signal from stage 3
Pd st4 input signal 1 predicate signal from stage 4
Pd st5 input signal 1 predicate signal from stage 5
trap input signal 1 trap signal from ALU

ALu OU input signal 8 Overflow/Underflow signal from ALU
ALU TF input signal 1 True/False signal from ALU

clk input signal 1 clock signal
reset input signal 1 reset signal

controls st1 output signal 2 Stage 1 control signals
controls st3 output signal 51 Stage 3 control signals
controls st4 output signal 8 Stage 4 control signals
controls st5 output signal 6 Stage 5 control signals

mux1 output signal 2 M1 control signals
mux2 output signal 1 M2 control signals
mux3 output signal 3 M3 control signals
mux4 output signal 3 M4 control signals
mux5 output signal 2 M5 control signals
mux6 output signal 1 M6 control signals
mux7 output signal 3 M7 control signals
mux8 output signal 1 M8 control signals
mux9 output signal 1 M9 control signals

PC Stall output signal 1 program counter stall signal
trap out output signal 1 illegal trap flag

alu ou out output signal 8 overflow/underflow flag
illegal out output signal 1 illegal instruction flag
st 1 flush output signal 1 stage 1 flush instruction
G stall output signal 1 global stall signal

2.8.3 The Flag Unit

The flag unit is responsible for handling and sending the proper flag signals when an

error occurs. The way they are handled is by sending an output signal from the processor

top module for one clock cycle on the cycle that the error was detected. This means that

an external unit for proper handling and storing these flag signals is required. Table

2.12 shows the ports used by the module. The illegal flag is raised when an instruction

that is not encoded is requested. The trap flag is raised when when the instruction

Chapter 2. The processor 33

Table 2.12: The Flag Unit ports

Name Type Size Explanation

illegal input signal 1 illegal signal
trap in input signal 1 trap instruction

ALU OUF input signal 8 ALU overflow/underflow
FPU OUF input signal 2 FPU overflow/underflow

trap o output signal 1 trap flag
ALU OU o output signal 8 ALU overflow/underflow flag
FPU OU o output signal 2 FPU overflow/underflow flag

illegal o output signal 1 illegal flag

“test bit” produces a ‘1’. The ALU overflow/underflow flag is raised when an overflow

or underflow occurs in the ALU adder. This flag is 8 bits long one bit for every 1 byte

adder contained in the adder.

2.9 The processor top module

The maximum achieved frequency for the processor in the specific board is 58,289 MHz.

However calculating the instructions per second requires real time simulation with desig-

nated algorithms. The distribution of the frequency, at which every instruction is used,

is crucial to calculate properly the performance. The instructions that require more than

one clock cycle to complete are: Addf 3 cycles, Subf 3 cycles, Divf 55 cycles, Sqrrtf 59

cycles, Cmp 3 cycles, Cmpi 3 cycles, Jmp 2 cycles, Load 5 cycles , Loadi 5 cycles, Loadx

5 cycles, Paddincr 3 cycles, Psub 2 cycles, Psubdecr 3 cycles. According to Lee[12], cmp

appears on average of 4%, Jmp 1.5%, load 5%, loadi 1%. We can assume that the rest

of the instructions with multi-cycle completion time have a negligible effect on the final

performance. Assuming that Addf appears on average of 5%, Subf 4%, Multf 2%, Divf

1% and Sqrrtf 1% we can calculate the instructions per second (IPS), using Eq. 2.2.

IPS = A1 × F1 + A2 × F2 + A3 × F3 + . . . + An × Fn (2.2)

Where An the appearance frequency and Fn = Fmax/required clock cycles. With this

formula we calculated the instructions per second for our implementation to be 52955260

IPS.

Chapter 2. The processor 34

Table 2.13: Read after write hazard example

T1 T2 T3 T4 T5
stage 1 add(R28, R21, R23) add(R20, R28, R21)
stage 2 add(R28, R21, R23) add(R20,R28, R21)
stage 3 add(R28, R21, R23) add(R20, R28, R21)
stage 4 add(R28, R21, R23) add(R20, R28, R21)
stage 5 add(R28, R21, R23)

2.10 Hazards and data corruption

While the pipeline implementation boosts the performance the main drawback is the

hazards that can occur while the execution takes place. Instructions in a pipelined

processor are performed in several stages, so that at any given time several instructions

are being processed in the various stages of the pipeline, such as fetch and execute.

There are many different instruction pipeline micro-architectures, and instructions may

be executed out-of-order. A hazard occurs when two or more of these simultaneous

(possibly out of order) instructions conflict.

2.10.1 Read after write hazard

A read after write hazard occurs when an instruction tries to read a result that has

not yet been calculated and therefore reads corrupt data. This occurs because even

though the instruction is executed after the previous instruction the result has not yet

fully propagated through the pipeline. If for example in our implementation an add

operation is being executed in the third stage, the actual register update will take place

after two cycles in the fifth stage. As a result any data read that occurs in the second

stage that targets the same register as the one that is bound to be updated in stage 3,

will receive corrupt data. In table 2.13 an example of such hazard is displayed. While

the first add instruction is in the third stage of the pipeline, it still has not updated the

R28 register. However at the same T3 time the next add instruction is already reading

the R28 register which has corrupt data.

2.10.2 Branch Hazards

Despite the fact that using the predicate system eliminates the branch prediction haz-

ards, there is one exception. This hazard can occur with the ”jump” instruction. Since

all instructions are predicated so is the ”jmp” instruction, if there is a compare instruc-

tion to be executed in the pipeline(which is responsible for updating the predicate file)

Chapter 2. The processor 35

Table 2.14: Branch Hazard example

T1 T2 T3 T4 T5
stage 1 cmp.gt(PD2,PD3) jmp(PD2,Rd)
stage 2 cmp.gt(PD2,PD3) jmp(PD2,Rd)
stage 3 cmp.gt(PD2,PD3) jmp(PD2,Rd)
stage 4 cmp.gt(,PD2,PD3) jmp(PD2,Rd)
stage 5 cmp.gt(PD2,PD3)

that targets the same predicate that is used for the ”jump” instruction there is a po-

tential hazard in the execution as displayed in table 2.14. The ”jump” instruction must

not be executed before the predicate file is updated.

2.10.3 Structural Hazards

structural hazard occurs when a part of the processor’s hardware is needed by two or

more instructions at the same time. In this case this type of hazard can occur in the

register file and specifically if there is a read and write instruction targeting at the same

time the same register. However this type of hazard is dealt as mentioned earlier by

forcing the read and write instruction to access the register file at different clock edges.

2.10.4 Pipeline bubbling

There are several ways to deal with data hazards in the pipelined processors. Bubbling

or pipeline stall is the simplest solution. Pipeline stalling is a way of preventing data,

structural, and branch hazards from occurring. As instructions are fetched, control

logic determines whether a hazard could/will occur. If this is true, then the control

logic inserts NOPs into the pipeline. Thus, before the next instruction (which would

cause the hazard) is executed, the previous one will have had sufficient time to complete

and prevent the hazard.

This method being the simplest is extensively used in the processor. Specifically it is

used for all the multicycle instructions such as the subtraction which requires two cycles

to complete. A more efficient way of dealing with the multicycle instructions would be

to modify the processor to a superscalar one, where there would be multiple instances

of the processing units, such as the ALU. While one component is busy calculating, the

other unit can be utilised for another instruction. However since area constraints is a

major factor the pipeline solution was chosen.

Chapter 2. The processor 36

Table 2.15: The Bypassing unit

Name Type Size Explanation

Rd addr stg3 input signal 5 stage 3 Rd address
Rd addr stg4 input signal 5 stage 4 Rd address
Rd addr stg5 input signal 5 stage 5 Rd address

Rs1 addr input signal 5 Rs1 read address
Rs2 addr input signal 5 Rs2 read address
pred stg 3 input signal 1 stage 3 pred signal
pred stg 4 input signal 1 stage 4 pred signal
pred stg 5 input signal 1 stage 5 pred signal

op input signal 6 operation
mux 3 s output signal 3 M3 signals
mux 4 s output signal 3 M4 signals

Several other solutions could be applied to solve the problems of the multi-cycle instruc-

tions, such as out-of-order-execution parallel module operation, where other units can

operate while others are busy, and scoreboarding, but this requires a lot of research and

experimentation which would be off the limits of this thesis work.

2.10.5 Register Forwading

Another solution which is extensively used in the processor is data forwarding. Forward-

ing involves feeding output data into a previous stage of the pipeline to avoid the reading

of corrupt data. This is achieved by having the control unit constantly monitoring all

the stages and the register data used by those stages. If one stage has available data that

is required by another stage then those data are forwarded to this stage. For example

in table 2.13 the way to deal with the hazard that occurs in T3 is to forward the value

of the R28 at stage 3 back to stage 2. This is achieved by a simple multiplexor which

drives the proper data.

In this implementation there is data forwarding from stages 3,4,5 back to stage 2. The

control unit monitors from every stage the instruction, the read and write registers, as

well as the predicate of each instruction and with a simple combinational logic forwards

the proper data through the multiplexors M3 and M4. Table 2.15 displays the ports

used by the bypassing unit.

Chapter 3

The Floating Point Unit(FPU)

A floating point unit is a part of the processor that is specialized to carry out operations

on floating point numbers. Some of the operations are addition, subtraction, multipli-

cation, division and square root. Some modern modules can also perform trigonometric

calculations, however most systems use libraries dedicated for these operations. Most

systems have an integrated FPU however some systems implement the floating point

calculations via a co-processor. Many computers use emulators for such operations,

where the floating point is emulated and in the final stage the calculation is converted

to integer calculations. The drawback of this procedure is the low time efficiency and

poor resource management since not only the floating calculation takes more time but

valuable processing time is being taken from the main processor.

Most modern processors use embedded FPUs and even dedicated floating-point registers

such as the Intel x86 instruction set. In some cases, FPUs may be specialized, and

divided between simpler floating-point operations (mainly addition and multiplication)

and more complicated operations, like division. In some cases, only the simple operations

may be implemented in hardware or microcode, while the more complex operations are

implemented as software.

