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ABSTRACT 

Fully adaptive control charts are efficient Statistical Process Control (SPC) means 

to monitor a quality characteristic affecting the outcome of a manufacturing process. 

Usually, the performance of these adaptive charts is investigated in processes 

characterized by a single assignable cause mechanism. However, this assumption is 

frequently far from reality because a process shift to the out-of-control condition can 

be the consequence of several assignable causes, which can occur at the same time, or 

independently, and may affect the process mean, the standard deviation of the 

process, or both. 

Furthermore, the logical link between quality control and equipment maintenance 

and the improvement of the process performance in case of the incorporation of 

proactive actions to process monitoring techniques necessitated the study of their 

interaction under a multiplicity of assignable causes. 

Another complicated issue is the simultaneous monitoring of multiple correlated 

quality characteristics, which is, undoubtedly, crucial in today’s process applications. 

The independent monitoring of these multiple quality characteristics, especially in the 

presence of high correlation between them, may lead to erroneous monitoring 

policies. 

In this thesis, Variable-Parameter (VP) Shewhart control schemes, monitoring the 

location and scale of processes in presence of multiple assignable causes are 

presented. All the proposed control schemes are both economically and statistically 

optimized. Furthermore, for each of the proposed control schemes a Markov chain 

that models the occurrence of several assignable causes leading to progressive process 

deterioration, and calling for different corrective actions, is developed. 

The motivation and contribution of this thesis precede a detailed literature review. 

In the literature review, statistically optimized control schemes utilized for the joint 

monitoring of location and scale of processes are, firstly, presented. Then, some 

models both economically and statistically optimized for monitoring the mean and the 

dispersion of a process are pointed out. Partially adaptive and fully adaptive control 

charts, that have a better economic and statistical performance compared to their 

respective static ones, are also presented. Furthermore, studies on control charts for 
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monitoring processes subject to a multiplicity of assignable causes and a detailed 

review on integrated maintenance and quality control schemes are presented. Finally, 

multivariate control charts for monitoring processes subject to multiple assignable 

causes affecting both location and scale can be found in the literature review. 

The problem setting and the assumptions of the proposed models both for 

univariate and multivariate processes are also presented in detail. Furthermore, every 

statistical measure utilized to define the statistical performance of the proposed 

control schemes is presented. The extension of the models to the realistic cases of 

imperfect process restoration and downward affection of the process mean increase 

significantly the applicability of the control schemes, introduced in the thesis. 

The first proposed SPC model is a new economic-statistically optimized VP 

control scheme for the optimization of a process operation where two assignable 

causes may occur, one affecting the mean and the other the standard deviation of the 

process. Therefore, it is possible for the process to operate in statistical control, when 

none of the two assignable causes has occurred, or under the effect of one, or both the 

assignable causes. The superiority of the proposed model is estimated by comparing 

its expected total quality-related costs vs. the economic outcome of the respective 

static and partially adaptive control schemes, for a benchmark of numerical examples. 

The numerical investigation indicates that the economic improvement of the proposed 

model may be significant. 

Moreover, the economic-statistical design of a VP control chart monitoring the 

process mean in presence of multiple assignable causes affecting the location of the 

process is presented. A benchmark of examples has been generated to compare the 

performance of the VP control chart with other less-adaptive control charts and the 

Fixed-Parameter (FP) control chart. The obtained results reveal the economic 

superiority of the VP control chart. 

The problem of the possible occurrence of multiple assignable causes that may 

affect both the location and scale of the monitored process is investigated. 

Subsequently, the economic-statistical design of a VP Shewhart control scheme for 

monitoring processes where multiple assignable causes, affecting both the mean and 

the dispersion of the process, is presented. The assignable causes may lead to 

progressive process deterioration and their simultaneous occurrence and the different 
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corrective action for each assignable cause makes the proposed model more realistic. 

An extended numerical investigation is utilized to demonstrate the economic and 

statistical superiority of the proposed model against simpler approaches. An example 

from aviation industry illustrates the application of the model. 

Furthermore, a new VP Shewhart control scheme is presented for the economic-

statistical optimization in cases where apart from multiple independent assignable 

causes, affecting both the mean and dispersion, failures may also occur. Each time the 

control scheme signals an alarm, preventive maintenance (PM) actions are initiated 

which are obviously preferable to corrective maintenance (CM) actions, required after 

a failure. The realistic assumption of imperfect PM actions has been considered. The 

optimal design parameters of the scheme are selected through a bi-objective 

optimization problem formulated by the long-run average cost per time unit 

minimization, and the long-run expected availability maximization, subject to 

statistical constraints. An extended numerical investigation is utilized to demonstrate 

the superiority of the proposed model against simpler control schemes. 

A new fully adaptive multivariate statistical process control (m-SPC) scheme for 

monitoring processes where multiple assignable causes may occur is studied. The 

assignable causes are independent and affect both the mean vector and the covariance 

matrix, which are monitored by a T2 control chart and a multivariate Shewhart control 

chart based on differential entropy, respectively. A real case example is employed to 

illustrate the operation of the proposed model and measure its economic and statistical 

performance for the specific example. 

Finally, the basic conclusions of this thesis, which are presented in Chapter 10, 

can be summarized in the following: 

 The development of the proposed, easy-to-use, monitoring tools allow the 

simultaneous monitoring of both the location and scale of processes under a 

multiplicity of assignable causes. Moreover, the effective monitoring of processes 

where, except for multiple quality shifts, failures are also possible to occur, is now 

feasible. Finally, the development of a control scheme for the simultaneous 

monitoring of multiple correlated quality characteristics allow the monitoring of 

multivariate processes when both the process location and variability are affected by 

multiple shifts. 
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 All the proposed fully adaptive control schemes have a better economic and 

statistical performance compared to the respective, less-adaptive ones. Subsequently, 

the proposed schemes lead to significant cost savings and also enhance the confidence 

of practitioners to the control procedure. 

 The incorrect consideration of a single instead of multiple assignable causes 

imposes a significant cost to the process. This conclusion necessitates the application 

of the proposed control schemes in modern processes where the assumption of only 

one possible quality shift is, in most cases, far from reality. 
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1. INTRODUCTION 

1.1 Overview 

Control charts are widely adopted SPC tools for monitoring the quality of 

processes both in the industrial and service sectors, because, on-line SPC is probably 

the most efficient method to monitor and control the quality of a process when 

process disturbances are not self-announced. In general, samples are taken at specified 

intervals and by plotting a statistic on the control chart, a practitioner can estimate 

whether the process operates in-control (IC) or out-of-control (OOC).  

The implementation of a control chart requires the careful selection of its design 

parameters. For the well-known FP Shewhart chart, the sample size n , the sampling 

interval h  and the width of control limit coefficients k  should be selected. The 

implementation of an adaptive control chart allows each design parameter to vary at 

different levels depending on the position of the last point(s) plotted on the chart. 

Usually, adaptive Shewhart control charts use two values for each design parameter, 

i.e., two levels are allowed for sample sizes  1 2,n n  and/or sampling intervals  1 2,h h  

and/or warning limit coefficients  1 2,w w  and/or control limit coefficients  1 2, ;k k  

for further details see Costa (1994, 1997, 1999b). Depending on which parameters are 

allowed to vary, the adaptive control charts are classified in:  

 Variable Parameter (VP) control charts, if  1 2n n ,  1 2h h  and . 

 Variable Sample Size and Sampling Interval (VSSI) control charts, if  1 2n n , 

 1 2h h  and . 

 Variable Sample Size (VSS) control charts, if  1 2n n ,  1 2h h  and . 

 Variable Sampling Interval (VSI) control charts, if  1 2n n ,  1 2h h  and 

. 

 1 2k k

 1 2k k

 1 2k k

 1 2k k
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The warning limit coefficients  1 2,w w  may be adaptive or not in all 

aforementioned cases. Other adaptive control charts, less known to practitioners, are 

not considered in this thesis. 

Apart from the statistical design of a control chart, where the selection of the 

design parameters aims at optimizing its statistical performance under a constraint 

usually regarding the number of false alarms, it is evident that the economic impact of 

on-line quality control monitoring should be considered when a control chart is 

designed. The economic design of a control chart allows the chart design parameters 

to be selected so as to minimize the expected quality control cost per time unit. 

Typically, multiple assignable causes can have a critical effect on quality 

characteristics, the variability of which is influenced by several process parameters, 

activities and their interactions. An assignable cause shifting one of the parameters 

away from its target value not only can induce a shift in the quality characteristic, but 

can also increase the occurrence rate of any future assignable cause shifting the same 

or other process parameters from their nominal conditions, thus, further aggravating 

the process operating state.  

For example, manufacturing of plastic discrete parts by means of injection 

molding is a process where shrinkage should be maintained under control. Shrinkage 

usually depends on mold temperature, screw speed and their interaction. The 

occurrence of an assignable cause affecting temperature results in a shrinkage shift, 

which usually increases with temperature. Furthermore, the viscosity of pelletized raw 

material also changes with temperature, thus affecting the polymer flow throughout 

the injection unit. This change of physical condition for the raw material can influence 

the screw speed selection and lead to a larger shrinkage shift away from its target 

value.  

In the beverage industry, the plastic (made from Polyethylene terephthalate 

(PET)) bottle blowing is performed at high temperatures by a machine where the set 

point temperature is achieved by means of a series of high wattage lamps. The 

monitored critical-to-quality characteristic is the PET bottle wall thickness measured 

at specific points of a bottle. If one or more lamps do not work correctly or fail, the 

https://en.wikipedia.org/wiki/Polyethylene_terephthalate


3 

 

wall thickness is affected: clearly, the larger the number of lamps showing anomalies, 

the worse the state of process deterioration.  

Similarly, in the production of high precision profiles of mechanical parts, errors 

with respect to profiles specified in the engineering drawing should be maintained 

under control. Several assignable causes can lead to an error: for example, shifts in the 

target position of any controlled axis of the computer numerical control (CNC) 

machine, unexpected bearing wear, tool failures and fixture positioning errors. If a 

fixture position error occurs, not only the actual profile shifts away from the specified 

profile, but also process deterioration to a worse operating state can be induced by the 

increased probability of having a sudden tool failure due to the fixture position error.  

In general, the proposed approaches can be applied to the well-known class of 

Markov processes modeled by reliability theory (see Rausand and Høyland, 2004). 

On-line process monitoring is implemented on a distribution parameter of a critical 

quality characteristic of products manufactured in processes characterized by a set of 

relevant functioning states. These states, characterizing the process, can be ordered 

from the best functioning, which in the SPC context is identified as the in-control 

operating condition, to the worst functioning state, that is, the one corresponding to 

the largest expected shift of the distribution parameter due to the presence of multiple 

assignable causes. Although the first quality control charts monitored the process 

mean of a specific quality characteristic, it is often desirable for a control scheme to 

monitor the standard deviation or to monitor simultaneously the mean and the 

standard deviation in a process where multiple assignable causes may affect both the 

location and scale of the quality characteristics. 

In addition to quality control, a main objective of contemporary industrial 

processes is to achieve ongoing high reliability along with low maintenance costs. 

Several general types of maintenance philosophies have been developed in literature 

to reduce unexpected breakdowns which have a twofold negative effect: they reduce 

the efficiency of the process and they incur high restoration costs. The most 

sophisticated maintenance policy is known as condition-based maintenance (CBM), 

where PM actions are carried out based on condition monitoring techniques. CBM is 

normally preferable to CM actions, required after a breakdown. 
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As it was explicitly stated above, quality control is also an important component 

of a production process, as it is common in industry applications that deterioration to 

less desirable operating states precedes an unplanned failure. It is apparent that an 

intuitive relationship between CBM and SPC exists in real applications. Both of these 

interrelated scientific fields are based on condition monitoring techniques and their 

effective integration can definitely improve the process performance. 

Finally, in recent years, the rapid development of technology has led to even 

more sophisticated processes, where quality should be controlled through the 

simultaneous monitoring of several, usually correlated, quality characteristics. The 

growth of data acquisition methods has also been an important factor for an increase 

in research interest in the field of Multivariate Statistical Process Control and, 

especially, Multivariate Control Charts. 

1.2 Motivation 

The on-line monitoring of either only the location or only the scale of a process, 

as it is commonly found in literature and industry, is not an overall optimized 

approach. Moreover, the presumption of a single assignable cause that may affect the 

quality characteristic is a simplified hypothesis, which is rarely found in practical 

applications. 

There is a need for advanced mathematical models to deal with the complicated 

problem of simultaneous monitoring of location and scale of processes being affected 

by multiple assignable causes. The comprehensive study of sophisticated models aims 

at producing easy-to-use monitoring tools for practitioners, despite the complexity of 

the stochastic models, in a wide variety of industries and services. 

Furthermore, the economic-statistical design of the aforementioned models can 

lead to the reduction of the costs associated with the quality operations, which 

according to Montgomery (2009) are quite large and may even be as high as 35-40% 

of total operations.  

Moreover, the decision-making on quality monitoring and equipment 

maintenance separately results in suboptimal solutions. Consequently, another 
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existing challenge in today’s industry is the integration of quality and maintenance in 

case failures and multiple quality shifts are possible to occur. 

Finally, in cases where the assumption that the quality of the monitored process 

can be adequately characterized by a single quality characteristic cannot be properly 

justified or is untrue, multivariate control schemes should be developed. It is apparent 

that the use of multiple univariate control charts is a simplistic and not effective 

solution. The fact that the majority of processes in real applications are fully 

characterized by multiple correlated quality characteristics necessitates the study of 

multivariate control schemes for processes subject to a multiplicity of assignable 

causes where location and scale are affected. 

1.3 Contribution 

The novel contribution of this thesis lies to the development of advanced models 

for the joint economic-statistical optimization of fully adaptive control schemes for 

monitoring the location and scale of processes subject to multiple, independent 

assignable causes. The fact that the assignable causes may affect not only the mean 

but also the variability of the quality characteristics necessitates the study of general 

control schemes, which have not been studied before, and are applicable to a wide 

variety of processes. 

Additionally, the integration of on-line quality control and maintenance in 

complex environments, subject to a multiplicity of assignable causes and failures, 

results in a state-of-the-art monitoring tool optimized with respect to the average cost 

per time unit and the equipment availability. 

Finally, the joint monitoring of multiple correlated quality characteristics in the 

presence of multiple quality shifts that affect both the process location and scale deals 

with a difficult, yet very realistic problem, especially in modern applications. 

1.4 Structure of Dissertation 

The structure of the dissertation is as follows. In Chapter 2, a detailed literature 

review on control charts is presented. Chapter 3 provides the general assumptions of 

the monitored processes, the model formulation and the employed optimization 
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method. Moreover, the utilized statistical measures and possible extensions of the 

proposed control schemes are given. In Chapter 4, a VP control scheme where two 

assignable causes may occur, one affecting the process mean and one the process 

variability, is presented.  

Chapter 5 provides the study of a control scheme utilized for monitoring 

processes, where multiple assignable causes affecting only the process location, may 

occur. Chapter 6 describes, in detail, the employed approach for the complicated 

problem of computing the transition probabilities and the OOC operation cost, in 

cases where multiple assignable causes, affecting both location and scale, may occur. 

In Chapter 7, a control scheme for univariate processes subject to multiple quality 

shifts affecting the process mean and dispersion is studied.  

Chapter 8 develops an integrated maintenance and quality control scheme, where 

apart from multiple quality shifts, failures that cease the process operation may also 

occur. In Chapter 9, the study of a fully adaptive control scheme for multivariate 

processes in the presence of a multiplicity of quality shifts affecting the process 

location and scale is provided. Finally, Chapter 10 concludes the dissertation along 

with some suggestions on future research. 
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2. LITERATURE REVIEW 

During the last decades several scientists have proposed various statistical quality 

control charts for monitoring a wide variety of processes. The control charts are 

utilized in order to dictate changes in the process inputs based on the monitoring of 

the process outputs so as to achieve operation of the process in the IC state 

(Montgomery, 2009). The first quality control chart was proposed by Shewhart 

(1931), who has inspired many scientists until now. In that pioneering work, a control 

chart is employed to monitor the process mean of a specific quality characteristic. 

However, many control charts have been developed ever since. A thorough review on 

control charts is developed in this chapter. Nevertheless, due to the large amount of 

studies on the specific scientific field and for readability reasons, the literature review 

is divided into categories as described below. 

Although the first quality control charts that appeared in literature were designed 

to monitor the process mean, it is often desirable to monitor the standard deviation or 

to monitor simultaneously the mean and the standard deviation of a specific quality 

characteristic. Consequently, several control schemes for the joint monitoring of both 

parameters have been developed. 

Moreover, the benefit of reducing the quality-related costs achieved by the 

economic design of control charts urged many researchers to utilize the minimization 

of the expected quality cost per time unit as a main objective of any control chart.  

Furthermore, it has soon become evident by many researchers that allowing the 

values of the design parameters to vary according to the results of the sampling 

procedure, can improve significantly the economic and statistical performance of a 

control chart. To this effect, many scientists have developed control charts with 

adaptive design parameters.  

The simplified assumption of a single assignable cause mechanism is unlikely to 

occur in several manufacturing scenarios due to the usual complexity of production 

processes: thus, a control chart can have a poor economic performance if the 

assignable cause behind the shift is different from the one anticipated at the design 
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stage of the chart. To overcome this problem, a stream of research has considered the 

design of control charts for processes with multiple assignable causes. 

Additionally, the interrelationship between maintenance and quality control urged 

the development of integrated schemes to deal with the quality deterioration and 

failures of the equipment. 

Finally, the fact that the quality of many industrial applications is fully 

characterized by multiple correlated quality characteristics led to an increasing 

research interest for multivariate quality control. 

In the following sections, a detailed review on the literature on the 

aforementioned categories of control charts is presented. 

2.1 Joint Monitoring of Process Location and Scale 

Rahim (1989), Saniga (1991) and Gan (1989, 1997) proposed combined schemes 

for joint monitoring of the mean and the standard deviation of a process. Moreover, 

Gan (1995) investigated the use of Exponentially Weighted Moving Average 

(EWMA) control charts for detecting shifts affecting both the process mean and/or the 

standard deviation, whereas, Chen et al. (2001), Khoo and Yap (2005) and Costa and 

Rahim (2006a) proposed a single EWMA control scheme for the same purpose.  

Costa and Rahim (2004a) proposed a statistically designed X  and R scheme 

where sampling is performed in two stages. During the first stage, one item of the 

sample is inspected and, depending on the result, the sampling is interrupted if the 

process is found to be in control; otherwise, it goes on to the second stage, where the 

remaining items of the sample are inspected. He and Grigoryan (2006) utilized a 

genetic algorithm to statistically optimize a joint double-sampling X  and s chart. 

Costa and Rahim (2004b) proposed the statistical design of an EWMA control 

chart that is based on the non-central chi-square statistic, for detecting assignable 

cause(s) that change the process mean and/or increase the variability. 
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Synthetic control charts based on the non-central chi-square statistic for 

monitoring both the mean and the standard deviation of a process were investigated 

by Costa and Rahim (2006b) and Costa et al. (2009). 

2.2 Economic-Statistical Design 

All the previous approaches are statistically optimized, namely, the design 

parameters of the chart(s) are selected so as to satisfy specific statistical measures of 

performance. Nevertheless, it is apparent that the estimation of the optimum design 

parameters of a control chart plays a substantial role for the economic impact of 

monitoring a process. 

When the charts need to be implemented in long run processes, researchers 

usually refer to the models proposed by Duncan (1956) and Lorenzen and Vance 

(1986). Another stream of research considered Taguchi’s loss function, (Taguchi, 

Elsayed, and Hsiang, 1989; Spiring and Yeung, 1998) as the reference cost model. 

Some issues about the economic design of a control chart can be found in a recent 

review by Celano (2011).  

After Duncan’s (1956) pioneering work, where the first fully economic model 

was presented, a stream of research implemented the cost-minimizing criterion for the 

design of control charts that monitor only the mean of a process (see for example 

Bather, 1963, Knappenberger and Grandage, 1969 and Gibra, 1971).  

On the other hand, only few scientists have developed control charts for 

monitoring process dispersion by the use of economic criterions. In particular, 

Trovato et al. (2011) and Castagliola et al. (2011) proposed economically optimized 

s  (standard deviation) control charts. 

Economically optimized control charts for joint monitoring of the process mean 

and variance have been proposed by Saniga (1977, 1989), Saniga and Montgomery 

(1981), Jones and Case (1981) and Mcwilliams et al. (2001). Furthermore, Costa 

(1993) proposed the economic design of a control chart where the process is subject to 

two independent assignable causes, one affecting the mean and the other the variance 

of the process.  
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In the same direction, Rahim and Costa (2000) and Costa and Rahim (2000) 

presented economically optimized control schemes when two independent assignable 

causes may occur, whose occurrences follow Weibull distributions with increasing 

failure rates. Another paper that discussed the economic and economic-statistical 

design of an EWMA control chart for joint monitoring of process mean and variance 

was proposed by Serel and Moskowitz (2008).  

Finally, Lu et al. (2013) investigated the economic-statistical design of a single 

MaxEWMA control chart, for monitoring both the mean and the variability of a 

process, by employing two different EWMA statistics, one for the mean and one for 

the variance, but utilizing the maximum of them as the only monitoring statistic. 

2.3 Adaptive Control Charts 

The common characteristic of the above approaches is that they all assume fixed 

design parameters. Reynolds et al. (1988) were the first to introduce an adaptive 

control chart by allowing the sampling interval to take either a small or a larger value, 

depending on the observation of the previous sample. Several VSI control charts have 

been proposed ever since. Das et al. (1997), Cui and Reynolds (1988) and Bai and 

Lee (1998) presented VSI control charts from an economic perspective. 

Adaptive control charts, where the sample size, instead of the sampling interval, 

is allowed to vary (VSS), were firstly introduced and economically optimized by 

Prabhu et al. (1993) and Park and Reynolds (1994). Moreover, the economic design of 

VSSI control charts has also been investigated by Das and Jain (1997) and Park and 

Reynolds (1999). Celano et al. (2006) proposed statistically designed VSSI control 

charts combined with run rules.  

The obvious conclusion of the aforementioned approaches, namely that adaptive 

control charts have a better economic performance compared to static control charts, 

led to the study of fully adaptive control charts, where all design parameters are 

allowed to vary depending on the sampling outcome. 

Exhaustive information about the economic design of adaptive control charts 

monitoring the process mean can be found in Prabhu et al. (1997) and De Magalhães 

et al. (2002). Moreover, De Magalhães et al. (2001), Costa and Rahim (2001) and 
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Nenes (2011) proposed fully adaptive control charts that monitor the mean of a 

process from an economic point of view. A very interesting adaptive model was 

proposed by Celano et al. (2008). In that paper an economically designed adaptive 

Bayesian chart is proposed, but the assignable cause is assumed to affect only the 

dispersion of the process. 

The common conclusion of the above researches, i.e., the economic and statistical 

superiority of the adaptive control charts compared to their respective static ones, has 

attracted the interest of scientists for adaptive control charts that monitor both the 

mean and the standard deviation of a process. However, due to their increased 

complexity, adaptive control charts for joint monitoring of process location and scale 

have been studied by few scientists.  

In particular, Costa (1999a) developed a VSSI, joint X  and R control chart, 

optimized by the use of statistical performance criteria while Costa (1998) developed 

a statistically optimized VP control chart for joint monitoring of the process mean and 

variance. Reynolds and Stoumbos (2001) and Stoumbos and Reynolds (2005) 

investigated combinations of VSI EWMA-VSI X  control schemes for the problem of 

monitoring simultaneously the mean and the variance of a process. In a different 

context, Ohta et al. (2002) presented an economic model where there are two 

assignable causes (affecting the mean and the variance) but the failure mechanism of 

each cause is governed by a Weibull distribution. 

Furthermore, De Magalhães and Moura Neto (2005) discussed the economic 

optimization of a fully adaptive control chart that monitors jointly the process mean 

and the variance, which are affected by a single assignable cause mechanism. De 

Magalhães et al. (2006) proposed an adaptive, statistically optimized control chart for 

monitoring a process subject to two independent assignable causes that affect the 

process mean and/or the variance. Costa and De Magalhães (2007) extended the work 

of Costa and Rahim (2004b) and developed a statistically designed VP control chart 

that is also based on the non-central chi-square statistic, for detecting assignable 

cause(s) that affect the process mean and/or the variability.  

De Magalhães et al. (2009) proposed a Markovian model for the design of a 

hierarchy of adaptive X  control charts. They showed that it is sometimes equally 



12 

 

effective to use a chart with fewer varying parameters, depending on the size of the 

process shift, and yet achieve good statistical performance. Thus, they did not allow 

for the more general problem setting, where the two assignable causes are 

independent. Additionally, in their model, the design parameters  , , ,n h w k  are not 

allowed to take every possible values, since the optimization procedure necessitates 

specific rules concerning the relationship between the relaxed and tightened design 

parameters. The design parameters are not adaptive but time-varying in a way to 

assure that the failure probabilities, the sample size per time unit and the power of the 

charts remain constant at each sampling interval. 

Wu et al. (2007) proposed a VSSI Cumulative Sum (CUSUM) control scheme for 

joint monitoring of mean and variance. Moreover, Tasias and Nenes (2012) developed 

an economically optimized, fully adaptive, Shewhart control scheme for processes 

subject to disturbances that may affect independently the process mean and the 

variance. Finally, Nenes and Panagiotidou (2013) developed an economically 

optimized, fully adaptive, Bayesian control chart for processes subject to disturbances 

that may affect independently the process mean and the variance. 

2.4 Multiple Assignable Causes  

All cited references assume either one assignable cause, the occurrence of which 

may affect the mean and/or the standard deviation of the process, or two independent 

assignable causes that affect the mean and the process variance.  

Duncan (1971) extended the economic design of the Shewhart X  control chart to 

the multiple assignable cause scenario; similarly, Chiu (1976) investigated the 

economic design of the np charts; both these models assume the same reaction 

(correct detection and perfect restoration) to the occurrence of any assignable cause. 

This assumption has been debated by Tagaras and Lee (1988) who proposed an 

economic model for control charts with different control limits for different 

assignable causes; two levels of corrective actions are considered depending on the 

adjustment required by the process. More recently, the economic design of a multi-

attribute control chart for not overlapping multiple causes has been discussed in 

Jolayemi (2000). Chen and Yang (2002) considered Weibull in-control times for the 

process and investigated the effect of the increasing failure rate on the performance of 
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the multiplicity-cause model vs. the single-cause model. The economic design of VSI 

control charts with multiple assignable causes has been investigated in Yu and Hou 

(2006). 

An important criticism to the economic design of a control chart is supported by 

the consideration that a set of economically optimal design parameters can lead to a 

poor statistical performance (Woodall, 1986, 1987). For this reason, the cost 

optimization problem is often constrained by a lower bound for the expected number 

of samples to be taken between two successive false alarms (i.e., the in-control 

Average Run Length of the chart). The economic-statistical optimization of X  

Shewhart control charts with multiple assignable causes has been investigated in 

Asadzadeh and Koshalhan (2009) and Yu et al. (2010): statistical constraints were set 

on the Type I and II errors to limit the space of feasible solutions of the economic 

design problem. 

With the exception of Tagaras and Lee (1988), all cited references assume either 

that the occurrence of some assignable cause blocks the possible occurrence of 

another cause or, alternatively, call for the same corrective action, regardless of the 

occurring special cause and its effect on the process. The statistical performance of 

VSSI control charts vs. other control charts when the occurrence of an assignable 

cause does not necessarily prevent the occurrence of another assignable cause has 

been investigated by Lee et al. (2007). The proposed approach is different from a 

recently published research, (Celano et al., 2011), where VP control charts have been 

economically designed for processes subject to a single assignable cause and 

corrective action, but random shift size. 

It should be mentioned that due to their increased complexity, control charts for 

simultaneous monitoring of the mean and the standard deviation of a process, where 

multiple assignable causes may occur, are firstly studied in this thesis and are 

previously published in Tasias and Nenes (2016a). 

2.5 Integrated Maintenance and Quality Control Schemes 

The first condition-based preventive maintenance models were proposed by 

Derman (1962, 1963). The first joint optimization of CBM and SPC can be found in 
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Paté-Cornell et al. (1987) and Tagaras (1988). Moreover, Rahim and Banerjee (1993) 

presented an age-dependent preventive policy to tackle the problem of equipment 

failure for processes subject to deterioration. Ben-Daya and Duffuaa (1995), Duffuaa 

and Ben-Daya (1995), Linderman et al. (2005) and Ivy and Nembhard (2005) also 

recognized the strong link between maintenance and quality. 

An economically optimized X  control chart for the integration of SPC and 

maintenance management was studied by Cassady et al. (2000). Chiu and Huang 

(1996), Ben-Daya and Rahim (2000) and Lee and Rahim (2001) also presented the 

economic design of a X  control chart in order to combine preventive maintenance 

policies with quality control. Moreover, Yeung et al. (2007) formulated a Markovian 

process and achieved economic optimization by utilizing a control chart for the 

process mean in conjunction with age-replacement maintenance policy. Zhou and Zhu 

(2008) analyzed the cost of an integration of a control chart and maintenance actions 

by assuming an increasing hazard rate of the failure mechanism. 

Some researchers proposed adaptive control charts to integrate quality and 

maintenance actions. Kuo (2006) utilized a Partially Observable Markov decision 

process to determine the value of the sample size and sampling interval based on the 

current state of the process. Wu and Wang (2011) and Ho and Quinino (2012) studied 

the economic design of VSI control charts for the integration of on-line statistical 

control and maintenance and concluded that the proposed models achieved a 

significant economic improvement against the respective static ones. A VP X  control 

chart was employed by Panagiotidou and Nenes (2009) in order to monitor processes 

where both quality shifts and failures are possible to occur. 

The majority of the aforementioned papers consider control charts that monitor 

only the process mean of the quality characteristic. There are few studies in the 

literature that monitor the process dispersion through the formulation of a quality and 

maintenance model. However, quality shifts that affect both the mean and the 

variability of a process are commonly found in practical applications. Chiu and Huang 

(1995) presented the economic design of joint X  and S2 control charts for preventive 

maintenance. The economic-statistical design of control charts that monitor jointly the 

mean and variability of the process was studied by Caballero Morales (2013) who 
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considered both static and VSI control charts for the integration of PM with general 

failure rates. Yin et al. (2015) also pointed out the need of joint monitoring of mean 

and variance in multi-device integrated SPC and maintenance models.  

In existing literature of integration of SPC and maintenance, only a few scientists 

have considered multiple out-of-control states. Xiang (2013) utilized a discrete-time 

Markov chain to monitor a process with multiple unobservable out-of-control states 

which result in the deterioration of the process. Panagiotidou and Tagaras (2010) 

presented a model for monitoring processes characterized by multiple operational 

states. However, to the best of our knowledge, the complicated scenario of multiple 

quality shifts affecting not only the mean but, also, the variability of the process has 

been studied by Tasias and Nenes (2016b) for the first time. 

In the existing literature of SPC and CBM both the objective function of cost 

minimization (see, for example, Chiu and Huang, 1995, 1996, Ben-Daya and Rahim, 

2000, Panagiotidou and Nenes, 2009 and Ho and Quinino, 2012) and the objective 

function of availability maximization (see, for example, Barlow and Hunter, 1960 and 

Jiang et al., 2012) have been employed. Nevertheless, the trade-off between these 

competing objectives has not been explored in the literature. 

2.6 Multivariate Control Charts 

The pioneering work of Hotelling (1947), who proposed the extension of the 

univariate Shewhart control chart to a chart that monitors the mean vector of 

multivariate processes, has inspired many scientists since then. Jackson (1985), Alt 

(1985) and Jarrett and Pan (2009) have, also, pointed out the need of simultaneous 

monitoring of several key quality characteristics of a process and proposed 

multivariate control charts. Mason and Young (2001) utilized the T2 statistic for 

multivariate statistical process control. Chang and Bai (2004) and Yahaya et al. 

(2011) investigated alternative multivariate T2 control charts. Tracy et al. (1992) 

proposed an exact method for the construction of control limits in multivariate control 

charts. Moreover, Nedumaran and Pignatiello (1999) studied the use of retrospective 

control limits on T2 control charts. Bersimis et al. (2007) carried out a very detailed 

overview of multivariate control charts from the pioneering work of Hotelling (1947) 

until 2006.  



16 

 

2.6.1 Economic-Statistical Design of Multivariate Control Charts 

Similarly to univariate control charts, after Duncan’s (1956) innovative 

implementation of a cost-minimizing criterion for the design of a control chart, many 

researchers have investigated the economic and/or the economic-statistical design of a 

wide range of control charts for monitoring multivariate processes. Specifically, 

Montgomery and Klatt (1972) proposed a cost model for the design of a T2 control 

chart. Molnau et al. (2001) presented the economic design of multivariate EWMA 

(MEWMA) control chart subject to specific statistical constraints. Moreover, Yang and 

Rahim (2005, 2006) proposed the economic-statistical design of a Hotelling’s T2 

control chart when the occurrences of the assignable causes follow Weibull 

distributions with increasing failure rates. Yeong et al. (2014) studied the economic 

and economic-statistical design of a multivariate synthetic control chart. 

2.6.2 Adaptive Multivariate Control Charts 

The general conclusion that adaptive design parameters improve the performance 

of a control chart, has, also, been verified in multivariate T2 control charts. Aparisi 

(1996) and Faraz and Moghadam (2009) presented Hotelling’s T2 control charts with 

adaptive sample sizes (VSS). Faraz et al. (2010) investigated the economic and 

economic-statistical design of VSS Hotelling’s T2 control charts. Furthermore, 

Hotelling’s T2 control charts that allow only the sampling interval to vary (VSI) have 

also been proposed over the years. Aparisi and Haro (2001), Chou et al. (2006) and 

Faraz et al. (2011) studied the design of multivariate VSI control charts through 

statistical and/or economic criteria. Chen (2007a) utilized the Markov chain theory to 

develop a cost model and genetic algorithms for the determination of the optimal 

values of the design parameters of a VSI T2 control chart. Mahadik (2013) extended 

the VSI Hotelling’s T2 control chart to VSIWL chart, where, besides the sampling 

interval, an adaptive warning limit is utilized as well. Champ and Aparisi (2008) 

proposed two Double-Sampling (DS) Hotelling’s T2 control charts, whereas, He and 

Grigoryan (2005) proposed a Multiple-Sampling (MS) control chart for the 

simultaneous monitoring of multiple quality characteristics. In the work of Epprecht 

et al. (2013), a double-dimension T2 (DDT2) control chart is presented, where a 

number of 1p  out of p  variables of the process are monitored and only in case the 
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chart statistic falls in the warning area, the remaining 2p  variables  2 1p p p   are 

combined with 1p  to redefine the T2 statistic. 

Chen and Hsieh (2007) investigated a Hotelling’s T2 control chart with adaptive 

sample sizes and adaptive control limits (VSSC), whereas, Aparisi and Haro (2003) 

and Chen (2009) with variable sampling sizes and sampling intervals (VSSI). 

Moreover, Faraz and Parsian (2006) extended the multivariate VSSI T2 control chart to 

a VSSI T2 chart that utilizes double warning lines (T2 –DWL) and concluded that better 

shift detection ability is achieved. The same conclusion was derived by Faraz and 

Saniga (2011) who compared FP, VSS, VSI, VSSI and MEWMA control charts with 

the respective double warning line VSSVSI chart. Chen (2007b) proposed an 

economically optimized VP T2 chart with a better shift detection ability compared to 

respective, less-adaptive, charts. Furthermore, Faraz et al. (2014) studied the double-

objective economic-statistical design of a VP T2 control chart. 

2.6.3 Multivariate Control Charts for Monitoring Covariance 

 Matrix 

Another stream of research, focused on developing control charts that monitor 

shifts in the covariance matrix of a process. In the late 80s, Alt and Bedewi (1986), 

Healy (1987) and Alt and Smith (1988) studied shifts in the covariance matrix of 

processes, where multiple quality characteristics are monitored simultaneously. 

Guerrero-Cusumano (1995) proposed an interesting approach for testing the 

multivariate variability of a process through the measure of conditional entropy. Tang 

and Barnett (1996a, 1996b) presented some techniques for monitoring the dispersion 

of multivariate normal processes. Aparisi et al. (1999) investigated the statistical 

properties of a multivariate control chart that monitors the process dispersion through 

the generalized variance S . Moreover, Chan and Zhang (2001), Apley and Shi 

(2001), Levinson et al. (2002) and Khoo and Quah (2003) proposed control charts for 

monitoring the dispersion of multivariate processes. Aparisi et al. (2001) extended the 

design of the generalized variance chart to adaptive sampling sizes, whereas, 

Grigoryan and He (2005) to a multivariate Double-Sampling (MDS) control scheme. 

Yeh et al. (2003, 2004, 2005) investigated MEWMA control charts for monitoring 

process variability. A detailed review of the multivariate control charts that monitor 
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the covariance matrix of a process, from 1990 to 2005, can be found in Yeh et al. 

(2006). 

Huwang et al. (2007), Memar and Niaki (2009) and Yeh and Wang (2012) 

presented multivariate control charts for monitoring the process variability for 

individual observations. Furthermore, Hao et al. (2008) investigated a multivariate 

projection chart for monitoring process variability. Costa and Machado (2008) and 

Machado et al. (2009b) proposed the monitoring of the covariance matrix through 

maximum sample variance for bivariate processes while Costa and Machado (2009) 

extended their study to multivariate processes. Costa and Machado (2011a) concluded 

that the chart based on the maximum sample variance (VMAX) has a better 

performance compared to the chart based on maximum sample range (RMAX). 

Recently, Liu et al. (2013) studied a multivariate synthetic control chart for 

monitoring the covariance matrix based on the combination of a conditional entropy 

chart and the conforming run length chart. Maboudou-Tchao and Agboto (2013) 

investigated the case where the number of observations is equal or even lower 

compared to the number of the monitored variables of the process, which normally 

leads the covariance matrix to singularity. Shen et al. (2014) proposed a new 

MEWMA control chart for monitoring covariance matrices, achieving enhanced 

statistical performance. Li et al. (2013) and Mitra and Clark (2014) also presented 

control charts for monitoring shifts in the covariance matrix of multivariate processes. 

Moreover, Lee and Khoo (2015) proposed a VSI multivariate synthetic control chart 

for shifts in the covariance matrix based on the generalized variance control chart. 

2.6.4 Multivariate Control Charts for Joint Monitoring of Location 

 and Scale 

Few researchers have dealt with the problem of simultaneous monitoring of 

location and scale of processes where multiple quality characteristics should be 

monitored. Spiring and Cheng (1998) presented a single control chart for monitoring 

both location and scale of multivariate processes by plotting two variables in a single 

chart. Sullivan and Woodall (2000) studied a control chart for monitoring shifts in the 

mean vector, covariance matrix or both, when multivariate individual observations are 

available. Xie (1999) and Chen et al. (2005) proposed a single MEWMA control chart, 
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whereas, Thaga (2004) a single multivariate CUSUM (MCUSUM) control chart. Chou 

et al. (2002, 2003) proposed the economic-statistical design of multivariate control 

charts for monitoring the mean vector and covariance matrix of processes, 

simultaneously. Yeh and Lin (2002) proposed a single two-dimensional control chart 

for the simultaneous monitoring of mean and variance of multivariate processes. 

Moreover, Khoo (2005) proposed a combination of the Hotelling’s control chart and 

the generalized variance S  control chart for monitoring the mean vector and 

covariance matrix of processes where multiple correlated quality characteristics 

should be monitored. 

Reynolds and Cho (2006) and Reynolds and Stoumbos (2008) proposed a variety 

of combinations of MEWMA and Shewhart control charts for the simultaneous 

monitoring of the mean vector and covariance matrix of processes and compared their 

performance. Reynolds and Cho (2011) extended this idea to adaptive sampling 

intervals in order to achieve better overall performance. Hawkins and Maboudou-

Tchao (2008) combined two EWMA control charts for monitoring the location and the 

variability of a multivariate process and extended their research (Maboudou-Tchao 

and Hawkins, 2011) to monitoring processes from their start-up by re-calculation of 

the mean and standard deviation estimates, each time a sample is collected. Machado 

et al. (2009a) proposed a multivariate control chart based on the sample means and 

sample variances (MVMAX), whereas, Costa and Machado (2011b) proposed a control 

chart based on the standardized sample means and sample ranges (MRMAX) and 

implemented supplementary runs rules to achieve better performance (Costa and 

Machado, 2013). Furthermore, Zhang et al. (2010) investigated a single control chart 

for the simultaneous monitoring of the process mean and variability in multivariate 

cases, by combining the generalized likelihood ratio with the EWMA procedure. 

Recently, the simultaneous monitoring of the mean vector and covariance matrix was 

studied by Yang (2014) through a hybrid ensemble learning-based model, in bivariate 

processes, Wang et al. (2014) through the penalized likelihood estimation and Tasias 

and Nenes (2016c) through a conditional-entropy approach and for a multiple 

assignable cause mechanism affecting both the process location and scale. 
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3. PROBLEM SETTING AND ASSUMPTIONS 

This chapter discusses the general assumptions that apply for every proposed 

control scheme in this dissertation. These model assumptions are divided into two 

categories depending on the type of the monitored process, i.e., univariate and 

multivariate. Additionally, a general framework of the formulation of the proposed 

schemes is provided. Finally, the method employed for the derivation of the optimum 

design parameters is presented. 

3.1 Model Assumptions 

3.1.1 Univariate Processes 

A production process is assumed to operate for an infinite time horizon. The 

process is monitored through a critical quality characteristic X, which is normally 

distributed with target mean T  and target standard deviation T . The initial process 

set-up is assumed to be perfect, that is, manufacturing operations always start with the 

population mean and standard deviation coinciding with the target  0 0,T T     .  

Multiple independent assignable causes may occur at random times affecting the 

mean (m assignable causes, 0m  ) and/or the standard deviation (r assignable causes, 

0r  ) and shifting the process to out-of-control operating states. A process operation 

in any out-of-control state is undesirable, because it inevitably leads to poor quality 

output and/or higher operational cost. It is assumed that the larger the shift size, the 

poorer the quality output and the higher the operational costs. An assignable cause 

leading to a larger shift size can be identified more easily by the control scheme and 

eliminated. 

Moreover, as the process is not self-correcting, only transitions to inferior states 

may occur. The occurrence of an assignable cause does not prevent the occurrence of 

another assignable cause, which can further deteriorate the process performance by 

shifting it to an inferior performance state, which is a state where the deviation from 

the target is larger, while the operational cost and the cost of removing the cause are 

also larger. Namely, OOC operation consists of different levels of “bad-quality” 
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performance, depending on the assignable causes that affect the process mean and/or 

the standard deviation of the process. 

Whenever an assignable cause occurs, the process remains under its effect until 

the occurrence is detected and its effect is removed or until a new deterioration occurs 

and the process is shifted to an inferior state. Furthermore, the assignable causes, 

which may occur independently, have a twofold negative effect on the process: not 

only do they shift either the process mean or the standard deviation or both away from 

target values, they also increase the occurrence rate of other assignable causes with a 

larger effect on the process, leading to progressive deterioration of the process 

performance. 

A shift to a generic out-of-control mean  is measured as a multiple  of the 

standard deviation, that is  . In a similar 

manner, the occurrence of an assignable cause j that affects the standard deviation of 

the process shifts the standard deviation from  to  

. The actual state of the process is defined by the assignable 

causes that may have occurred and is denoted by  .  

The process is monitored by relatively easy to use, fully adaptive, Phase II, 

control schemes, proposed and studied in this dissertation for the first time. The 

proposed control schemes are determined by the values of the sample size n, the 

sampling interval h and the width of the warning limit coefficient w and control limit 

coefficient k, both for the chart that monitors the process mean  ,x xw k  and for the 

one that monitors the standard deviation of the process  ,s sw k . These design 

parameters  , , , ,, , , , ,q q x q x q s q s qn h w k w k  are allowed to vary at two different levels, a 

relaxed  1q   and a tightened one  2q  , where 2 1n n , 2 1h h , ,2 ,1 ,1x x xw w k  , 

,2 ,2 ,1x x xw k k  , ,2 ,1 ,1s s sw w k   and ,2 ,2 ,1s s sw k k  . 

For ease of presentation, the process mean is monitored through the standardized 

sample mean, denoted by , which is compared to the respective warning and control 

limit coefficients. On the other hand, each sample standard deviation, denoted by , 

i i

0 0i i       11,..., , 0i ii m     

0 0j j   

 11,..., , 1j jj r     

 ,i j  0, 0i j 

tz

ts
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is compared to the upper warning and control limits of the control chart that monitors 

the standard deviation, denoted by ,s qUWL  and ,s qUCL , respectively. The upper 

warning and control limits are derived from  and 

, where 

. 

It should be noted that based on the assumption that X is a normally distributed 

random variable, the sample mean is also a normal variable ~  with 

the value of its mean and its standard deviation depending on the actual state of the 

process. Obviously, the standardized sample mean follows a standard normal 

distribution with mean of zero and standard deviation of one  in the IC 

state. Moreover, in order to compute the probability of the sample standard deviation 

to be in one of the central, warning or action zones, a simple transformation to 

variable , which is a continuous random variable following a chi-

square distribution with  degrees of freedom, is necessary. 

The time to the occurrence of each quality shift follows a non-negative 

exponential distribution. The occurrence rates of the assignable causes are denoted by 

  for a transition of the mean (standard deviation) from  to ,  

(j to l, ). 

The transition rates to any inferior state, either for the mean or for the standard 

deviation of the process, when operating under quality shifts i and j, respectively, are 

denoted by  and  . 

3.1.2 Multivariate Processes 

In multivariate processes, the quality of the process is fully characterized by p 

correlated variables. The process is assumed to operate indefinitely and to have a 

perfect initial set-up with  and . Multiple independent assignable 

 2

, 4, 4, 01s q q s qUWL c w c     
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, 4, , 4, 01s q q s q qUCL c k c            4, 2 / ( 1) / 2 / ( 1) / 2q q q qc n n n     

X  2, /i jN n 
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1n

 x i k

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


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   , ,

1 1

,
m r
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k i l j
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causes may occur according to a Poisson process, affecting either the mean vector 

and/or the covariance matrix.  

A realistic assumption is that a transition of the process from one state to another 

is possible only if no quality characteristic is improved. In other words, no self-

correction is allowed. Furthermore, similarly to the univariate case, when the process 

operates OOC due to the occurrence of an/some assignable cause/es, it remains under 

their effect until the occurrence is detected and appropriate corrective actions restore 

the process to the IC state, or until a new deterioration occurs and the process is 

shifted to an inferior state. 

The quality characteristics are assumed to follow a p-variate normal distribution 

with known in-control mean vector  and in-control 

covariance matrix .  

The occurrence of an assignable cause i that affects the mean vector shifts the 

mean vector from  to , without affecting 

the covariance matrix which is assumed to remain constant. On the other hand, the 

occurrence of an assignable cause j that affects the covariance matrix shifts only the 

covariance matrix away from its target value  to 

. 

The correlations between the quality characteristics are assumed to remain 

constant and unaffected by the assignable causes. This is a common assumption in the 

literature made by many researchers (Costa and Machado 2011b; Celano et al. 2014; 

Chen et al. 2002). 
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Similarly to the univariate case, multivariate processes are monitored by a control 

scheme determined by the following design parameters  , , ,, , , , ,q q mv q mv q cm qn h w k w

,, ,cm qk  1q   (2) for the relaxed (tightened) set, where 2 1n n , 2 1h h , ,2mvw 

,1mvw  ,1mvk , ,2 ,2 ,1mv mv mvw k k  , ,2 ,1 ,1cm cm cmw w k   and ,2 ,2 ,1cm cm cmw k k  . 

The sets of assignable causes that affect the mean vector and the covariance 

matrix are denoted by  and , respectively. The occurrence rates of the 

assignable causes are denoted by   for a transition of the mean 

vector (covariance matrix) from i to k (j to l). The transition rates to any inferior state 

either for the mean vector or for the covariance matrix of the process, when operating 

under assignable cause i and j, respectively, are denoted by  and  

.  

It should be mentioned that in order for the covariance matrix to have full rank 

and be invertible, the sample size n should be greater than the number of the 

correlated quality characteristics p .  

3.2 Model Formulation 

It is assumed that only by means of an on-line sampling procedure can the effect 

of an assignable cause be detected. Specifically, at each sampling instance a sample is 

collected from the process and, either the mean and standard deviation as regards 

univariate processes or the mean vector and covariance matrix as regards multivariate 

processes, are computed. Based on this information, decisions are made concerning 

not only the process, but also the control scheme itself. Specifically, it is decided 

whether the process must be stopped or not, what should the next sample size be, how 

long should the process operate until the next sampling instance and what should the 

values of warning and control limits be. 

The answers to the above questions depend on the values of the statistics of the 

collected sample and the severity of the control procedure (relaxed or tightened). The 

values of the control limits and warning limit coefficients of the two control charts 

mvm cmr
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define three regions (zones) on the charts, the central, the warning and the action 

zone. 

All the possible decisions at any sampling instance t are denoted by ta  and are 

defined as: (a) 0ta   if the process should not be interrupted; (b) 1ta 
 
if there is a 

warning for the effect of some assignable cause and the control of the process has to 

be tightened; (c) 2ta   if an alarm is issued and the process must be stopped for 

investigation and possible restoration if an assignable cause has indeed occurred.  

Whenever the control scheme indicates a possible out-of control operation of the 

process, an inspection takes place, in order to reveal any possible assignable cause’s 

effect. Then, if an assignable cause has indeed occurred, the process is perfectly 

restored to the IC state ( 0   and 0  ). It is assumed that the process does not 

continue its operation during search and repair. However, this assumption can be 

relaxed and the model can be easily modified to account for the case where the 

process continues its operation during search and repair.  

Each assignable cause calls for a different corrective action, depending on the 

out-of-control state characterizing the process. If no assignable cause has occurred, 

the process, obviously, remains IC. Thus, after any signal of the scheme for an alarm, 

the process will resume its operation from the IC state. 

As already mentioned, the actual state of the process at any sampling instance t is 

denoted by  and is fully defined by the assignable causes that may have affected the 

process location and/or variability. Subsequently,  0,0tY   corresponds to the in-

control condition, whereas tY       0,1 ,..., 0, r       , 1,0 , 1,1 ,..., 1, ,...,r

      ,0 , ,1 ,..., ,m m m r , refers to an out-of-control condition due to the occurrence 

of at least one assignable cause (for multivariate processes m refers to mvm  and r 

refers to cmr ). 

 A three-dimensional DTMC  ,t tY a  is utilized, exploiting the assumption that the 

time for the occurrence of an assignable cause is an exponentially distributed random 

tY
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variable, to describe both the actual state of the process and the decision made at each 

sampling instance. It should be mentioned that a special feature of this DTMC is that 

the duration of each transition step, i.e., the actual duration between the beginning of 

two successive sampling intervals, may be different in actual time units. This happens 

due to the variable sampling intervals and the time delays we have considered for 

searching and removing an assignable cause or revealing a false alarm, which will be 

hereafter discussed.  

The general expression of the transition probabilities, which represent the 

probability for the process to operate in state  ,t tY a  at the end of a transition step is 

based on Markov chain theory and is defined as follows:  

   1 1, , , ,t t t tP a v Y k l a u Y i j 
       for    , 0, , , 0,i k m j l r  , and u, v = 0,1,2 

The cost of lost production time for the process investigation and the cost of the 

time needed for the removal of an assignable cause are included in the costs of 

investigation and restoration, respectively. The time to search and restore the process 

from state  ,i j  is denoted by 
 ,i j

T . It should be noted that the expected time for the 

process restoration from an assignable cause is positively correlated with the effect of 

the assignable cause to the process (
   , ,

0
k l i j

T T   for 0k i  , 0l j  ). Finally, 

the time needed to reveal a false alarm is denoted by 
 0,0

T . It is assumed that 

   0,0 ,i j
T T   , 0i j  . 

The cost elements that have an economic impact on the process and arise from 

the process monitoring can be divided into four different categories: (a) the sampling 

costs, which can be divided into a fixed cost per sample b and a variable cost per 

sample unit c. For multivariate processes, the variable and fixed costs for sampling 

and testing are considered to be different for each quality characteristic and are 

denoted by  and  , respectively; (b) the cost per time unit of 

operation under the effect of assignable causes i and/or j, denoted by 
 ,i j

M ; (c) the 

cost for the restoration of the process to the IC state by removing the effect of 

assignable causes i and j     , 0,0i j  , denoted by 
 ,i j

L ; (d) the false alarm cost 

c b  1,2,..., p 
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 0,0
L , when the production is erroneously stopped for investigation of the process for 

possible assignable causes (because no assignable cause has actually occurred). It is 

apparent that the lower the effect of an assignable cause to the process location and/or 

variability, the lower the 
 ,i j

M  and 
 ,i j

L  costs. 

As already defined, the process starts IC and continues its operation until an OOC 

signal occurs and the process operation is halted for an inspection. This quality cycle, 

that consists of production, monitoring and inspection, is assumed to be a renewal-

reward process till the actual process restoration.  

The total quality-related cost per time unit, denoted by ECT, may be computed as 

the ratio of the expected cost of a transition step, denoted by EC, over its expected 

duration, denoted by ET . The average cost (duration) of a 

transition step may be evaluated as the weighted average of the expected cost 

(duration) of each of the possible states of the process. The minimization of ECT 

defines the optimum design parameters and is also utilized as the basic measure of 

economic performance for the proposed models. 

It is worth noting that the proposed models discussed in this thesis can be easily 

extended to any other partially adaptive respective control scheme. 

3.3 Optimization Method 

For the derivation of the optimum design parameters, it is assumed that the two 

warning limits of each control chart are the same. This assumption is made in order to 

simplify the proposed schemes and, is based on the research of Park and Reynolds 

(1999), who found the marginal cost reduction, i.e., the reduction in the total cost 

when the number of warning limits is incremented by one, too small to justify the 

extra complexity. It should be noted that this does not affect in any way neither the 

description of the proposed control schemes, nor the preceded model development. 

In order to define the optimum set of design parameters, denoted by 
qDP , for 

each of the proposed control schemes, an exhaustive, two-step algorithm has been 

developed. First, a coarse discretization is used to define the allowable values of each 

parameter. In particular, each design parameter is allowed to vary in 0.5 increments 

 /ECT EC ET
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within a pre-specified range, with the exception of the sample sizes  1n  and 2n , for 

which we use an increment of 5. The minimum allowable values of the design 

parameters are:  1 2 1, , ,h h n 2 ,1 ,2, , , ,x x xn w k k
,1 ,2 min

, ,s s sw k k  0.1,0.1,2,2,

0.1,0.1,0.1,0.1, 0.1,0.1 , whereas, the set of the respective maximum allowable values 

is the following:  1 2 1, , ,h h n 2 ,1 ,2, , , ,x x xn w k k
,1 ,2 max

, ,s s sw k k   1 27.1, , ,32,h n

,2 ,1 ,2,5.1, , ,x x sk k k
,15.1, sk  . After the derivation of the near-optimum parameters of the 

first step (with the coarse discretization), a more fine discretization is used. In 

particular, we examine all values of  in the range of ±0.5 

around their respective near-optimum values of the first step of the algorithm, with an 

increment of 0.1, and all values of  in the range of ±5 with an increment of 1. Of 

course, these ranges are further limited by the conditions , , 

 and . Obviously, regarding multivariate 

processes ,1 ,2 ,1 ,2, , , , ,x x x s s sw k k w k k  should be substituted by ,1 ,2, , ,mv mv mvw k k

,1 ,2, ,cm cm cmw k k , respectively. 

3.4 Statistical Measures 

The model described above implements just one transition probability matrix to 

fully represent the process operation. Thus, it can be easily used not only to get the 

economic design of any adaptive control scheme but also to estimate several 

important measures of statistical performance. The values of these statistical measures 

can be evaluated, given the proposed Markov chain formulation, through the steady-

state probabilities of the process. 

 Type I error   

In the conventional Shewhart chart, the Type I error probability (α) is defined as 

the probability of issuing an alarm, given that the process operates in statistical 

control. Given the proposed Markov chain model formulation, the Type I error 

probability (α) is equal to the ratio of the probability of issuing a false alarm   0,0 2
  

over the probability of operating in-control in the long run       0,0 0 0,0 1 0,0 2
    : 

1 2 ,1 ,2 ,1 ,2, , , , , , ,x x x s s sh h w k k w k k

1 2,n n

2 10.1 h h  1 22 n n 

,2 ,10.1 x x xw k k   ,2 ,10.1 s s sw k k  
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 

     

0,0 2

0,0 0 0,0 1 0,0 2




  


 
              (3.1) 

 Average number of false alarms per time unit ANOF 

The average number of false alarms per time unit (ANOF), can be computed as 

the ratio of the probability of issuing a false alarm over the average length of a 

transition step: 

 
 0,0 2

ANOF
ET


        (3.2) 

 Average power of the chart 1   

The power of a conventional Shewhart chart  1   is defined as the probability 

of issuing an alarm, given that the process actually operates under the effect of an 

assignable cause. With reference to the multiple assignable cause scenario, the power 

of the chart   ,
1

i j
  vs. the assignable causes leading to state  ,i j  is given by the 

ratio of the probability of issuing an alarm 
 , 2i j

  over the probability of operating out-

of-control 
       0,0 0 0,0 1 0,0 2

1      . 

 

 

      
, 2

,

0,0 0 0,0 1 0,0 2

1
1

i j

i j




  
 

  
           (3.3) 

It should be noted, however, that the above probability varies with  ,i j  and is 

expected to increase as the magnitude of shifts, i.e.,  and 
j , get larger values. 

Thus, a more appropriate measure to estimate the overall power of the chart is the 

weighted average power, denoted by 1  , which can be computed as: 

i
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and thus, 

 

         

, 2

, 0,0
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 

               (3.5) 

 In-control average run length ARL0 

The in-control average run length (ARL0) can be computed by the well-known 

following function of α: 

     

 

0,0 0 0,0 1 0,0 2

0

0,0 2

1
ARL

a

  



 
          (3.6) 

 Weighted out-of-control average run length WARL 

Similarly, it is possible to estimate an expected out-of-control average run length 

(WARL ), which is defined here as the weighted average number of samples that are 

needed to have a chart signal revealing the occurrence of any assignable cause: 
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
     (3.7) 

 Expected time between two successive detections of the assignable cause 

ATC   

Another statistical measure of performance that might be of interest to the 

practitioners is the expected time between two successive detections of assignable 

causes (ATC), which can be viewed as the analogue to a cycle in the traditional case 

of renewal reward processes. It can be computed as the ratio of the average length of a 
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transition step, ET, over the sum of the probabilities of detecting the actual occurrence 

of any assignable cause:  

( , )2

( , ) (0,0)

i j

i j

ET
ATC







           (3.8) 

 Expected time between the occurrence and the removal of an assignable 

cause EATR 

If the expected time of in-control operation   ,0 ,01/ x sv v  is subtracted from 

ATC, then the expected time from the occurrence until the detection of an assignable 

cause EATR is estimated as: 

   
   

 ,0 ,0 ,0 ,0, 2
, 0,0

1 1

x s x si j
i j

ET
EATR ATC

v v v v


   
 

            (3.9) 

As stated above, EATR includes the time to remove the assignable cause, i.e., it is 

the average time from the occurrence of some assignable cause until the time that the 

process resumes its operation from the in-control state. In case of negligible times to 

search and remove the assignable causes, EATR essentially reduces to the Expected 

Average Time to Signal (EATS). 

The statistical measures play a key twofold role in the proposed control schemes. 

Firstly, acceptable statistical performance of each and every one of the proposed 

control schemes is assured through specific statistical constraints. Moreover, they may 

be utilized to monitor the statistical performance and to statistically compare different 

schemes. 

The choice of the exact value of an upper or lower bound set to a statistical 

measure should be made on a case by case basis and after careful scrutinization 

according to the monitored process in order to assure, apart from acceptable statistical 

performance, feasibility in real production applications, as well. In the optimization 

problem section of every chapter, the reader can find the non-binding choice of 

statistical constraints utilized for each control scheme. 
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3.5 Possible Extensions 

3.5.1 General Features 

It is worth noting that the general proposed problem setting, which accounts for 

multiple assignable causes affecting the mean and the standard deviation, may be 

utilized to monitor a process in various ways, after the modification of the 

aforementioned assumptions. 

Specifically, through some simple modifications the applicability of the proposed 

model can be enhanced to monitor processes where: (a) a continuous deterioration 

mechanism is present; (b) in case of a single quality shift but multiple assignable 

causes that scale-up the occurrence rate of this shift; (c) maintenance actions are, also, 

required: 

(a) Our problem setting can be used as a way to model the ageing process of the 

equipment in various ways. It could be assumed that the transition of the process 

mean and standard deviation from IC state to the assignable cause with the larger 

effect, let’s say m and r, is only possible through the operation under every 

possible assignable cause, i.e., 
 
and  for every  and 

 and only , . In such case, every possible state 

from  to  are transient states and  is the absorbing state. 

Under this assumption, the proposed models are simplified to monitor a process 

with a continuous deterioration mechanism, for example the ageing process of a 

working tool, without allowing any “jumps” of the mean or the standard 

deviation. 

(b) The proposed models can be modified to the single assignable cause scenario, 

where only one assignable cause may affect the mean m ( , 1,..., 1i m  , 

) and one the standard deviation r ( 1j  , 1,..., 1j r  , 1r  ), but every 

intermediate state between  and  is assumed to increase the 

probability of the shift. This way, the shift is assumed to follow a generalized 

Erlang distribution.  

  0
x i k



   0

s j l



 1k i 

1l j 
 1

0
x i i


 
  1

0
s j j


 


 0,0  1, 1m r   ,m r

0i 

0m 

 0,0  ,m r
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(c) The proposed model, in the single assignable cause scenario, can be also utilized 

(with some modifications) as a maintenance model, by considering the IC state as 

the only healthy state, the  state as the only failure state and every 

intermediate state as deteriorated states. In such case, if the model issues an alarm 

and the process is in a deteriorated state, preventive maintenance actions are 

carried out to restore the process to the healthy state and, therefore, reduce the 

probability of the process transition to the failure state. Moreover, it is also 

interesting to note that all intermediate states are allowed to have different 

operating costs. Even in the simpler case, where the intermediate states are not 

associated with increased operational costs (
 ,

0
i j

M   for all i m  and j r ), 

signals issued by the chart while operating in those states, are not considered as 

false alarms. On the contrary, these alarms signify interventions which have 

actually a preventive maintenance character since they restore the process to state 

zero and reduce the probability of (or equivalently increase the expected time to) 

the occurrence of the final assignable cause. This possible extension of the 

proposed problem setting to an integrated maintenance and quality control 

scheme is comprehensively presented in Chapter 8. 

3.5.2 Imperfect Process Restoration 

As mentioned earlier, if an alarm is issued by the control scheme  2ta  , then, 

the process is stopped and, if an assignable cause has indeed occurred, perfectly 

restored to the IC state. However, the restoration to the IC state may not be perfect. 

Specifically, it may be possible for the process to continue its operation under the 

effect of an assignable cause, even after the process has been stopped, the specific 

assignable cause has been detected and the restoration of the process has been 

attempted. The extension of the proposed model to cases where restoration to the IC 

state may not be perfect becomes even more important, because of the indiscernible 

restoration of assignable causes that affect the standard deviation, whenever it is 

needed.  

 ,m r
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Under the assumption of imperfect process restoration, the process may be 

restored from any state    , 0,0i j   to any other superior state ( , )u v  according to 

given probabilities, which are denoted by ( , )
( , )
i j
u v

q : 

   

   

( , )
( , )

( , )
( , ) 0

i j
u v

i j
u v

q u i v j
q

u i v j

   


 
  

       (3.10) 

Apparently, 
( , )
( , )0 0

1
ji

i j
u vu v

q
 

  and (0,0)
(0,0)

1q  .  

This general assumption for imperfect process restoration is realistic in many 

production processes and the restoration probabilities may be estimated from 

statistical data upon a Phase I analysis of the monitored process. A perfect process 

restoration policy can be easily accounted by setting ( , )
(0,0)

1i jq   and ( , )
( , )

0i j
u v

q   for any 

   , 0,0u v  . 

This extension of the model modifies neither the operation of the control schemes 

nor the Markov chain that models each control scheme’s operation. Nevertheless, it 

affects the values of some of the transition probabilities, so as to account for the 

probability of imperfect restoration. The affected transition probabilities are those 

corresponding to a true alarm, namely the ones where 2ta   and  0,0tY  : only 

when the process is operating within one of these transition states, may an imperfect 

restoration take place.  

A detailed implementation of imperfect process restoration in case of an alarm 

has been developed for the most sophisticated proposed model where multiple 

assignable causes and failures may occur and is presented in Chapter 8, Section 8.5. It 

is obvious that, in a similar and even simpler manner, each of the proposed control 

schemes could be modified to account for the realistic assumption of imperfect 

process restoration.  
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3.5.3 Two-Sided Control Charts 

The proposed control schemes for univariate processes can be easily extended to 

cases where the assignable causes reduce the process mean  0 0 , 0i i i        . 

On the other hand, for multivariate processes, a one-sided chart for the process 

location is considered, because the mean vector is monitored through the distance of 

the sample mean vector  from the target mean vector  and only upward shifts 

constitute deterioration of the process performance, as it will be explained in detail in 

Chapter 9. 

It should be noted here that, regarding the assignable causes that may affect the 

standard deviation, we deliberately leave them to cause only upward shifts of the 

process standard deviation  1   since any downward shifts  1   would 

essentially mean a process improvement. It is thus reasonable to consider only one-

sided s charts since in most real cases it would be unreasonable to consider that the 

process may improve by itself and try to “capture” this by adding lower control (and 

warning) limits in the s chart. In a similar manner, a downward shift of the covariance 

matrix would, unreasonably for our model, imply a self-correction of the process. 