In this processor case a support for floating point calculations is mandatory, since

multimedia processing often perform repeated parallel data processing, mostly float-

ing point calculations, floating point arithmetic support is mandatory for multime-

dia applications[14]. For our purposes a FPU specification was selected, which could

fit within our design and would be suitable for FPGA implementation. The design

37

Chapter 3. The FPU 38

chosen[10] is a small double precision floating point arithmetic unit design, which is

suitable for such implementations as it focuses mainly in area optimization and cost

reduction. The design supports exception flags and overflow-underflow checks that are

given as outputs to be handled by the higher level design, in our case the processor.

The implementation of the double precision FPU is ours and it follows the published

work of Paschalakis et al[10], with some alterations. For example for the multiplier an

alteration was made so the instruction is completed in 1 cycle instead of ten with only

20% more area increase, but it performs much faster.

3.1 Floating point addition-subtraction

Adding and subtracting two floating point numbers is more complicated than the cor-

responding addition-subtraction performed for integer numbers. This is due to the

representation of the floating point numbers. Suppose we wish to add two floating

point numbers, A and B. A has the form of A = ±SA ∗ 2EA and B has the form of

B = ±SB ∗ 2EB . In order to perform an addition between those two numbers the first

step is to modify the exponents so as to have the same value. This is done by calculating

the absolute difference |EA − EB| of the two exponents and adjusting the significand S

accordingly. This is possible because the significand is stored in binary and therefore it

can be divided by 2. The following example displays this adjustment.

A = 16 ∗ 27

B = 32 ∗ 26

The absolute difference of the two exponents is 1, so the smaller exponent needs to

adjust.

B = 32 ∗ 26 = 32 ∗ 2−1 ∗ 26 ∗ 2+1 = 16 ∗ 27

This is only possible because the significand will always be a multiple of 2 and therefore

a simple shift to the right by the corresponding amount will adjust the number. The

next step is to simply add or subtract the significands and normalize the result. This

procedure is standard but the actual implementations in hardware vary. The schematic

Chapter 3. The FPU 39

implemented(Appendix A A.5) is the one from [10] where the whole dataflow is explained

in full detail.

The adder requires 3 clock cycles to complete the operation and the maximum achieved

frequency is 81.155MHz with a power consumption of 1.293Watts. Table 3.1 displays

the FPGA area utilization.

3.1.1 FPU Adder testbench

All the components of the adder where tested and verified with Modelsim. However the

fact that the adder is very complex and the possible results and the amount of values that

need to be tested is vast, a testbench has been created for this purpose. A testbench

is a program that provides a n automated method of testing and verifying modules.

Testbenches are usually composed by two parts. 1) The software simulating program,

which is a program written in any desired language(in our case c) that simulates the

hardware function in software. Since the same operation is much simpler and easier to

execute in software it is more reliable and stable. For example, while the adder consists of

approximately 1000 code lines, the corresponding C program consists of approximately

300 code lines.

The first step is to create a large number of random generated vectors that will be used

as test inputs. Since the vectors we need to use as inputs are two 64bit numbers the

rand() function was used with a number cap 2 in order to produce a random binary

number. This means that this function will provide a random number < 2 i.e. 0 or 1.

Figure 3.2 displays the code. The vectors are then stored in two arrays which are then

printed in a .txt file. Since the program only creates two vectors each time, Sa and Sb,

a simple windows shell script (.bat) program was created to rerun the program several

times and produce a desired amount of vectors. The .bat program is shown in Figure

3.1. Since the rand() function uses a timer as a seed for the random generation a 1

second interval is created between the generated vectors to avoid identical copies.

After the vector are generated the program continues execution and simulates the

dataflow of the hardware. The results produced are stored in a .txt file along with

two flags for overflow or underflow. The problem that was encountered, was that the

hardware executes binary calculations but the same could not be done in software. So

Chapter 3. The FPU 40

@echo off

for /l %%i in (1,1,100) do (

fpu_add_sub.exe

timeout /t 1

)

Figure 3.1: The .bat program

int sa [64]={0};

int sb [64]={0};

void rand_vars(int *p) {

int i;

for (i=0;i<64;i++) {

p[i]=rand ()%2;

}

}

rand_vars(sa);

rand_vars(sb);

Figure 3.2: The random vector generator

Table 3.1: Device Utilization Summary for the FPU adder

Logic Utilization Used Available Utilization

Number of Slice Registers 154 93120 0%
Number of slice LUTs 1400 46560 3%

Number of used LUT-FF pairs 142 1412 10%
Number of bonded IOBs 199 240 82%

Number of BUFG/BUFGCTRLs 1 32 3%

some calculations like addition and subtraction were executed in decimal numbers and

others such as shift were executed in binary. Two functions were created to convert

decimal to binary and vice versa. Figure 3.3 shows the two functions along with the

type definition that had to be used to represent so large numbers.

The next step is to create the VHDL testbench that automatically uses inputs and runs

the simulation for many vectors. This is done by creating a top module that contains

the module to be tested. The top module reads the .txt file generated by the program

and feeds the vectors to the component in predetermined time intervals, which are the

clock cycles required to complete the execution. The outputs are also stored in the same

.txt generated by the program so as to be compared.

Chapter 3. The FPU 41

typedef unsigned long long int unit64;

void conv_to_bin(unit64 s,int *d,int n) {

int i;

unit64 tmp=s;

for (i=n-1;i>-1;i--) {

d[i]=tmp%2;

tmp /=2;

}

}

unit64 conv_dec(int *p,int m,int n) {

int i;

unit64 tmp=0;

for (i=m;i<n;i++) {

if (p[i]==1)

tmp+=pow(2,n-1-i);

}

return tmp;

}

Figure 3.3: The two conversion functions

3.2 Floating point multiplication

The multiplying process is much simpler than the addition/subtraction. For two num-

bers A and B with A = ±SA ∗ 2EA and B = ±SB ∗ 2BB the first step is to calculate

the sum EA + EB − Ebias where Ebias = 1023. The Ebias is subtracted since the expo-

nents are in the form of E + 1023 and therefore the extra E bias must be subtracted.

The next step is to multiply the significands and normalize the result. Similarly to the

adder there are many implementations that can be used. The one used here is the one

described in [10] and the corresponding RTL schematic can be found in Appendix A

A.6. However some alternations were implemented. The main alternation is that the

multiplier operates in 1 cycle instead of 10. This is done because the actual multiplying

unit implemented is not the one described in [10] and instead a classic IEEE std logic

1164 multiplier was used which occupies only 20% more area.

The multiplier is a combinational circuit so the maximum frequency is calculated by the

propagation delay, Fmax = 1/(8.535ns) = 117MHz. Table 3.2 shows the area utilization

for the specified board. The power consumption is 1.293Watts.

Figure 3.4 displays the simulation results for the multiplier. A and B are the two 64bit

numbers to be multiplied. The following numbers were used:

A = 1101010100010101010101010101110101010101001010101010101001111111

B = 1100111101011011010111011011011011010111011011011011011101100111

Chapter 3. The FPU 42

Table 3.2: Device Utilization Summary for the FPU multiplier

Logic Utilization Used Available Utilization

Number of Slice Registers 446 93120 0%
Number of slice LUTs 2382 46560 5%

Number of used LUT-FF pairs 351 2477 14%
Number of bonded IOBs 201 240 83%

Number of BUFG/BUFGCTRLs 2 32 6%
Number of DSP48E1s 15 288 65

and the following result was produced:

R = 0110010010000010001111101000000010111100001111010000100001011100

After breaking down the result to the actual components we get the following:

SignA = 1

SignB = 1

SignR = 0

EA = 10101010001

EB = 10011110101

ER = 11001001000

SA = 0101010101010101110101010101001010101010101001111111

SB = 1011010111011011011011010111011011011011011101100111

SR = 0010001111101000000010111100001111010000100001011100

The sign result is 0 i.e. positive since minus times minus is plus. The exponent result

is EA + EB − 1023 + 1 the +1 is the result of rounding and normalization. The actual

significand result is 1.SR due to the hidden bit that is not stored and the 52 bits of SR

are the 52 most significant bits of the multiplication result.

3.3 Floating point division

The division algorithm employed here is the simple non-performing sequential algorithm.

Division in general is a much less frequent calculation so a very similar implementation

of the design found here [10] was chosen since speed is not of utmost concern. The

only differences is that the final rounding and normalizing stages of the calculation have

been merged to one cycle resulting in a 55 cycle operation. The actual divisor module

Chapter 3. The FPU 43

Figure 3.4: The FPU multiplier simulation

Table 3.3: Device Utilization Summary for the FPU Divider

Logic Utilization Used Available Utilization

Number of Slice Registers 446 93120 0%
Number of slice LUTs 2382 46560 5%

Number of used LUT-FF pairs 351 2477 14%
Number of bonded IOBs 201 240 83%

Number of BUFG/BUFGCTRLs 2 32 6%
Number of DSP48E1s 15 288 65

is shown in Figure 3.6 and the whole division module can be found at Appendix A A.7.

This module produces one bit per entry of the final result.

The first step in calculating the result is similar to this of the multiplication. The

exponent is calculated with the following formula: ER = EA − EB + Ebias. As with

the multiplication since the actual exponents are in the form of E + Ebias when two

exponents are subtracted the two Ebias cancel each other out, so an extra Ebias must be

added to the final result.

The next step is calculating the division between SA and SB. Since the two significands

are in the range of [1,2) the result will be SR will be in the range (0.5,2), i.e. if not

already normalized, it will require a left shift by just one place. The final step is to

normalize and round the result which is performed in the final cycle.

The divider operates at a maximum frequency of 254.704MHz and the power consump-

tion is 1.293Watts.Table 3.3 shows the area utilization by the divider.

Chapter 3. The FPU 44

Figure 3.5 displays the simulation results for the divider. A and B are the two 64bit

numbers to be divided. The following numbers were used:

A = 1101010100010101010101010101110101010101001010101010101001111111

B = 1100111101011011010111011011011011010111011011011011011101100111

and the following result was produced:

R = 0100010110110000000000000001000100000000000000000000000000000000

After breaking down the result to the actual components we get the following:

SignA = 1

SignB = 1

SignR = 0

EA = 10101010001

EB = 10011110101

ER = 10001011011

SA = 0101010101010101110101010101001010101010101001111111

SB = 1011010111011011011011010111011011011011011101100111

SR = 0000000000000001000100000000000000000000000000000000

The sign result is 0 i.e. positive since minus by minus is plus. The exponent result

is the difference between the two exponents with the addition of E bias = 1023,ER =

EA − EB + 1023. The significand result is 1.SR = 1.SA/1.SB. The simulation lasts for

5600ms or 56 cycles of 100ms each. One cycle is the reset process and the rest 55 cycles

is the calculation of the result.