 The detection of an assignable cause that may either increase or decrease the 

process mean, necessitates the use of a two-sided control chart. The extension of the 

model to its two-sided version does not affect the operation of the control schemes, as 

it has been described previously. However, the transition probabilities of the 

respective Markov chain need to be slightly altered to incorporate the two-sided effect 

of the assignable causes that affect the process mean. It is apparent that the value of 

each transition probability would essentially remain the same for both positive 

 0i   and negative shifts  0i   due to the symmetry of the normal distribution 

around i . 

  

'x 0 '
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4. VP X s  CONTROL SCHEME (VP1) 

4.1 Introduction 

In this chapter, a new economic-statistically designed, fully adaptive control 

scheme is developed for processes where two independent assignable causes may 

occur, which affect the mean  1m   and/or the standard deviation  1r   of the 

distribution of the quality characteristic to be monitored.  

This chapter is organized as follows. In Section 4.2 the stochastic model that 

describes the operation of the control scheme is presented. In Section 4.3 the cost 

model is constructed. Section 4.4 describes the optimization problem and Section 4.5 

provides an illustrative example. Finally, in Section 4.6 a numerical investigation is 

carried out and performance comparisons against less sophisticated control schemes 

are performed. 

It should be noted that this chapter is based on the paper of Tasias and Nenes 

(2012). 

4.2 Mathematical Model 

A fully adaptive Shewhart-type VP X s  control scheme, denoted by 1VP , is 

utilized to monitor the process. The control scheme’s operation can be summarized as 

follows: 

 If both the standardized mean of the collected sample and its standard deviation 

are plotted within the “so-called” central regions of the control charts, which 

essentially means that both statistics are below the warning limits (and of course 

could even be below the central lines of the charts), then a decision is taken to let 

the process continue its operation ( 0)ta   and a relaxed sampling is scheduled at 

the next inspection. Thus, the next sample size will be 1n  and the next sampling 

interval should be 1h . Finally, the warning and action control limit coefficients of 

the two control charts should be ,1 ,1 ,1, ,x s xw w k  and ,1sk , because the process seems 

to operate in statistical control. 
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 If the standardized sample mean, or the sample standard deviation, or both of 

them fall within the warning regions of the control charts, but none of them is in 

the action region, then there is a warning that an assignable cause has occurred 

and thus, 1ta  . Therefore, the control scheme switches to a different state, 

named warning state, and the control gets more tightened by waiting less time 

before taking the next sample: in fact the next inspection is scheduled after 2h  

time units  2 1h h , the size of the next sample is increased to 2n   2 1n n  and 

the action limit coefficients for the next sampling get narrower 

 ,2 ,1 ,2 ,1,x x s sk k k k  .  

 Finally, when a standardized sample mean, or sample standard deviation, or both 

of them fall in the action region of the two control charts, an alarm is issued 

 and the production run is stopped. An investigation reveals with 

certainty the process status and if an assignable cause has actually occurred, a 

restoration to IC state takes place. Assuming that the repair procedure is perfect, 

the process is always restored in the IC state and the next sample’s parameters 

will be 
1 1 ,1 ,1, , , , ,x x s sn h w k w k . 

The regions described above in the two one-sided control charts are illustrated in 

Figure 4-1. The dotted lines depict the tightened warning and control limits and the 

arrows (dotted or not) the regions. 

             

       

                   

     

                                                                                
  

 

 
 

Figure 4-1: Regions of the 1VP  control scheme 
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The two assignable causes are not correlated and affect the process 

independently: thus, the process may operate in any of the four following states, at 

any sampling instance t. Specifically, if the process operates in statistical control, i.e., 

when 0   and 0  , then  0,0tY  . In the same way,  0,1tY   when 0   

and 1  ,  1,0tY   when 1   and 0   and  1,1tY   when 1   and 

1  . 

Given the possible values of each of the two components that constitute the three-

dimensional state,         0,0 , 0,1 , 1,0 , 1,1tY   and 0,1,2ta  , a 1212 transition 

probability matrix P can be formed as follows.  

1

( , ) (0,0) (0,1) (1,0) (1,1)

0 1 2 0 1 2 0 1 2 0 1 2

( , )

0

(0,0) 1

2

0

(0,1) 1

2

0

(1,0) 1

2

0

(1,1) 1

2

t

t

k l

a

i j a 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
    

Figure 4-2: Transition Probability Matrix of the 1VP  control scheme 

In order to compute the transition probabilities of the transition probability matrix 

P, every probability for the process moving from any state to any other state, must be 

first computed. Based on the fact that the two assignable causes affect independently 

the mean and the standard deviation of the process, the probability of a transition from 

any state  ,i j  to any other possible state  ,k l , can be computed from the following 

expressions: 
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 
 

     0,0 0 1 0 1

0,0

( ) exp expq q qx s
p h h h 

 
             (4.1) 

 
 

      0,0 0 1 0 1

0,1

( ) exp 1 expq q qx s
p h h h 

 
               (4.2) 

 
 

      0,0 0 1 0 1

1,0

( ) 1 exp expq q qx s
p h h h 

 
      

 

          (4.3) 

 
 

       0,0 0 1 0 1

1,1

( ) 1 exp 1 expq q qx s
p h h h 

 
                       (4.4) 

 
 

  0,1 0 1

0,1

( ) expq qx
p h h


         (4.5) 

 
 

  0,1 0 1

1,1

( ) 1 expq qx
p h h


           (4.6) 

 
 

  1,0 0 1

1,0

( ) expq qs
p h h


        (4.7) 

 
 

  1,0 0 1

1,1

( ) 1 expq qs
p h h


           (4.8) 

The exact expressions for all the transition probabilities are equal to the product 

of the probability of the transition of the actual state of the process (equation (4.1) to 

(4.8)) times the probability to make the decision at  at sampling instance t 

and can be computed from the following expressions (  defines whether relaxed or 

tightened parameters have been utilized (for  ). It should be 

mentioned that the probability of any transition, if no investigation takes place, is 

computed only for cases where  and equals zero otherwise 

: 

 0,1,2ta 

1ta 

 1 0 1ta    1 2q 

   i k j l  

    i k j l  
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 

 
 

   

 
 

 

 

1

2

,2

1,

, 0

2

, ,2

1

0

( , ) ,
( , ) ,

,2

1

1 0

1

q

q

t

t

q

x k q s q

q n q ti j

k l l l

x q k q s q

n q

l l

i j a q qi j
k l a k l

x k q s q

n

l

w n UWL
p h P n a

k n UCL
P n

Prob h p h
w n UWL

P




  




  














    
        

       

    
        

       
 

 
   
 
 

 

 
 

   

2

0

2

, ,2

1,

, 0

1

1

1 1 2
q

t

q

l

x q k q s q

q n q ti j

k l l l

a

n

k n UCL
p h P n a

 




  






  
  
  


  
    
     

      


      
           

          

 

(4.9) 

It should be noted that the transition probabilities of the 3rd, 6th, 9th and 12th line 

of the transition probability matrix P (see Figure 4-2), are equal to the respective 

transition probabilities of the first line of P. The reason is that each time the 

production run is stopped for investigation and possible restoration, namely every 

time there is a standardized sample mean, sample standard deviation, or both, falling 

within the action region, the process is interrupted and restored (if needed) certainly, 

to the IC state. As a result, the probability thereafter of a transition to every possible 

state from each of the above states equals the respective probability of transition from 

the IC state.  

   ( , )2 (0,0)0 1
( , ) ( , )t t

i j q
k l a k l a

Prob h Prob h

  

        (4.10) 

The steady-state probabilities, which represent the long-term probability for the 

process being in state  ,t tY a  are denoted by 
t tY a  and are computed by solving the 

following linear system: 

 
 

 

1 1 1 1

1 1

1,1 2

0,0 0
t t t t t t

t tt t

Y a Y a q Y a
Y aY a

Prob h 
   

  

  
 

and 

 1,1 2

(0,0) 0

1
t t

t t

Y a

Y a


 

 
            

(4.11) 

Note that the idea of using the steady-state probabilities to describe both the 

condition of the process and the decision indicated by the control scheme has also 

been used for VP X  charts in Nenes (2011) while it was first introduced in Nenes 

and Tagaras (2008) for fixed-parameter charts. 
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4.3 The Economic-Statistical Design 

In order to compute the average cost of a transition step EC, we first need to 

compute the expected OOC operation cost of the process, starting from state  ,i j  at 

the beginning of a sampling interval of duration 
qh , denoted by    , qi j

K h . 

For the computation of    , qi j
K h , the following parameters should be computed:  

(i) The cost per time unit if no assignable cause occurs and the process remains 

under the effect of state  ,i j    ,i j
M  for the whole interval, multiplied by the 

probability that no assignable cause occurs within the interval 

   , ,exp x i s j qv v h   , multiplied by the duration 
qh . 

(ii) The cost per time unit if only the process mean (standard deviation) is shifted, 

multiplied by the probability that such a scenario occurs, times the expected 

duration the process remains under the effect of state  0, j  and    ,0i  and 

 ,1i . 

(iii) The cost per time unit if both the mean and the standard deviation are shifted 

within a transition step. In this case, two scenarios are possible to occur: the 

assignable cause that affects the process mean to occur first and then the 

assignable cause that affects the standard deviation and vice versa.  

The expected time of the occurrence of each assignable cause when both of them 

occur within a transition step, denoted by  for the precedent assignable cause and 

by  for the second one, have been discussed and analyzed in Nenes and 

Panagiotidou (2013) and are computed from the following expressions:  

 
             

             
1

1

1 1 1 2 2 1 2 10 1 0 1 , 1 , 1

0(1)

1 1 2 2 1 2 10 1 0 1 , 1 , 1

0

exp exp

exp exp

q q

q q

h h

x s x s

t

q h h

x s x s

t

t t v v t t dt dt

h

t v v t t dt dt

   



   

 

 

         



        

 

 
 

(4.12)

 

 1, j

 1


 2

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 
             

             
1

1

1 1 2 2 2 1 2 10 1 0 1 , 1 , 1

0(2)

1 1 2 2 1 2 10 1 0 1 , 1 , 1

0

exp exp

exp exp

q q

q q

h h

x s x s

t

q h h

x s x s

t

t t v v t t dt dt

h

t v v t t dt dt

   



   

 

 

         



        

 

 
 

(4.13) 

It should be noted that in case the first assignable cause affects the process mean, 

then 1  should be substituted by 
 0 1x




 and 2  by 
 0 1s




. The exact opposite, i.e., 

the substitution of 1  by 
 0 1s




 and 2  by 
 0 1x




, should be made in case the first 

assignable cause affects the standard deviation. Obviously, the intermediate state 

would be 
  ,1, 1 xx

v v , 
  ,0, 1 ss

v v  in the first case, i.e., the first assignable cause shifts 

the process mean from its target value, and 
  ,0, 1 xx

v v , 
  ,1, 1 ss

v v  in the second case. 

In a similar manner, the probability of each of the two scenarios to occur within a 

sampling interval of duration 
qh , given that both assignable causes occur within the 

interval, is derived from the following equation: 

  
 

             
1

0,0 1 1 2 2 1 2 10 1 0 1 , 1 , 1
1,1 0

Pr ,2 exp exp

q qh h

q x s x s

t

h t v v t t dt dt   
 

          

(4.14) 

Subsequently, by denoting  the cost per time unit when the process operates 

under the effect of the intermediate state, i.e.,  or ,    0,0 qK h  can be, now, 

computed as: 

                  

              

  
 

 
          

  

0,0 0 1 0 1 0 1 0,0 1,0

0

0 1 0 1 0 1 0,0 0,1

0

1 1 2 1 2

0,0 0,0 1,1
1,1

exp exp

exp exp

Pr ,2

q

q

h

q q qs x x

h

q qx s s

q q

K h h t t M M h t dt

h t t M M h t dt

h M M M h

  

  

   

  

  

            

            

         
 





 

(4.15) 

 1
M

 0,1  1,0
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In a similar manner,    1,0 qK h  and    0,1 qK h  are derived from the following 

equations: 

        

           

1,0 1,0 0 1

0 1 0 1 1,0 1,1

0

exp

exp

q

q q qs

h

qs s

K h M h h

t t M M h t dt



 



 

     

        

          (4.16) 

        

           

0,1 0,1 0 1

0 1 0 1 0,1 1,1

0

exp

exp

q

q q qx

h

qx x

K h M h h

t t M M h t dt



 



 

     

        

          (4.17) 

Finally, in the simpler case where state  1,1  is the initial state of a sampling 

interval of duration qh , the process will operate under the effect of state  1,1  for the 

whole interval, and so, the OOC operation cost will be equal to: 

     1,1 1,1q qK h M h       (4.18) 

By utilizing equations (4.12)-(4.18) and after some simple mathematical 

manipulation, the expected cost and duration of a transition step associated with each 

of its 12 possible states are summarized in Table 4-1. 
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Table 4-1: Expected OOC operation cost and duration of each transition step of the 1VP  control scheme * 

Initial State and Steady-state 

Probability 
Expected OOC Operation Cost  Duration 

 

     

              
      

 

              
      

 

0 1 0 1 0 1 0 1 0 1

0,0 1,0

0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1

0,1

0 1 0 1 0 1

0

1,1

1 exp exp 1 exp

1 exp exp 1 exp

1 exp

q q qx s s s x

q

s x s

q q qs x x x s

x s x

x

q

h h h
K h M

h h h
M

M h

    

  

    

  



    

  

    

  

            
   
   
 

            
   
   
 

 
  

   
 

   
 

      
   

0 1 0 11 0 1

0 1 0 1 0 1 0 1

1 exp1 exp qx sq qs

x s x s

hh h  

   

  

   

       
 

   
 

 
 

 
     0,0 0,0qK h L   1 0,0

h T  

 
     

  
 

 

  
 0 1 0 1

0 1 0 1

0,1 0,1 1,1

1 exp 1 exp

q

x x

q qx x

qK M M h
h h

h
 

 

 

 
 

    

      
   
   
   

  

   

 
     

  
 

 

  
 0 1 0 1

0 1 0 1

1,0 1,0 1,1

1 exp 1 exp

q

q qs s

q

s s

M M h
h h

K h
 

 

 

 
 

   

      
   
   
   

  

   

  1,1 qM h   

   

    , 0,0 ,0 1
t t

Y a or

 0,0 0 1or


q
h

    , 0,0 ,2
t t

Y a   0,0 2


    , 0,1 ,0 1
t t

Y a or  0,1 0 1or


q
h

    , 0,1 ,2
t t

Y a   0,1 2


     0,0 0,1q LK h   1 0,1
h T

    , 1,0 ,0 1
t t

Y a or  1,0 0 1or


q
h

    , 1,0 ,2
t t

Y a   1,0 2


     0,0 1,0q LK h   1 1,0
h T

    , 1,1 ,0 1
t t

Y a or  1,1 0 1or
 q

h

    , 1,1 ,2
t t

Y a   1,1 2


     0,0 1,1q LK h   1 1,1
h T

* q=1(2) for  1 0(1)ta  
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Thus, the expected cost of a transition step, EC, is derived by multiplying the 

expected cost associated with each of the 12 possible initial states with the respective 

steady-state probability and is derived from the following equation: 

           

       

1 1 1 1

1 1 2 2, 0 , , 1 ,
0 0 0 0

1 1

1 1, 2 0,0 ,
0 0

k l k l k l k l
k l k l

k l k l
k l

EC b c n K h c n K h

c n K h L

 



   

 

            
   

     
 

 


(4.19) 

In a similar manner, the average duration of a transition step, ET, is the weighted 

average of the durations associated with each steady-state of the Markov chain. It can 

be computed as the sum of the relaxed ( ) or tightened ( ) duration of a sampling 

interval, plus the time to search and remove an/some assignable cause/es, if needed, 

multiplied by the respective long-run probabilities for each decision: 

        
1 1 1 1 1 1

1 2 1, 0 , 1 , 2 ,
0 0 0 0 0 0

k l k l k l k l
k l k l k l

ET h h h T  
     

                      (4.20) 

It should be noted that the value of 2h  is also allowed to be equal to zero. In other 

words, if the tightened parameters are to be used, the next sample  2n  is allowed to 

be collected immediately after the previous one without allowing the process to 

operate in between  2 0.0h  . Thus, a sample 2n  is allowed to be collected again 

(and again) until a signal is issued or until the chart indicates that the relaxed 

parameters should be used thereafter. Such sampling policy, which is more applicable 

and feasible in cases where production ceases during the sampling procedure, 

resembles the double sampling policy as proposed in many papers (Croasdale, 1974, 

Daudin, 1992). The only difference in this case is that the fixed sampling cost, b, 

should not be added to EC, because, the process does not need to be interrupted again. 

Particularly, the form of EC, if 2 0.0h  , is simplified to the following:

 

1h 2h
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         

     

       

1 1 1 1 1 1

1 1, 0 , 2 , 0 ,
0 0 0 0 0 0

1 1

2 2, 1 ,
0 0

1 1

1 1, 2 0,0 ,
0 0

k l k l k l k l
k l k l k l

k l k l
k l

k l k l
k l

EC b c n K h

c n K h

c n K h L

  





     

 

 

 
           

 

     
 

     
 

  





     (4.21) 

It is interesting to note that the consideration of the value 2 0.0h   leads to the 

possibility of consecutive and repetitive inspection which may seem a bit awkward, or 

even unrealistic, since the usual assumption in typical SPC procedures is that some 

time must elapse between the collection of two successive samples. However, in this 

chapter we have assumed negligible times to collect and measure the samples and 

thus, we can assume that the whole process can be considered to be simultaneous, an 

assumption not at all unrealistic in modern processes where such complex schemes 

are expected to be implemented. Additionally, if these assumptions are far from 

realistic, then, the choice of a minimum value for the sampling interval becomes 

problematic. The reason is that in such cases, one should also make sure that the 

inspection rate is high enough to assure that a decision will have been made prior to 

the collection of the next sample. Moreover, it should also be examined if the interval 

between two successive sampling instances is large enough to assure that the number 

of products that will have been produced is at least equal (or larger) than the size of 

the sample. Such approaches, which are discussed in Celano et al. (2011), are beyond 

the scope of the present thesis, where we assume that the inspection and production 

rates are high, while the necessary time to measure the mean and standard deviation 

of the sample, and then reach a decision, is negligible. 

This type of inspection policy broadens the applicability of the proposed model, 

since it allows (but not imposes) a “multiple sampling” feature which may lead to 

economic savings. That is, allowing 2h  to be equal to zero, may lead to relatively 

small values of 2n , since the model allows the sampling procedure to continue 

without charging it again (and again) with the fixed sampling cost b. This assumption 

does not affect in any way the model development and leaves it to the optimization 

procedure to “decide” whether the optimum value of 2h  will be zero or larger. 
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Despite all the above, in the numerical investigation section that follows, we also 

discuss the choice of setting a lower bound in the allowable values of 2h  and we 

provide some indicative results when 2h  is inferiorly bounded by a minimum value 

(say 0.1). 

4.4 Optimization Problem 

The optimization problem is formulated as follows: 

min
qDP

ECT  

s.t.   
1 2 1 2 ,1 ,2 ,1 ,2, , , , , , , , , 0x x x s s sh h n n w k k w k k 

 

2 1h h
 

2 1n n
           

            (4.22)
 

,2 ,1x x xw k k   

,2 ,1s s sw k k 
 

1 2,n n   

The minimization of ECT is achieved by means of a computer program 

developed in Fortran Power Station 4.0, which estimates the minimum ECT and 

defines the optimum design parameters of the control scheme. 

4.5 An Illustrative Example 

In order to explain better how the proposed 1VP  scheme is used in practice, a 

numerical example is utilized. Let us consider a case where 0.005  , 1 0.5  , 

2
1 2.0   and assume 0 100   and 0 10  . Furthermore, as regards the cost 

elements, 0b  , 1c  , 
 0,0

100L  , 
   0,1 1,0

200L L  , 
 1,1

300L  , 

   0,1 1,0
100M M  and 

 1,1
150M   and the time needed to reveal a false alarm and 

the time to search and remove an assignable cause are assumed to be negligible. 

The optimum scheme’s operation employs two allowable values for the sampling 

interval, 1 4.0h   and 2 0.0h  , two allowable values for the sample size, 1 7n   and 

2 16n  , warning limit coefficients 0.8xw   and 1.1sw   and control limit 
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coefficients 
,1 2.6xk  , 

,2 2.0xk   for the chart that monitors the process mean and 

,1 2.8sk  , 
,2 2.2sk   for the chart utilized for monitoring the standard deviation of the 

process. Consequently, the warning and control limits of the two charts are shown in 

Figure 4-3.  

 

 

             

       

                   

     

                                                                                
  

 

 

Figure 4-3: Example of the 1VP  control scheme operation 

As shown in Figure 4-3, and assuming that the process starts IC, the first sample 

will be collected 1 4.0h h   time units after the beginning of the run (or after an 

intervention to the process). The sample size is 7  1 7n  . Let the first sample mean 

be 101X   and so, 
1

101 100
0.265

10 / 7
z


   0

0 1/

X

n





 
 
 
 

 and the first sample standard 

deviation be 1 11.2s  . Since both statistics fall in the central zone, the process is left 

to operate for another 1 4.0h h   time units. After that time (8.0 time units from the 

beginning), a new sample 1 7n n   is collected and its mean is recorded. Let 

103.2X    2 0.847z  and 2 10.8s  ; we see that although s lies again in the central 

zone, the value of the standardized mean is above the warning limit  0.8xw   and 

thus, a new sample of 2 16n n   units is immediately collected (we represent the 

outcomes of the tightened inspection –with 2 16n n  – with a spotted dot to 

facilitate the illustration of the comparisons that now need to be made with the 

0  

s  

1.48  

0.635  

17.49  

13.82  

12.70  

11.83  

9.83  
9.59  

11.2  

10.8  
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15.2  

15.8  

,1sUCL  
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,2sUWL  

,1xk  

,2xk  

xw  
0.8  
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tightened limits). Let the observation of the new sample be 99.8X   and so 

3

99.8 100
0.08

10 / 16
z


    0

0 2/

X

n





 
 
 
 

 and 3 11.4s  . Thus, both statistics lie again in 

the central zones (inside the dotted lines) and thus, after that the process is left again 

to operate for another 1 4.0h h   time units and the next sample  1 7n n   be 

collected, 12.0 time units after the beginning of the operation. Let us assume that the 

second assignable cause occurs at some time between 8.0t 
 
and 12.0t   time units. 

Let also the new sample outcome be 102.4X    4 0.635z  and 4 15.2s  . Since we 

are still in a relaxed inspection, we see that the value of s falls in the warning zone. A 

new sample of size 2 16n n 
 
is thus, immediately collected which is assumed to be 

103.7X    5 1.48z   and 5 15.8s  . The s chart at this point reveals the occurrence 

of the assignable cause since the statistic is above the tightened control limit. An 

investigation follows which reveals the occurrence of the specific assignable cause, 

the effect of which is immediately removed before the process is allowed to resume 

its operation again. After the removal of the cause, the next sample will be scheduled 

to be collected after another 1 4.0h h   time units and its size will be 1 7n n  . 

4.6 Numerical Analysis 

In this section, the aforementioned approach for computing the optimum design 

parameters of the control scheme and the minimum expected cost per time unit is 

applied to 64 cases, with different statistical and economic parameters. The 

benchmark of process scenarios that are used in the numerical investigation section 

are presented in Table 4-2. Each case is defined by the value of the cost elements: c , 

b , 
 0,0

L ,  ,i j
L ,  ,i j

M , the times 
 0,0

T ,  ,i j
T

 
and the value of the statistical 

parameters:  ,  , and  . It should be mentioned that 1  , 1  , 

   0 1 0 1x s
  

 
   and 

  (1,0)0,1
M M M  , 

 1,1
1.5M M . Moreover, for all cases: 

1c , 
   0,1 1,0

200 L L , 
 1,1

300L , 
       0,0 0,1 1,0 1,1

0T T T T    .  
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Table 4-2: Parameter sets of the 64 numerical examples for the 1VP  control scheme 

The economic outcome of the proposed 1VP  control scheme for each case as well 

as the optimum parameters are presented in Tables 4-3 and 4-4. 

Case b M L(0,0) λ δ γ   Case b Μ L(0,0)     λ   δ γ 

1 0 100 100 0.005 0.5 1.414 33 0 100 100 0.005 0.5 2.0 

2 0 100 200 0.005 0.5 1.414 34 0 100 200 0.005 0.5 2.0 

3 0 1000 100 0.005 0.5 1.414 35 0 1000 100 0.005 0.5 2.0 

4 0 1000 200 0.005 0.5 1.414 36 0 1000 200 0.005 0.5 2.0 

5 5 100 100 0.005 0.5 1.414 37 5 100 100 0.005 0.5 2.0 

6 5 100 200 0.005 0.5 1.414 38 5 100 200 0.005 0.5 2.0 

7 5 1000 100 0.005 0.5 1.414 39 5 1000 100 0.005 0.5 2.0 

8 5 1000 200 0.005 0.5 1.414 40 5 1000 200 0.005 0.5 2.0 

9 0 100 100 0.05 0.5 1.414 41 0 100 100 0.05 0.5 2.0 

10 0 100 200 0.05 0.5 1.414 42 0 100 200 0.05 0.5 2.0 

11 0 1000 100 0.05 0.5 1.414 43 0 1000 100 0.05 0.5 2.0 

12 0 1000 200 0.05 0.5 1.414 44 0 1000 200 0.05 0.5 2.0 

13 5 100 100 0.05 0.5 1.414 45 5 100 100 0.05 0.5 2.0 

14 5 100 200 0.05 0.5 1.414 46 5 100 200 0.05 0.5 2.0 

15 5 1000 100 0.05 0.5 1.414 47 5 1000 100 0.05 0.5 2.0 

16 5 1000 200 0.05 0.5 1.414 48 5 1000 200 0.05 0.5 2.0 

17 0 100 100 0.005 1.0 1.414 49 0 100 100 0.005 1.0 2.0 

18 0 100 200 0.005 1.0 1.414 50 0 100 200 0.005 1.0 2.0 

19 0 1000 100 0.005 1.0 1.414 51 0 1000 100 0.005 1.0 2.0 

20 0 1000 200 0.005 1.0 1.414 52 0 1000 200 0.005 1.0 2.0 

21 5 100 100 0.005 1.0 1.414 53 5 100 100 0.005 1.0 2.0 

22 5 100 200 0.005 1.0 1.414 54 5 100 200 0.005 1.0 2.0 

23 5 1000 100 0.005 1.0 1.414 55 5 1000 100 0.005 1.0 2.0 

24 5 1000 200 0.005 1.0 1.414 56 5 1000 200 0.005 1.0 2.0 

25 0 100 100 0.05 1.0 1.414 57 0 100 100 0.05 1.0 2.0 

26 0 100 200 0.05 1.0 1.414 58 0 100 200 0.05 1.0 2.0 

27 0 1000 100 0.05 1.0 1.414 59 0 1000 100 0.05 1.0 2.0 

28 0 1000 200 0.05 1.0 1.414 60 0 1000 200 0.05 1.0 2.0 

29 5 100 100 0.05 1.0 1.414 61 5 100 100 0.05 1.0 2.0 

30 5 100 200 0.05 1.0 1.414 62 5 100 200 0.05 1.0 2.0 

31 5 1000 100 0.05 1.0 1.414 63 5 1000 100 0.05 1.0 2.0 

32 5 1000 200 0.05 1.0 1.414 64 5 1000 200 0.05 1.0 2.0 



52 

 

Table 4-3: Economic design for numerical examples 1-32: optimal control policy and cost for the 1VP  control scheme 

Optimum Design Parameters Statistical Measures 
Case h1 h2   n1   n2   wx kx,1 kx,2 ws ks,1 ks,2 ECTVP1 α 1-β ANOF ARL0 WARL ATC EATR 

1 4.0 0.0 7 16 0.8 2.6 2.0 1.1 2.8 2.2 10.56 0.0192 0.3266 0.0006 52.19 3.06 114.56 4.56 
2 4.4 0.0 9 24 1.0 3.1 2.3 1.2 3.3 2.5 10.89 0.0065 0.3318 0.0002 152.88 3.01 104.67 4.67 
3 1.2 0.0 7 18 0.9 2.8 2.0 1.1 3.0 2.3 29.45 0.0145 0.3199 0.0006 68.82 3.13 101.41 1.41 
4 1.3 0.0 9 24 1.0 3.3 2.4 1.2 3.4 2.6 30.30 0.0049 0.3135 0.0002 205.83 3.19 101.41 1.41 
5 6.5 0.0 13 18 0.8 2.3 1.9 1.0 2.4 2.2 11.47 0.0296 0.4620 0.0005 33.78 2.165 105.09 5.09 
6 6.7 0.0 14 25 0.9 2.8 2.3 1.1 2.9 2.5 11.79 0.0097 0.4119 0.0002 103.28 2.43 105.23 5.23 
7 2.0 0.0 13 19 0.8 2.4 2.0 1.0 2.5 2.3 32.54 0.0234 0.4401 0.0005 42.72 2.27 101.57 1.57 
8 2.0 0.0 14 27 1.0 3.0 2.4 1.1 3.1 2.6 33.30 0.0063 0.3906 0.0001 157.58 2.56 101.60 1.60 
9 1.7 0.0 8 13 0.8 2.2 1.7 1.0 2.4 2.1 43.95 0.0386 0.3896 0.0006 25.93 2.57 11.75 1.75 

10 1.9 0.0 10 19 0.9 2.6 2.0 1.1 2.8 2.3 45.45 0.0170 0.3830 0.0002 58.86 2.61 11.82 1.82 
11 0.4 0.0 7 16 0.8 2.6 2.0 1.1 2.8 2.2 105.55 0.0192 0.3266 0.0006 52.19 3.06 10.46 0.46 
12 0.4 0.0 8 23 1.0 3.2 2.3 1.2 3.3 2.5 108.98 0.0064 0.3146 0.0002 156.01 3.18 10.46 0.46 
13 2.6 0.0 13 14 0.7 1.9 1.8 0.9 2.1 2.1 46.21 0.0531 0.5229 0.0005 18.83 1.91 11.96 1.96 
14 2.7 0.0 15 20 0.9 2.3 2.0 1.0 2.5 2.3 47.59 0.0245 0.4912 0.0002 40.78 2.04 12.03 2.03 
15 0.7 0.0 14 19 0.8 2.2 2.0 1.0 2.4 2.2 114.78 0.0298 0.4842 0.0005 33.52 2.07 10.52 0.52 
16 0.7 0.0 15 25 0.9 2.8 2.3 1.1 2.9 2.5 117.93 0.0096 0.4208 0.0002 103.74 2.38 10.53 0.53 
17 3.1 0.0 5 12 1.4 3.1 2.8 0.9 3.0 2.0 8.83 0.0011 0.3387 0.0005 90.49 2.95 103.64 3.64 
18 3.0 0.0 5 16 1.5 3.5 3.0 1.0 3.6 2.3 9.09 0.0042 0.3198 0.0002 238.85 3.13 103.67 3.67 
19 0.9 0.0 5 12 1.4 3.2 2.9 0.9 3.1 2.1 23.89 0.0088 0.3209 0.0005 113.22 3.12 101.09 1.09 
20 1.0 0.0 6 18 1.6 3.7 3.0 1.0 3.6 2.4 24.60 0.0032 0.3360 0.0002 310.24 2.98 101.12 1.12 
21 5.5 0.0 9 14 1.5 2.9 2.9 0.7 2.5 2.0 9.98 0.0167 0.4801 0.0004 59.74 2.08 104.27 4.27 
22 5.5 0.0 9 18 1.5 3.2 3.0 0.8 3.1 2.3 10.20 0.0067 0.4341 0.0001 161.90 2.30 104.38 4.38 
23 1.7 0.0 9 15 1.5 3.1 3.0 0.7 2.6 2.1 27.68 0.0013 0.4572 0.0004 76.77 2.19 101.32 1.32 
24 1.7 0.0 9 20 1.6 3.5 3.0 0.8 3.2 2.4 28.27 0.0046 0.4203 0.0001 218.90 2.38 101.35 1.35 
25 1.2 0.0 5 10 1.3 2.7 2.5 0.9 2.7 1.9 39.37 0.0185 0.3718 0.0004 53.93 2.69 11.36 1.36 
26 1.3 0.0 6 13 1.4 3.0 2.8 0.9 3.1 2.2 40.40 0.0082 0.3631 0.0002 122.39 2.75 11.37 1.37 
27 0.3 0.0 5 12 1.4 3.1 2.8 0.9 3.0 2.0 88.31 0.0011 0.3386 0.0005 90.49 2.95 10.35 0.35 
28 0.3 0.0 5 16 1.5 3.5 3.0 1.0 3.6 2.3 90.92 0.0042 0.3198 0.0002 238.85 3.13 10.37 0.37 
29 2.1 0.0 8 11 1.3 2.5 2.5 0.6 2.3 1.9 42.37 0.0280 0.5072 0.0004 35.72 1.97 11.63 1.63 
30 2.1 0.0 9 15 1.5 2.8 2.8 0.7 2.8 2.2 43.25 0.0111 0.4736 0.0001 89.97 2.11 11.64 1.64 
31 0.5 0.0 8 13 1.4 2.9 2.8 0.7 2.6 2.0 99.92 0.0159 0.4461 0.0004 62.94 2.24 10.41 0.41 
32 0.6 0.0 10 19 1.6 3.2 3.0 0.8 3.0 2.3 102.13 0.0065 0.4618 0.0001 154.66 2.17 10.46 0.46 
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Table 4-4: Economic design for numerical examples 33-64: optimal control policy and cost for the  control scheme 1VP