3.4 The FPU Top Module

In order to easily access and make use of the floating point processing units(Adder/Subtracter,

Multiplier, Divisor), a top module was created to include them. The RTL schematic can

be found here A.8. The synthesized top module has a maximum frequency of 81.155MHz

which is limited by the slowest component, the adder. In this implementation it is not

possible for the modules to operate simultaneously, however it is considered a necessary

Chapter 3. The FPU 45

Figure 3.5: The FPU divider simulation

--FPU.DIVIDER.SIGNIFICAND_DIVISION.COMBINATIONAL_DIVISION --

--ANGELOS NTASIOS --

--------------LIBRARIES ---------------------------

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

--

entity combinational_division is

port(

remainder_in : in std_logic_vector (52 downto 0);

Sb : in std_logic_vector (52 downto 0);

remainder_out : out std_logic_vector (52 downto 0);

Sr_out : out std_logic

);

end;

architecture cmntnl_dvsn of combinational_division is

begin

process(remainder_in ,Sb)

begin

if(unsigned(remainder_in) >= unsigned(Sb)) then

Sr_out <= ’1’;

remainder_out <= std_logic_vector(unsigned(remainder_in)

- unsigned(Sb));

else

Sr_out <= ’0’;

remainder_out <= remainder_in;

end if;

end process;

end;

Figure 3.6: The Divisor module

Chapter 3. The FPU 46

modification for the future, especially since the divider requires 55 cycles to complete one

calculation, during which the other components can operate freely. Table 3.4 displays a

detailed report of the area utilization for the FPU.

Chapter 3. The FPU 47

Table 3.4: Detailed device utilization summary for FPU

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 447 93,120 1%
Number used as Flip Flops 392
Number used as Latches 54
Number used as Latch-thrus 0
Number used as AND/OR logics 1
Number of Slice LUTs 2,223 46,560 4%
Number used as logic 2,215 46,560 4%
Number using O6 output only 1,807
Number using O5 output only 50
Number using O5 and O6 358
Number used as ROM 0
Number used as Memory 0 16,720 0%
Number used exclusively as route-thrus 8
Number with same-slice register load 5
Number with same-slice carry load 3
Number with other load 0
Number of occupied Slices 650 11,640 5%
Number of LUT Flip Flop pairs used 2,262
Number with an unused Flip Flop 1,875 2,262 82%
Number with an unused LUT 39 2,262 1%
Number of fully used LUT-FF pairs 348 2,262 15%
Number of unique control sets 7
Number of bonded IOBs 201 240 83%
Number of RAMB36E1/FIFO36E1s 0 156 0%
Number of RAMB18E1/FIFO18E1s 0 312 0%
Number of BUFG/BUFGCTRLs 2 32 6%
Number used as BUFGs 2
Number used as BUFGCTRLs 0
Number of ILOGICE1/ISERDESE1s 0 360 0%
Number of OLOGICE1/OSERDESE1s 0 360 0%
Number of BSCANs 0 4 0%
Number of BUFHCEs 0 72 0%
Number of BUFIODQSs 0 36 0%
Number of BUFRs 0 18 0%
Number of CAPTUREs 0 1 0%
Number of DSP48E1s 15 288 5%
Number of EFUSE USRs 0 1 0%
Number of FRAME ECCs 0 1 0%
Number of GTXE1s 0 8 0%
Number of IBUFDS GTXE1s 0 6 0%
Number of ICAPs 0 2 0%
Number of IDELAYCTRLs 0 9 0%
Number of IODELAYE1s 0 360 0%
Number of MMCM ADVs 0 6 0%
Number of PCIE 2 0s 0 1 0%
Number of STARTUPs 1 1 100%
Number of SYSMONs 0 1 0%
Number of TEMAC SINGLEs 0 4 0%
Average Fanout of Non-Clock Nets 3.58

Chapter 4

The Processor Customization

This chapter presents the whole methodology and all steps that were taken in order to

augment the FPU described in the previous chapter to the processor. Customizing the

processor is not a easy task since there are many variables that need to be taken into

account. Many things can go wrong since the initial design was not intended to support

such additions. However the flexibility provided by soft cores provides the necessary

tools to fulfill such task. The main goal is to embed a new module, the FPU, in the

existing processor design in order to support floating point arithmetic calculations which

are considered mandatory for multimedia processors. The strategy is to affect as little

as possible the overall processor performance while providing a sufficient interface for

the proper utilization of the new component.

4.1 Compatibility

The first thing that must be taken care off is the compatibility. The main concern in

such situations is the word size. A module cannot be easily used by another processing

unit if the don’t both use the same word size. While it is possible to augment such piece,

by usually using multi-cycle instructions and stalling, it severely affects the performance

and requires more area, especially temporary storing registers. For this reason the FPU

implementation chosen is a double precision design in order to conform with the 64bit

word size processor. Specifically for FPU module, it is very hard to use designs that do

not have the same word size as the top module, since the storing representation cannot

48

Chapter 4. The Processor Customization 49

be easily adjusted to a different word size. Other module such as shifters or adders

are more easy to make use off, usually by adding two or as many as required parallel

modules working together.

A future work addition, supports the ability to use multiple FPUs and other modules

for testing purposes. This is achieved by creating a general interface of ports which all

the same class modules must comply to. Those that have a different interface can be

adapted so they can be used in those designs. A series of other steps and alternations

must take place in order to support this implementation, which are clearly presented

here[15].

4.2 ISA Customization

The first adaptation that needs to be done is to the instruction set. The required

instructions to support the floating point calculations do not exist. For this purpose

4 simple 32bit instructions were created each for the perspective calculation. These

instructions are just the basic ones that are required for the FPU to function, however

more complex instructions can be added that involve for example immediate values and

shifted results.

The four new instructions added are the following:

1. addf This is the instruction for the floating point addition between two numbers.

2. subf This is the instruction for the floating point subtraction between two num-

bers.

3. divf This is the instruction for the floating point division between two numbers.

4. multf This is the instruction for the floating point multiplication between two

numbers.

No further encoding slots or bits had to be added since several encoding slots were free,

figure 4.1 displays the encoding of the addf instruction. Four consecutive slots were

occupied in order to easily handle them. These encoding slots would previsouly raise an

”illegal operation” flag, however they can now be used for the floating point instructions.

Chapter 4. The Processor Customization 50

Figure 4.1: Stage 2 of the pipeline

For addf the new encoding is ”101100”, for subf ”101101”, for multf ”101110” and divf

”101111”. Appendix C Figure C.1 displays the signals encoded to run the instructions.

4.3 Wiring and stalling

The next necessary step is to connect and fully support the function of the new module.

The FPU was placed in the stage 3 of the pipeline, where all the other data processing

units are also placed. The adaptations there are in the form of a few simple extra

wiring and the new control signals targeting the FPU. The outputs from the two data

multiplexers M6 and M5 are now also driven to the respective RS1 and Rs2 inputs of the

FPU. Multiplexer M7 that is responsible of providing the proper result to the next stage

has the output of the FPU now also connected. Control signals are also connected to

the new module. Regarding the top module level no other alternation must take place.

The component that requires some alternations is the control unit.The control unit being

responsible for organizing synchronizing and controlling all the modules and units of the

processor needs to adapt. The first major change is the internal wiring of the control unit,

as it needs to support extra inputs, outputs, flag signals, and control signals. The first

change is the addition of three more outputs in the stage 3 control signals output, which

are the new FPU control signals. Next a signal for the overflow/underflow FPU output

and a new flag for the FPU overflow/underflow. Since all the FPU instructions are

multicycle a signal ”done” is also connected to inform the control unit that the operation

has been completed. This is done to avoid adding unnecessary counting circuits in the

control unit which would not be area efficient. The FPU instructions have also been

added to the stalling list where the processor stalls until the ”done” signal is activated.

Chapter 4. The Processor Customization 51

4.4 Processor Testing

As it is clear the addition of new components and the customization of various com-

ponents compromises the integrity and functionality of the processor. There are many

parameters that need to be tested to reassure a 100% proper functionality such us tim-

ing, data synchronization, instruction hazards, resetting capabilities, interrupt signals

and many more. A very robust debugging can be performed with an assembler a com-

piler and various simulating scripts, however due to limited time these tools could not

be developed. A basic timing and data synchronizing as well as distinct instruction

execution were tested.

4.4.1 Data Synchronization

A problem encountered in the development of this processor and the pipeline design

was the data synchronization through the pipeline propagation. The problem arises

when data from different components and different time constraints are propagated to

the next pipeline stage. Since the processor is pipelined many stages contain modules

which operate with as well as without a clock signal. This is a problem since the module

operating on a clock signal can cause data to propagate at different cycles than modules

that don’t operate with a clock. The Register File reading stage is such an example. As

seen in Figure 4.2, there are 3 main databuses propagating: Data from register R1, data

from the Register File and data from register R2. The pipeline registers for the Register

File address reading have been removed as they caused data to be desynchronized, since

they would require 2 clock cycles to propagate to the third stage.

In order to better visualize and verify the proper data propagation, a mirror design of

the processor’s RTL which simulates the data propagation through registers was created

as seen in figure 4.3. Even though the second path involving all the major contains

two more clock dependent units, data arrives at the same clock cycle at the fifth stage

as seen in figure 4.4. This is possible due to the fact that various components operate

at different clock cycles. The same behavior is expected from the processor since the

registers and combined with the sequential circuits form a similar mirror design. The

code for the sample mirror RTL design can be found in Appendix C

Chapter 4. The Processor Customization 52

Figure 4.2: Stage 2 of the pipeline

Figure 4.3: Mirror RTL schematic for data propagation

Figure 4.4: Mirror RTL simulation

Chapter 4. The Processor Customization 53

1) loadi.k.0 000 000101 00001 00 1001001010010101

2) loadi.k.1 000 000101 00001 01 0010100101001001

3) loadi.k.2 000 000101 00001 10 1101111111111110

4) loadi.k.3 000 000101 00001 11 0100101001010100

5) loadi.k.0 000 000101 00010 00 0010010101010100

6) loadi.k.1 000 000101 00010 01 0101010100000000

7) loadi.k.2 000 000101 00010 10 0010101010110000

8)loadi.k.3 000 000101 00010 11 1101010101010111

9) and 000 110000 00011 00001 00010 110000 00

Figure 4.5: The ”and” machine code

Figure 4.6: The processor initialization process

4.4.2 Execution Testing

In order to fully test the processor a compiler is required, however this was not imple-

mented due to time constraints. All the instructions have been verified individually and

found to operate properly. A sample execution follows which implements a simple and

instruction. This specific example was chosen because it utilises many components of

the processor: Register file read/write, program counter incrementation/stall, instruc-

tion memory initialization/read, ALU and instruction. Figure 4.5 shows the instructions

used along with the instruction codes.

The first four instructions load the register ”00001” with 16 bits of data each filling a

different subword. The next four instructions fill the register ”00010” with data similarly

to the first to form another random 64 bit number. The final instruction is the ”and”

instruction which ands the values in the registers ”00001” and ”00010”, and then stores

the result in the register ”00011”. All instructions are predicated to the ”000” register

which is hardwired to ’1’ so as to be always executed.

The first step in the processor function is to reset the top module. Second step is to

initialize the memory and insert all the instruction in consecutive instruction memory

slots, starting from position ”000000000” up to position ”000001000”. These steps are

shown in figure 4.6. The simulation lasts 1000ns, since the clock step is 100ns nine cycles

are for the memory initialization process and one for the resetting.

Chapter 4. The Processor Customization 54

Figure 4.7: The execution completion stage

After the initialization the processor starts execution and the whole process lasts another

44 cycles. Each load instruction lasts five cycles since the processor stalls to avoid

hazards. Eight load instructions makes up to 40 cycles plus another 4 for the register

write of the ”and” instruction. Figure 4.7 displays the completion of the whole process

at clock cycle 54 where the ”register input” module gives the correct result.

As expected the register file, after the execution, contains three values:

• ”0100101001010100110111111111111000101001010010011001001010010101”

is in the address ”00001”

• ”1101010101010111001010101011000001010101000000000010010101010100”

is contained in the address ”00010”

• ”0100000001010100000010101011000000000001000000000000000000010100”

the ”and” result is contained in address ”00011”. The address ”00000” was not

used since it is hardwired to zero.

Chapter 4. The Processor Customization 55

Figure 4.8: The register file values

Chapter 5

Tools Utilized

While making this thesis work, a series of programming languages, software programs

and hardware has been used in order to design, test and implement the processor.

For creating and programming the modules themselves, VHDL was used, which is a

Hardware Description Language. C was also used for the creation of the testbench.

In terms of IDEs, the hardware simulation program Modelsim was used and for the

hardware implementation Xilinx ISE and the FPGA Vyrtex ML605.

5.1 VHDL

Hardware description languages first appeared in the late 1960s and they had the form of

conventional languages. In 1971 C. Gordon Bell and Allen Newell introduced the concept

of register transfer level to describe the behavior of circuits. Many other implementations

appeared until the late 1970s when Verilog ,the first HDL for VLSI, appeared. In 1987, a

request from the U.S. Department of Defense led to the development of VHDL (VHSIC

Hardware Description Language).HDL was based on the Ada programming language, as

well as on the experience gained with the earlier development of ISPS.[9] Initially, Verilog

and VHDL were used to document and simulate circuit designs already captured and

described in another form (such as schematic files). HDL simulation enabled engineers

to work at a higher level of abstraction than simulation at the schematic level, and thus

increased design capacity from hundreds of transistors to thousands[16].

56

Chapter 1. Tools Utilized 57

Table 5.1: std logic values

Character Value

’U’ uninitialized
’X’ strong drive, unknown logic value
’0’ strong drive, zero
’1’ strong drive, one
’Z’ high impedance
’W’ weak drive, unknown logic value
’L’ weak drive, logic zero
’H’ weak drive, logic one
’-’ don’t care

The introduction of logic synthesis for HDLs pushed HDLs from the background into the

foreground of digital design. Synthesis tools compiled HDL source files (written in a con-

strained format called RTL) into a manufacturable netlist description in terms of gates

and transistors. A circuit design from a skilled engineer, using labor-intensive schematic-

capture/hand-layout, would almost always outperform its logically-synthesized equiva-

lent, but the productivity advantage held by synthesis soon displaced digital schematic

capture to exactly those areas that were problematic for RTL synthesis: extremely high-

speed, low-power, or asynchronous circuitry.

5.1.1 The IEEE standard

The IEEE Standard 1076 defines the VHSIC Hardware Description Language or VHDL.

It was originally developed under contract F33615-83-C-1003 from the United States Air

Force awarded in 1983 to a team with Intermetrics, Inc. as language experts and prime

contractor, with Texas Instruments as chip design experts and IBM as computer system

design experts. The language has undergone numerous revisions and has a variety of

sub-standards associated with it that augment or extend it in important ways.

The IEEE 1164 standard uses ”multi-valued” signals, where a signal’s drive strength

(none, weak or strong) and unknown values are also considered. As a result a signal of

type std logic can acquire 9 values according to table 5.1.

his system promoted a useful set of logic values that typical CMOS logic design could

utilize in the vast majority of modeling situations. The ’Z’ literal makes tri-state buffer

logic easy. The ’H’ and ’L’ weak drives permit wired-AND and wired-OR logic. Ad-

ditionally, the ’U’ state is the default value for all object declarations so that during

Chapter 1. Tools Utilized 58

simulations uninitialized values are easily detectable and thus easily corrected if neces-

sary.

VHDL has file input and output capabilities, and can be used as a general-purpose

language for text processing, but files are more commonly used by a simulation testbench

for stimulus or verification data.

5.1.2 Advantages

The key advantage of VHDL, when used for systems design, is that it allows the behavior

of the required system to be described (modeled) and verified (simulated) before synthe-

sis tools translate the design into real hardware (gates and wires). Another advantage

is that it allows the description of concurrent systems, where data flow is concurrent

and parallel, in contrast to conventional programming languages. Probably the largest

advantage is that the projects and modules created are reusable. For example once a reg-

ister file or an adder is created, it can be used again in other design with no alternations

as long as the interface is the same.

5.2 FPGAs

Field Programmable Gate Arrays are a family of hardware used for implementing re-

programmable hardware. FPGA configuration is generally specified using a hardware

description language (HDL), similar to that used for an application-specific integrated

circuit (ASIC). FPGAs by themselves do not actually implement any specific hardware

and they have no particular function. They contain programmable logic components

called ”logic blocks”, and a hierarchy of reconfigurable interconnects that allow the

blocks to be ”wired together”. FIgure 5.1 displays the general pattern of the cells in a

FPGA. Logic blocks can be configured to perform complex combinational functions, or

merely simple logic gates like AND and XOR. Figure 5.2 displays a simplified design of

the basic block of a Xilinx xc4000 FPGA. In most FPGAs, the logic blocks also include

memory elements, which may be simple flip-flops or more complete blocks of memory.

Logic resources are resources on the FPGA that can perform logic functions. Logic

resources are grouped in slices to create configurable logic blocks. A slice contains a

Chapter 1. Tools Utilized 59

Figure 5.1: FPGA block array.

set number of LUTs, flip-flops and multiplexers. A LUT is a collection of logic gates

hard-wired on the FPGA. LUTs store a predefined list of outputs for every combination

of inputs and provide a fast way to retrieve the output of a logic operation. A flip-flop

is a circuit capable of two stable states and represents a single bit. A multiplexer, also

known as a mux, is a circuit that selects between two or more inputs and outputs the

selected input.

Different FPGA families implement slices and LUTs differently. For example, a slice on

a Virtex-II FPGA has two LUTs and two flip-flops but a slice on a Virtex-5 FPGA has

four LUTs and four flip-flops. In addition, the number of inputs to a LUT, commonly

two to six, depend on the FPGA family[17].The amount of logic blocks has increased

drastically in the past years from approximately 8000 in 1982 to practically millions

today[18].

Chapter 1. Tools Utilized 60

Figure 5.2: The basic block of a Xilinx XC4000 FPGA

5.2.1 History

FPGAs originated from PROMs and PLDs. The first reprogrammable hardware were

the PROMs. PROM is a non-volatile memory that can be loaded with information.

Different types of PROMs can be either mass programmed at the factory(Mask Pro-

grammable Devices) or by the user(Field programmable). Later came the PLDs that

had a major contribution towards the creation of FPGAs. Although there are several

different types of PLDs, the most common implements a set of fixed logical OR gates

preceded by an array of programmable AND logic gates. Like PROM, PLDs are also

manufactured as both factory programmable and user programmable. These MPLDs

(Mask Programmable Logic Devices) have programmable logic for the AND gates; how-

ever, they are hard-wired between logic gates. In 1985 with the invention of FPGAs,

Xilinx created a device that would not only have programmable gates, but also have

programmable interconnections between gates. The FPGAs were thus simply the next

step in the evolution of PLDs.

Another early field programmable logic device was proposed by Steve Casselman in

1987 to the National Science Foundation. The ideas behind the proposal were to create

a computer chip that used the new technology of programmable gate arrays and was

able to be completely programmed using software. Within the proposed experiment

Chapter 1. Tools Utilized 61

Casselman set forth two goals: to determine a way to interconnect the planes of arrays,

and to create a compiler which would be able to program functions into these new chips.

Like the design of Xilinx, Casselman’s chip would rely on the technology of EEPROM

registers. In the coming years, aid from the Naval Surface Warfare Department was

applied for, and received, to develop a computer that would implement a total of 600,000

reprogrammable array gates. In 1992 a patent was granted for this system[19].