Optimum Design Parameters Statistical Measures 
Case h1 h2    n1   n2   wx kx,1 kx,2 ws ks,1 ks,2 ECTVP1 α 1-β ANOF ARL0 WARL ATC EATR 

33 3.3 0.0 5 13 0.7 3.0 1.9 1.8 3.8 3.5 8.82 0.0092 0.3400 0.0004 108.76 2.94 103.57 3.57 
34 3.7 0.0 6 17 0.8 3.5 2.1 1.9 4.1 3.7 9.06 0.0046 0.3512 0.0002 217.08 2.85 103.73 3.73 
35 1.0 0.0 5 13 0.7 3.1 1.9 1.8 4.0 3.6 23.81 0.0087 0.3323 0.0005 114.58 3.01 101.09 1.09 
36 1.1 0.0 6 17 0.7 3.6 2.2 1.9 4.3 3.9 24.43 0.0039 0.3400 0.0002 254.63 2.94 101.05 1.05 
37 5.7 0.0 9 15 0.6 2.5 1.9 1.8 3.4 3.4 9.92 0.0137 0.4643 0.0003 72.87 2.15 104.21 4.21 
38 5.7 0.0 9 19 0.7 3.1 2.1 1.9 3.8 3.8 10.12 0.0057 0.4292 0.0001 175.43 2.33 104.32 4.32 
39 1.7 0.0 8 15 0.6 2.7 1.9 1.7 3.7 3.7 27.44 0.0115 0.4249 0.0003 87.18 2.35 101.31 1.31 
40 1.7 0.0 9 19 0.7 3.3 2.2 1.9 4.0 4.0 27.93 0.0042 0.4187 0.0001 238.81 2.48 101.30 1.30 
41 1.3 0.0 5 10 0.6 2.6 1.7 1.7 3.3 3.2 39.50 0.0182 0.3671 0.0004 54.82 2.72 11.35 1.35 
42 1.4 0.0 6 15 0.8 3.0 1.9 0.8 3.6 3.4 40.45 0.0121 0.3987 0.0003 82.72 2.51 11.18 1.18 
43 0.3 0.0 5 13 0.8 2.7 1.8 1.9 3.8 3.4 88.48 0.0115 0.3504 0.0005 86.82 2.85 10.35 0.35 
44 0.4 0.0 7 17 0.8 3.3 2.1 1.9 4.0 3.7 90.70 0.0048 0.3686 0.0002 207.94 2.71 10.37 0.37 
45 2.1 0.0 8 11 0.5 2.2 1.7 1.6 3.0 3.0 42.34 0.0268 0.4853 0.0003 37.29 2.06 11.59 1.59 
46 2.2 0.0 9 15 0.6 2.7 1.9 1.8 3.3 3.3 43.19 0.0121 0.4661 0.0001 82.42 2.15 11.64 1.64 
47 0.6 0.0 9 15 0.6 2.5 1.8 1.7 3.4 3.4 99.29 0.0159 0.4777 0.0004 62.71 2.09 10.44 0.44 
48 0.6 0.0 10 19 0.7 3.0 2.1 1.9 3.7 3.7 101.24 0.0061 0.4479 0.0001 65.10 2.23 10.44 0.44 
49 2.8 0.0 4 9 1.2 3.3 2.6 1.5 3.8 3.1 6.67 0.0022 0.4032 0.0001 460.02 2.48 102.45 2.45 
50 2.8 0.0 4 9 1.2 3.6 2.8 1.5 4.1 3.3 6.73 0.0011 0.3695 0.0001 933.56 2.71 102.49 2.49 
51 0.7 0.0 3 8 1.1 3.6 2.7 1.5 3.9 3.2 16.75 0.0018 0.3393 0.0002 562.79 2.95 100.72 0.72 
52 0.7 0.0 3 9 1.2 3.9 2.9 1.6 4.5 3.4 16.90 0.0007 0.3214 0.0001 1494.15 3.11 100.76 0.76 
53 4.8 0.0 6 9 1.1 3.0 2.6 1.3 3.4 3.1 8.01 0.0036 0.5013 0.0001 278.53 1.99 103.18 3.18 
54 4.8 0.0 6 10 1.1 3.4 2.8 1.3 3.8 3.3 8.06 0.0015 0.4591 0.0001 688.78 2.18 103.16 3.16 
55 1.5 0.0 6 10 1.1 3.2 2.8 1.3 3.6 3.2 21.19 0.0021 0.4782 0.0001 485.18 2.09 100.98 0.98 
56 1.5 0.0 6 10 1.1 3.5 2.9 1.3 3.8 3.4 21.31 0.0011 0.4419 0.0001 871.76 2.26 100.99 0.99 
57 0.8 0.0 3 7 1.1 3.1 2.4 1.5 3.6 3.0 33.70 0.0043 0.3661 0.0001 234.79 2.73 10.83 0.83 
58 1.0 0.0 4 9 1.2 3.4 2.6 1.5 3.9 3.2 34.04 0.0018 0.3991 0.0001 543.81 2.51 10.88 0.88 
59 0.2 0.0 3 9 1.3 3.5 2.6 1.7 4.2 3.1 66.72 0.0015 0.3484 0.0001 658.99 2.87 10.23 0.23 
60 0.2 0.0 3 9 1.3 3.8 2.8 1.7 4.5 3.3 67.31 0.0008 0.3241 0.0001 1294.84 3.09 10.23 0.23 
61 1.7 0.0 6 8 1.1 2.7 2.4 1.2 3.2 2.9 37.37 0.0071 0.5449 0.0001 139.94 1.84 11.13 1.13 
62 1.7 0.0 6 9 1.1 3.0 2.6 1.3 3.5 3.2 37.65 0.0032 0.5006 0.0001 308.79 2.00 11.14 1.14 
63 0.5 0.0 6 9 1.1 3.0 2.6 1.2 3.4 3.1 80.14 0.0037 0.5023 0.0001 273.73 1.99 10.33 0.33 
64 0.5 0.0 6 10 1.1 3.4 2.8 1.3 3.7 3.3 80.69 0.0016 0.4624 0.0001 641.38 2.16 10.33 0.33 
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By examining the optimum design parameters of the 1VP  control scheme, it is 

immediately evident that the value of the sampling interval for the tightened 

sampling, namely 2h , is equal to zero, in all 64 cases. As mentioned earlier, if 2 0h  , 

the next sampling should be taken immediately after the previous one.  

Another conclusion that can be derived from the examination of the optimum 

design parameters of the 1VP  control scheme is that, for large 
 ,i j

M
 

costs, the 

optimum value of 1h  gets smaller and ECT increases. This indicates that if the 

operation cost in presence of an assignable cause is great, sampling intervals should 

be smaller, so as to avoid a long-lasting OOC process operation. The same 

conclusions, namely greater ECT and smaller sampling intervals, can be drawn for 

larger values of 's . Moreover, if the shifts 1  and 1  of the mean and standard 

deviation, respectively, are large, then the minimum ECT gets smaller because it 

becomes easier to detect the assignable causes: the warning and control limits of both 

control charts get larger and sampling intervals get smaller. 

Furthermore, as regards the statistical measures, the Type I error probability a  

 0ARL  is positively (inversely) correlated to the occurrence rates and inversely 

(positively) correlated to the effects of the assignable causes on the process. 

Additionally, ANOF is similarly to a  affected by  ,   and  . Moreover, ATC and 

EATR are greater in case of lower occurrence rates. 

The comparison of the economic outcome of the proposed 1VP  control scheme 

with other control schemes that monitor both the process mean and the standard 

deviation, but have fewer adaptive parameters, is given in Tables 4-5 and 4-6. In 

particular, the 1VP  control scheme is compared to the respective one-sided static 

control scheme, namely FP control scheme, and to the following one-sided adaptive 

control charts: (a) VSS control scheme; (b) VSI control scheme; (c) VSSI control 

scheme. 
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Table 4-5: Economic comparison between the 1VP  control scheme and other less 

adaptive control schemes. Numerical examples 1-32 

 ECT 1FP VP

FP

  

(%) 

1VSS VP

VSS

  

(%) 

1VSI VP

VSI

  

(%) 

1VSSI VP

VSSI

  

(%) Case FP VSS VSI VSSI VP1 

1 11.59 11.50 10.72 10.62 10.56 8.89 8.17 1.49 0.56 

2 12.54 12.48 11.27 11.02 10.89 13.16 12.74 3.37 1.18 

3 32.25 32.97 30.22 29.71 29.45 8.68 10.68 2.55 0.88 

4 36.36 36.15 31.79 30.70 30.30 16.67 16.18 4.69 1.30 

5 12.29 12.27 11.52 11.48 11.47 6.67 6.52 0.43 0.09 

6 13.17 13.24 11.97 11.83 11.79 10.48 10.95 1.50 0.34 

7 35.54 35.48 32.79 32.60 32.54 8.44 8.29 0.76 0.18 

8 38.38 38.65 34.14 33.46 33.30 13.24 13.84 2.46 0.48 

9 45.86 45.70 44.09 44.02 43.95 4.16 3.83 0.32 0.16 

10 48.43 48.28 45.85 45.65 45.45 6.15 5.86 0.87 0.44 

11 115.89 115.06 107.33 106.24 105.55 8.92 8.27 1.66 0.65 

12 125.44 124.75 112.65 110.17 108.98 13.12 12.64 3.26 1.08 

13 47.81 47.75 46.22 46.22 46.21 3.35 3.23 0.02 0.02 

14 50.15 50.21 47.73 47.65 47.59 5.10 5.22 0.29 0.13 

15 122.95 122.70 115.17 114.87 114.78 6.64 6.45 0.34 0.08 

16 131.70 132.37 119.80 118.34 117.93 10.46 10.91 1.56 0.35 

17 9.92 9.81 9.08 8.94 8.83 10.99 9.99 2.75 1.23 

18 10.70 10.49 9.52 9.26 9.09 15.05 13.35 4.52 1.84 

19 27.77 27.36 24.83 24.26 23.89 13.97 12.68 3.79 1.53 

20 30.31 29.52 26.21 25.20 24.60 18.84 16.67 6.14 2.38 

21 10.84 10.78 10.07 10.02 9.98 7.93 7.42 0.89 0.40 

22 11.53 11.42 10.42 10.28 10.20 11.54 10.68 2.11 0.78 

23 30.74 30.53 28.06 27.81 27.68 9.95 9.34 1.35 0.47 

24 33.01 32.58 29.15 28.54 28.27 14.36 13.23 3.02 0.95 

25 41.61 41.41 39.74 39.51 39.37 5.38 4.93 0.93 0.35 

26 43.62 43.30 41.09 40.78 40.40 7.38 6.70 1.68 0.93 

27 99.33 98.12 90.77 89.51 88.31 11.09 10.00 2.71 1.34 

28 107.01 104.95 95.17 92.64 90.92 15.04 13.37 4.47 1.86 

29 44.15 44.05 42.46 42.42 42.37 4.03 3.81 0.21 0.12 

30 45.92 45.74 43.54 43.39 43.25 5.81 5.44 0.67 0.32 

31 108.48 107.88 100.74 100.28 99.92 7.89 7.38 0.81 0.36 

32 115.28 114.14 104.21 102.79 102.13 11.41 10.52 2.00 0.64 
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Table 4-6: Economic comparison between the 1VP  control scheme and other less 

adaptive control schemes. Numerical examples 33-64 

 ECT 1FP VP

FP

  

(%) 

1VSS VP

VSS

  

(%) 

1VSI VP

VSI

  

(%) 

1VSSI VP

VSSI

  

(%) Case FP VSS VSI VSSI VP1 

33 10.04 9.89 9.15 8.98 8.82 12.15 10.82 3.61 1.78 

34 10.86 10.61 9.60 9.27 9.06 16.57 14.61 5.63 2.27 

35 28.15 27.62 25.05 24.32 23.81 15.42 13.79 4.95 2.10 

36 30.86 29.89 26.43 25.05 24.43 20.84 18.27 7.57 2.48 

37 10.88 10.82 10.06 9.98 9.92 8.82 8.32 1.39 0.60 

38 11.62 11.50 10.43 10.23 10.12 12.91 12.00 2.97 1.08 

39 30.85 30.64 27.97 27.64 27.44 11.05 10.44 1.89 0.72 

40 33.29 32.90 29.09 28.27 27.93 16.10 15.11 3.99 1.20 

41 41.91 41.65 40.02 39.83 39.50 5.75 5.16 1.30 0.83 

42 44.05 43.62 41.44 41.00 40.45 8.17 7.27 2.39 1.34 

43 100.43 98.98 91.55 89.82 88.48 11.90 10.61 3.35 1.49 

44 108.63 106.03 96.16 92.66 90.70 16.51 14.46 5.68 2.12 

45 44.25 44.16 42.51 42.45 42.34 4.32 4.12 0.40 0.26 

46 46.15 45.96 43.67 43.45 43.19 6.41 6.03 1.10 0.60 

47 108.84 108.28 100.6 99.83 99.29 8.77 8.30 1.30 0.54 

48 116.21 115.05 104.31 102.30 101.24 12.88 12.00 2.94 1.04 

49 7.76 7.68 6.91 6.71 6.67 14.05 13.15 3.47 0.60 

50 8.12 8.00 7.06 6.80 6.73 17.12 15.88 4.67 1.03 

51 20.55 20.29 17.67 16.93 16.75 18.49 17.45 5.21 1.06 

52 21.73 21.17 18.12 17.21 16.90 22.23 20.17 6.73 1.80 

53 8.80 8.78 8.07 8.02 8.01 8.98 8.77 0.74 0.12 

54 9.09 9.06 8.17 8.08 8.06 11.33 11.04 1.35 0.25 

55 23.89 23.82 21.44 21.21 21.19 11.30 11.04 1.17 0.09 

56 24.82 24.75 21.73 21.39 21.31 14.14 13.90 1.93 0.37 

57 36.26 36.08 34.19 33.86 33.70 7.06 6.60 1.43 0.47 

58 37.26 37.07 34.72 34.24 34.04 8.64 8.17 1.96 0.58 

59 77.60 76.82 69.18 67.19 66.72 14.02 13.15 3.56 0.70 

60 81.34 80.11 70.68 68.04 67.31 17.25 15.98 4.77 1.07 

61 39.18 39.16 37.45 37.86 37.37 4.62 4.57 0.21 1.29 

62 39.99 39.95 37.82 37.70 37.65 5.85 5.76 0.45 0.13 

63 88.05 87.93 80.73 80.24 80.14 8.98 8.86 0.73 0.12 

64 90.87 90.66 81.83 80.88 80.69 11.20 11.00 1.39 0.23 
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The percentage improvements presented in the last columns of the two tables 

indicate a significant economic improvement of the proposed model, compared to 

other less sophisticated control schemes. Particularly, the percentage improvement of 

the economic outcome achieved by the use of 1VP  control scheme, varies between 

3.35% and 22.23% when compared to the FP control scheme; between 3.23% and 

20.17% when compared to the VSS control scheme; between 0.02% and 7.57% when 

compared to the VSI control scheme and between 0.02% and 2.48% when compared 

to the VSSI control scheme, with a mean percentage improvement of 10.92%, 10.25%, 

2.40% and 0.84%, respectively. 

In more detail, for the entire benchmark of cases, the proposed 1VP  control 

scheme has an improved economic outcome when compared to all other control 

schemes. The improvement is greater in cases where 
 ,i j

M , 
 0,0

L ,   and   are larger 

and b,   are smaller. Besides the economic superiority of the 1VP  control scheme 

compared to other control schemes, the comparison of costs indicates that VSSI 

control scheme has a better economic performance compared to VSI, VSS and the FP 

control scheme performance. Moreover, the VSI control scheme outperforms the VSS 

control scheme in all 64 cases that are examined. In other words, the parameter that 

significantly affects the cost improvement is the sampling interval. Both VSI and VSS 

control schemes have obviously a smaller minimum expected cost per time unit 

compared to the static FP control scheme in all the examined cases. 

The above conclusions enhance the general conclusion of literature about better 

economic performance of control charts that are fully adaptive compared to static 

control charts or adaptive control charts that allow fewer parameters to vary. 

To remove any skepticism regarding the advisability of the choice to allow the 

tightened sampling interval to also take zero values, we have rerun all 64 cases, 

setting 0.1 as a minimum allowable value for 2h . We indicatively present the 

optimum design parameters and expected cost of the first case when 2 0.1h  : 

1 4.3,h   2 0.1h  , 1 8n  , 2 18n  , 0.9xw  , ,1 2.6xk  , ,2 1.9xk  , 1.1sw  , 

,1 2.8,sk   
,2 2.2sk   and 10.60ECT  . It is evident that this solution is slightly 

different to the optimum one when 2h  is allowed to be equal to zero (first line of 
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Table 4-3), while the cost is less than 0.4% increased. The differences, both in the 

optimum solutions and in the minimum costs, remain relatively low in all cases with 

0b  , since in these cases the consecutive sampling feature does not save any extra 

fixed sampling cost. On the other hand, things are different when 0b  . We 

indicatively present the results of case 5, which is essentially same to case 1 but with 

the fixed sampling cost b equal to 5. The results of this case when 2 0.1h   are: 

1 6.9h  , 2 0.1h  , 1 17n  , 2 26n  , ,1 2.4xk  , ,2 2.0xk  , 1.1xw  , ,1 2.6sk  , 

,2 2.3sk  , 1.2sw   and 11.80ECT  . We see that the optimum cost in this case (and 

in all cases with 0b  ) is considerably higher, while the optimum sample sizes are 

considerably larger. It is evident by these solutions that the cost savings may be rather 

significant when 2h  is allowed to be equal to zero, especially when 0b  . Thus, to 

achieve the maximum economic savings, we have allowed 2 0.0h  , we leave the 

optimization procedure to dictate the optimum, and we just add a note that even in 

cases where the samplings are not instantaneous, 2 0.0h   is an indication to the 

practitioner that they should collect the new sample immediately after the previous 

one, without charging an additional fixed cost. 

So far, in all 64 scenarios, the charts were economically optimized without taking 

into account their statistical behaviour. However, it must be said that a scheme that 

leads to unacceptable statistical performance is extremely difficult to be adapted by 

the practitioners. For example, a control scheme with relatively high false alarm 

probabilities leads to unnecessary over-adjustments and destroys the confidence to the 

control procedure. These phenomena occur very often when designing a model from a 

purely economic point of view, since the statistical behaviour in these cases is 

completely disregarded. To avoid extreme cases where the statistical performance of 

the charts is unacceptable, many researchers have considered the so-called economic-

statistical design (Saniga, 1989). For ease of reading, Table 4-7 gathers the values of 

the Type I errors incurred by the economically optimum solutions of the 1VP  control 

scheme, presented in Tables 4-3 and 4-4, for all 64 scenarios. 
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Table 4-7: Type I Error for the 64 numerical examples of the 1VP  control scheme 

As shown in Table 4-7, there are only few cases with high False Alarm 

probabilities. In particular, only in 8 (out of the 64 scenarios) there is a probability of 

a Type I error higher than 0.02. These scenarios are optimized again, but with the 

addition of a statistical constraint for the Type I error: 0.02a  , and a new Table is 

introduced (Table 4-8). In essence, the optimization procedure remained the same, but 

it disregarded all solutions where the average Type I error exceeded 0.02.  

It is obvious from Table 4-8 that the addition of the Type I error statistical 

constraint has resulted in insignificantly different design parameters and costs, in 

comparison to the respective cases of Tables 4-3 and 4-4. In particular, the Type I 

error constraint has reduced the False Alarm probabilities without essentially altering 

the optimum solutions or increasing the expected cost, since in most cases, the Type I 

error was anyway relatively low. Only in case 13 was the minimum cost increased by 

more than 1%, after the implementation of the statistical constraint, since in that case 

the Type I error was relatively high (0.0531) in the unrestricted run. 

  

Case 
 

 Case 
 

 Case 
 

 Case 
 

1 0.0192  17 0.0110  33 0.0092  49 0.0022 

2 0.0065  18 0.0042  34 0.0046  50 0.0011 

3 0.0145  19 0.0088  35 0.0087  51 0.0018 

4 0.0049  20 0.0032  36 0.0039  52 0.0007 

5 0.0296  21 0.0167  37 0.0137  53 0.0036 

6 0.0097  22 0.0062  38 0.0057  54 0.0015 

7 0.0234  23 0.0130  39 0.0115  55 0.0021 

8 0.0063  24 0.0046  40 0.0042  56 0.0011 

9 0.0386  25 0.0185  41 0.0182  57 0.0043 

10 0.0170  26 0.0082  42 0.0121  58 0.0018 

11 0.0192  27 0.0110  43 0.0115  59 0.0015 

12 0.0064  28 0.0042  44 0.0048  60 0.0008 

13 0.0531  29 0.0280  45 0.0268  61 0.0071 

14 0.0245  30 0.0111  46 0.0121  62 0.0032 

15 0.0298  31 0.0159  47 0.0159  63 0.0037 

16 0.0096  32 0.0065  48 0.0061  64 0.0016 

   
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Table 4-8: Economic-Statistical design for numerical examples with high Type I 

error: optimal control policy and cost for the 1VP  control scheme 

Case Statistical 

constraint 
h1 h2 n1 n2 wx kx,1 kx,2 ws ks,1 ks,2 ECTVP1 a 

5   

unrestricted 

6.5 0 13 18 0.8 2.3 1.9 1.0 2.4 2.2 11.47 0.0296 

 0.02a   

6.2 0 12 19 0.8 2.5 2.0 1.0 2.6 2.4 11.49 0.0200 

7   

unrestricted 

2.0 0 13 19 0.8 2.4 2.0 1.0 2.5 2.3 32.54 0.0234 

 0.02a   

2.0 0 13 20 0.8 2.5 2.1 1.0 2.6 2.3 32.54 0.0192 

9   

unrestricted 

1.7 0 8 13 0.8 2.2 1.7 1.0 2.4 2.1 43.95 0.0385 

 0.02a   

1.4 0 6 14 0.8 2.7 1.9 1.0 2.8 2.3 44.20 0.0199 

13   

unrestricted 

2.6 0 13 14 0.7 1.9 1.8 0.9 2.1 2.1 46.21 0.0531 

 0.02a   

2.4 0 12 18 0.8 2.4 2.1 0.9 2.7 2.3 46.76 0.0200 

14   

unrestricted 

2.7 0 15 20 0.9 2.3 2.0 1.0 2.5 2.3 47.59 0.0245 

 0.02a   

2.3 0 15 21 0.9 2.4 2.1 1.0 2.6 2.4 47.61 0.0192 

15   

unrestricted 

0.7 0 14 19 0.8 2.2 2.0 1.0 2.4 2.2 114.78 0.0298 

 0.02a   

0.6 0 12 19 0.8 2.5 2.0 1.0 2.6 2.4 114.97 0.0200 

29   

unrestricted 

2.1 0 8 11 1.3 2.5 2.5 0.6 2.3 1.9 42.37 0.0280 

 0.02a   

2.0 0 8 11 1.3 2.7 2.6 0.6 2.5 2.0 42.40 0.0199 

45   

unrestricted 

2.1 0 8 11 0.5 2.2 1.7 1.6 3.0 3.0 42.34 0.0268 

 0.02a   

2.1 0 8 12 0.5 2.4 1.8 1.6 3.1 3.1 42.38 0.0197 

From the above, it becomes obvious that the expected cost is a relatively flat 

function and the optimum (or near-optimum) solutions can be achieved by the use of 

many alternative set of design parameters, many of which result in an acceptable 

statistical behavior without essentially sacrificing the economic performance of the 

scheme.  
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5. VP X  CONTROL CHART FOR PROCESSES SUBJECT TO 

MULTIPLE QUALITY SHIFTS AFFECTING LOCATION 

(VP2) 

5.1 Introduction 

In this chapter, the economic-statistical design of a one-sided VP control chart is 

performed by means of a general model considering multiple assignable causes  m  

that can contemporarily occur and progressively deteriorate the process mean. 

Consequently, there are m+1 possible values of  such 

that  for 1,...,i m , where  refers to the IC state.  

This chapter is structured as follows. Section 5.2 presents the proposed Markov 

chain model. Section 5.3 presents the cost expressions needed to compute the quality 

control hourly cost. In Section 5.4 the optimization problem is presented and Section 

5.5 shows the numerical analysis and performance comparisons. 

It should be mentioned that this chapter uses material from Nenes, Tasias and 

Celano (2015). 

5.2 Mathematical Model 

The proposed VP X -Shewhart chart, denoted by 2VP , extends and improves the 

work presented in Nenes (2011) for the VP -Shewhart charts with a single 

assignable cause having different downward and upward shift sizes.  

Under the assumptions that only the process mean may be affected by the 

occurrence of a quality shift, the design parameters of the  control chart are 

reduced to  ,, , ,q q x x qn h w k , where ,  and 
,2 ,1x x xw k k  . 

Additionally,  when the standardized sample mean is plotted below the 

upper warning limit coefficient xw , i.e., t xz w , where  is the standardized sample 

mean at the t-th sampling inspection. In this case, the decision is to let the process 

 0 1 2 10, , ,..., ,m m      

1i i   0 0 

X

2VP

1 2n n 1 2h h

0ta 

tz
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continue its operation and to use the relaxed sampling  1 1 ,1, , ,x xn h w k  at the next 

sampling epoch. Similarly,  when the standardized sample mean is plotted 

within the warning zone, i.e, 
,x t x qw z k  , with 1, 2q  . The decision is again to let 

the process continue its operation but the parameter values at the next sampling epoch 

should correspond to the tightened sampling  2 2 ,2, , ,x xn h w k . Finally,  when 

the chart triggers a signal  ,t x qz k , 1, 2q  , and the decision is to stop the process 

for investigation and possible restoration. After restoration, the process restarts its 

operation in the IC state and the first set of parameters after the set-up will correspond 

to a relaxed sampling  1 1 ,1, , ,x xn h w k . 

The upper part of the control interval of the 2VP  control chart is illustrated in 

Figure 5-1. 

       

     

   

  

                                                                              
 

 

 

Figure 5-1: Regions of the 2VP  control chart 

Regarding the actual state of the process, 0tY   corresponds to the IC condition, 

whereas tY i , (i=1,2,…,m), refers to an OOC condition due to the occurrence of the 

i-th assignable cause. 

Based on the above definitions, the Markov chain has  1 3m   possible states 

 for each possible combination of 0,1,..., 1,tY m m   and 0,1,2ta  . 

1ta 

2ta 

 ,t tY a

Central Region 

Warning Region 

Action Region 

z  

0  

,1xk  

,2xk  
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Thus, the    3 1 3 1m m    transition probability matrix P takes the following 

form: 

1

0 1 ...

0 1 2 0 1 2 0 1 2 0 1 2

0

0 1

2

0

1 1

2

0

... 1

2

0

1

2

t

t

k m

a

i a

m



 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
    

Figure 5-2: Transition Probability Matrix of the 2VP  control chart 

To compute all the transition probabilities  
1t

t

i a q
k a

Prob h


 of the DTMC, we first 

need to compute the exact expressions for all probabilities  ,x i q
k

p h  of moving from 

any state i to any other (or the same) state k. We follow the approach described in 

Tagaras and Lee (1988). 

In particular, if the process operates IC at the beginning of an interval of 
qh  time 

units, then the probability of being at state 1 at the end of that interval is denoted as 

 ,0
1

x qp h  and equals the probability that an assignable cause occurs, times the 

probability that the assignable cause that occurs is the one leading to state 1, times the 

probability that no further assignable cause will occur thereafter:  
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        

      

   
  

0 1

,0 ,0 ,0 ,1
1 ,00

,1 ,0 ,10 1

0

,0 ,1

,10 1

,0 ,1

exp exp

exp exp

1 exp
exp

q

q

h

x

x q x x x q

x

h

x q x xx

x x q

x qx

x x

p h v v t v h t dt
v

v h v v t dt

v v h
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v v


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







         

        

   
    





          (5.1) 

The above expression is straightforwardly extended to any 0i  , to compute the 

probability of moving from any state to the next, during an interval of length 
qh : 

     
  , 1 ,

, 1 ,1

, 1 ,

1 exp
exp

x i x i q

x i q x i qx i i
i x i x i

v v h
p h v h

v v




  



   
    


    (5.2) 

The probability of a transition from state 0 (IC) to state 2 within a sampling 

interval 
qh  is equal to the sum of the probability of a direct transition from state 0 to 

state 2 and the probability of the process first shifting to state 1 and then to state 2 

within the sampling interval 
qh :  

        

     

   
  

        
 

0 2

,0 ,0 ,0 ,2
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0 1

,0 ,0 1
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1 exp
exp
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x qx

x x

h
x x

x x qx x
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v

v v t p h t dt
v
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v t v h t
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 




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 
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      

   
     



   
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  

,1 ,2

q

x x

t
dt

v v





 (5.3) 

which, after some mathematical manipulation, reduces to the following expression: 
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     
  
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(5.4) 

In general, the probability of a transition from any state i to another state k 

1k i   can be computed recursively taking into account all the possible ways that 

could lead to a transition from state i to state k, by using the following equation: 

 

        

     

, , ,

0

1

, ,

10

exp exp

exp

q

q

h

x i q x i x k qx i k
k

h
k

x i x y qx i j
ky i

p h v t v h t dt

v t p h t dt










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        

     





             (5.5) 

In (5.5), the first integral expresses the probability of a direct shift from i to k at 

some time t, times the probability of remaining at k for the rest of the interval 

 .qh t  The second integral computes the sum of probabilities of going from state i 

to state k with all possible scenarios, i.e., the probability of shifting from i to any state 

y between i+1 and k-1 at some time t, times the probability of shifting from state y to k 

in the remainder of the interval  qh t . 

Finally, if k i    0,i m  , the probability of no transition in 
qh  time units can 

be denoted as  ,x i q
i

p h  and is equal to: 

   , ,expx i q x i q
i

p h v h                (5.6) 

Obviously, when i m , equation (5.6) is simplified to  , 1x m q
m

p h  , (since 

, 0x mv  ). 
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Thus, the exact expressions for all the transition probabilities  
1t

t

i a q
k a

Prob h


 of the 

transition probability matrix P are computed by using equations (5.1) to (5.6) and by 

taking into account the position of the last point plotted on the 2VP  control chart: 

 

   

     

   
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,
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t

t

x i q x k q t
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i a q x i q x q k q x k q t
kk a

x i q x q k q t
k

p h w n a

Prob h p h k n w n a

p h k n a


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




  


          

       

      (5.7) 

Note that in the above equations, whenever 1 2ta   , i.e., when the chart issues 

an alarm and either a false alarm is discovered or some assignable cause is detected 

and eliminated, the process always restarts its operation from the IC state: that is, the 

set-up activities after a signal are always considered perfect (or they are needless in 

case of false alarms): as a consequence, the transition probabilities are computed 

thereafter by using  ,0x q
k

p h  regardless of the value of i: 

   2 0 0 1

t t

i q
k a k a

Prob h Prob h                                  (5.8) 

The steady-state probabilities associated with the proposed Markov chain model 

are evaluated by solving the following linear equations system: 

 
1 1 1 1

1 1

2

0 0
t t t t t t

t tt t

m

Y a Y a q Y a
Y aY a

Prob h 
   

  

    and 
2

0 0

1
t t

t t

m

Y a

Y a


 

                      (5.9) 

The 
t tY a ’s represent the long-term transition probabilities for tY i  and ta v , 

i.e., the process operates IC (if 0i  , or under the effect of the assignable cause i (if 

0i  ), and the plotted statistic leads to the decision ta v , ( 0v   for relaxed 

parameters, 1v   for tightened parameters and 2v   for investigation).  
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5.3 The Economic-Statistical Design 

In order to compute the average cost of a transition step EC, we first need to 

compute the expected OOC operation cost of the process, for state i being the initial 

state of a sampling interval of duration 
qh , denoted by  ,x i qK h . 