5.2.2 Modern developments

Recent trend has been, to take the coarse-grained architectural approach a step further

by combining the logic blocks and interconnects of traditional FPGAs with embedded

microprocessors and related peripherals to form a complete ”system on a programmable

chip”. This work mirrors the architecture by Ron Perlof and Hana Potash of Burroughs

Advanced Systems Group which combined a reconfigurable CPU architecture on a single

chip called the SB24. That work was done in 1982. Examples of such hybrid technologies

can be found in the Xilinx ZynqTM-7000 All Programmable SoC, which includes a 1.0

GHz dual-core ARM Cortex-A9 MPCore processor embedded within the FPGA’s logic

fabric or in the Altera Arria V FPGA which includes an 800 MHz dual-core ARM Cortex-

A9 MPCore. The Atmel FPSLIC is another such device, which uses an AVR processor

in combination with Atmel’s programmable logic architecture. The Actel SmartFusion

devices incorporate an ARM Cortex-M3 hard processor core (with up to 512 kB of flash

and 64 kB of RAM) and analog peripherals such as a multi-channel ADC and DACs to

their flash-based FPGA fabric[20].

FPGAs have opened the way to a new concept of reconfigurable computing. Reconfig-

urable computing is a computer architecture combining some of the flexibility of software

with the high performance of hardware by processing with very flexible high speed com-

puting fabrics like field-programmable gate arrays (FPGAs). The principal difference

when compared to using ordinary microprocessors is the ability to make substantial

changes to the datapath itself in addition to the control flow. On the other hand,

the main difference with custom hardware, i.e. application-specific integrated circuits

(ASICs) is the possibility to adapt the hardware during runtime by ”loading” a new

circuit on the reconfigurable fabric.

Chapter 1. Tools Utilized 62

Figure 5.3: The Virtex 6 FPGA board

5.3 The Xilinx Virtex ML605

For implementing the processor, a device that would feet the needs had to be chosen. The

processor being relatively extensive in size than simple designs requires a correspondingly

large FPGA. Initial implementations involved the Xilinx Spartan 3A board, how ever

the final design was too big to fit this board. The Virtex ML 605 board was used to

synthesize and implement the design. Figure 5.3 displays the board used.

The Virtex R©-6 FPGA ML605 Evaluation Kit is the Xilinx base platform for devel-

oping system designs that demand high-performance, serial connectivity and advanced

memory interfacing. This yields design applications for markets such as wired telecom-

munications, wireless infrastructure, broadcast and many others. Integrated tools help

streamline the creation of elegant solutions to complex design requirements. The ML605

Evaluation Kit is based on the XC6VLX240T-1FFG1156 Virtex-6 FPGA. This FPGA

contains 241,152 logic cells, a rating that reflects the increased logic capacity offered by

the 6-input LUT architecture[21].

The basic features of the board are the following:

• DDR3 SODIMM

• 16MB Platform Flash XL

• 32 MB Linear BPI Flash

• System ACE CF

Chapter 1. Tools Utilized 63

• USB JTAG

• 16 x 2 LCD character display

• Video VGA

• USB host and peripheral

• Ethernet (10/100/1000) with SGMII

• GTX port with SMA x4

• 200 MHz differential clock, 66 MHz socketed oscillator, clock SMA connectors

• MGT clocking SMA x4

• VITA 57.1 FMC HPC connector

• VITA 57.1 FMC LPC connector

• PCIe R© Gen1 (8-lane), Gen2 (4-lane)

• UART (via USB cable)

• IIC EEPROM

• LEDs

• DIP switch

• Pushbuttons

• System Monitor

• Power monitoring

• Power supply:12V AC adapter or 12V 4-pin ATX

5.4 Xilinx ISE

Xilinx ISE(Integrated Software Environment) is a software tool produced by Xilinx for

synthesis and analysis of HDL designs, enabling the developer to synthesize (”compile”)

Chapter 1. Tools Utilized 64

their designs, perform timing analysis, examine RTL diagrams, simulate a design’s reac-

tion to different stimuli, and configure the target device with the programmer. Through-

out the designing, making and testing the processor this tool was used extensively since

the target was to create a design that was intended to be implemented in hardware.

Many HDL designs that appear functional and simulate properly in simulating pro-

grams and designs are in fact not feasible to implement in hardware. Another feature

helpful to the process is the fact that ISE can detect various bugs which would not be

otherwise detected easily, e.g. unconnected wires, bad connections between modules, FF

latches and unused signals.

The edition that was used is the Web edition, which is a free version of Xilinx ISE

that can be downloaded at no charge. It provides synthesis and programming for a

limited number of Xilinx devices. In particular, devices with a large number of I/O pins

and large gate matrices are disabled. The low-cost Spartan family of FPGAs is fully

supported by this edition, as well as the family of CPLDs, meaning small developers

and educational institutions have no overheads from the cost of development software.

All the speed, power and area estimations were generated by this program.

5.4.1 The CORE Generator

In order to utilize the on board memory which is embedded on the FPGA board, a series

of time consuming and difficult synchronization constraints and interface problems had

to be dealt with. A series of approximately 100 pins and signals have to be set appro-

priately for the memory interface. Xilinx offers a few tools to utilize and communicate

with the on board memory through the CORE Generator. The CORE Generator offers

the choice to create custom Xilinx IP Cores to utilize in the project. Some of these IP

Cores are used for memory interface. For our purposes the Block memory generator was

used which created a block-like interface memory Figure 5.4.

In the processor design two separate memories are used, the instruction memory and the

data memory. The instruction memory is 512x32bits and the data memory 1024x64bits.

After following a few steps in a generating wizard the memory is created with the

interface shown in figure 5.5 and the VHDL code in figure 5.6.

Chapter 1. Tools Utilized 65

Figure 5.4: Block memory generator

Figure 5.5: The instruction memory

component instruction_memory

port (

clka : in std_logic;

wea : in std_logic_vector (0 downto 0);

addra : in std_logic_vector (8 downto 0);

dina : in std_logic_vector (31 downto 0);

douta : out std_logic_vector (31 downto 0)

);

end component;

Figure 5.6: The instruction memory VHDL interface

Chapter 1. Tools Utilized 66

Figure 5.7: The data memory

component data_memory

port (

clka : in std_logic;

wea : in std_logic_vector (7 downto 0);

addra : in std_logic_vector (9 downto 0);

dina : in std_logic_vector (63 downto 0);

douta : out std_logic_vector (63 downto 0)

);

end component;

Figure 5.8: The data memory VHDL interface

The data memory was generated similarly with the difference of the write enable signal.

The CORE Generator offers the choice to write single bytes of the words stored. For

example a 64bit word that is stored in the memory, if a change had to be made in the

first 32 bits of the word. the processor had to read the memory first, alter the bits and

then store it again. By using this feature single byte word updates are possible and since

the processor makes extensive use of subwords and parallel data updating, this feature is

very helpful. For this reason the illegal trap that had to be raised on unaligned memory

accesses according to [13] is ignored. Figure 5.7 shows the memory block and figure 5.8

shows the VHDL interface. Both memories operate at a fixed 144MHz speed.

Chapter 1. Tools Utilized 67

5.5 Modelsim Simulation Program

Modelsim is a software package created by Mentor Graphics designed for simulating HDL

modules. The program includes a text editor, waveform viewer and a RTL generator.

The modelsim PE student edition was used which is freely available.

The main usage of the program was for debugging purposes. The debugging purposes

involve two stages the first was the pre-synthesize debugging. In the pre-synthesize

debugging the HDL modules are tested for proper function and the production of the

expected results. Even if the modules operate as intended , it is not guaranteed that

they will function properly in hardware implementation, as many problems could arise.

After the synthesis some fixes occasionally occurred. As a result a second post-synthesis

simulation was also executed reassuring the module’s proper functionality.

The main debugging feature that was extensively used is the waveform viewer. This

feature displays all the signals used by a component and its respective waveform. The

waveform view provides a clear picture as to how the circuit and the signals evolve with

time, allowing the user to easily point out problems and bugs.

Chapter 6

Conclusions

In this thesis a thorough and detailed report and explanation of the process of designing,

implementing and customizing a processor was presented. The main purpose of this

work, was to show a simple procedure that can be followed in order to exploit the

flexibility offered by technologies such as the FPGAs and the HDLs, in order to adapt

hardware implementations to one’s needs. Many problems and possible bugs that could

arise, have been pointed out and a competent solution was presented alongside. This

work does not aim in the optimization of the core presented, but aims in presenting

generally the procedures followed to modify such modules.

6.1 Acknowledgements and Compromises

The size of the soft core created, somewhat compromises its integrity. Almost certainly

the processor is not bug-free, however a more than adequate implementation was pre-

sented. Since the design was created from scratch, there is no compiler or a machine

code generator available, which would help the debugging process. It is crucial at this

stage to point out that the design used to create the processor is not the optimum,

regarding speed, area and power consumption, nor was it designed to be such. The

process of optimizing requires work from many people and various fields of expertise.

The guideline for the design chosen was the basic MIPS pipelined processor and was

based upon this. All the optimization that occurred is in the pipeline design itself and

the module placement within it.

68

Chapter 1. Conclusions 69

Many compromises have occurred during the design and implementation, mainly due to

time restrictions. These compromises are the following:

• No post synthesis design optimization was implemented.

• No post simulate design optimization was implemented..

• No Cache memory was utilized.

• No parallel module utilization was implemented.

• No floating point square root was implemented.

• No program interrupt mechanism was implemented.

• No efficient data hazard prediction and out of order execution was implemented.

• No compiler was implemented.

• No machine code generator/Processor testbench was implemented.

6.2 Future Work

In future work a few ideas have risen from this work. Some include the optimization and

work on the processor itself and are summarized in the compromise list above. Others

include work that targets in further exploiting the flexibility of FPGAs and offering

more choices to the user. One such example is the adaptation of a processor so that we

can swap and add many different module of a kind e.g. FPUs, ALUs. This will allow

the engineer to test and try many modules before choosing the appropriate. Another

possible future work is the adaptation of a more popular processor, e.g. picoblaze, with a

similar procedure. Also the creation of self adapting HDL modules is within the possible

future additions.

Appendix A

RTL schematics

This appendix includes all the RTL schematics used in the process of designing the

processor. These include both manually drawn designs and automatically produced

schematics by Xilinx IDE.

70

Appendix A. RTL Schematics 71

Figure A.1: The CPU RTL schematic

Appendix A. RTL Schematics 72

Figure A.2: The PC RTL schematic

Figure A.3: The ALU adder RTL Schematic

Appendix A. RTL Schematics 73

Figure A.4: The control RTL Schematic

Appendix A. RTL Schematics 74

Figure A.5: The FPU adder

Appendix A. RTL Schematics 75

Figure A.6: The FPU multiplier

Appendix A. RTL Schematics 76

Figure A.7: The FPU divider

Appendix A. RTL Schematics 77

Figure A.8: The FPU RTL schematic

Appendix B

PLX 1.1 Instruction Set

Architecture

This appendix contains all the instructions used by the processor without the instructions

for the floating point calculations which are explained in detail in Chpater 3. A more

detailed explanation of every instruction can be found at [13].