We will start by first defining the OOC cost of operating under the effect of 

assignable cause m (worst) for a whole interval of duration 
qh . In this case, the OOC 

operation cost,  ,x m qK h , will equal the cost per time unit of operating under the 

effect of the cause m, i.e., mM , times the duration of the interval 
qh :  

 ,x m q m qK h M h                       (5.10) 

Given the cost  ,x m qK h , we can compute the quality cost of an interval that 

starts under the effect of the immediately "better" state, i.e., state m–1. If the process 

operates under the effect of assignable cause m–1 at the beginning of an interval 
qh , 

then the OOC operation cost,  , 1x m qK h  can be computed taking into account that the 

process may operate under the effect of assignable cause m–1 for the entire interval or 

a shift may occur to the only possible state left, i.e., state m. Thus,  , 1x m qK h  will be 

equal to the sum of the following two terms: (a) the cost per time unit of operating 

under the effect of assignable cause m–1, 1mM  , multiplied by the duration of the 

interval 
qh , times the probability of remaining under the specific effect during the 

interval; (b) the probability of shifting to the m state (only possible shift from the m–1 

state), multiplied by the mean expected operation cost: 
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                                   (5.11) 

Using a similar reasoning, and with the use of expressions (5.10) and (5.11), we 

can compute the expected cost of an interval 
qh , that starts with the process operating 

under the effect of state m–2,  , 2x m qK h . In this case,  , 2x m qK h  
can be computed 

taking into account that the process may operate under the effect of assignable cause 

m–2 for the entire interval, a shift to state m–1 may occur, or a direct shift to state m 

may occur. Thus,  , 2x m qK h  will be equal to the sum of the following three terms: (a) 

the cost per time unit of operating under the effect of the cause m–2, 2mM  , multiplied 

by the duration of the interval 
qh , times the probability of remaining under the 

specific effect during the whole interval; (b) the probability of shifting to the m–1 

state, multiplied by the expected operation cost which in terms consists of operating 

under the effect of state m–2 for some part of the interval and the cost , 1x mK   for the 

rest of the interval; (c) the probability of shifting directly to the m state, multiplied by 

the expected operation cost of operating under the effect of state m–2 for some part of 

the interval and the cost ,x mK  for the rest of the interval: 
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   (5.12) 

The three equations above (5.10), (5.11) and (5.12), are used to compute the OOC 

operation cost of the process when an interval of 
qh  time units starts with the 

operation being in the m, m–1 and m–2 states, respectively. In general, the OOC 

operation cost  ,x i qK h  for any 1i m   is computed recursively from the following 

expression: 
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  (5.13) 

Subsequently, the average cost of a transition step, EC, is the weighted average of 

the expected costs from all transition states and is given by:  
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Similarly, the average duration of a transition step, ET, is the weighted average of 

the durations associated with each steady-state of the chain and is given by: 

 1 0 2 1 2 1

0 0 0

m m m

k k k k

k k k

ET h h h T  
  

                       
(5.15) 

5.4 Optimization Problem 

The optimization problem is formulated as follows: 
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min
qDP

ECT  

s.t.   
1 2 1 2 ,1 ,2, , , , , , 0x x xh h n n w k k 

 

2 1h h
                            (5.16) 

2 1n n
 

,2 ,1x x xw k k 
 

1 2,n n   

The minimization of ECT is achieved by means of a computer program 

developed in Fortran Power Station 4.0, which estimates the minimum ECT and 

defines the optimum design parameters of the control chart for each case. 

5.5 Numerical Analysis 

In this section a numerical investigation is performed to explore the potential cost 

savings deriving from monitoring a process with a fully adaptive control chart vs. 

simpler and partially adaptive (or no adaptive) charts. The numerical investigation 

entails 64 cases for processes where three assignable causes occur  3m   with 

different process  ,   and economic parameters  0, ,ib M L , as presented in Table 5-

1. It should be mentioned that for all cases: , , 

. To limit the number of investigated scenarios, the variable sampling 

cost  was kept constant . The removal of each assignable cause has a 

different economic impact to the process: 1 200L  , 2 250L   and 3 300L  , while we 

have assumed negligible times to search and eliminate any assignable cause, i.e., 

0iT   . Moreover, the OOC operation cost per time unit for each 

assignable cause is computed as a function of M, i.e., 1M M , 2 1.5M M   and 

3 2M M  . 
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Table 5-1: Parameter sets of the 64 numerical examples for the 2VP  control chart 

  

Case b M L0 λ δ1 δ2 δ3 Case b M L0 λ δ1 δ2 δ3 

1 0 100 100 0.01 0.125 0.25 0.375 33 0 100 100 0.01 0.5 0.75 1.0 

2 0 100 200 0.01 0.125 0.25 0.375 34 0 100 200 0.01 0.5 0.75 1.0 

3 0 1000 100 0.01 0.125 0.25 0.375 35 0 1000 100 0.01 0.5 0.75 1.0 

4 0 1000 200 0.01 0.125 0.25 0.375 36 0 1000 200 0.01 0.5 0.75 1.0 

5 5 100 100 0.01 0.125 0.25 0.375 37 5 100 100 0.01 0.5 0.75 1.0 

6 5 100 200 0.01 0.125 0.25 0.375 38 5 100 200 0.01 0.5 0.75 1.0 

7 5 1000 100 0.01 0.125 0.25 0.375 39 5 1000 100 0.01 0.5 0.75 1.0 

8 5 1000 200 0.01 0.125 0.25 0.375 40 5 1000 200 0.01 0.5 0.75 1.0 

9 0 100 100 0.1 0.125 0.25 0.375 41 0 100 100 0.1 0.5 0.75 1.0 

10 0 100 200 0.1 0.125 0.25 0.375 42 0 100 200 0.1 0.5 0.75 1.0 

11 0 1000 100 0.1 0.125 0.25 0.375 43 0 1000 100 0.1 0.5 0.75 1.0 

12 0 1000 200 0.1 0.125 0.25 0.375 44 0 1000 200 0.1 0.5 0.75 1.0 

13 5 100 100 0.1 0.125 0.25 0.375 45 5 100 100 0.1 0.5 0.75 1.0 

14 5 100 200 0.1 0.125 0.25 0.375 46 5 100 200 0.1 0.5 0.75 1.0 

15 5 1000 100 0.1 0.125 0.25 0.375 47 5 1000 100 0.1 0.5 0.75 1.0 

16 5 1000 200 0.1 0.125 0.25 0.375 48 5 1000 200 0.1 0.5 0.75 1.0 

17 0 100 100 0.01 0.25 0.5 0.75 49 0 100 100 0.01 0.5 1.5 2.5 

18 0 100 200 0.01 0.25 0.5 0.75 50 0 100 200 0.01 0.5 1.5 2.5 

19 0 1000 100 0.01 0.25 0.5 0.75 51 0 1000 100 0.01 0.5 1.5 2.5 

20 0 1000 200 0.01 0.25 0.5 0.75 52 0 1000 200 0.01 0.5 1.5 2.5 

21 5 100 100 0.01 0.25 0.5 0.75 53 5 100 100 0.01 0.5 1.5 2.5 

22 5 100 200 0.01 0.25 0.5 0.75 54 5 100 200 0.01 0.5 1.5 2.5 

23 5 1000 100 0.01 0.25 0.5 0.75 55 5 1000 100 0.01 0.5 1.5 2.5 

24 5 1000 200 0.01 0.25 0.5 0.75 56 5 1000 200 0.01 0.5 1.5 2.5 

25 0 100 100 0.1 0.25 0.5 0.75 57 0 100 100 0.1 0.5 1.5 2.5 

26 0 100 200 0.1 0.25 0.5 0.75 58 0 100 200 0.1 0.5 1.5 2.5 

27 0 1000 100 0.1 0.25 0.5 0.75 59 0 1000 100 0.1 0.5 1.5 2.5 

28 0 1000 200 0.1 0.25 0.5 0.75 60 0 1000 200 0.1 0.5 1.5 2.5 

29 5 100 100 0.1 0.25 0.5 0.75 61 5 100 100 0.1 0.5 1.5 2.5 

30 5 100 200 0.1 0.25 0.5 0.75 62 5 100 200 0.1 0.5 1.5 2.5 

31 5 1000 100 0.1 0.25 0.5 0.75 63 5 1000 100 0.1 0.5 1.5 2.5 

32 5 1000 200 0.1 0.25 0.5 0.75 64 5 1000 200 0.1 0.5 1.5 2.5 
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Note that, similarly to 1VP  control scheme, the proposed 2VP  control chart is 

flexible enough to be associated with immediate sampling in case the statistic is found 

in the warning zone, i.e., if we allow 2 0.0h  , then we assume that in case the 

tightened parameters are to be used, the next sample 2n  could be taken immediately 

after the previous one without allowing any time to pass. 

However, in the numerical investigation, we have set a minimum value for the 

sampling interval (equal to 0.1) to get more realistic results since the production 

processes rarely cease during sampling, while the sampling procedure itself cannot 

realistically be instantaneous. 

The economic design parameters of the 2VP  control chart, the corresponding 

expected quality control cost and the measures of statistical performance are 

presented in Tables 5-2 and 5-3 for each investigated scenario. 
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Table 5-2: Economic design for numerical examples 1-32: optimal control policy, cost and related statistical measures for the  control 

chart 

 

  

2VP

Optimum Design Parameters Statistical Measures 

Case h1 h2   n1   n2   wx kx,1 kx,2 ECTVP2 α 1-β ANOF ARL0 WARL ATC EATR 

1 4.5 0.4 10 11 0.1 0.7 0.5 23.31 0.2555 0.476 0.061 3.91 2.10 62.54 5.40 
2 2.3 0.4 2 14 0.1 3.5 1.1 27.64 0.0548 0.150 0.031 18.25 6.65 74.85 8.18 
3 1.4 0.1 11 12 0.1 0.7 0.5 69.32 0.2555 0.479 0.216 3.91 2.09 58.80 1.65 
4 0.7 0.4 2 20 0.1 3.6 0.9 84.33 0.0713 0.203 0.117 14.03 4.93 69.09 2.43 
5 4.9 0.4 8 9 0.1 0.5 0.3 24.43 0.3189 0.499 0.066 3.14 2.00 72.74 6.08 
6 5.5 0.4 13 20 0.1 1.2 0.8 28.93 0.1454 0.343 0.032 6.88 2.92 74.65 7.98 
7 1.4 0.7 9 13 0.1 0.6 0.1 74.39 0.3031 0.498 0.226 3.30 2.01 68.53 1.87 
8 1.5 0.5 13 27 0.1 1.3 0.7 90.52 0.1426 0.357 0.115 7.01 2.80 69.08 2.41 
9 1.8 0.4 8 9 0.1 0.6 0.3 84.31 0.2912 0.524 0.115 3.43 1.91 7.84 2.12 

10 2.2 0.4 13 15 0.1 1.1 0.7 91.97 0.1649 0.433 0.054 6.06 2.31 8.43 2.72 
11 0.5 0.1 12 12 0.1 0.5 0.4 233.20 0.3137 0.563 0.621 3.19 1.78 6.25 0.54 
12 0.2 0.2 1 18 0.1 4.5 0.8 276.73 0.0785 0.218 0.344 12.74 4.59 7.49 0.82 
13 1.8 1.0 6 8 0.1 0.6 0.1 85.56 0.2999 0.478 0.112 3.33 2.09 9.28 2.61 
14 1.3 1.3 3 17 0.1 2.2 0.4 93.51 0.1094 0.297 0.049 9.14 3.37 10.42 3.76 
15 0.5 0.2 9 12 0.1 0.5 0.1 243.26 0.3280 0.526 0.627 3.05 1.90 7.29 0.62 
16 0.5 0.1 12 24 0.1 1.3 0.6 287.49 0.1502 0.366 0.315 6.67 2.74 7.49 0.82 
17 1.9 0.1 2 9 0.2 3.1 1.3 18.44 0.0376 0.180 0.029 26.58 5.57 71.35 4.68 
18 2.0 0.1 3 18 0.5 3.8 1.5 20.78 0.0193 0.184 0.012 51.70 5.45 72.03 5.36 
19 0.5 0.1 2 11 0.3 3.1 1.3 52.09 0.0343 0.185 0.093 68.11 5.41 68.11 1.45 
20 0.6 0.1 3 21 0.5 4.0 1.5 58.27 0.0193 0.198 0.041 51.77 5.06 68.29 1.63 
21 4.2 1.6 9 14 0.1 1.3 0.9 20.45 0.1253 0.461 0.034 7.98 2.17 71.53 4.87 
22 3.8 0.1 9 27 0.5 2.4 1.4 22.18 0.0285 0.291 0.009 35.10 3.43 72.19 5.53 
23 1.2 0.2 9 17 0.2 1.5 1.0 60.40 0.0933 0.401 0.099 10.72 2.49 68.14 1.48 
24 1.2 0.1 10 32 0.5 2.5 1.4 65.78 0.0272 0.309 0.030 36.83 3.24 68.35 1.69 
25 0.6 0.3 1 7 0.1 3.7 1.2 76.97 0.0457 0.201 0.071 21.90 4.97 8.60 1.93 
26 0.6 0.3 1 11 0.4 4.0 1.4 80.91 0.0247 0.174 0.034 40.46 5.75 9.08 2.41 
27 0.2 0.1 2 11 0.1 2.8 1.1 192.18 0.0556 0.256 0.319 17.98 3.91 7.15 0.49 
28 0.2 0.1 3 20 0.4 3.5 1.4 213.76 0.0255 0.234 0.138 39.15 4.27 7.22 0.56 
29 1.6 0.8 7 11 0.1 1.3 0.8 77.41 0.1304 0.457 0.065 7.67 2.19 8.74 2.07 
30 1.7 0.8 8 16 0.2 1.8 1.1 81.43 0.0672 0.389 0.031 14.88 2.57 9.18 2.52 
31 0.4 0.2 9 15 0.1 1.3 0.9 204.60 0.1252 0.470 0.339 7.99 2.13 7.15 0.49 
32 0.4 0.1 10 26 0.4 2.1 1.3 224.13 0.0414 0.345 0.120 24.13 2.90 7.24 0.57 



74 

 

Table 5-3: Economic design for numerical examples 33-64: optimal control policy, cost and related statistical measures for the 2VP  control 

chart 

 

 

Optimum Design Parameters Statistical Measures 

Case h1 h2   n1   n2   wx kx,1 kx,2 ECTVP2 α 1-β ANOF ARL0 WARL ATC EATR 

33 1.4 0.1 2 9 0.6 3.7 1.8 13.44 0.0096 0.223 0.009 104.44 4.49 69.40 2.73 
34 1.5 0.1 2 13 0.7 4.8 2.1 13.91 0.0042 0.225 0.003 235.79 4.44 69.55 2.89 
35 0.4 0.1 2 10 0.6 3.7 1.8 34.93 0.0096 0.241 0.029 104.44 4.15 67.52 0.85 
36 0.4 0.1 2 15 0.8 4.6 2.1 36.55 0.0037 0.236 0.011 269.22 4.25 67.59 0.92 
37 3.3 0.1 7 15 0.7 2.4 1.7 15.75 0.0164 0.402 0.006 61.02 2.49 69.75 3.08 
38 3.2 0.1 7 19 0.8 3.0 2.0 16.09 0.0058 0.356 0.002 173.79 2.81 69.84 3.17 
39 1.0 0.1 7 16 0.7 2.4 1.7 43.92 0.0164 0.410 0.020 61.02 2.44 67.64 0.98 
40 1.0 0.1 7 21 0.8 2.9 2.0 45.06 0.0062 0.375 0.007 162.46 2.66 67.70 1.03 
41 0.4 0.1 1 7 0.6 4.2 1.7 65.03 0.0115 0.195 0.030 86.63 5.13 7.83 1.17 
42 0.4 0.1 1 10 0.8 5.0 1.9 67.19 0.0058 0.187 0.014 171.57 5.35 7.97 1.30 
43 0.1 0.1 1 10 0.6 4.2 1.6 135.63 0.0141 0.265 0.133 71.14 3.77 6.99 0.33 
44 0.1 0.1 1 15 0.8 4.8 1.9 143.33 0.0058 0.248 0.055 171.56 4.04 7.02 0.35 
45 1.3 0.1 7 12 0.8 1.9 1.4 66.47 0.0038 0.476 0.026 26.56 2.10 7.96 1.29 
46 1.3 0.1 7 15 0.8 2.4 1.7 68.15 0.0152 0.406 0.011 65.61 2.46 8.00 1.34 
47 0.3 0.1 7 15 0.7 2.0 1.5 161.39 0.0032 0.480 0.115 31.38 2.09 6.99 0.32 
48 0.4 0.1 8 21 0.8 2.3 1.8 167.83 0.0156 0.496 0.042 64.11 2.01 7.04 0.37 
49 1.1 0.1 1 9 0.7 4.3 1.8 13.15 0.0084 0.208 0.009 119.24 4.82 69.39 2.72 
50 1.5 0.1 2 14 0.8 3.9 2.1 13.42 0.0038 0.241 0.003 266.65 4.14 69.47 2.80 
51 0.4 0.1 2 12 0.8 3.2 1.8 32.98 0.0079 0.258 0.023 127.14 3.87 67.53 0.86 
52 0.4 0.1 2 16 0.9 3.7 2.1 34.51 0.0033 0.247 0.009 301.89 4.04 67.57 0.90 
53 2.9 0.1 5 16 0.8 2.6 1.7 15.23 0.0126 0.396 0.005 79.36 2.53 69.81 3.14 
54 3.0 0.1 5 19 0.8 3.1 2.0 15.56 0.0055 0.365 0.002 183.26 2.74 69.87 3.20 
55 0.9 0.1 5 18 0.8 2.6 1.7 42.28 0.0126 0.409 0.017 79.36 2.45 67.67 1.00 
56 0.9 0.1 6 22 0.9 3.0 2.0 43.30 0.0052 0.395 0.007 193.33 2.53 67.66 0.99 
57 0.4 0.1 1 6 0.7 3.5 1.6 62.67 0.0126 0.312 0.031 79.59 4.93 7.85 1.18 
58 0.4 0.1 1 10 0.9 4.1 1.9 63.98 0.0051 0.195 0.012 196.84 5.13 7.95 1.28 
59 0.1 0.1 1 10 0.7 3.3 1.6 129.56 0.0127 0.266 0.121 78.44 3.75 6.99 0.33 
60 0.2 0.1 4 19 0.9 2.8 1.9 137.07 0.0071 0.366 0.037 140.54 2.73 7.00 0.34 
61 1.2 0.4 5 11 0.7 2.0 1.3 64.42 0.0370 0.494 0.027 27.00 2.03 8.01 1.34 
62 1.2 0.1 5 16 0.9 2.7 1.7 65.87 0.0010 0.404 0.008 95.29 2.48 8.06 1.39 
63 0.3 0.1 5 16 0.7 2.2 1.5 154.55 0.0252 0.471 0.091 39.68 2.12 7.00 0.34 
64 0.3 0.1 6 20 0.8 2.7 1.8 159.94 0.0099 0.443 0.036 100.76 2.26 7.02 0.35 
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It becomes immediately evident that performing an economic optimization 

without any statistical constraint leads to unacceptable False Alarm probabilities for 

the majority of the investigated cases. In particular, the probability of Type I error is 

0.02   in 32 out of 64 cases. This results in a loss of confidence of the quality 

practitioner to the signals issued by the chart, while it leads to unnecessary over-

adjustments of the production process. 

To avoid unacceptable statistical performance for these 32 scenarios, an 

economic-statistical design optimization has been performed by constraining the 

probability of Type I error: 0.02  . The results of the economic-statistical 

optimization of the 32 cases are presented in Table 5-4. 
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Table 5-4: Economic-Statistical design for numerical examples with high Type I error: optimal control policy, cost and related statistical 

measures for the  control chart 

Optimum Design Parameters Statistical Measures 

Case h1 h2   n1   n2   wx kx,1 kx,2 ECTVP2 α 1-β ANOF ARL0 WARL ATC EATR 

1 0.5 0.1 1 4 0.5 3.1 1.5 28.67 0.0200 0.044 0.046 50.15 22.99 74.72 8.06 
2 1.0 0.1 1 9 0.3 3.5 1.6 31.12 0.0200 0.060 0.026 50.09 16.75 76.28 9.61 
3 0.1 0.1 1 3 0.3 3.5 1.6 80.44 0.0200 0.041 0.193 50.09 24.32 69.05 2.38 
4 0.3 0.1 1 14 0.3 3.5 1.6 92.01 0.0200 0.071 0.084 50.09 14.05 69.47 2.80 
5 2.3 0.1 3 28 0.3 3.5 1.6 31.77 0.0200 0.108 0.011 50.09 9.22 77.07 10.40 
6 2.3 0.1 3 30 0.3 3.5 1.6 32.80 0.0200 0.115 0.010 50.09 8.72 77.48 10.82 
7 0.6 0.1 3 30 0.3 3.5 1.6 100.07 0.0200 0.109 0.045 50.09 9.17 69.68 3.01 
8 0.7 0.2 4 30 0.3 3.5 1.6 104.38 0.0200 0.111 0.039 50.09 9.02 70.00 3.34 
9 0.2 0.1 1 3 0.5 3.0 1.5 92.11 0.0200 0.044 0.074 50.10 22.70 10.31 3.64 

10 0.3 0.3 1 10 0.6 3.3 1.4 96.89 0.0200 0.070 0.040 50.01 14.27 10.80 4.13 
11 0.1 0.1 1 19 0.3 3.2 1.6 279.41 0.0200 0.090 0.171 50.03 11.09 7.73 1.06 
12 0.1 0.1 1 22 0.5 3.0 1.5 295.89 0.0200 0.090 0.171 50.10 11.08 7.72 1.06 
13 0.7 0.6 1 24 0.4 3.5 1.5 96.25 0.0200 0.123 0.016 50.04 11.67 11.67 5.00 
14 0.8 0.8 1 29 0.4 3.1 1.5 97.64 0.0199 0.140 0.013 50.19 7.14 11.99 5.32 
15 0.2 0.1 2 30 0.3 3.2 1.6 323.56 0.0200 0.117 0.102 50.03 8.56 7.87 1.20 
16 0.2 0.1 2 30 0.3 3.2 1.6 333.73 0.0200 0.117 0.102 50.03 8.56 7.87 1.20 
17 1.2 0.1 1 9 0.3 3.9 1.6 18.81 0.0199 0.123 0.023 50.37 8.15 71.50 4.84 
19 0.4 0.1 1 12 0.3 3.7 1.6 53.46 0.0199 0.144 0.067 50.28 6.92 68.22 1.55 
21 3.4 0.1 6 22 0.3 3.5 1.6 21.63 0.0200 0.230 0.008 50.09 4.35 72.10 5.43 
22 3.6 0.1 8 29 0.5 3.1 1.5 22.28 0.0199 0.264 0.007 50.15 3.78 72.26 5.59 
23 1.0 0.1 6 25 0.3 3.5 1.6 63.66 0.0200 0.244 0.029 50.09 4.10 68.30 1.64 
24 1.1 0.1 9 30 0.5 3.1 1.5 66.03 0.0199 0.270 0.024 50.15 3.70 68.42 1.75 
25 0.4 0.1 1 6 0.3 3.2 1.6 77.81 0.0200 0.111 0.051 50.03 9.04 8.76 2.09 
26 0.6 0.1 1 11 0.5 4.8 1.5 81.19 0.0191 0.144 0.029 52.49 6.96 9.14 2.47 
27 0.1 0.1 1 15 0.5 3.3 1.5 195.68 0.0194 0.166 0.178 51.61 6.03 7.22 0.55 
28 0.2 0.1 3 24 0.5 3.3 1.5 215.03 0.0194 0.227 0.102 51.61 4.41 7.26 0.59 
29 0.9 0.6 2 19 0.4 3.5 1.5 78.87 0.0200 0.235 0.016 50.04 4.26 9.47 2.80 
30 1.1 0.6 3 21 0.4 3.5 1.5 82.38 0.0200 0.253 0.014 50.04 3.95 9.55 2.88 
31 0.3 0.1 5 26 0.3 3.2 1.6 220.45 0.0200 0.261 0.079 50.03 3.83 7.26 0.60 
32 0.3 0.1 6 30 0.5 3.0 1.5 227.43 0.0200 0.271 0.074 50.10 3.69 7.28 0.62 
61 1.1 0.1 4 13 0.8 2.4 1.5 64.57 0.0193 0.404 0.016 51.78 2.47 7.98 1.32 
63 0.3 0.1 6 18 0.8 2.3 1.6 154.79 0.0191 0.476 0.068 52.37 2.10 7.00 0.33 

 

2VP
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The value of the optimum 2h  is equal to its minimum allowable value  2 0.1h   

in the majority of the examined cases (90.63% and 67.19% of the scenarios with and 

without the Type I error constraint, respectively). This means that in most cases 

whenever an alarm is issued a sample should be collected as fast as possible after the 

previous one. 

From the examination of the optimum design parameters, both in cases with and 

without the statistical constraint, a general conclusion can be drawn: for larger values 

of   and/or larger values of out-of-control-operation costs, namely M , the ECT 

increases and the value of 1h  gets smaller. Moreover, it can be concluded that   and 

ECT are inversely related variables. The logical explanation of the two 

aforementioned conclusions is that for large M  costs, samples must be collected 

more frequently to limit the out-of-control operation period of the process; while, for 

large   effects, assignable causes can be more easily identified by the control chart 

and, as a result, ECT gets smaller. Finally, the higher the occurrence rates of the 

assignable causes   , the smaller the sampling intervals and the lower the upper 

warning limit and control limits, in order for the control chart to detect quickly the 

more frequent deterioration of the process performance. 

Additionally, the Type I error probability α and the ANOF are greater in cases 

with higher occurrence rates and lower effects of the assignable causes on the process 

mean, because of the high frequency of the assignable cause occurrence and the 

difficulty of the control chart to distinguish between true and false alarms. Moreover, 

it is apparent from the definitions of ATC and EATR, and verified by the numerical 

results, that the values of these statistical measures are inversely related to the values 

of  . 

In order to evaluate the cost savings associated with the implementation of the 

one-sided 2VP  control chart, a cost comparison is performed with the following 

partially adaptive charts: (a) FP control chart; (b) VSS control chart; (c) VSI control 

chart; (d) VSSI control chart. The obtained results are shown in Tables 5-5 and 5-6 

and clearly demonstrate the economic superiority associated with the implementation 

of the 2VP  control chart.  
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Table 5-5: Economic comparison between the 2VP  control chart and other less 

adaptive control charts. Numerical examples 1-32 

 ECT 2FP VP

FP

  

(%) 

2VSS VP

VSS

  

 (%) 

2VSI VP

VSI

  

 (%) 

2VSSI VP

VSSI

  

 (%) Case FP VSS VSI VSSI VP2 

1 30.18 30.18 29.74 29.74 28.67 5.00 5.00 3.60 3.60 

2 36.33 35.61 35.13 35.04 31.12 14.34 12.61 11.41 11.19 

3 100.44 97.58 91.17 90.55 80.44 19.91 17.57 11.77 11.17 

4 117.41 115.94 108.07 107.52 92.01 21.63 20.64 14.86 14.43 

5 43.83 39.34 37.42 36.08 31.77 27.52 19.24 15.10 11.95 

6 44.10 40.00 38.03 36.72 32.80 25.62 18.00 13.75 10.68 

7 149.42 126.11 121.60 113.80 100.07 33.03 20.65 17.71 12.07 

8 150.31 128.25 123.22 120.80 104.38 30.56 18.61 15.29 13.59 

9 99.03 99.03 96.52 96.52 92.11 6.99 6.99 4.57 4.57 

10 109.97 107.06 103.86 103.86 96.89 11.89 9.50 6.71 6.71 

11 386.64 349.12 342.48 339.88 279.41 27.73 19.97 18.42 17.79 

12 400.92 363.79 356.96 354.52 295.89 26.20 18.66 17.11 16.54 

13 117.11 113.16 107.73 106.11 96.25 17.81 14.94 10.66 9.29 

14 117.40 113.86 108.34 106.80 97.64 16.83 14.25 9.88 8.58 

15 438.32 393.45 392.59 372.88 323.56 26.18 17.76 17.58 13.23 

16 441.06 400.59 396.11 377.05 333.73 24.33 16.69 15.75 11.49 

17 25.15 22.69 21.22 20.27 18.81 25.21 17.10 11.36 7.20 

18 26.37 23.77 22.20 21.19 20.78 21.20 12.58 6.40 1.93 

19 75.98 66.02 64.62 59.72 53.46 29.64 19.02 17.27 10.48 

20 80.44 69.50 67.18 62.46 58.27 27.56 16.16 13.26 6.71 

21 27.22 25.13 23.76 22.64 21.63 20.54 13.93 8.96 4.46 

22 27.54 25.58 24.27 23.16 22.28 19.10 12.90 8.20 3.80 

23 82.82 73.75 71.21 66.55 63.66 23.13 13.68 10.60 4.34 

24 83.90 75.43 72.92 68.37 66.03 21.30 12.46 9.45 3.42 

25 87.33 82.89 82.38 81.30 77.81 10.90 6.13 5.55 4.29 

26 88.43 85.52 83.10 82.04 81.19 8.19 5.06 2.30 1.04 

27 257.16 226.95 224.71 213.82 195.68 23.91 13.78 12.92 8.48 

28 263.93 237.75 235.97 220.66 215.03 18.53 9.56 8.87 2.55 

29 91.30 89.93 83.89 82.80 78.87 13.61 12.30 5.98 4.75 

30 91.91 90.72 84.71 83.73 82.38 10.37 9.19 2.75 1.61 

31 272.40 251.32 246.49 232.96 220.45 19.07 12.28 10.56 5.37 

32 275.43 256.05 250.71 237.76 227.43 17.43 11.18 9.29 4.34 
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Table 5-6: Economic comparison between the 2VP  control chart and other less 

adaptive control charts. Numerical examples 33-64 

 ECT 2FP VP

FP

  

(%) 

2VSS VP

VSS

  

 (%) 

2VSI VP

VSI

  

 (%) 

2VSSI VP

VSSI

  

 (%) Case FP VSS VSI VSSI VP2 

33 16.65 15.51 14.02 13.69 13.44 19.28 13.35 4.14 1.83 

34 17.15 16.44 14.89 14.36 13.91 18.89 15.39 6.58 3.13 

35 45.45 41.44 39.18 36.71 34.93 23.15 15.71 10.85 4.85 

36 47.12 44.57 41.84 38.55 36.55 22.43 17.99 12.64 5.19 

37 18.03 17.56 16.30 15.87 15.75 12.65 10.31 3.37 0.76 

38 18.40 18.00 16.83 16.32 16.09 12.55 10.61 4.40 1.41 

39 49.83 48.12 45.87 44.31 43.92 11.86 8.73 4.25 0.88 

40 51.11 49.63 47.69 45.71 45.06 11.84 9.21 5.51 1.42 

41 71.83 69.70 68.19 65.97 65.03 9.47 6.70 4.63 1.42 

42 73.00 71.83 69.12 68.41 67.19 7.96 6.46 2.79 1.78 

43 166.46 156.27 150.59 142.37 135.63 18.52 13.21 9.93 4.73 

44 171.85 165.45 157.44 150.23 143.33 16.60 13.37 8.96 4.59 

45 75.77 75.11 68.23 67.43 66.47 12.27 11.50 2.58 1.42 

46 76.56 75.99 69.32 68.63 68.15 10.98 10.32 1.69 0.70 

47 180.30 175.96 168.02 163.98 161.39 10.49 8.28 3.95 1.58 

48 184.35 180.00 172.90 168.84 167.83 8.96 6.76 2.93 0.60 

49 15.89 14.19 13.73 13.67 13.15 17.24 7.33 4.22 3.80 

50 16.61 15.02 14.59 13.97 13.42 19.21 10.65 8.02 3.94 

51 43.55 37.39 37.27 34.74 32.98 24.27 11.79 11.51 5.07 

52 45.76 39.96 39.11 36.45 34.51 24.58 13.64 11.76 5.32 

53 17.67 16.49 16.07 15.41 15.23 13.81 7.64 5.23 1.17 

54 18.09 17.04 16.64 15.82 15.56 13.99 8.69 6.49 1.64 

55 48.91 44.85 44.14 42.83 42.28 13.56 5.73 4.21 1.28 

56 50.32 46.78 46.03 44.10 43.30 13.95 7.44 5.93 1.81 

57 67.28 65.50 64.97 64.13 62.67 6.85 4.32 3.54 2.28 

58 69.41 67.57 67.06 65.63 63.98 7.82 5.31 4.59 2.51 

59 159.07 142.94 141.79 134.55 129.56 18.55 9.36 8.63 3.71 

60 166.26 150.58 149.32 141.71 137.07 17.56 8.97 8.20 3.27 

61 73.37 71.54 66.87 65.28 64.57 11.99 9.74 3.44 1.09 

62 74.43 72.66 68.06 66.58 65.87 11.50 9.34 3.22 1.07 

63 176.84 165.01 164.85 157.01 154.79 12.47 6.19 6.10 1.41 

64 180.88 170.46 169.79 162.61 159.94 11.58 6.17 5.80 1.64 
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The average cost saving achieved by implementing the proposed control chart is 

17.38% compared to the FP control chart; 11.85% compared to the VSS control chart; 

8.41% compared to the VSI control chart and 5.14% compared to the VSSI control 

chart. This improvement is greater when the OOC operation costs, namely M , are 

large and   are small. 