78

Appendix B. PLX 1.1 ISA 79

Table B.1: Main Instructions and Mnemonics

Mnemonic Instruction

Addi Add Immediate
And And

Andcm And Complement
Andi And Immediate

Changepr Chane predicate Register set
Cmp Compare
Cmpi Compare Immediate

Deposit Deposit
Extract Extraxt

Jmp Jump
Load Load
Loadi Load Immediate
Loadx Load Indexed
Mix Mix
Mux Mux
Not Not
Or Or
Ori Ori Immediate

Padd Parallel Add
Paddincr Parallel Add Increment

Pavg Parallel Average
Pcmp Parallel Compare
Perm Permute
Pmax Parallel Maximum
Pmin Parallel Minimum
Pmul Parallel Multiplication

Pmulshr Parallel Multiply Shift Right
Pshift Parallel Shift

Pshiftadd Parallel Shift Add
Pshifti Parallel Shift Immediate
Psub Parallel Subtract

Psubavg Parallel Subtract Average
Psubdecr Parallel Subtract Decrement

Shrp Shift Right Pair
Slli Shift Left Logical Immediate
Srai Shift Right Arithmetic Immediate
Srli Shift Right Logical Immediate

Store Store
Subi Subtract Immediate

Testbit Testbit
Trap Trap
Xor Xor
Xori Xor Immediate

Appendix C

Segments of Code

The VHDL testbench

--FPU.ADD/SUB_testbench --

--ANGELOS NTASIOS --

library ieee;

use ieee.std_logic_1164.all;

use std.textio.all;

entity add_sub_testbench is

end;

architecture add_sub_testb of add_sub_testbench is

component ADDER_F is

port (

A : in std_logic_vector (63 downto 0); --A

B : in std_logic_vector (63 downto 0); --B

OP : in std_logic; --OP 0=+ 1=-

R : out std_logic_vector (63 downto 0); --R

U_O : out std_logic_vector (1 downto 0); --underflow/overflow

CLK : in std_logic; --Clock

ENABLE : in std_logic; --ENABLE

RESET : in std_logic; --RESET(Global)

done : out std_logic

);

end component;

signal clk_g : std_logic := ’0’;

80

Appendix C. Segments of Code 81

signal A_in : std_logic_vector (63 downto 0);

signal B_in : std_logic_vector (63 downto 0);

signal OP_in : std_logic;

signal reset_in : std_logic;

signal R_out : std_logic_vector (63 downto 0);

signal O_U_out : std_logic_vector (1 downto 0);

signal done_out : std_logic;

signal clk_g_in : std_logic;

begin

clk_g <= not clk_g after 500 ns;

ADDER_top_module : ADDER_F port map(A_in , B_in , OP_in , R_out , O_U_out ,

clk_g_in , ’1’, reset_in , done_out);

process

variable reset_done : bit := ’0’;

file infile : text open read_mode is path&"P A T H\testbench.txt";

variable inline : line;

file outfile : text open write_mode is path&"P A T H\testbench_results_VHDL.txt";

variable outline : line;

variable tmp1 : bit_vector (63 downto 0);

variable tmp2 : string (2 downto 2);

variable tmp3 : string (2 downto 2);

begin

wait until clk_g = ’1’ and clk_g ’event;

if (not endfile(infile)) then

readline(infile , inline);

end if;

for i in inline ’range loop

if (i < 65) then

if (inline(i) = ’1’) then

A_in(64-i) <= ’1’;

else

A_in(64-i) <= ’0’;

end if;

end if;

if (i = 66) then

if (inline(i) = ’1’) then

OP_in <= ’1’;

else

OP_in <= ’0’;

end if;

end if;

Appendix C. Segments of Code 82

if (i > 67 and i < 132) then

if (inline(i) = ’1’) then

B_in (131-i) <= ’1’;

else

B_in (131-i) <=’0’;

end if;

end if;

end loop;

if (reset_done = ’0’) then

reset_in <= ’1’;

reset_done := ’1’;

else

reset_in <= ’0’;

end if;

wait for 50 ns;

clk_g_in <= ’1’;

wait for 50 ns;

reset_in <= ’0’;

clk_g_in <= ’0’;

wait for 50 ns;

clk_g_in <= ’1’;

wait for 50 ns;

clk_g_in <= ’0’;

wait for 50 ns;

clk_g_in <= ’1’;

wait for 50 ns;

clk_g_in <= ’0’;

if (O_U_out (1)=’1’) then

tmp2 (2) := ’1’;

else

tmp2 (2) := ’0’;

end if;

if (O_U_out (0)=’1’) then

tmp3 (2) := ’1’;

else

tmp3 (2) := ’0’;

end if;

tmp1 := to_bitvector(R_out);

write(outline , tmp1);

write(outline , " U="& tmp2 (2)&" O="& tmp3 (2));

writeline(outfile , outline);

end process;

end;

Appendix C. Segments of Code 83

when "101100" =>--addf

PC_control_signals <= "00";-- program counter (+4)

ALU_control_signals <= "0 XXXXXXXXXXXXXXXXXXX ";--ALU not enabled

MULT_control_signals <= "0 XXXXXXX";--Multiplier not enabled

SHIFT_control_signals <= "0 XXXXXXXX";--Shifter not enabled

MIX_control_signals <= "0 XXXXX";--MIX/MUX not enabled

FPU_control_signals <= "1000"; --FPU enabled

SIGN_EXT_control_signals <= ’X’;-- SIGN_EXTENSION not enabled

DATA_MEM_control_signals <= "00000000"; - - DATA MEMORY not enabled

REGISTER_F_control_signals <= "01";-- REGISTER FILE write enable enabled

PREDICATE_control_signals <= "000";-- PREDICATE FILE NULL op

REG_INPUT_control_signals <= "0000"; -- register input Rs2

illegal <= ’0’;--instruction OK

when "101101" =>--subf

PC_control_signals <= "00";-- program counter (+4)

ALU_control_signals <= "0 XXXXXXXXXXXXXXXXXXX ";--ALU not enabled

MULT_control_signals <= "0 XXXXXXX";--Multiplier not enabled

SHIFT_control_signals <= "0 XXXXXXXX";--Shifter not enabled

MIX_control_signals <= "0 XXXXX";--MIX/MUX not enabled

FPU_control_signals <= "1001"; --FPU enabled

SIGN_EXT_control_signals <= ’X’;-- SIGN_EXTENSION not enabled

DATA_MEM_control_signals <= "00000000"; - - DATA MEMORY not enabled

REGISTER_F_control_signals <= "01";-- REGISTER FILE write enable enabled

PREDICATE_control_signals <= "000";-- PREDICATE FILE NULL op

REG_INPUT_control_signals <= "0000"; -- register input Rs2

illegal <= ’0’;--instruction OK

when "101110" =>--multf

PC_control_signals <= "00";-- program counter (+4)

ALU_control_signals <= "0 XXXXXXXXXXXXXXXXXXX ";--ALU not enabled

MULT_control_signals <= "0 XXXXXXX";--Multiplier not enabled

SHIFT_control_signals <= "0 XXXXXXXX";--Shifter not enabled

MIX_control_signals <= "0 XXXXX";--MIX/MUX not enabled

FPU_control_signals <= "1010"; --FPU enabled

SIGN_EXT_control_signals <= ’X’;-- SIGN_EXTENSION not enabled

DATA_MEM_control_signals <= "00000000"; - - DATA MEMORY not enabled

REGISTER_F_control_signals <= "01";-- REGISTER FILE write enable enabled

PREDICATE_control_signals <= "000";-- PREDICATE FILE NULL op

REG_INPUT_control_signals <= "0000"; -- register input Rs2

illegal <= ’0’;--instruction OK

when "101111" =>--divf

PC_control_signals <= "00";-- program counter (+4)

ALU_control_signals <= "0 XXXXXXXXXXXXXXXXXXX ";--ALU not enabled

MULT_control_signals <= "0 XXXXXXX";--Multiplier not enabled

SHIFT_control_signals <= "0 XXXXXXXX";--Shifter not enabled

MIX_control_signals <= "0 XXXXX";--MIX/MUX not enabled

FPU_control_signals <= "1011"; --FPU enabled

SIGN_EXT_control_signals <= ’X’;-- SIGN_EXTENSION not enabled

DATA_MEM_control_signals <= "00000000"; - - DATA MEMORY not enabled

REGISTER_F_control_signals <= "01";-- REGISTER FILE write enable enabled

PREDICATE_control_signals <= "000";-- PREDICATE FILE NULL op

REG_INPUT_control_signals <= "0000"; -- register input Rs2

illegal <= ’0’;--instruction OK

Figure C.1: The FPU instruction signals

Appendix C. Segments of Code 84

--------------LIBRARIES ---------------------------

library ieee;

use ieee.std_logic_1164.all;

entity RTL_test is

port(

A : in std_logic;

B : in std_logic;

A_out : out std_logic;

B_out : out std_logic;

clk : in std_logic;

reset : in std_logic

);

end;

architecture rtl of RTL_test is

component register_1_bit is

port (

d : in std_logic;

reset : in std_logic;

enable : in std_logic;

clk : in std_logic;

q : out std_logic

);

end component;

signal clk_fe : std_logic;

signal RA1toRA2 : std_logic;

signal RA2toRA3 : std_logic;

signal RA3toRA4 : std_logic;

signal RA4toRA5 : std_logic;

signal RB1toRB2 : std_logic;

signal RB2toRB3 : std_logic;

signal RB3toRB4 : std_logic;

signal RB4toRB5 : std_logic;

signal RB5toRB6 : std_logic;

signal RB6toRB7 : std_logic;

begin

process(clk)

begin

if (clk ’event and clk = ’1’) then

clk_fe <= ’0’;

elsif(clk ’event and clk = ’0’) then

clk_fe <= ’1’;

end if;

end process;

RA1 : register_1_bit port map (A , reset , ’1’, clk , RA1toRA2);

RA2 : register_1_bit port map (RA1toRA2 , reset , ’1’, clk , RA2toRA3);

RA3 : register_1_bit port map (RA2toRA3 , reset , ’1’, clk , RA3toRA4);

RA4 : register_1_bit port map (RA3toRA4 , reset , ’1’, clk , RA4toRA5);

RA5 : register_1_bit port map (RA3toRA4 , reset , ’1’, clk , A_out);

RB1 : register_1_bit port map (B , reset , ’1’, clk , RB1toRB2);

RB2 : register_1_bit port map (RB1toRB2 , reset , ’1’, clk_fe , RB2toRB3);

RB3 : register_1_bit port map (RB2toRB3 , reset , ’1’, clk , RB3toRB4);--rf

RB4 : register_1_bit port map (RB3toRB4 , reset , ’1’, clk , RB4toRB5);--r4

RB5 : register_1_bit port map (RB4toRB5 , reset , ’1’, clk_fe , RB5toRB6);--r8

RB6 : register_1_bit port map (RB5toRB6 , reset , ’1’, clk , RB6toRB7);--mem

RB7 : register_1_bit port map (RB6toRB7 , reset , ’1’, clk_fe , B_out);--r11

end;

Figure C.2: The RTL mirror design

Appendix D

Module control signals

85

Appendix D. Module Control Signals 86

Table D.1: ALU control signals

INSTR 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

addi 0 0 1 0 0 X X X X X X X X 0 0 0 1 0 0 0
and/andi 0 0 1 1 0 0 0 0 X X X X X 0 X X X X X X
andcm 0 0 1 1 0 0 0 1 X X X X X 0 X X X X X X

cmp/cmpi.eq 0 0 1 X 0 0 1 0 0 0 0 0 0 0 X X X X X X
cmp/cmpi.ne 0 0 1 X 0 0 1 0 0 0 0 0 1 0 X X X X X X
cmp/cmpi.lt 0 0 1 X 0 0 1 0 0 0 0 1 0 0 X X X X X X
cmp/cmpi.le 0 0 1 X 0 0 1 0 0 0 0 1 1 0 X X X X X X
cmp/cmpi.gt 0 0 1 X 0 0 1 0 0 0 1 0 0 0 X X X X X X
cmp/cmpi.ge 0 0 1 X 0 0 1 0 0 0 1 0 1 0 X X X X X X
cmp/cmpi.ltu 0 0 1 X 0 0 1 0 0 0 1 1 0 0 X X X X X X
cmp/cmpi.leu 0 0 1 X 0 0 1 0 0 0 1 1 1 0 X X X X X X
cmp/cmpi.gtu 0 0 1 X 0 0 1 0 0 1 0 0 0 0 X X X X X X
cmp/cmpi.geu 0 0 1 X 0 0 1 0 0 1 0 0 1 0 X X X X X X
Loadx.4/load.4 1 0 1 0 1 X X X X X X X X X X X X X 0 1
Loadx.8/load.8 1 0 1 0 1 X X X X X X X X X X X X X 0 0

Load.x.u.4/load.u.4 0 0 1 0 1 X X X X X X X X X X X X X 0 1
Load.x.u.8/load.u.8 0 0 1 0 1 X X X X X X X X X X X X X 0 0

Store.1 1 0 1 0 1 X X X X X X X X X X X X X 1 1
Store.2 1 0 1 0 1 X X X X X X X X X X X X X 1 0
Store.4 1 0 1 0 1 X X X X X X X X X X X X X 0 1
Store.8 1 0 1 0 1 X X X X X X X X X X X X X 0 0

Store.u.1 0 0 1 0 1 X X X X X X X X X X X X X 1 1
Store.u.2 0 0 1 0 1 X X X X X X X X X X X X X 1 0
Store.u.4 0 0 1 0 1 X X X X X X X X X X X X X 0 1
Store.u.8 0 0 1 0 1 X X X X X X X X X X X X X 0 0

not 0 0 1 1 0 0 1 1 X X X X X 0 X X X X X X
or/ori 0 0 1 1 0 1 0 0 X X X X X 0 X X X X X X
padd.1 0 0 1 0 0 X X X X X X X X 0 0 0 X 1 1 1
padd.2 0 0 1 0 0 X X X X X X X X 0 0 0 X 1 1 0
padd.4 0 0 1 0 0 X X X X X X X X 0 0 0 X 1 0 1
padd.8 0 0 1 0 0 X X X X X X X X 0 0 0 X 1 0 0

padd.1.u/pavg.1 0 0 1 0 0 X X X X X X X X 0 0 0 0 0 1 1
padd.2.u/pavg.2 0 0 1 0 0 X X X X X X X X 0 0 0 0 0 1 0

padd.4.u 0 0 1 0 0 X X X X X X X X 0 0 0 0 0 0 1
padd.8.u 0 0 1 0 0 X X X X X X X X 0 0 0 0 0 0 0
padd.1.s 0 0 1 0 0 X X X X X X X X 0 0 0 1 0 1 1

padd.2.s/pshiftadd 0 0 1 0 0 X X X X X X X X 0 0 0 1 0 1 0
padd.4.s 0 0 1 0 0 X X X X X X X X 0 0 0 1 0 0 1
padd.8.s 0 0 1 0 0 X X X X X X X X 0 0 0 1 0 0 0

paddincr.1 0 0 1 0 0 X X X X X X X X 0 0 1 X 1 1 1
paddincr.2 0 0 1 0 0 X X X X X X X X 0 0 1 X 1 1 0
paddincr.4 0 0 1 0 0 X X X X X X X X 0 0 1 X 1 0 1
paddincr.8 0 0 1 0 0 X X X X X X X X 0 0 1 X 1 0 0

pavg.1 0 0 1 0 0 X X X X X X X X 1 0 0 0 0 1 1
pavg.2 0 0 1 0 0 X X X X X X X X 1 0 0 0 0 1 0

pavg.raz.1 0 0 1 0 0 X X X X X X X X 1 0 1 0 0 1 1
Pavg.raz.2 0 0 1 0 0 X X X X X X X X 1 0 1 0 0 1 0
pcmp.1.eq 0 0 1 1 0 0 1 0 1 X X 0 1 0 X X X X 1 1
pcmp.2.eq 0 0 1 1 0 0 1 0 1 X X 0 1 0 X X X X 1 0
pcmp.4.eq 0 0 1 1 0 0 1 0 1 X X 0 1 0 X X X X 0 1
pcmp.8.eq 0 0 1 1 0 0 1 0 1 X X 0 1 0 X X X X 0 0
pcmp.1.gt 0 0 1 1 0 0 1 0 1 X X 0 0 0 X X X X 1 1
pcmp.2.gt 0 0 1 1 0 0 1 0 1 X X 0 0 0 X X X X 1 0
pcmp.4.gt 0 0 1 1 0 0 1 0 1 X X 0 0 0 X X X X 0 1
pcmp.8.gt 0 0 1 1 0 0 1 0 1 X X 0 0 0 X X X X 0 0
pmax.1 0 0 1 1 0 0 1 0 1 X X 1 1 0 X X X X 1 1
pmax.2 0 0 1 1 0 0 1 0 1 X X 1 1 0 X X X X 1 0
pmin.1 0 0 1 1 0 0 1 0 1 X X 1 0 0 X X X X 1 1
pmin.2 0 0 1 1 0 0 1 0 1 X X 1 0 0 X X X X 1 0
psub.1 0 0 1 0 0 X X X X X X X X 0 1 0 X 1 1 1
psub.2 0 0 1 0 0 X X X X X X X X 0 1 0 X 1 1 0
psub.4 0 0 1 0 0 X X X X X X X X 0 1 0 X 1 0 1
psub.8 0 0 1 0 0 X X X X X X X X 0 1 0 X 1 0 0

psub.1.u 0 0 1 0 0 X X X X X X X X 0 1 0 0 0 1 1
psub.2.u 0 0 1 0 0 X X X X X X X X 0 1 0 0 0 1 0
psub.4.u 0 0 1 0 0 X X X X X X X X 0 1 0 0 0 0 1
psub.8.u 0 0 1 0 0 X X X X X X X X 0 1 0 0 0 0 0
psub.1.s 0 0 1 0 0 X X X X X X X X 0 1 0 1 0 1 1
psub.2.s 0 0 1 0 0 X X X X X X X X 0 1 0 1 0 1 0
psub.4.s 0 0 1 0 0 X X X X X X X X 0 1 0 1 0 0 1

0 0 0 1 0 0 X X X X X X X X 0 1 0 1 0 0 0
psubavg.1 0 0 1 0 0 X X X X X X X X 1 1 0 0 0 1 1
psubavg.2 0 0 1 0 0 X X X X X X X X 1 1 0 0 0 1 0
psubdecr.1 0 0 1 0 0 X X X X X X X X 0 1 1 X 1 1 1
psubdecr.2 0 0 1 0 0 X X X X X X X X 0 1 1 X 1 1 0
psubdecr.4 0 0 1 0 0 X X X X X X X X 0 1 1 X 1 0 1
psubdecr.8 0 0 1 0 0 X X X X X X X X 0 1 1 X 1 0 0

store1 1 0 1 0 1 X X X X X X X X 0 0 0 0 0 1 1
store2 1 0 1 0 1 X X X X X X X X 0 0 0 0 0 1 0

store.u.1 0 0 1 0 1 X X X X X X X X 0 0 0 0 0 1 1
store.u.2 0 0 1 0 1 X X X X X X X X 0 0 0 0 0 1 0
store.u.4 0 0 1 0 1 X X X X X X X X 0 0 0 0 0 0 1
store.u.8 0 0 1 0 1 X X X X X X X X 0 0 0 0 0 0 0
testbit 0 1 0 X 0 X X X X X X X X 0 X X X X X X

Xor/xori 0 0 1 1 X 1 0 1 X X X X X 0 X X X X X X

Appendix D. Module Control Signals 87

Table D.2: FPU Control Signals

INSTR 2 1 0

Add.f 0 0 0
Sub.f 0 0 1
Mult.f 0 1 0
div.f 0 1 1

Table D.3: Shifter Control Signals

INSTR 7 6 5 4 3 2 1 0

Pshift.l.2 0 0 0 0 0 0 1 0
Pshift.l.4 0 0 0 0 0 0 0 1
Pshift.l.8 0 0 0 0 0 0 0 0
Pshift.r.2 0 0 0 0 0 1 1 0
Pshift.r.4 0 0 0 0 0 1 0 1
Pshift.r.8 0 0 0 0 0 1 0 0