Finally, to test the economic superiority associated with the design of the 2VP  

control chart optimized in presence of multiple assignable causes, we have computed 

the expected quality control cost ECTs  associated with the implementation of the 

same VP control chart, denoted as 
2,sVP , with design parameters optimized for 

monitoring one assignable cause with average size 
1

m

av i

i

m 


   3m  . The 

results are given in Table 5-7. 

It is evident from Table 5-7 that the erroneous consideration of only one 

assignable cause with average shift size δav charges the process with a significant 

additional cost. Specifically, the average cost saving associated with implementing the 

proposed model is 18.78%. As expected, this saving is greater for scenarios where  

costs are large,  are small and the relative difference between the three assignable 

causes is greater, i.e., , , . 

  

M



1 0.5  2 1.5  3 2.5 
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Table 5-7: Economic comparison between the 2VP  control chart in case of multiple 

assignable causes and in case of a single assignable cause 

 

 

          ECT 2, 2

2,

s

s

VP VP

VP

  

(%) 

       ECT 2, 2

2,

s

s

VP VP

VP



 
 (%)

 

Case h1 h2 n1 n2 wx kx,1 kx,2 VP2,s VP2 Case h1 h2 n1 n2 wx kx,1 kx,2 VP2,s VP2 

1 5.1 0.1 11 16 0.1 1.3 1.0 24.71 23.31 5.67 33 1.8 0.1 2 8 0.6 3.8 2.1 14.55 13.44 7.63 

2 5.4 0.1 11 26 0.1 2.3 1.4 29.83 27.64 7.34 34 2.2 0.1 3 10 0.7 3.9 2.3 15.29 13.91 9.03 

3 1.6 0.1 12 18 0.1 1.3 1.0 76.21 69.32 9.04 35 0.7 0.1 3 9 0.6 3.1 2.0 39.23 34.93 10.96 

4 1.5 0.1 11 30 0.2 2.4 1.4 98.27 84.33 14.19 36 0.7 0.1 3 11 0.7 3.6 2.3 42.36 36.55 13.72 

5 7.5 0.1 19 19 0.1 0.7 0.7 25.34 24.43 3.59 37 4.6 0.1 8 13 0.8 2.5 2.1 16.93 15.75 6.97 

6 7.8 0.1 23 30 0.2 1.6 1.3 31.03 28.93 6.77 38 4.4 0.1 8 15 0.9 2.9 2.3 17.50 16.09 8.06 

7 2.2 0.3 19 19 0.1 0.8 0.8 77.66 74.39 4.21 39 1.4 0.1 8 13 0.8 2.4 2.0 46.32 43.92 5.18 

8 2.4 0.1 25 30 0.2 1.6 1.3 99.53 90.52 9.05 40 1.4 0.1 8 16 0.9 2.8 2.3 48.89 45.06 7.83 

9 2.3 0.1 12 13 0.1 0.8 0.8 85.73 84.31 1.66 41 0.9 0.1 3 8 0.5 2.8 1.9 66.62 65.03 2.39 

10 2.8 0.1 17 22 0.1 1.4 1.1 94.11 91.97 2.27 42 0.8 0.1 3 10 0.7 3.4 2.1 68.40 67.19 1.77 

11 0.6 0.1 15 18 0.1 1.0 0.8 251.20 233.20 7.17 43 0.3 0.1 5 11 0.6 2.3 1.8 150.61 135.63 9.95 

12 0.7 0.1 19 30 0.1 1.6 1.2 300.47 276.73 7.90 44 0.3 0.1 6 15 0.9 2.6 2.1 161.31 143.33 11.15 

13 2.9 0.7 15 15 0.1 0.4 0.3 88.53 85.56 3.35 45 1.7 0.1 9 12 0.9 2.1 1.8 72.40 66.47 8.19 

14 3.5 0.1 23 23 0.1 1.1 1.1 96.78 93.51 3.38 46 1.8 0.1 9 14 0.9 2.4 2.1 74.40 68.15 8.40 

15 0.7 0.1 17 17 0.1 0.8 0.7 254.91 243.26 4.57 47 0.5 0.1 10 13 0.9 2.0 1.8 170.63 161.39 5.42 

16 0.8 0.1 26 30 0.2 1.4 1.2 305.86 287.49 6.01 48 0.5 0.1 11 17 1.0 2.4 2.1 178.17 167.83 5.80 

17 2.8 0.1 4 13 0.4 3.0 1.8 21.38 18.44 13.75 49 1.2 0.1 1 3 0.8 3.9 2.5 30.09 13.15 56.30 

18 3.1 0.1 5 17 0.5 3.5 2.1 24.40 20.78 14.84 50 1.2 0.1 1 4 0.9 4.5 2.8 31.61 13.42 57.55 

19 0.9 0.1 5 15 0.5 2.7 1.7 66.47 52.09 21.63 51 0.4 0.1 1 4 0.8 3.6 2.5 130.45 32.98 74.72 

20 0.9 0.1 5 19 0.6 3.4 2.0 80.05 58.27 27.21 52 0.4 0.1 1 4 0.9 4.0 2.6 171.03 34.51 79.82 

21 5.3 0.1 12 18 0.6 2.0 1.7 23.45 20.45 12.79 53 3.6 0.1 4 6 1.3 2.9 2.6 30.66 15.23 50.33 

22 5.2 0.1 12 24 0.7 2.6 2.0 26.34 22.18 15.79 54 3.6 0.1 4 6 1.3 3.1 2.7 33.23 15.56 53.17 

23 1.6 0.1 12 19 0.6 2.0 1.7 71.19 60.40 15.16 55 1.1 0.1 4 6 1.3 2.7 2.5 133.67 42.28 68.37 

24 1.6 0.1 12 25 0.7 2.6 2.0 84.13 65.78 21.81 56 1.1 0.1 4 7 1.4 3.0 2.7 175.87 43.30 75.38 

25 1.1 0.1 4 11 0.3 2.4 1.6 77.02 76.97 0.06 57 0.4 0.1 1 4 0.9 3.6 2.4 71.53 62.67 12.39 

26 1.2 0.1 5 16 0.5 2.9 1.8 81.27 80.91 0.44 58 0.4 0.1 1 4 0.9 4.0 2.6 73.84 63.98 13.35 

27 0.4 0.1 8 15 0.1 1.9 1.5 215.39 192.18 10.78 59 0.2 0.1 3 6 1.2 2.6 2.3 284.12 129.56 54.40 

28 0.4 0.1 9 22 0.6 2.4 1.8 248.11 213.76 13.84 60 0.2 0.1 3 6 1.2 2.8 2.5 327.91 137.07 58.20 

29 2.1 0.1 12 15 0.5 1.6 1.5 81.72 77.41 5.27 61 1.3 0.1 4 6 1.3 2.6 2.4 78.13 64.42 17.55 

30 2.2 0.1 15 21 0.7 2.1 1.7 82.25 81.43 1.00 62 1.3 0.1 4 6 1.3 2.8 2.5 79.79 65.87 17.45 

31 0.6 0.1 15 19 0.6 1.7 1.5 227.48 204.60 10.06 63 0.4 0.1 5 6 1.4 2.4 2.3 286.77 154.55 46.11 

32 0.6 0.1 17 26 0.8 2.1 1.8 254.96 224.13 12.09 64 0.4 0.1 5 7 1.4 2.7 2.5 331.15 159.94 51.70 
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6. DEALING WITH MULTIPLE QUALITY SHIFTS 

AFFECTING BOTH LOCATION AND SCALE 

This chapter deals with the complicated problem of multiple assignable causes 

that affect both the process location and variability, and the issues that arise. 

Moreover, it lays the ground for better understanding of the models that will be 

described in the following chapters. 

Firstly, an approach for the computation of the probability of a process transition 

from one state to another, based on the independence between quality shifts that affect 

the location and those which affect the process scale, is presented. 

However, the aforementioned approach is difficult to employ in cases where the 

transition rate and/or the failure rate, for integrated quality and maintenance models, 

depend on both the state of the location and scale of the process and cannot be 

independently examined. To overcome this issue, the expressions for the computation 

of the probability of a process transition based on a different approach are provided. 

Furthermore, a recursive formula which dictates the sequence for the computation of 

the probability of every possible process transition is given. 

Another complicated issue is the computation of the OOC operation cost in the 

presence of multiple assignable causes affecting both the process location and 

variability. Two different approaches are presented in this chapter, the “depth-first 

search” and “breadth-first search” method, and the expressions for the computation of 

the OOC operation cost for each method are provided. Finally, an evaluation of the 

two aforementioned methods is presented. 

6.1 Probability of a process transition from one actual state to 

another actual state 

6.1.1 The “Independence” Method 

In order to compute every probability for the process moving from any actual 

state to any other actual state, the fact that the two sets of assignable causes affect 

independently the mean and the standard deviation of the process can be exploited. 
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The computation of the probability of a process transition in case multiple 

assignable causes may affect only the process mean is presented in Chapter 5 

(equation (5.5)). In a similar manner, the respective expression for the computation of 

a process transition in case only the standard deviation is affected by multiple 

assignable causes can be easily derived. Consequently, based on the fact that the 

process mean and the standard deviation of the process are affected independently, the 

probability of a transition from state  to any other state  (process mean) 

and from state  to another state  (standard deviation), can be computed 

recursively from the following expression: 
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Obviously, if i k   j l  the aforementioned probability reduces to: 
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         

  





(6.3) 

The probability of no transition, in 
qh  time units can be denoted 

 
 

 ,

,

qi j

i j

p h  and is 

equal to  

0i  1k i 

0j  1l j 
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    ( , ) , ,
( , )

expi j q x i s j q
i j

p h v v h             (6.4) 

It is obvious that when i m  and j r , then 
 
 

 ,

,

1qm r

m r

p h  . 

6.1.2 The “Step-by-Step” Method 

A requisite for the process moving from one state  ,i j
 
to another state  ,k l  

within a sampling interval of duration 
qh  is the occurrence of at least one assignable 

cause which would change the initial state of the process. The probability that an 

assignable cause occurs within the interval is equal to:

    , , , ,

0

exp

qh

x i s j x i s jv v v v t dt      =   , ,1 exp x i s j qv v h    . 

Nevertheless, in order for the process to move from state  ,i j
 
to  ,k l , in case 

i k  and j l , more than one assignable causes may be the first to occur. For 

example, for a transition from state  0,0  to  1,1  the assignable cause that affects 

the process mean may occur first and then the one that affects the standard deviation 

and vice versa.  

Apparently, every assignable cause y between the initial state i and the final state k 

of the process mean   ,y i k  and every assignable cause z between the initial state 

j and the final state l of the standard deviation   ,z j l  may be the precedent 

assignable cause, which changes the state of the process from  ,i j
 
either to  ,y j

 
or 

 ,i z . 

Consequently, the probability for the process moving from state  ,i j  to  ,k l  

equals the probability that an assignable cause occurs, times the probability that the 

first assignable cause that occurs leads either to state  ,y j   ,y i k  , if it affects 

the process mean or  ,i z
 

 ,z j l  , if it affects the standard deviation, times the 

probability for the process moving to the final state  ,k l
 
in the remainder of the 
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interval  qh t . In general, the probability ( , )
( , )

( )i j q
k l

p h

 

can be computed recursively 

from the following expression: 

      

   
 

      

   
 

( , ) , , , , ,
( , ) 1 ,0 , ,

, , , , ,
1 ,0 , ,

( ) exp ( )

exp ( )

q

q

h
k

x i y

i j q x i s j x i s j qy j
k l y i k lx i s j

h
l

s j z

x i s j x i s j qi z
z j k lx i s j

p h v v v v t p h t dt
v v

v v v v t p h t dt
v v







 



 

         


        






(6.5) 

which after some mathematical manipulation can be simplified to the following 

equation: 

      
 

      
 

( , ) , , ,
( , ) 1 ,0

, , ,
1 ,0

( ) exp ( )

exp ( )

q

q

h
k

i j q x i s j qx i y y j
k l y i k l

h
l

x i s j qs j z i z
z j k l

p h v v t p h t dt

v v t p h t dt






 


 

       

      





      (6.6) 

Obviously, if k i   l j  the aforementioned probability reduces to:  

        
 

, ,, ,
( , ) 1 ,0

( ) exp ( )

qh
l

q x k s j qk j s j z k z
k l z j k l

p h v v t p h t dt


 

              (6.7) 

      
 

( , ) , , ,
( , ) 1 ,0

( ) exp ( )

qh
k

i l q x i s l qx i y y l
k l y i k l

p h v v t p h t dt


 

 
       

 
 

         (6.8) 

Moreover, the probability of no transition 
 
 

 ,

,

qi j

i j

p h  is the same regardless of the 

employed method and can be derived from equation (6.4). Also, 
 
 

 ,

,

1qm r

m r

p h  . 

It should be noted that the two methods, i.e., the “independence” and the “step-

by-step” method, could be equivalently utilized for the computation of the probability 

for a process transition from one actual state to another. Moreover, the exact same 

equations can be employed in multivariate processes by substituting x  with mv , s  

with cm , xv  with mvv  and sv  with cmv  and by taking into account that in multivariate 
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processes a transition of the process to any other state is feasible providing that no 

quality characteristic is improved (see Section 9.2). 

However, the latter, i.e the “step-by-step” method, is preferable in cases where 

either the transition rate or the failure rate, as will be discussed in detail in Chapter 8, 

are contingent upon both the state of the process mean and the state of the standard 

deviation and, so, could not be independently examined. 

6.1.3 Recursive Formula 

Regardless of the approach utilized for the computation of the probability for a 

process transition and because both equations (equation (6.1) and (6.6)) are recursive, 

the computation of the probability for a process transition from one actual state to 

another actual state prerequisites the computation of several other probabilities. For 

example, in order to compute  (0,0)
(2,0)

qp h , it is necessary to employ  (0,0)
(1,0)

qp h t , so 

 (0,0)
(1,0)

qp h  should be computed first. 

In order to explain that clearly, we employ as an example the computation of the 

probability for a process transition from state  0,0  to  2,2 , when two quality shifts 

may occur that affect the mean and two the standard deviation of the process 

 2m r   and we demonstrate an easy-to-implement procedure to do so.  

Firstly, in order to compute  (0,0)
(2,2)

qp h , a matrix with all the possible states 

between the initial state, i.e.,  0,0 , and the final one, i.e.,  2,2 , should be created. 

Then, in this upper triangular matrix, the computation of the probabilities should 

begin from the last row moving to the first one and the probabilities within each row 

should be computed from the left to the right. The matrix for our example and the 

desirable sequence of the computation of probabilities are presented below: 



88 

 

(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

(0,1) (0,1) (0,1) (0,1) (0,1
(0,1) (0,2) (1,1) (1,2)

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

(0,0)p p p p p p p p p

p p p p p  ) (0,1)
(2,1) (2,2)

(0,2) (0,2) (0,2)
(0,2) (1,2) (2,2)

(1,0) (1,0) (1,0) (1,0) (1,0) (1,0)
(1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

(1,1) (1,1) (1,1) (1,1)
(1,1) (1,2) (2,1) (2,2)

(1,2) (
(1,2)

(0,1)

(0,2)

(1,0)

(1,1)

p

p p p

p p p p p p

p p p p

p p

   



  1,2)
(2,2)

(2,0) (2,0) (2,0)
(2,0) (2,1) (2,2)

(2,1) (2,1)
(2,1) (2,2)

(2,2)
(2,2)

(1,2)

(2,0)

(2,1)

(2,2)

p p p

p p

p

 

The probabilities of all the possible transitions should be computed from 

equations (6.1) to (6.4) (or equivalently equations (6.6) to (6.8) and (6.4)) depending 

on whether both the process mean and standard deviation are affected, only the mean, 

only the standard deviation or none of them, respectively. The equations utilized for 

the probability of each possible transition are presented in the following matrix: 

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

(6.4) (6.3) (6.3) (6.2) (6.1) (6.1) (6.2) (6.1) (6.1) (0,0)

(6.4) (6.3) (6.2) (6.1) (6.2) (6.1) (0,1)

(6.4) (6.2) (6.2) (0,2)

(6.4) (6.3) (6.3) (6.2) (6.1) (6.1) (1,0)

(6.4) (6.3

 

   

) (6.2) (6.1) (1,1)

(6.4) (6.2) (1,2)

(6.4) (6.3) (6.3) (2,0)

(6.4) (6.3) (2,1)

(6.4) (2,2)



 
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6.2 Out-of-control Operation Cost 

6.2.1 The “Depth-First Search” Method 

The cost of a transition step depends on the values of , ,  and on the 

exact order of the assignable causes’ occurrence within the interval, so as for the 

process to move from  to . 

In particular, in order to compute the expected OOC operation cost for a 

transition step, where  and , denoted by , every possible 

scenario (combination of the chronological sequence of the assignable causes that 

occur within this interval in order for the process to move from state  to 

state ) should be taken into account.  

The OOC operation cost for each of the possible scenarios for a process transition 

is denoted by . The variables  and  indicate the number of 

the assignable causes, in each scenario, that affect the mean and the standard 

deviation, respectively, in order for the process to move from state  to 

. The process transition from one state to another, during a transition step, 

may occur through more than one different ways as regards the number of the 

assignable causes. It is apparent that  and , ( , ). 

For example, if we assume  and , the process may be 

shifted directly to state tY  by the occurrence of assignable causes 2i   affecting the 

mean and 2j   affecting the standard deviation of the process  1 21, 1fn fn  , with 

assignable cause i occurring earlier than j and vice versa. Another possible scenario is 

that assignable cause 1i   occurs first, then 2i   and finally 2j    1 22, 1fn fn 
 

or 2j  , then 1i   and then 2i   and so on.  

Consequently, for the computation of CK, the following parameters should be 

computed: 

1ta  1tY  tY

1tY  tY

 1 ,tY i j   ,tY k l ECK

 1 ,tY i j 

 ,tY k l

1 2 ( , )
( , )

( ) i j
k l

CK fn fn 1fn 2fn

 1 ,tY i j 

 ,tY k l

1 ( )fn k i  2 ( )fn l j  1fn 2fn 0

 1 0,0tY    2,2tY 
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(a) The probability of a specific possible scenario to occur when  

assignable causes occur within an interval of duration 
qh  time units, which is 

denoted by ; 

(b) The expected times of the occurrence of each assignable cause of a specific 

scenario, in order to compute the time the process operates under each 

intermediate state (where,  is the expected time of occurrence for the 

precedent assignable cause,  for the second one,...,  for the last one to 

occur).  

The aforementioned parameters for a process transition from state  ,i j  to  ,k l  

are computed from the following expressions, which extend equations (4.12)-(4.14) to 

the multiple assignable causes scenario affecting both the mean and the dispersion of 

the process. It should be mentioned that for the computation of their values, the 

occurrence rate  should be substituted by , for the assignable cause that affects 

the process mean and by , for the one that affects the standard deviation. 

          

            
       

1

1 2 1 21 2 1 2 1 2

[
1 2 1 2

( , )1 2 1 , , 1 2 ,(1) ,(1) 2 1
( , )

0

, 1 , 1 1

, , 2 1

Pr , exp exp ...

exp

...

exp ...

q qh h

i jq x i s j x s
k l

t

fn fn fn fnx fn fn s fn fn fn fn

t
x k s l q fn fn fn fn

h fn fn v v t v v t t

v v t t

v v h t dt dt dt

 


                

 

          

     

    

 

  1]1 2

q

fn fn

h

 



                    

(6.9) 

 1 2fn fn

  1 2Pr ,qh fn fn

(1)

(2) 1 2( )fn fn 

 x

s
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 

  

    

              
       

1

1 2 1 2 1 21 2 1 2 1 2

1 2 1 2

1 1 , , 1

0

2 2 ,(1) ,(1) 2 1

, 1 , 1 1

, , 2 1
( )

exp ...

... exp ...

exp

...

exp ...

q

q

h

x i s j

h

x s

t

fn fn fn fn fn fnx fn fn s fn fn fn fn

x k s l q fn fn fn fn
g

q

t v v t

t v v t t

t v v t t

v v h t dt dt dt
h









                 

 

   

    

     

    






 

  

  

            

[ 1]1 2

1

1 2 1 21 2 1 2 1 2

1 , , 1

0

2 ,(1) ,(1) 2 1

, 1 , 1 1

, ,

exp ...

... exp ( ) ...

exp

...

exp ( )

q

fn fn

q

q

h

t

h

x i s j

h

x s

t

fn fn fn fnx fn fn s fn fn fn fn

x k s l q f

v v t

v v t t

v v t t

v v h t







 

                

 
 
 
 
 
 
 
 
 
 
 
 

   

    

     

    







      [ 1]1 2
1 2 1 2

2 1...

q

fn fn

h

t
n fn fn fn

dt dt dt 
 

 
 
 
 
 
 
 
 
 
 
 
 



                              
(6.10) 

where, 1ut  , for . 

It is apparent that by assuming that  assignable causes occur within an 

interval, the process operates under the effect of  different intermediate 

states. For example, if we suppose that at the beginning of an interval the process is 

IC and two assignable causes occur, firstly  and after that, 2j  , then, the three 

intermediate states are ,  and . 

Having computed previously, the expected time of the occurrence of each 

assignable cause, the time length that the process operates under the effect of each of 

the intermediate states can also be computed. So, the OOC operation cost CK of a 

specific scenario can be, now, computed as: 

   
 

   
 

 

   1 2

(1) (1) (2) (1)

( , )

, ,1 2 1 2 ( )
, ,

,

...
, Pr ,

...

i j

i j i jq q fn fn
k l k l

qk l

M M
CK h fn fn h fn fn

M h

  

 

     
    
   
   

  (6.11) 

The expected OOC operation cost (ECK) for the process transition from a 

specific state to another specific state, is defined as the sum of the OOC operation 

    1 21,2,..., \u fn fn g 

 1 2fn fn

 1 2 1fn fn 

1i 

 0,0  1,0  1,2
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costs (CK) for each possible scenario as regards each possible permutation of the 

assignable causes that occur within the interval and result in the transition. 

The number of all possible permutations when a total number of  

assignable causes occur within a transition step, with  assignable causes affecting 

the process mean and  affecting the standard deviation can be computed as 

. Consequently, for a given number of 

 and  assignable causes that affect the process mean and the standard 

deviation, respectively, within an interval, a total number of  

permutations should be taken into account for the computation of ECK. 

For example, by assuming that , there are six possible permutations 

as regards the chronological sequence of each assignable cause’s occurrence 

. If the first assignable cause that occurs within the interval 

and affects the process mean is denoted by , the second one by and by , 

 the respective assignable causes that affect the standard deviation, then the six 

possible permutations are: , , ,

,  and . 

It is apparent that, under the assumption that only transitions to inferior states 

may occur, there is only one combination for the exact order of the assignable causes’ 

occurrence when they either affect only the mean  or only the 

standard deviation  of the process . In such case, 

the expected OOC operation cost of a transition step ECK equals the OOC operation 

cost (ECK=CK).  

 1 2fn fn

1fn

2fn

 1 2 1 2 1 2

1 2 1 2

( ) ( ) !

! !

fn fn fn fn fn fn

fn fn fn fn

     
    

   

1fn 2fn

 1 2

1 2

!

! !

fn fn

fn fn



1 2 2fn fn 

 1 2

1 2

! 4!
6

! ! 2!2!

fn fn

fn fn

 
  

 

(1)x (2)x (1)s

(2)s

 (1) (2) (1) (2), , ,x x s s  (1) (1) (2) (2), , ,x s x s  (1) (1) (2) (2), , ,x s s x

 (1) (2) (1) (2), , ,s s x x  (1) (1) (2) (2), , ,s x x s  (1) (1) (2) (2), , ,s x s x

 1 20, 0fn fn 

 1 20, 0fn fn 
 1 2

1 2

!
1

! !

fn fn

fn fn

 
 

 
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The following brute-force algorithm is employed to define the set of the possible 

scenarios for a process transition from state ( , )i j  (root) to another specific state ( , )k l , 

if and only if i k  and j l , denoted by 
( , )
( , )
i j
k l

SC .  

The DFS algorithm is utilized in order to traverse a directed graph made by the 

set of process states (nodes) V and the edges between them whenever a transition is 

possible. The adjacency matrix E can be easily created from the occurrence rates 

matrix by substituting every occurrence rate for a process transition from state  ,i j  

to  ,k l  greater than zero with: 0, if i k  and j l  or i k  and j l ; 1, if i k  or 

j l . 

An easy way to present the algorithm and its implementation to our model is 

through the following steps: 

Step 1: Every node in V is considered as unmarked. Set 0SC  . 

Step 2: Select an unvisited (unmarked) node 1w  that is adjacent to the root node 

 0 ,w i j    1 0w Adj w . 

Step 3: Mark node 1w  and check whether it is the final state  ,k l . 

Step 4a: If yes, store this path to 
( , )
( , )
i j
k l

SC , go to the predecessor node 0w  and choose 

another unmarked and adjacent one   '
1 0w Adj w . 

Step 4b: If not, apply the procedure (Steps 2-4) with all the adjacent to 1w , unmarked 

nodes   2 1w Adj w  and so on. 

Step 5: Repeat until all adjacent to 0w  nodes have been visited (marked). 

A visual representation of the traversal of a graph by the DFS algorithm is 

presented in Figure 6-1. Specifically, we utilize an example where state  0,0  is the 

initial state, state  2,2  the final state and 2m r  . The depth ward motion of the 
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(0,0) 

(1,0) (2,0) (0,1) (0,2) 

traversal of the graph is illustrated by arrows and all the generated by the algorithm 

paths for our example, i.e., 
 
 
0,0

2,2

SC , are also presented. 

 

  

 

 

 

 

 

 

 

 
 
0,0

2,2

SC  

(0,0) (1,0) (2,0) (2,1) (2,2) 

(0,0) (1,0) (2,0) (2,2)  

(0,0) (1,0) (1,1) (2,1) (2,2) 

(0,0) (1,0) (1,1) (1,2) (2,2) 

(0,0) (1,0) (1,2) (2,2)  

(0,0) (2,0) (2,1) (2,2)  

(0,0) (2,0) (2,2)   

(0,0) (0,1) (1,1) (2,1) (2,2) 

(0,0) (0,1) (1,1) (1,2) (2,2) 

(0,0) (0,1) (2,1) (2,2)  

(0,0) (0,1) (0,2) (1,2) (2,2) 

(0,0) (0,1) (0,2) (2,2)  

(0,0) (0,2) (1,2) (2,2)  

(0,0) (0,2) (2,2)   

Figure 6-1: Example for DFS algorithm implementation 

It should be mentioned that a verification of the complementation of the set of 

permutations for a process transition, generated by the presented algorithm, can be 

made through a basic principle of the adjacency matrices. Namely, the product of the 

multiplication of the adjacency matrix E by itself, i.e., E2, defines the possible 2-

(2,0) (1,1) (1,2) (2,1) (2,2) (1,1) (2,1) (0,2) (2,2) 

(2,1) (2,2) (2,1) (1,2) (2,2) (2,2) (2,1) (1,2) (2,2) (1,2) 

(2,2) (2,2) (2,2) (2,2) 

(2,2) 

(2,2) (2,2) 

(1,2) 

(2,2) 
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length paths   1 2 2fn fn  , E3 the possible 3-length paths   1 2 3fn fn  , etc., 

for a process transition from one state to another specific state. 

The expected OOC operation cost when the process is under the effect of 

assignable causes ( , )i j  at the beginning of a transition step, is denoted by 
   , qi j

K h  

and can be, now, computed as the sum of the following three terms:  

(i) The cost per time unit if no assignable cause occurs within the interval, multiplied 

by the duration of the interval 
qh  ( 1h

 
if  or 2 and 2h  if ), 

multiplied by the probability that no assignable cause occurs within the interval. 

(ii) The cost per time unit in case either only the mean (the standard deviation) of the 

process is affected, multiplied by the expected duration the process is under the 

effect of each assignable cause, times the probability of each possible scenario to 

occur. It should be mentioned that the value of the expected OOC operation cost 

of the process in cases where the standard deviation of the process remains 

unaffected during the interval is denoted by    , , qx i j
K h  and its computation is 

based on equation (5.13). Respectively, the expected OOC operation cost if the 

process mean remains unaffected during the interval,    , , qs i j
K h , is computed 

from:        
   

      
,

,, , ,
10 , , ,

exp
exp

qh
r s js j z

q q s j qs i j i j
z j

qi j s i z

v t
K h M h v h dt

t M K h t




 

    
      
   
 

 .  

(iii) The cost per time unit when both the mean and the standard deviation of the 

process are shifted from their initial values, multiplied by the expected duration 

the process is under the effect of each assignable cause, times the probability of 

every possible combination as regards the occurrence of the assignable causes 

within the interval.  

For example, let us suppose that at the beginning of an interval the actual state of 

the process is    , 0,1i j   and 2m r  . In such case,    0,1 qK h  equals the sum of 

the following terms:  

1 0ta   1 1ta  
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(i) The cost per time unit if no assignable cause occurs and the process remains 

under the effect of assignable cause 1j     0,1
M  for the whole interval, 

multiplied by the probability that no assignable cause occurs within the interval 

   ,0 ,1exp x s qv v h   , multiplied by the duration 
qh . 

(ii) The cost per time unit if the process mean is shifted by either assignable cause 

1i   or 2i   or both, but no assignable cause that affects the standard deviation 

occurs, multiplied by the probability that such a scenario occurs, times the 

expected duration the process remains under the effect of each assignable cause. 

In the same manner, we should consider the cost per time unit, in case the 

standard deviation is further deteriorated by the occurrence of 2j  , but the 

process mean remains unaffected  0i  , multiplied by the probability that only 

2j   occurs within the interval, multiplied by the expected duration that the 

process remains under the effect of  and, then, under the effect of 

.  

(iii) The OOC operation cost if both the mean and the standard deviation are shifted 

within a transition step      (0,1) (0,1) (0,1)
(1,2) (2,2) (2,2)

, 2 , ,2 , ,3q q qECK h ECK h ECK h
 
 
 

. 

 (0,1)
(1,2)

, 2qECK h  equals the sum of  (0,1)
(1,2)

, 2qCK h  with 1i   occurring first and 

then 2j  , plus  (0,1)
(1,2)

, 2qCK h  with  occurring first and then . 

Similarly,  (0,1)
(2,2)

, 2qECK h  is equal to the sum of the costs if ,  occur, 

plus, the cost if  occurs first, and then . In case three assignable causes 

occur within the transition step , , ,  (0,1)
(2,2)

,3qECK h  equals the 

sum of the OOC operation costs, for every possible combination as regards the 

chronological sequence of the assignable causes’ occurrence. 

Subsequently, the computation of the expected OOC operation cost for the above 

example can be derived from the following expression: 

   , 0,1i j 

   , 0,2i j 

2j  1i 

2i  2j 

2j  2i 

1i  2i  2j 
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        

            

            

   

,0 ,10,1 0,1

2

,1 ,00 0,1 , ,1
10

,0 ,11 2 0,1 , 0,2

0

(0,1) (0,1)
(1,2) (2,2)

exp

exp exp

exp exp

,2 ,2

q

q

q q x s q

h

s q x qx k x k
k

h

x q s qs s

q q

K h M h v v h

v h v t t M K h t dt

v h v t t M K h t dt

ECK h ECK h










      

 
            
  

  
 
          
 
 

  





 (0,1)
(2,2)

,3qECK h

(6.12) 

In general, the expected OOC operation cost for every possible initial state when 

up to m and r assignable causes may occur, can be derived from the following 

expression: 

        

            

            

  

, ,, ,

, , , , ,
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, , , , ,
10

( , )1 2
( , )
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exp exp

exp exp

,

q

q

q q x i s j qi j i j

h
m

s j q x i qx i y i j x y j
y i

h
r

x i q s j qs j z i j s i z
z j

i jq
y z

K h M h v v h

v h v t t M K h t dt

v h v t t M K h t dt

ECK h fn fn






 


 

      

 
            
  

  
            
  
 
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

1 21 1 1 1

y i z jm r

y i z j fn fn

 
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 
 
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(6.13) 

or, equivalently 

        
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6.2.2 The “Breadth-First Search” Method 

This method is based on the same logic compared to the “step-by-step” method 

presented in Section 6.1.2. 

Specifically, the expected OOC operation cost when the process is under the 

effect of state  at the beginning of a transition step can be, alternatively, 

computed as the sum of the following three terms:  

(i) The cost per time unit if no assignable cause occurs within the interval, multiplied 

by the duration of the interval 
qh , multiplied by the probability that no assignable 

cause occurs within the interval. 

(ii) The cost per time unit in case an assignable cause occurs within the interval, 

multiplied by the expected time of the occurrence of this assignable cause t , 

multiplied by the probability that the assignable cause that occurs leads either to 

state  ,y j   ,y i k   if it affects the process mean or  ,i z
 

 ,z j l  , if it 

affects the standard deviation. 