Pshift.r.a.2 0 0 0 0 1 1 1 0
Pshift.r.a.4 0 0 0 0 1 1 0 1
Pshift.r.a.8 0 0 0 0 1 1 0 0

Pshiftadd.l.1 0 0 1 X X 0 X X
Pshiftadd.l.2 0 1 0 X X 0 X X
Pshiftadd.l.3 0 1 1 X X 0 X X
Pshiftadd.r.1 0 0 1 X X 1 X X
Pshiftadd.r.2 0 1 0 X X 1 X X
Pshiftadd.r.3 0 1 1 X X 1 X X

Pshifti.l.2 0 0 0 1 0 0 1 0
Pshifti.l.4 0 0 0 1 0 0 0 1
Pshifti.l.8 0 0 0 1 0 0 0 0
Pshifti.r.2 0 0 0 1 0 1 1 0
Pshifti.r.4 0 0 0 1 0 1 0 1
Pshifti.r.8 0 0 0 1 0 1 0 0

Pshifti.r.a.2 0 0 0 1 1 1 1 0
Pshifti.r.a.4 0 0 0 1 1 1 0 1
Pshifti.r.a.8 0 0 0 1 1 1 0 0

Shrp 1 0 0 X X X X X
Slli 1 0 1 X X X X X
Srai 1 1 0 X X X X X
Srli 1 1 1 X X X X X

Appendix D. Module Control Signals 88

Table D.4: Mix Unit Control Signals

INSTR 4 3 2 1 0

mix.l.1 0 0 0 1 1
Mix.l.2 0 0 0 1 0
mix.l.4 0 0 0 0 1
mix.r.1 0 0 1 1 1
mix.r.2 0 0 1 1 0
mix.r.4 0 0 1 0 1
permute 1 1 1 X X
Mux.rev 0 1 0 X X
Mux.mix 0 1 1 X X
Mux.shuf 1 0 0 X X
Mux.alt 1 0 1 X X

Mux.1.brcst 1 1 0 1 1
Mux.2.prcst 1 1 0 1 0

Table D.5: Multiplier Control Signals

INSTR 6 5 4 3 2 1 0

Pmul.odd X 0 X X 0 0 0
Pmul.odd.u X 0 X X 0 0 1
pmul.even X 0 X X 0 1 0

Pmul.even.u X 0 X X 0 1 1
Pmulshr.0 0 1 0 0 1 X X
Pmulshr.8 0 1 0 1 1 X X
Pmulshr.15 0 1 1 0 1 X X
Pmulshr.16 0 1 1 1 1 X X
Pmulshr.a.0 1 1 0 0 1 X X
Pmulshr.a.8 1 1 0 1 1 X X
Pmulshr.a.15 1 1 1 0 1 X X
Pmulshr.a.16 1 1 1 1 1 X X

Bibliography

[1] 2014. URL http://en.wikipedia.org/wiki/Embedded_system.

[2] 2014. URL http://www.embeddedcraft.org/ES%20Trends.pdf.

[3] M. Khalid J. Tong, I. Anderson. Soft-core processors for embedded systems, in

microelectronics. 2006.

[4] 2014. URL http://en.wikipedia.org/wiki/Semiconductor_intellectual_

property_core.

[5] Xilinx, 2014. URL http://www.xilinx.com/support/documentation/ip_

documentation/ug129.pdf.

[6] ESA, 2014. URL http://en.wikipedia.org/wiki/LEON.

[7] 2014. URL http://en.wikipedia.org/wiki/OpenRISC.

[8] Ντελή Χασάν Μουσταφά Μουτλού. ΑΡΙΘΜΟΙ και ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ Υ-

ΠΟΔΙΑΣΤΟΛΗΣ.

[9] 2014. URL http://palms.ee.princeton.edu/node/22.

[10] Paschalakis, s. lee, p. double precision floating-point arithmetic on fpgas, in proc.

2003 2nd ieee international conference on field programmable technology (fpt ’03),

tokyo, japan, dec. 15-17, pp. 352-358, 2003.

[11] 2014. URL http://palms.princeton.edu/system/files/PLX+1.1+ISA+

Encoding.pdf.

[12] Zhijie Shi Xiao Yang Ruby B. Lee, A. Murat Fiskiran. Refining instruction set

architecture for high-performance multimedia proceswsing in constrained environ-

ments.

89

http://en.wikipedia.org/wiki/Embedded_system
http://www.embeddedcraft.org/ES%20Trends.pdf
http://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
http://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug129.pdf
http://en.wikipedia.org/wiki/LEON
http://en.wikipedia.org/wiki/OpenRISC
http://palms.ee.princeton.edu/node/22
http://palms.princeton.edu/system/files/PLX+1.1+ISA+Encoding.pdf
http://palms.princeton.edu/system/files/PLX+1.1+ISA+Encoding.pdf

Bibliography 90

[13] The PLX ISA, 2014. URL http://palms.princeton.edu/system/files/PLX+1.

1+ISA+Reference.pdf.

[14] Jeff Sondeen Jeff Draper Joong-Seok Moon, Taek-Jun Kwon. An area-efficient

standard-cell floating-point unit design for a processing-in-memory system.

[15] Minas Dasygenis Angelos Ntasios. ”design, implementation and verification of a

customizing ip soft core with fpu support”. Ecescon 7, 2014.

[16] Hardware description language history. URL http://en.wikipedia.org/wiki/

Hardware_description_language#History.

[17] Basic fpga block cell design, 2014. URL http://zone.ni.com/reference/en-XX/

help/371599G-01/lvfpgaconcepts/fpga_basic_chip_terms/.

[18] Clive Maxfield. The Design Warrior’s Guide to FPGAs: Devices, Tools and Flows.

Elsevier, 2004.

[19] Fpga history, 2014. URL http://web.archive.org/web/20070412183416/http:

//filebox.vt.edu/users/tmagin/history.htm.

[20] Short description of fpgas, 2014. URL http://en.wikipedia.org/wiki/

Field-programmable_gate_array.

[21] Xilinx, 2014. URL http://www.xilinx.com/support/documentation/boards_

and_kits/ug535.pdf.

http://palms.princeton.edu/system/files/PLX+1.1+ISA+Reference.pdf
http://palms.princeton.edu/system/files/PLX+1.1+ISA+Reference.pdf
http://en.wikipedia.org/wiki/Hardware_description_language#History
http://en.wikipedia.org/wiki/Hardware_description_language#History
http://zone.ni.com/reference/en-XX/help/371599G-01/lvfpgaconcepts/fpga_basic_chip_terms/
http://zone.ni.com/reference/en-XX/help/371599G-01/lvfpgaconcepts/fpga_basic_chip_terms/
http://web.archive.org/web/20070412183416/http://filebox.vt.edu/users/tmagin/history.htm
http://web.archive.org/web/20070412183416/http://filebox.vt.edu/users/tmagin/history.htm
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Field-programmable_gate_array
http://www.xilinx.com/support/documentation/boards_and_kits/ug535.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug535.pdf

	Declaration of Authorship
	Abstract
	Abstract greek
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Embedded Systems
	1.2 Intellectual Property Cores
	1.3 Soft Microprocessors
	1.3.1 The Picoblaze Soft Microprocessor
	1.3.2 The Microblaze Soft Microprocessor
	1.3.3 The Xtensa Microprocessors
	1.3.4 LEON Microprocessor
	1.3.5 The OpenRISC Microprocessor

	1.4 Floating point arithmetic
	1.4.1 Trade offs between range and precision
	1.4.2 The floating point representation
	1.4.3 The IEEE 754 standard
	1.4.4 Basic IEEE 754 formats

	1.5 The IEEE 754 double precision floating point format
	1.5.1 The sign bit
	1.5.2 The exponent
	1.5.3 The significand
	1.5.4 Floating point normalization

	1.6 The goals of the thesis
	1.7 The Following work structure

	2 The processor
	2.1 Architecture Highlights
	2.1.1 Datapath Size
	2.1.2 Subword Parallelism
	2.1.3 Predication

	2.2 Processor Implementation
	2.3 The first pipeline stage
	2.3.1 The Program Counter
	2.3.2 Program Counter Metric Statistics
	2.3.3 The Instruction Memory
	2.3.4 The data multiplexers
	2.3.5 The stage 1 data flow

	2.4 The second pipeline stage
	2.5 The third pipeline stage
	2.5.1 The Arithmetic Logic Unit(ALU)
	2.5.2 The Multiplier
	2.5.3 The Mix Unit
	2.5.4 The Shifter Unit
	2.5.5 Predicate File, Sign Extension Unit and multiplexers

	2.6 The fourth Pipeline
	2.7 The Fifth Pipeline Stage
	2.7.1 The register Input Unit

	2.8 The control Unit
	2.8.1 The operation decoder
	2.8.2 The stall unit
	2.8.3 The Flag Unit

	2.9 The processor top module
	2.10 Hazards and data corruption
	2.10.1 Read after write hazard
	2.10.2 Branch Hazards
	2.10.3 Structural Hazards
	2.10.4 Pipeline bubbling
	2.10.5 Register Forwading

	3 The Floating Point Unit(FPU)
	3.1 Floating point addition-subtraction
	3.1.1 FPU Adder testbench

	3.2 Floating point multiplication
	3.3 Floating point division
	3.4 The FPU Top Module

	4 The Processor Customization
	4.1 Compatibility
	4.2 ISA Customization
	4.3 Wiring and stalling
	4.4 Processor Testing
	4.4.1 Data Synchronization
	4.4.2 Execution Testing

	5 Tools Utilized
	5.1 VHDL
	5.1.1 The IEEE standard
	5.1.2 Advantages

	5.2 FPGAs
	5.2.1 History
	5.2.2 Modern developments

	5.3 The Xilinx Virtex ML605
	5.4 Xilinx ISE
	5.4.1 The CORE Generator

	5.5 Modelsim Simulation Program

	6 Conclusions
	6.1 Acknowledgements and Compromises
	6.2 Future Work

	A RTL schematics
	B PLX 1.1 Instruction Set Architecture
	C Segments of Code
	D Module control signals
	Bibliography