(iii) The OOC operation cost for state  ,y j  or  ,i z  being the initial state of the 

remainder of the interval  qh t , in case an assignable cause occurs within the 

interval, multiplied by the probability that the assignable cause that occurs leads 

either to state  ,y j  or  ,i z , respectively. 

In general, the expected OOC operation cost for every possible initial state when 

up to m and r assignable causes may occur, can be derived from the following 

expression:  

      
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K h M h v v h
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 
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 




  

(6.15) 
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6.2.3 Evaluation 

The two aforementioned methods, i.e., the “depth-first search” and the “breadth-

first search” method, were named based on the two popular search algorithms utilized 

for traversing a tree or a graph. 

The “depth-first search” (DFS) algorithm follows one branch of the tree until the 

desirable node is found, whereas, the “breadth-first search” (BFS) algorithm scans 

each node of the first level by moving rightwardly, then the second level etc. until the 

desirable node is found. 

Although, the choice between the two algorithms should depend on the data 

structure, in the worst case, which means generating all tree nodes, they have the 

same complexity. The implementation of the two algorithms in order to find every 

possible “path” for our process to move from one state (root node) to another state 

(desirable node) pertains to the worst case where every possible intermediate state 

(node) should be generated. Consequently, the “depth-first search” and the “breadth-

first search” methods may be equivalently employed for the computation of the OOC 

operation cost. 

However, in the special case where failures may also occur and the failure rate is 

correlated to the actual state of the process, the “breadth-first search” method is 

preferable to the “depth-first search” method because in the former the modification 

of the failure rate after each intermediate transition of the state of the process can be 

easily considered.  

It should be mentioned that the two aforementioned methods could be also 

employed for the computation of the expected OOC operation cost for multivariate 

processes, by substituting x  with mv , s  with cm , xv  with mvv , sv  with cmv , m  

with mvm  and r  with cmr . The exact expression for the computation of    , qi j
K h  by 

utilizing the “breadth-first search” method can be found in Chapter 8. 
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7. VP X s  CONTROL SCHEME FOR PROCESSES SUBJECT 

TO MULTIPLE QUALITY SHIFTS AFFECTING BOTH 

LOCATION AND SCALE (VP3) 

7.1 Introduction 

In this chapter, a fully adaptive control scheme for joint monitoring of the process 

location and scale is proposed, where multiple assignable causes affecting the mean 

and/or multiple assignable causes affecting the standard deviation of a process may 

occur independently, leading to a progressive deterioration of the process 

performance. 

Obviously, by considering m different assignable causes that may affect the 

process mean and r assignable causes that may affect the standard deviation of the 

process, there are m+1 possible values of δ with  

 
and r+1 possible values of   with  1 2 11, , ,..., ,r r      

1 2 11 ... r r        . 

This chapter is organized as follows. In Section 7.2 the mathematical model that 

describes the operation of the proposed scheme is described. Section 7.3 presents the 

formulation of the cost function. The optimization problem is presented in Section 7.4 

and Section 7.5 provides a real example from the aviation industry. Finally, a 

numerical analysis is carried out in Section 7.6 and comparisons are performed 

against less adaptive control schemes. 

This chapter gives the argumentation published in Tasias and Nenes (2016a). 

7.2 Mathematical Model 

 The proposed VP X -s Shewhart type control scheme, denoted by 3VP , is an 

extension of the 1VP  control scheme, proposed in Chapter 4, where two independent 

assignable causes may occur, one affecting the process mean and one the standard 

deviation. 

 1 2 10, , ,..., ,m m    

1 2 10 ... m m       
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 The decision making procedure of the control scheme is based on the 

standardized mean and the standard deviation of the collected sample at each 

sampling instance. Specifically: 0ta  , if both the standardized sample mean tz  and 

the sample standard deviation ts  are below the respective threshold values (central 

zone), i.e., t xz w  and ,t s qs UWL  (q=1 (q=2) if relaxed (tightened) parameters have 

been used). In such a case, the process continues its operation and relaxed parameters 

 1 1 ,1 ,1, , , , ,x x s sn h w k w k  are used for the next sampling. Moreover, 1ta  , if either the 

standardized sample mean, the sample standard deviation, or both, lie between the 

respective threshold and control limit coefficients (warning zone), but in none of the 

two charts is there an alarm signal. In particular: i) 
,x t x qw z k   and ,t s qs UCL

 
or ii) 

t xz w  and , ,s q t s qUWL s UCL  . It should be noted that whenever 1ta   the 

decision for the process is to continue, but at the next sampling the tightened group of 

parameters  2 2 ,2 ,2, , , , ,x x s sn h w k w k  should be used. Finally, 2ta  , if the value of the 

chart statistic in at least one control chart outreaches the respective control limit 

(action zone), i.e., if either 
,t x qz k  and/or ,t s qs UCL . Then, the process is stopped 

for investigation and either a false alarm is discovered, or the process was actually 

OOC and is perfectly restored to the IC condition. It should be noted that regardless of 

the control chart that issues the alarm, the investigation of the process reveals the 

effect of any possible assignable cause, that may have affected the mean or the 

standard deviation, and the process is assumed to restart its operation from the IC 

state. After this perfect restoration, relaxed parameters will be used, namely 

 1 1 ,1 ,1, , , , ,x x s sn h w k w k .  
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The control policy for the control scheme is illustrated graphically in Figure 7-1. 

             

       

              

     

                                                                                
  

 

 

 

 

Figure 7-1: Regions of the 3VP  control scheme 

The state of the process at any sampling instance t has the following possible 

values: (a) , when no assignable cause has occurred; (b) , when 

an assignable cause i (i=1,…,m) that affects the process mean has occurred, leading to 

a shift size , but the standard deviation is equal to its IC value ; (c) 

, when an assignable cause j (j=1,..,r) that affects the standard deviation has 

occurred, leading to a shift size , but the mean of the process is not affected 

; (d)  i=1,...,m and j=1,...,r, when two assignable causes have 

contemporarily occurred and affect both the mean and the standard deviation of the 

process by shifting them to  and , respectively. 

Based on the values of the two components that constitute the three-dimensional 

state, the Markov chain has    1 1 3m r     possible  ,t tY a  states for each 

possible combination of       0,0 , 0,1 ,..., 0, ,tY r      1,0 , 1,1 ,..., 1, ,...,r

     ,0 , ,1 ,..., ,m m m r  and 0,1,2ta  .  

 For ease of presentation, in order to keep the model at manageable levels and 

without any loss of generality, in many cases throughout this chapter, we assume that 

two assignable causes affecting the process mean and two assignable causes affecting 

the standard deviation of the process are possible to occur  2m r  . This is not a 

restrictive assumption and is simply made to facilitate the exposition of the model 

 0,0tY   ,0tY i

i   0 

 0,tY j

j 

 0   ,tY i j

0 0i i     
0j j   

Action Region 
s  

z  

Warning Region 

Central Region 

Action Region 

,2sUCL  

Warning Region 

 
,2sUWL  
,1sUWL  

    Central Region 
4,2 0c   

0  
4,1 0c   

,1sUCL  

xw  

,1xk  

,2xk  
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operation. An extension to the general case, where any number of assignable causes 

could affect the process mean and standard deviation  , 2m r  , will also be 

presented. 

 In case 2m r  , the dimensions of the transition probability matrix P are 

         1 1 3 1 1 3 27 27m r m r            and the transition probability 

matrix P is shown in Figure 7-2. 

 In the general case, where m and r assignable causes are possible to occur, the 

transition probability matrix P can be obtained as shown in Figure 7-3. 
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Figure 7-2: Transition Probability Matrix of the 3VP  control scheme  2m r   
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Figure 7-3: Transition Probability Matrix of the 3VP  control scheme 
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The transition probabilities may be computed as the product of multiplying the 

probability of the transition of the actual state of the process (equation (6.1) or (6.6)) 

with the probability of the decision ta  to be equal to 0,1 or 2. It is apparent that in 

case    i k j l    the transition probabilities are equal to zero. 

 

 
 

   
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q

x k q s q

q n q ti j

k l l l

x q k q s q

n q
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(7.2) 

Note that in case , i.e., when the chart issues an alarm, the process 

always restarts its operation from the IC state and so the transition probabilities are 

computed from the following equation: 

   ( , )2 (0,0)0 1
( , ) ( , )t t

i j q
k l a k l a

Prob h Prob h                               (7.3) 

The steady-state probabilities, 
t tY a , are computed by solving the following linear 

system: 

 
 

 

1 1 1 1

1 1

, 2

0,0 0
t t t t t t

t tt t

m r

Y a Y a q Y a
Y aY a

Prob h 
   

  

    and               (7.4) 

7.3 The Economic-Statistical Design 

From the computation of the steady-state probabilities of the process (equation 

(7.4)) and the computation of the mean cost of OOC operation (equation (6.14) or 

(6.15)), the average cost of a transition step, EC, and the average duration of a 

transition step, ET, can be evaluated.  

1 2ta  

( , ) 2

(0,0) 0

1
t t

t t

m r

Y a

Y a


 

 
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The average cost of a transition step can be derived from the following 

expression: 

           

       

1 1 2 2, 0 , , 1 ,
0 0 0 0

1 1, 2 0,0 ,
0 0

m r m r

k l k l k l k l
k l k l

m r

k l k l
k l

EC b c n K h c n K h

c n K h L

 



   

 

            
   

     
 

 


 (7.10) 

In the same sense, the expected duration of a transition step, ET, is computed by 

the following function: 

        1 2 1, 0 , 1 , 2 ,
0 0 0 0 0 0

m r m r m r

k l k l k l k l
k l k l k l

ET h h h T  
     

                (7.11) 

7.4 Optimization Problem 

The optimization problem is formulated as follows: 

min
qDP

ECT  

s.t.   
1 2 1 2 ,1 ,2 ,1 ,2, , , , , , , , , 0x x x s s sh h n n w k k w k k 

 

2 1h h
 

2 1n n
    

                 (7.12)
 

,2 ,1x x xw k k   

,2 ,1s s sw k k 
 

1 2,n n 
 

0.02   

The minimization of ECT is achieved by means of a computer program 

developed in Fortran Power Station 4.0. The derivation of the optimum design 

parameters for the proposed control scheme for each examined case does not last 

more than three hours on an Intel i7-3520M dual-core processor at 2.9GHz. 

7.5 An Illustrative Example 

In this section, a real example from the aviation industry is employed in order to 

evaluate the performance of the proposed scheme. The Exhaust Gas Temperature 
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(EGT) is an important measure of a jet engine’s health. EGT is the temperature of the 

gases as they leave the turbine unit and is computed through several thermocouples 

mounted in the perimeter of the exhaust duct. The early detection of an unreasonably 

high EGT would save maintenance costs, assure safety efficiency and prolong the 

lifespan of the engine.  

An aircraft mechanic may perform the on-line monitoring of EGT through the 

proposed scheme by measuring the EGT of the engine in the run-up area. It is proved 

that the probability distribution of EGT can be well approximated by a normal one.  

For our example, data are exploited from the quality assurance division of a 

fighter aircraft squadron. The IC values of the mean and standard deviation of EGT, 

defined in the engine’s technical orders (TO’s), are oF and oF, 

respectively.  

We assume four possible assignable causes that result in an OOC condition of 

EGT at a specific throttle level (i.e., at maximum thrust): bleed air leaks, compressor 

blade tip clearance, throttle system misrigging and nozzle system misrigging. The first 

two result in an upward shift of the mean and the other two of the standard deviation 

of EGT  2m r  . All the economic and statistical parameters of the process are 

estimated from observed data of the squadron and are presented in Table 7-1. 

  

0 1240  0 20 



110 

 

Table 7-1: Parameter set of the illustrative example for the 3VP  control scheme 

Occurrence Rates 

(failures/100 flight 

hours) 

Magnitude 

of Shifts 

Costs  

(1000 $) 
Time Delays 

(flight hours) 

 

1 1.3 

2 1.6   

Sampling  

Out-of-control 

Operation 

Removal of 

assignable 

causes
 

 0,0
7.0T   

 0,1
9.0T   

 0,2
13.0T   

 1,0
16.0T   

 1,1
25.0T   

 1,2
29.0T   

 2,0
14.5T 

 
 

 

 

 

 0,0
0.5L   

 

 

 

 

 

 

 

By solving the optimization problem for our example, we can define the optimum 

values of the design parameters to be: ,  flight hours, , 

, , , ,  and . These optimal 

design parameters dictate that EGT should be measured in the engine run-up twice (

) after twelve flight hours ( ) and the standardized mean (standard 

deviation) of the two measures should be compared to  

 ,1 ,134, 42.4s sUWL UCL  . If the scheme warns for the effect of an assignable 

cause, two additional EGT checks at maximum thrust  2 2n   should be conducted 

as soon as possible  2 0.1h   and then, the control limit coefficients would be 

 and   ,2 38.8sUCL  . Each time the scheme issues an alarm, the 

aircraft engine goes through an extensive inspection process.  

The optimal ECT is equal to 56.089 $/flight hour and the Type I error equals 

0.149. It should be noted that, unlike usual industry applications, in the specific 

example, because the operation at an OOC condition could jeopardize aircraft’s 

safety, a somewhat higher value of the expected over-adjustments strengthens the 

 0 1
0.3

x





 0 2
0.1

x





 1 2
0.0

x





 0 1
0.7

s





 0 2
0.9

s





 1 2
0.001

s





1 0.8 

2 1.1 

 2,1
23.5T 

 2,2
27.5T 

0.1c   0,1
0.4M 

0.3b 
 0,2

0.5M 

 1,0
0.8M 

 1,1
1.1M 

 1,2
1.2M 

 2,0
0.7M 

 2,1
1.0M 

 2,2
1.2M 

 0,1
1.8L 

 0,2
2.3L 

 1,0
2.4L 

 1,1
4.1L 

 1,2
4.5L 

 2,0
2.8L 

 2,1
4.4L 

 2,2
4.9L 

1 12.0h  2 0.1h  1 2 2n n 

0.3xw 
,1 1.2xk  ,2 1.2xk  1.5sw 

,1 2.2sk  ,2 1.9sk 

1 2n  1 12.0h 

,10.3, 1.2x xw k 

,2 1.2xk  ,2 1.9sk 
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aircraft mechanics’ confidence in the quality control policy. For that reason, no 

statistical constraint has been put in the Type I error and, so, the proposed scheme has 

been only economically optimized. 

7.6 Numerical Analysis 

In this section a numerical investigation is performed in order to explore the 

economic and statistical performance of the proposed control scheme. The 

aforementioned approach for computing the optimum design parameters is applied to 

a benchmark of scenarios, which are defined by ten process   0,0
, , , ,T T    and 

economic   0,0
, , , ,b c M L L  parameters that vary at two levels. Specifically, the ten 

parameters and their possible values are:  0.01;0.1  failures/hour,  0.5;1.5  , 

 1.4;2.0  , 
   0,0

1;6T   minutes,  10;30T  minutes,  0;5b $,  1;10c

$/sample unit,  100;1000M  $/hour, 
   0,0

100;200L  $ and  200;400L $. 

Because of the large number of possible scenarios, i.e., 
102 1024 , and for the sake of 

brevity, we have chosen to present a subset of 64 different runs, for every possible 

combination of the first six parameters   0,0
, , , , ,T T b    and an arbitrary choice of 

the remaining four   0,0
, , ,c M L L .  

Two assignable causes that affect the process mean (standard deviation) are 

possible to occur  2m r  . Tables 7-2 and 7-3 present the benchmark of the 

process scenarios. It should be mentioned that  and 

, where g=0,1,2. Moreover, 1  , 2 1.5    and 1 

, 2 2 1    . As regards the time to search and remove an assignable cause 

, , , . 

Furthermore, ,  and 

 if  and 
   0,1 1,0

L L L  , 
   0,2 2,0

50L L L    

and  if .  

   1 1x g g s g g
  

   
 

   2 2
/ 2

x g g s g g
  

   
 

   0,1 1,0
/ 2T T T       0,2 2,0 1,1

T T T T      2,1 1,2
3 / 2T T T    2,2

2T T 

  (1,0)0,1
M M M    (2,0)0,2

1.5M M M  

    ( ,0), ,0
0.75 ( )ji j i

M M M   , 1i j 

    ( ,0), ,0
0.75( )ji j i

L L L  , 1i j 
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The optimum design parameters, the expected quality control cost and the 

measures of statistical performance for each investigated scenario are presented in the 

Tables 7-4 and 7-5. 
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Table 7-2: Parameter sets of numerical examples 1-32 for the 3VP  control scheme 

  

     Case λ δ      γ  Τ(0,0) Τ b c M L(0,0) L 

1 0.01 0.5 1.4 1 10 0 10 1000 200 400 

2 0.1 0.5 1.4 1 10 0 10 100 100 200 

3 0.01 1.5 1.4 1 10 0 1 1000 100 200 

4 0.1 1.5 1.4 1 10 0 1 100 200 400 

5 0.01 0.5 2.0 1 10 0 1 100 200 200 

6 0.1 0.5 2.0 1 10 0 1 1000 100 400 

7 0.01 1.5 2.0 1 10 0 10 100 100 400 

8 0.1 1.5 2.0 1 10 0 10 1000 200 200 

9 0.01 0.5 1.4 6 10 0 1 100 100 400 

10 0.1 0.5 1.4 6 10 0 1 1000 200 200 

11 0.01 1.5 1.4 6 10 0 10 100 200 200 

12 0.1 1.5 1.4 6 10 0 10 1000 100 400 

13 0.01 0.5 2.0 6 10 0 10 1000 100 200 

14 0.1 0.5 2.0 6 10 0 10 100 200 400 

15 0.01 1.5 2.0 6 10 0 1 1000 200 400 

16 0.1 1.5 2.0 6 10 0 1 100 100 200 

17 0.01 0.5 1.4 1 30 0 10 1000 100 200 

18 0.1 0.5 1.4 1 30 0 10 100 200 400 

19 0.01 1.5 1.4 1 30 0 1 1000 200 400 

20 0.1 1.5 1.4 1 30 0 1 100 100 200 

21 0.01 0.5 2.0 1 30 0 1 100 100 400 

22 0.1 0.5 2.0 1 30 0 1 1000 200 200 

23 0.01 1.5 2.0 1 30 0 10 100 200 200 

24 0.1 1.5 2.0 1 30 0 10 1000 100 400 

25 0.01 0.5 1.4 6 30 0 1 100 200 200 

26 0.1 0.5 1.4 6 30 0 1 1000 100 400 

27 0.01 1.5 1.4 6 30 0 10 100 100 400 

28 0.1 1.5 1.4 6 30 0 10 1000 200 200 

29 0.01 0.5 2.0 6 30 0 10 1000 200 400 

30 0.1 0.5 2.0 6 30 0 10 100 100 200 

31 0.01 1.5 2.0 6 30 0 1 1000 100 200 

32 0.1 1.5 2.0 6 30 0 1 100 200 400 
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Table 7-3: Parameter sets of numerical examples 33-64 for the 3VP  control scheme 

  

     Case λ δ      γ Τ(0,0) Τ b c M L(0,0) L 

33 0.01 0.5 1.4 1 10 5 1 100 200 400 

34 0.1 0.5 1.4 1 10 5 1 1000 100 200 

35 0.01 1.5 1.4 1 10 5 10 100 100 200 

36 0.1 1.5 1.4 1 10 5 10 1000 200 400 

37 0.01 0.5 2.0 1 10 5 10 1000 200 200 

38 0.1 0.5 2.0 1 10 5 10 100 100 400 

39 0.01 1.5 2.0 1 10 5 1 1000 100 400 

40 0.1 1.5 2.0 1 10 5 1 100 200 200 

41 0.01 0.5 1.4 6 10 5 10 1000 100 400 

42 0.1 0.5 1.4 6 10 5 10 100 200 200 

43 0.01 1.5 1.4 6 10 5 1 1000 200 200 

44 0.1 1.5 1.4 6 10 5 1 100 100 400 

45 0.01 0.5 2.0 6 10 5 1 100 100 400 

46 0.1 0.5 2.0 6 10 5 1 1000 200 200 

47 0.01 1.5 2.0 6 10 5 10 100 200 400 

48 0.1 1.5 2.0 6 10 5 10 1000 100 200 

49 0.01 0.5 1.4 1 30 5 1 100 100 200 

50 0.1 0.5 1.4 1 30 5 1 1000 200 400 

51 0.01 1.5 1.4 1 30 5 10 100 200 400 

52 0.1 1.5 1.4 1 30 5 10 1000 100 200 

53 0.01 0.5 2.0 1 30 5 10 1000 100 400 

54 0.1 0.5 2.0 1 30 5 10 100 200 200 

55 0.01 1.5 2.0 1 30 5 1 1000 200 200 

56 0.1 1.5 2.0 1 30 5 1 100 100 400 

57 0.01 0.5 1.4 6 30 5 10 1000 200 200 

58 0.1 0.5 1.4 6 30 5 10 100 100 400 

59 0.01 1.5 1.4 6 30 5 1 1000 100 400 

60 0.1 1.5 1.4 6 30 5 1 100 200 200 

61 0.01 0.5 2.0 6 30 5 1 100 200 400 

62 0.1 0.5 2.0 6 30 5 1 1000 100 200 

63 0.01 1.5 2.0 6 30 5 10 100 100 200 

64 0.1 1.5 2.0 6 30 5 10 1000 200 400 
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Table 7-4: Economic-Statistical design for numerical examples 1-32: optimal control policy, cost and related statistical measures for the 

3VP  control scheme 

Optimum Design Parameters Statistical Measures 
Case h1 h2 n1 n2 wx kx,1 kx,2 ws ks,1 ks,2 ECTVP3 α 1-β ANOF ARL0 WARL ATC EATR 

1 0.7 0.1 2 8 0.9 2.7 1.7 1.7 3.6 2.1 139.033 0.0198 0.2030 0.0313 50.51 4.926 36.58 3.25 
2 0.9 0.3 2 2 0.9 2.5 1.7 1.4 3.5 2.9 134.628 0.0200 0.1699 0.0106 50.00 5.887 7.19 3.86 
3 0.3 0.1 3 11 1.8 3.0 2.9 1.1 3.5 2.0 40.374 0.0077 0.3399 0.0264 129.87 2.942 36.11 2.78 
4 0.1 0.1 2 2 2.1 3.5 2.5 2.6 4.7 3.2 127.011 0.0009 0.0876 0.0057 1111.11 11.410 5.30 1.97 
5 1.5 0.1 4 14 0.9 3.5 2.1 2.1 4.1 3.6 18.153 0.0042 0.3331 0.0031 238.10 3.002 35.89 2.56 
6 0.1 0.1 2 11 0.7 2.9 1.7 2.0 4.0 3.0 207.338 0.0143 0.3623 0.1096 69.93 2.760 4.27 0.94 
7 3.0 0.1 2 3 1.3 2.4 2.1 1.4 3.1 2.3 31.273 0.0198 0.4725 0.0068 50.51 2.116 36.93 3.60 
8 0.3 0.1 2 3 1.2 2.4 2.1 1.2 3.1 2.4 246.527 0.0198 0.4836 0.0605 50.51 2.068 4.04 0.71 
9 0.1 0.1 2 3 1.8 3.0 1.8 3.6 4.0 3.7 21.103 0.0039 0.4823 0.0182 256.41 20.736 70.83 37.50 

10 0.1 0.1 3 20 1.1 3.2 2.1 1.5 3.8 2.3 113.906 0.0073 0.2941 0.0327 136.99 3.400 7.37 4.04 
11 2.5 0.1 2 3 1.3 2.6 2.2 1.0 3.2 2.0 32.579 0.0199 0.2733 0.0080 50.25 3.659 40.43 7.10 
12 0.1 0.1 2 2 1.3 2.5 2.0 1.0 3.2 2.4 218.647 0.0200 0.2435 0.0874 50.00 4.106 7.51 4.18 
13 0.5 0.1 2 2 0.2 2.6 1.8 1.8 3.9 3.8 90.466 0.0200 0.1675 0.0445 50.00 5.968 45.58 12.25 
14 0.8 0.3 2 2 0.6 2.5 1.7 1.7 3.7 3.4 147.302 0.0198 0.2307 0.0137 50.51 4.335 6.52 3.19 
15 0.1 0.1 2 9 2.2 3.6 3.0 2.8 5.2 3.1 22.034 0.0003 0.3043 0.0016 3333.33 3.286 67.34 34.01 
16 0.1 0.1 2 4 2.1 3.3 2.4 3.1 4.6 3.4 45.542 0.0011 0.2737 0.0047 909.09 3.654 7.42 4.09 
17 0.6 0.1 2 6 0.9 2.6 1.7 1.5 3.9 2.2 129.056 0.0199 0.1820 0.0369 50.25 5.494 36.90 3.57 
18 1.1 0.3 2 2 1.0 2.4 1.7 1.8 3.5 2.7 160.308 0.0200 0.1791 0.0071 50.00 5.582 8.23 4.90 
19 0.3 0.1 3 16 1.9 3.3 3.2 1.3 4.1 2.2 47.384 0.0032 0.3226 0.0107 312.50 3.100 36.32 2.99 
20 0.2 0.1 2 5 1.7 3.0 2.5 1.6 4.0 2.1 77.995 0.0060 0.2231 0.0215 166.67 4.483 4.75 1.42 
21 1.3 0.1 3 10 0.8 3.2 1.8 1.9 4.0 3.3 23.170 0.0097 0.3132 0.0086 103.09 3.193 36.18 2.85 
22 0.1 0.1 3 16 1.0 3.2 1.9 2.4 3.9 3.3 157.778 0.0060 0.3582 0.0437 166.67 2.792 4.51 1.18 
23 3.1 0.1 2 3 1.3 2.4 2.1 1.4 3.1 2.3 26.229 0.0198 0.4730 0.0065 50.51 2.114 37.27 3.94 
24 0.3 0.1 2 3 1.2 2.4 2.1 1.1 3.2 2.3 275.008 0.0200 0.4849 0.0581 50.00 2.062 4.27 0.94 
25 0.2 0.1 2 15 1.8 3.7 2.1 2.8 4.2 2.9 18.537 0.0019 0.0845 0.0060 526.32 11.833 53.96 20.63 
26 0.1 0.1 2 13 0.8 2.7 1.8 1.2 3.9 2.1 131.626 0.0200 0.3064 0.0867 50.00 3.264 7.57 4.24 
27 2.3 0.1 2 3 1.4 2.5 2.2 1.1 3.2 2.0 36.647 0.0199 0.2727 0.0084 50.25 3.667 40.63 7.30 
28 0.1 0.1 2 2 1.4 2.5 1.9 1.4 3.2 2.2 193.797 0.0198 0.2434 0.0841 50.51 4.109 7.75 4.42 
29 0.6 0.1 2 4 0.7 2.6 1.6 1.9 4.0 2.9 98.590 0.0200 0.2291 0.0329 50.00 4.366 42.57 9.24 
30 0.7 0.1 2 2 0.7 2.4 1.7 1.9 3.8 3.4 105.447 0.0200 0.2182 0.0167 50.00 4.584 6.58 3.25 
31 0.1 0.1 2 7 2.1 3.3 2.7 2.7 4.7 3.0 18.728 0.0010 0.3195 0.0047 1000.00 3.130 67.53 34.20 
32 0.1 0.1 2 2 2.1 3.7 2.5 3.3 5.3 3.9 70.782 0.0003 0.1768 0.0014 3333.33 5.658 8.07 4.74 
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Table 7-5: Economic-Statistical design for numerical examples 33-64: optimal control policy, cost and related statistical measures for 

the 3VP  control scheme

Optimum Design Parameters Statistical Measures 
Case h1 h2 n1 n2 wx kx,1 kx,2 ws ks,1 ks,2 ECTVP3 α 1-β ANOF ARL0 WARL ATC EATR 

33 3.3 0.1 13 25 1.2 2.6 2.1 1.4 2.9 2.4 29.292 0.0117 0.4800 0.0037 85.47 2.083 36.56 3.23 
34 0.3 0.1 12 23 1.0 2.4 2.0 1.2 2.7 2.2 217.781 0.0199 0.5196 0.0630 50.25 1.925 3.98 0.65 
35 3.0 0.1 2 4 1.3 2.5 2.4 1.1 3.2 1.9 35.401 0.0200 0.3000 0.0068 50.00 3.334 39.23 5.90 
36 0.3 0.1 2 4 1.3 2.5 2.3 0.8 3.3 2.0 383.670 0.0198 0.3130 0.0590 50.51 3.195 4.30 0.97 
37 1.3 0.1 3 8 0.7 2.6 1.6 1.8 3.5 2.9 114.640 0.0200 0.3411 0.0185 50.00 2.932 35.82 2.49 
38 1.3 0.3 2 2 1.2 2.3 1.5 2.4 3.7 2.9 165.593 0.0200 0.2669 0.0065 50.00 3.747 7.04 3.71 
39 0.7 0.1 5 9 1.8 3.0 2.9 1.5 3.3 2.7 44.415 0.0037 0.6745 0.0056 270.27 1.483 34.82 1.49 
40 0.8 0.1 5 8 1.9 3.0 2.9 1.7 3.4 2.7 87.086 0.0032 0.6766 0.0031 312.50 1.478 4.13 0.80 
41 0.8 0.1 2 8 0.9 2.8 1.7 1.4 3.8 2.1 143.750 0.0199 0.2091 0.0285 50.25 4.782 36.58 3.25 
42 1.0 0.3 2 2 0.9 2.4 1.7 1.7 3.6 2.9 141.925 0.0200 0.1747 0.0089 50.00 5.723 7.50 4.17 
43 0.8 0.1 8 23 2.2 3.3 3.2 1.1 3.1 2.2 51.562 0.0051 0.5448 0.0068 196.08 1.835 34.96 1.63 
44 0.9 0.3 3 6 1.5 2.5 2.4 1.0 2.9 1.9 140.347 0.0190 0.4354 0.0146 52.63 2.297 4.80 1.47 
45 3.0 0.1 9 16 0.9 2.3 1.7 2.1 3.3 3.2 26.188 0.0183 0.5692 0.0066 54.64 1.757 35.98 2.65 
46 0.3 0.1 10 20 0.9 2.4 1.9 2.1 3.3 3.2 198.087 0.0133 0.5988 0.0409 75.19 1.670 3.93 0.60 
47 3.5 0.1 2 3 1.3 2.4 2.1 1.4 3.1 2.3 33.733 0.0198 0.4747 0.0057 50.51 2.107 37.42 4.09 
48 0.3 0.1 2 3 1.2 2.3 2.2 1.3 3.2 2.4 258.250 0.0199 0.4831 0.0600 50.25 2.070 4.04 0.71 
49 2.8 0.1 10 19 1.0 2.5 1.9 1.3 2.7 2.2 22.204 0.0198 0.4489 0.0076 50.51 2.228 37.99 4.66 
50 0.1 0.1 3 20 1.1 3.2 2.1 1.5 3.9 2.3 161.092 0.0072 0.2934 0.0310 138.89 3.409 7.60 4.27 
51 2.9 0.1 2 4 1.4 2.5 2.3 1.1 3.2 1.9 39.721 0.0200 0.2988 0.0066 50.00 3.346 40.86 7.53 
52 0.1 0.1 2 2 1.3 2.5 2.0 1.0 3.2 2.4 209.252 0.0200 0.2435 0.0848 50.00 4.106 7.75 4.42 
53 0.7 0.1 2 5 0.7 2.6 1.6 1.9 4.1 2.8 103.959 0.0199 0.2522 0.0290 50.25 3.965 41.61 8.28 
54 0.9 0.3 2 2 0.6 2.5 1.7 1.6 3.8 3.3 113.565 0.0200 0.2346 0.0116 50.00 4.262 6.93 3.60 
55 0.5 0.1 4 9 1.8 3.2 3.1 1.6 3.8 2.9 34.123 0.0017 0.5686 0.0029 588.24 1.759 41.45 8.12 
56 0.1 0.1 2 2 2.0 3.5 2.4 3.2 4.9 3.7 94.446 0.0007 0.2062 0.0029 1428.57 4.850 7.90 4.57 
57 0.5 0.1 2 5 0.9 2.6 1.7 1.6 3.8 2.2 122.267 0.0199 0.1669 0.0364 50.25 5.992 44.23 10.90 
58 0.8 0.3 2 2 0.9 2.4 1.7 1.7 3.6 2.9 150.266 0.0200 0.1682 0.0103 50.00 5.946 8.20 4.87 
59 0.5 0.1 4 12 1.7 2.9 2.8 0.9 3.1 1.9 48.495 0.0120 0.4283 0.0224 83.33 2.335 42.44 9.11 
60 0.1 0.1 2 5 2.1 3.3 2.6 2.3 4.5 2.6 72.305 0.0015 0.1309 0.0058 666.67 7.638 8.48 5.15 
61 2.5 0.1 7 17 0.9 3.0 2.0 2.1 3.7 3.6 25.436 0.0061 0.4471 0.0025 163.93 2.236 37.72 4.39 
62 0.1 0.1 2 11 0.7 2.9 1.7 1.9 4.0 2.9 115.165 0.0147 0.3660 0.0645 68.03 2.732 7.46 4.13 
63 3.2 0.1 2 3 1.3 2.4 2.1 1.4 3.1 2.3 26.648 0.0198 0.4734 0.0061 50.51 2.112 38.53 5.20 
64 0.1 0.1 2 2 1.5 2.7 1.9 2.3 3.7 2.9 217.429 0.0087 0.3635 0.0382 114.94 2.751 7.47 4.14 
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The examination of the economic and statistical results presented above leads to 

the following useful conclusions.  

It becomes immediately evident that in the majority of the examined cases (87.5 

%), the value of the tightened sampling interval 2h  equals its minimum allowable 

value, which is set to 0.1 time units, and, so, a second sample should be collected as 

soon as possible whenever a warning is issued by the scheme. 

Obviously, larger values of OOC operation costs M, lead to larger values of ECT. 

Another conclusion is that for high occurrence rates λ, the scheme indicates more 

frequent sampling, i.e., smaller values of 1h . The exact same conclusion, for more 

frequent sampling, applies, also, to larger values of M , in order for the OOC 

operation period to be minimized. Furthermore, the lower the effect of the assignable 

causes to the mean and/or the standard deviation,   and  , respectively, the larger the 

values of ECT and the values of Type I errors α.  

The aforementioned results for larger values of ECT and Type I errors in case of 

high operation costs M and low assignable causes’ effects, δ and γ, get even worse in 

case of high occurrence rates. The logical explanation of this conclusion is that in 

such cases, with lower values of  ,   and higher values of  , it is more difficult, or 

equivalently more “expensive”, for the scheme to identify an alarm and to distinguish 

whether this alarm is a true or a false one. The proposed scheme counterbalances 

these effects by indicating more frequent sampling and/or “tighter” threshold and 

control limits.  

In order to evaluate the cost savings associated with monitoring a process in 

presence of multiple assignable causes, an economic comparison with the respective 

control scheme with design parameters optimized for monitoring one assignable cause 

for the mean and one for the standard deviation, i.e., 1VP  control scheme, is made. 

For ease of reading, the expected cost per time unit for the 3VP  control scheme is 

denoted by ECTm, whereas, in case a single assignable cause may affect the mean and 

another one the standard deviation, the respective cost is denoted by ECTs. 
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The effect of each of the two assignable causes  ', '   is considered to be equal 

to the average of the effect of the two assignable causes affecting the mean and the 

two causes affecting the standard deviation, considered for the numerical 

investigation of the proposed scheme, i.e., '     1 2,    and '   

  1 2,   . Then, the 1VP  control scheme is optimized and the optimum values of 

every parameter are evaluated for each of the examined cases. The aforementioned 

values of every design parameter are utilized in the proposed model  3VP  for the 

computation of the expected cost per time unit ECTs and this cost is compared to 

ECTm. 

It should be mentioned that ECTm refers to the economic outcome of the 

proposed scheme optimized only economically, without the Type I error constraint. 

The reasoning is that the design of the scheme after the consideration of only one 

assignable cause for the mean and one for the standard deviation does not necessarily 

result in Type I error lower than 0.02 for the process. It is apparent that imposing no 

constraint to the Type I error, results in ECTm values at most equal or even lower 

compared to the minimum ECT computed with the statistical constraint  0.02a   

which has been presented in Tables 7-4 and 7-5 for each case. The results of the 

comparison are presented in Table 7-6. 
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Table 7-6: Economic comparison between the 3VP  control scheme and the 1VP  control scheme. Numerical examples 1-32 

      

(%)
 

 

         VP1 VP3 

 
Case h1 h2 n1 n2 wx kx,1 kx,2 ws ks,1 ks,2 ECTs ECTm 

1 2.2 0.7 4 4 0.4 1.2 1.1 0.5 1.6 1.6 126.119 123.045 2.44 
2 3.0 0.4 2 9 0.1 0.1 0.1 0.1 0.1 0.1 126.387 119.363 5.56 
3 0.4 0.1 3 12 1.9 2.9 2.3 1.3 3.5 2.3 42.990 40.374 6.09 
4 0.9 0.1 4 10 1.9 3.0 2.9 1.1 3.4 2.3 135.130 127.011 6.01 
5 1.8 0.1 4 13 0.9 3.6 2.2 2.2 4.3 4.0 18.595 18.153 2.38 
6 0.4 0.1 9 12 0.7 2.0 1.7 1.9 3.2 2.3 237.440 207.338 12.68 
7 3.8 0.1 2 2 1.3 2.2 2.0 1.4 2.6 2.4 31.608 30.956 2.06 
8 0.5 0.2 3 3 1.3 2.3 2.3 1.0 2.6 2.3 262.175 246.168 6.11 
9 2.3 0.1 6 13 0.9 2.8 2.1 1.3 3.1 2.5 25.586 21.103 17.52 

10 0.4 0.1 12 18 1.0 2.3 2.0 1.3 2.6 2.3 176.346 113.906 35.41 
11 3.9 0.1 2 3 1.3 2.1 2.1 1.0 2.3 1.6 32.233 31.494 2.29 
12 0.6 0.3 3 3 1.0 1.4 1.4 0.1 1.1 0.8 294.488 215.541 26.81 
13 1.6 0.8 2 2 0.1 0.9 0.8 0.1 1.8 1.8 84.612 80.566 4.78 
14 3.3 1.4 2 2 0.1 1.2 0.9 0.1 1.8 1.8 163.032 147.295 9.65 
15 0.4 0.1 3 6 1.9 3.2 2.3 1.9 4.1 2.3 30.032 22.034 26.63 
16 0.7 0.1 3 6 1.6 2.9 2.3 1.6 3.8 2.3 70.263 45.542 35.18 
17 1.9 0.8 2 2 0.1 0.6 0.6 0.1 0.8 0.8 96.770 95.502 1.31 
18 4.2 1.3 2 2 0.1 0.6 0.6 0.1 0.8 0.8 172.721 156.289 9.51 
19 0.4 0.1 3 12 1.9 3.2 2.3 1.3 4.1 2.3 50.305 47.384 5.81 
20 0.8 0.1 4 8 1.8 2.8 2.7 0.8 3.0 2.1 81.675 77.995 4.51 
21 1.9 0.1 4 11 0.8 3.1 2.0 2.1 3.9 3.8 23.638 23.170 1.98 
22 0.4 0.1 9 15 0.7 2.6 2.0 1.9 3.5 2.3 182.564 157.778 13.58 
23 3.7 0.1 2 3 1.4 2.6 2.4 1.5 3.3 2.6 26.973 26.229 2.76 
24 0.5 0.2 3 3 1.3 2.0 2.0 1.0 2.3 2.0 284.976 269.820 5.32 
25 2.2 0.1 6 15 1.0 3.2 2.3 1.3 3.8 2.3 20.673 18.537 10.33 
26 0.4 0.1 12 15 1.0 2.0 1.7 1.0 2.3 2.3 198.682 131.626 33.75 
27 4.6 2.6 2 2 0.9 1.5 1.4 0.1 1.5 1.2 34.296 33.824 1.38 
28 0.5 0.2 3 3 1.3 2.0 2.0 0.7 1.7 1.4 253.086 193.714 23.46 
29 1.6 0.1 3 4 0.6 1.6 1.2 1.6 2.8 2.8 103.383 95.169 7.95 
30 2.5 1.2 2 2 0.1 0.7 0.5 0.1 1.1 1.1 109.481 101.596 7.20 
31 0.4 0.1 3 6 1.9 3.2 2.3 1.9 3.8 2.3 24.516 18.728 23.61 
32 0.7 0.1 3 6 1.9 3.2 2.3 1.9 4.1 2.3 109.199 70.782 35.18 

ECTs ECTm

ECTs


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Table 7-7: Economic comparison between the 3VP  control scheme and the 1VP  control scheme. Numerical examples 33-64

      

(%)
 

 

         VP1 VP3 

 
Case h1 h2 n1 n2 wx kx,1 kx,2 ws ks,1 ks,2 ECTs ECTm 

33 4.3 0.1 15 24 1.3 2.6 2.3 1.6 3.2 2.3 30.200 29.292 3.01 
34 0.4 0.1 12 18 1.0 2.0 2.0 1.3 2.3 2.3 222.644 214.455 3.68 
35 5.4 3.3 2 2 0.7 1.3 1.3 0.1 1.2 0.9 31.199 31.164 0.11 
36 0.6 0.3 3 3 1.3 2.0 1.7 0.4 1.7 1.4 381.115 367.687 3.52 
37 2.0 0.1 4 4 0.6 1.4 1.2 1.6 2.6 2.6 110.018 107.057 2.69 
38 3.9 0.9 2 15 0.1 0.1 0.1 0.1 0.1 0.1 174.685 160.516 8.11 
39 0.9 0.1 5 8 2.0 3.1 3.0 1.7 3.4 3.0 46.177 44.415 3.82 
40 1.1 0.1 5 7 2.0 3.1 3.0 1.7 3.5 3.0 88.346 87.086 1.43 
41 2.3 0.8 2 12 0.1 0.1 0.1 0.1 0.1 0.1 106.152 104.949 1.13 
42 4.2 0.7 2 9 0.1 0.1 0.1 0.1 0.1 0.1 149.075 130.702 12.32 
43 1.0 0.1 9 18 1.9 3.5 2.3 1.3 3.2 2.2 54.409 51.562 5.23 
44 1.5 0.1 6 11 2.0 2.8 2.7 1.1 2.4 1.9 142.422 140.347 1.46 
45 3.5 0.1 8 15 0.9 2.5 1.9 2.3 3.6 3.5 26.675 26.188 1.83 
46 0.4 0.1 12 18 1.0 2.3 2.0 1.9 3.5 2.3 204.910 198.087 3.33 
47 5.4 0.2 3 4 1.6 2.5 2.4 1.5 2.9 2.4 34.599 33.718 2.55 
48 0.5 0.2 3 3 1.6 2.0 2.0 1.3 2.0 2.0 262.978 253.079 3.76 
49 4.0 0.1 12 15 1.0 2.3 2.0 1.3 2.6 2.3 23.041 22.160 3.82 
50 0.4 0.1 15 21 1.3 2.3 2.0 1.6 2.6 2.3 222.080 161.092 27.46 
51 5.8 1.9 3 4 1.4 2.0 2.0 0.7 1.8 1.3 39.290 38.296 2.53 
52 0.6 0.3 3 3 1.3 1.4 1.4 0.4 0.8 0.8 249.623 205.752 17.57 
53 2.1 1.3 3 3 0.1 0.7 0.6 0.1 1.5 1.5 95.201 91.192 4.21 
54 3.4 1.7 3 3 0.1 1.0 0.8 0.1 1.6 1.6 124.675 110.879 11.07 
55 0.9 0.1 5 9 2.1 3.3 3.2 1.7 3.7 3.2 37.018 34.123 7.82 
56 1.3 0.1 5 6 2.0 2.9 2.8 1.7 3.1 2.7 121.754 94.446 22.43 
57 2.6 1.2 4 4 0.1 1.0 0.9 0.1 1.3 1.3 116.917 110.928 5.12 
58 3.6 0.9 2 6 0.1 0.1 0.1 0.1 0.1 0.1 160.491 146.471 8.74 
59 1.0 0.1 6 15 1.9 2.9 2.3 1.0 2.9 2.3 54.089 48.495 10.34 
60 1.3 0.1 7 15 2.2 3.1 3.0 1.1 2.9 2.2 85.360 72.305 15.29 
61 3.6 0.1 9 18 1.0 2.9 2.2 2.4 3.8 3.8 26.198 25.436 2.91 
62 0.4 0.1 9 12 0.7 2.0 1.7 1.9 3.2 2.3 154.293 115.165 25.36 
63 5.3 0.1 3 3 1.5 2.2 2.1 1.5 2.2 2.1 27.469 26.249 4.44 
64 0.5 0.2 3 3 1.6 2.3 2.0 1.3 2.6 2.0 264.974 217.429 17.94 

ECTs ECTm

ECTs


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From the economic results given in Tables 7-6 and 7-7, it becomes evident that 

by regarding two assignable causes, one for the mean and one for the standard 

deviation, the process is imposed with a significant additional cost. Specifically, the 

average cost saving from the implementation of the proposed model is 9.91%. The 

value of the cost saving is greater in cases where M  and 
 
have large values and the 

relative difference between the assignable causes is greater, i.e., 1.5  , 2.0  . 
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8. VP MAINTENANCE AND QUALITY CONTROL SCHEME 

FOR PROCESSES SUBJECT TO FAILURES AND MULTIPLE 

QUALITY SHIFTS AFFECTING BOTH LOCATION AND 

SCALE (VP4) 

8.1 Introduction 

In this chapter we propose an integrated SPC and maintenance model by 

employing a VP control scheme for joint monitoring of mean and standard deviation 

of processes where multiple independent assignable causes, affecting both the mean 

and standard deviation, are possible to occur. An additional feature of the monitored 

processes is that, apart from the quality shifts, failures may, also, occur any time 

within the production cycle.  

Consequently, the process is subject to a multiple assignable cause mechanism, 

which consists of m quality shifts of the mean and r of the standard deviation 

 1, 1m r  , plus a failure. The time to the occurrence of each quality shift and 

failure follows a non-negative exponential distribution. 

In the proposed model, each quality shift not only increases the probability of an 

inferior shift to occur, but it also scales-up the failure rate, in proportion to the 

magnitude of the shift to the process. Due to the dependence of the failure rate on the 

process state, the former is denoted by 
Fx i
   Fs j

  when the process mean (standard 

deviation) is under the effect of i   j . As already mentioned, 
Fx k Fx i
   for k i  

 Fs l Fs j
   for l j . The overall failure rate when the process operates under the 

effect of any state ( , )i j
 equals the sum of the failure rates 

  , Fx i Fs jF i j
    . 

Furthermore, a distinctive difference between quality shifts and failures is that 

OOC operation is not directly observable, in contrast to the failure state, which ceases 

the process operation. 

After a confirmed quality shift upon inspection, the process is perfectly restored 

to the IC state, which consists a PM action. On the other hand, each time a failure 
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occurs the process is again perfectly restored to the IC state, but, this consists a CM 

action.  

It should be noted that the detection of a quality shift is usually preferable to 

precede a failure. The aforementioned assumption can be justified by a considerably 

lower cost of a PM action   ,i j
L  compared to the cost of a CM action, denoted by 

FL  
    , ,

0F k l i j
L L L    for 0k i  , 0l j  . Furthermore, the time delays are 

higher in case of a failure FT
 
than an OOC signal and (

   , ,
0F k l i j

T T T    for 

0k i  , 0l j  ). 

This chapter is structured as follows. In Section 8.2 we develop the mathematical 

model and in Section 8.3 the definition of the expected cycle time length and cost is 

presented. The expected availability is computed in Section 8.4, while Section 8.5 

extends the model to cases where an imperfect restoration of the process to the IC 

state can occur. Section 8.6 shows the formulation of the optimization problem and 

the generation method utilized to tackle it. Finally, in Section 8.7, a numerical 

investigation is presented. 

It should be mentioned that this chapter is based on a working paper of Tasias 

and Nenes (2016b). 

8.2 Mathematical Model 

The process is monitored through a VP X -s control scheme, denoted by 4VP . At 

each sampling instance, tz  and ts  of the collected sample are computed and one of 

the following three decisions, which summarize the scheme’s operation, is made: 

(a) If 
,t x qz k  and/or ,t s qs UCL   2ta  , there is an out-of-control signal and the 

process is halted for investigation which reveals either a false alarm and no action 

is taken or an OOC operation; the latter dictates a PM action which restores the 

process either perfectly to the IC state or partially to a non-inferior state with 

known probabilities (see Section 3.4.2). Without loss of generality, we utilize the 

relaxed scheme, i.e.,  1 1 ,1 ,1, , , , ,x x s sn h w k w k , after a PM action; 
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(b) If 
,x t x qw z k   and/or , ,s q t s qUWL s UCL    1ta  , there is no interruption, but 

there is a warning and the tightened set of parameters should be used 

 2 2 ,2 ,2, , , , ,x x s sn h w k w k ; 

(c) If t xz w  and ,t s qs UWL   0ta  , the process continues its operation and 

relaxed parameters are utilized. 

As already mentioned, if at any time the process operation is ceased because of a 

failure, the process will be restored to the IC state through a CM action. 

The control policy for the two control charts is illustrated graphically in Figure 8-

1. 

             

       

                   

     

                                                                                
  

 

 

Figure 8-1: Regions of the 4VP  control scheme 

The model state is fully defined by the actual state of the process, whose possible 

values are (0,0),..., ( , )tY m r , plus the failure state F, combined with the decision 

made at each transition step ta  ( 0ta 
 
if the statistic lies within the central zone, 

1ta  , in case of a warning and 2ta  , in case of an OOC signal). Therefore, the state 

space includes    1 1 3 1m r        possible states. The transition probability 

matrix of the Markov chain is shown in Figure 8-2. 
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Figure 8-2: Transition Probability Matrix of the 4VP  control scheme
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The computation of the probability of a process transition from state  ,i j  to 

 ,k l  i k   and j l   within an interval of duration 
qh  is based on equation (6.6), 

which is modified to account for the probability of a failure-free interval, and is 

derived from the following expression: 

      
 

      
 

( , ) , , ,
( , ) 1 ,0

, , ,
1 ,0

( ) exp ( )

exp ( )

q

q

h
k

i j q x i s j qx i y y jFx i Fs j
k l y i k l

h
l

x i s j qs j z i zFx i Fs j
z j k l

p h v v t p h t dt

v v t p h t dt

  

  


 


 

         

        





         (8.1) 

In the non-desirable case, where a failure occurs within a sampling interval of 

duration hq, the process transits to state F, the production cycle ends, and afterwards, 

the process is restored to the IC state. A failure, when the process operates under 

 ,i j , may either occur without the advent of any quality shift or after the 

deterioration of the process to an inferior state. The probability of a process transition 

to the failure state (state F), is: 

       

      

      

( , ) , ,

0

, , ,
10

, , ,
10

( ) exp exp

exp ( )

exp ( )

q

q

q

h

i j q x i s jFx i Fs j Fx i Fs j
F

h
m

x i s j qx i y y jFx i Fs j
Fy i

h
r

x i s j qs j z i zFx i Fs j
Fz j

p h t v v t dt

v v t p h t dt

v v t p h t dt

   

  

  


 


 

          

         

        






 

      

(8.2) 

Additionally, the transition probabilities depend on the probability of each 

decision to be made at each transition step, which can easily be derived from the 

scheme’s operation. Consequently, the exact expressions for the transition 

probabilities for a process moving from any state, i.e.,  ,i j , to any other state, i.e., 

 ,k l , are (for 1 0(1)ta    q=1(2)): 
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 

 
 

   

 
 

 

 

1

2

,2

-1,

, 0

2

, ,2

-1

0

( , ) ,
( , ) ,

,2

-1

1 0

1

q

q

t

t

q

x k q s q

q n q ti j

k l l l

x q k q s q

n q

l l

i j a q qi j
k l a k l

x k q s q

n

l

w n UWL
p h P n a

k n UCL
P n

Prob h p h
w n UWL

P




  




  








    
        

       

    
        

       
 

 
   
 
 

 

 
 

   

2

0

2

, ,2

-1,

, 0

1

1

1 1 2
q

t

q

l

x q k q s q

q n q ti j

k l l l

a

n

k n UCL
p h P n a

 




  





  
  
  


  
    
     

      


      
           

          
 

           

(8.3) 

In the special case of a process transition from any state  ,i j
 
to failure state 

(state F):    
1( , ) ( , )ti j a q i j q

FF

Prob h p h


 . On the other hand, whenever a failure occurs or 

an alarm is signaled the process resumes its operation in the IC state and the transition 

probabilities are    (0,0)0 1
( , ) ( , )t t

F q
k l a k l a

Prob h Prob h .  

Finally, in case an alarm is signaled  1 2ta    and the process was actually 

operating OOC   0,0tY   the transition probabilities are derived from the 

following expression: 

   ( , )2 (0,0)0 1
( , ) ( , )t t

i j q
k l a k l a

Prob h Prob h             (8.4) 

The limiting probability for the process transition to each possible state 

 ,tY k l F        , 0,0 ,..., ,k l m r , denoted by 
t tY a  (in case of failure  tY F  

t tY a  is denoted by F ) can be easily computed by solving the following linear 

system:  

 
1 1 1 1

1 1

( , ) 2

(0,0) 0
t t t t t t

t tt t

m r F

Y a Y a q Y a
Y aY F a

Prob h 
   

 



  

  
 

and 

 , 2

(0,0) 0

1
t t

t t

m r F

Y a

Y F a




  

 
       

(8.5) 
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8.3 The Economic-Statistical Design 

The mean cost of OOC operation for the proposed model is computed through a 

modification of equation (6.15) for processes where failures are possible to occur and 

is derived from the following expression: 

      

         

         

   

, ,, ,

, ,,

0

, , , ,
10

, ,

( ) exp

exp exp

exp ( )

exp

q

q

q q x i s j qi j i j Fx i Fs j

h

x i s ji j Fx i Fs j Fx i Fs j

h
m

x i s j qx i y i j y jFx i Fs j
y i

x i s js j z Fx i Fs j

K h M h v v h

t M t v v t dt

v v t t M K h t dt

v v

 

   

  

  


 



        

            

            
  

     





      , ,
10

( )

qh
r

qi j i z
z j

t t M K h t dt
 

     
  

(8.6) 

Consequently, the expected cycle cost can be computed from the following 

expression: 

             

             

1 1 2 2, 0 , , 1 ,
0 0 0 0

1 1 1 1, 2 0,0 , 0,0
0 0

m r m r

k l k l k l k l
k l k l

m r

F Fk l k l
k l

EC b c n K h c n K h

c n K h L c n K h L

 

 

   

 

         

         

 
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   (8.7) 

The additional components of the expected cycle time length for the proposed 

model, are the following: 

(a) The expected production time in the IC state  /(0,0)IC qh ; 

(b) The expected production time in the OOC state, when the process operates under 

the effect of state  ,i j  , 0i j   at the beginning of the interval  /( , )OOC i j qh ; 

(c) The restoration time from failure FT . 

Specifically, the process operates in the IC state until either an assignable cause 

or a failure occurs. So, the expected IC time of the process within an interval of 

duration hq, is derived from the following expression: 
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    /(0,0) ,0 ,0 0 0

0

exp

qh

IC q x s Fx Fs
h v v t dt                  (8.8) 

Furthermore, in order to compute the OOC time when the process operates under 

the effect of state    , 0,0i j   at the beginning of an interval of duration hq, three 

alternative scenarios should be considered: 

(a) The process remains under the effect of  ,i j
 
until a failure occurs; 

(b) The process mean is further deteriorated from i to 1,...,y i m  ; 

(c) The standard deviation of the process is deteriorated from j to 1,...,z j r  . 

In cases (b) and (c), the process operates under the effect of initial state  ,i j
 
for 

t time units and continues its OOC operation under an inferior state being the effect of 

the assignable cause that occurred. 

Consequently,  /( , )OOC i j qh
 
can be derived from the following expression: 
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(8.9) 

Obviously, the OOC time when the process starts IC is simplified to the 

following equation: 

        
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

(8.10) 
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The expected duration of a transition step ET equals the sum of the IC time, in 

case: the process starts IC; an alarm is issued; a failure has occurred, plus the OOC 

production time, plus the time delay in case of a false alarm, plus the restoration times 

from an OOC state and a failure, all these multiplied by the long-term probability for 

each decision. 

               
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(8.11) 

8.4 Expected Availability 

An important parameter of a production process’s performance is the long-run 

expected availability, denoted by EA, which expresses the proportion of time the 

process is operable. From the renewal theory, EA may be expressed as the ratio of the 

expected time the equipment is available, denoted by AT, over the expected cycle time 

length, denoted by ET (EA=AT/ET).  

The expected cycle time length ET has already been computed in Section 8.3, 

from equation (8.11). 

As regards the expected time the equipment is available (AT), it can be computed 

as the sum of the expected IC time plus the OOC production time and can be derived 

from the following expression: 
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(8.12) 
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8.5 Imperfect Process Restoration 

A general framework of the extension of the proposed models to cases where the 

process restoration is imperfect has been developed in Section 3.4.2. In this section, 

the modification of the 4VP  control scheme under this assumption is presented in 

detail.  

As it was explicitly stated in Chapter 3, after a confirmed quality shift upon 

inspection, the process may be restored to any non-inferior state with known 

(estimated) probabilities. Therefore, an imperfect PM action is considered. It should 

be noted that imperfect maintenance is usual in practical applications and received 

significant attention by scientists (Brown and Proschan, 1983, Pham and Wang, 1996, 

Ben-Daya, 1999, and Ben-Daya and Rahim, 2000). 

Consequently, each time an alarm is signaled  1 2ta    and the process was 

actually operating OOC   0,0tY   the transition probabilities equal the product of 

multiplying all the non-negative restoration probabilities to the respective transition 

probabilities after PM is performed. 

   ( , )2 ( , ) ( ', ')0
( , ) ( ', ') ( , )' 0 ' 0t t

ji

i j q i j i j q
k l a i j k l ai j

Prob h q Prob h
 

              (8.13) 

It should be noted that the model can be easily modified to consider tightened 

control as a protection against imperfect process restoration, especially if the 

restoration probabilities to OOC states are high enough to justify the extra cost 

imposed by considering a large size after the shortest interval for the first sample after 

a PM action    ( , )2 ( , ) ( ', ')0 2
( , ) ( ', ') ( , )' 0 ' 0t t

ji

i j q i j i j
k l a i j k l ai j

Prob h q Prob h
 

 
  

 
 . 

Furthermore, both the expected cost and the expected duration of a transition step 

should be modified in case of imperfect process restoration and are, now, computed 

from the following expressions: 
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(8.14) 
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It is obvious that the expected time the equipment is available should be also 

modified and is derived by the following equation: 
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 (8.16) 

8.6 Optimization Problem 

In this model we consider a multi-objective optimization problem where the goal 

is to find the optimal design parameters in order for two objective functions, i.e., 

minimize ECT and maximize EA, to be optimized subject to some statistical 

constraints. The general optimization problem is formulated as follows: 

min ,max
q qDP DP

ECT EA
 

s.t. 
1 2 1 2 ,1 ,2 ,1 ,2, , , , , , , , , 0x x x s s sh h n n w k k w k k        

2 1h h  

2 1n n
                         

(8.17) 

,2 ,1x x xw k k   
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,2 ,1s s sw k k 
 

1 2,n n   

0.02   

In order to solve this bi-objective optimization problem we utilize the ε-constraint 

method introduced in Haimes et al. (1971), where one objective is selected to be 

optimized and the rest objectives are restricted within specified bounds. 

Without loss of generality, we consider the minimization of ECT as the primary 

objective and set 2EA   as an additional constraint to the optimization problem. The 

optimization problem is then reformulated as: 

min
qDP

ECT
 

s.t. 2EA 
 

1 2 1 2 ,1 ,2 ,1 ,2, , , , , , , , , 0x x x s s sh h n n w k k w k k   

2 1h h
 

2 1n n           (8.18) 

,2 ,1x x xw k k   

,2 ,1s s sw k k 
 

1 2,n n   

0.02   

Through iterative increase of the value of 2  by a pre-defined constant Δ, weakly 

Pareto optima can be defined as feasible solutions of the optimization problem 

(equation (8.18)). The starting value of 2  should be selected by determining the 

optimal 
qDP  ( *

qDP ) that minimizes ECT, without any constraints for EA, and then 

compute the excepted availability for this set of design parameters  *
2 ( )qEA DP  . 

On the other hand by optimizing only EA, the “best” allowable value of 2  can be 

defined. In case there is a unique solution of the optimization problem in the 

aforementioned range of 2  values, then, based on the research of Miettinen (1999), 

the solution is Pareto optimal. 
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It should be noted that the maximization of EA could, equivalently, be selected as 

the primary objective, especially for processes where the estimation of cost 

parameters is difficult, for example for relatively new processes and/or when 

availability plays a more significant role than cost, for example in military processes. 

The minimization of ECT is achieved by means of a computer program 

developed in Fortran Power Station 4.0. 

8.7 Numerical Analysis 

In this section, the aforementioned approach for computing the optimum design 

parameters of the control scheme, the minimum expected cost per time unit and the 

maximum expected availability is applied to 64 cases for processes where two 

assignable causes that affect the process mean and that affect the standard deviation 

are possible to occur  2m r  . Each case is defined by thirteen process 

 , , ,F    , economic   0,0
, , , , , Fc b M L L L  and time parameters   0,0

, , FT T T  that 

vary at two levels. 

It should be mentioned that 
   

  1
/ 2

u g

x g u s g u
  

   
 

  , 

 
/ 2

m g

Fx g Fs g
  


  , where 0 2g  , 2g u  . Moreover, 1  , 2 1,5    

and 1  , 2 2 1    . Furthermore, 
  (1,0)0,1

M M M  , 
  (2,0)0,2

1.5M M M   

and 
      , ,0 ,0

0.75
i j i j

M M M    if , 1i j  . 

In order to limit the large number of possible scenarios, i.e. 
132 8192  and for 

the sake of brevity, the variable sampling cost c, the cost of a PM and CM action 

 , FL L  and the time parameters   0,0
, , FT T T  are assumed to remain constant. 

Specifically, c=10, 
   0,1 1,0

400L L  , 
   0,2 2,0

450L L  , 
 1,1

600L  , 

   1,2 2,1
637.5L L  , 

 2,2
675L  , 700FL  , 

 0,0
0.1T  , 

   0,1 1,0
0.25T T  , 

    (1,1)0,2 2,0
0.5T T T   , 

(1,2) (2,1) 0.75T T  , 
(2,2) 1.0T   and 1.25FT  . The 

benchmark of the process scenarios is presented in Table 8-1.  
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Table 8-1: Parameter sets of the 64 numerical examples for the 4VP  control scheme 

 

  

Case b M L(0,0) λ δ γ   Case b Μ L(0,0)      λ   δ γ 

1 0 100 100 0.01 0.5 1.414 33 0 100 100 0.01 0.5 2.0 

2 0 100 200 0.01 0.5 1.414 34 0 100 200 0.01 0.5 2.0 

3 0 1000 100 0.01 0.5 1.414 35 0 1000 100 0.01 0.5 2.0 

4 0 1000 200 0.01 0.5 1.414 36 0 1000 200 0.01 0.5 2.0 

5 5 100 100 0.01 0.5 1.414 37 5 100 100 0.01 0.5 2.0 

6 5 100 200 0.01 0.5 1.414 38 5 100 200 0.01 0.5 2.0 

7 5 1000 100 0.01 0.5 1.414 39 5 1000 100 0.01 0.5 2.0 

8 5 1000 200 0.01 0.5 1.414 40 5 1000 200 0.01 0.5 2.0 

9 0 100 100 0.1 0.5 1.414 41 0 100 100 0.1 0.5 2.0 

10 0 100 200 0.1 0.5 1.414 42 0 100 200 0.1 0.5 2.0 

11 0 1000 100 0.1 0.5 1.414 43 0 1000 100 0.1 0.5 2.0 

12 0 1000 200 0.1 0.5 1.414 44 0 1000 200 0.1 0.5 2.0 

13 5 100 100 0.1 0.5 1.414 45 5 100 100 0.1 0.5 2.0 

14 5 100 200 0.1 0.5 1.414 46 5 100 200 0.1 0.5 2.0 

15 5 1000 100 0.1 0.5 1.414 47 5 1000 100 0.1 0.5 2.0 

16 5 1000 200 0.1 0.5 1.414 48 5 1000 200 0.1 0.5 2.0 

17 0 100 100 0.01 1.5 1.414 49 0 100 100 0.01 1.5 2.0 

18 0 100 200 0.01 1.5 1.414 50 0 100 200 0.01 1.5 2.0 

19 0 1000 100 0.01 1.5 1.414 51 0 1000 100 0.01 1.5 2.0 

20 0 1000 200 0.01 1.5 1.414 52 0 1000 200 0.01 1.5 2.0 

21 5 100 100 0.01 1.5 1.414 53 5 100 100 0.01 1.5 2.0 

22 5 100 200 0.01 1.5 1.414 54 5 100 200 0.01 1.5 2.0 

23 5 1000 100 0.01 1.5 1.414 55 5 1000 100 0.01 1.5 2.0 

24 5 1000 200 0.01 1.5 1.414 56 5 1000 200 0.01 1.5 2.0 

25 0 100 100 0.1 1.5 1.414 57 0 100 100 0.1 1.5 2.0 

26 0 100 200 0.1 1.5 1.414 58 0 100 200 0.1 1.5 2.0 

27 0 1000 100 0.1 1.5 1.414 59 0 1000 100 0.1 1.5 2.0 

28 0 1000 200 0.1 1.5 1.414 60 0 1000 200 0.1 1.5 2.0 

29 5 100 100 0.1 1.5 1.414 61 5 100 100 0.1 1.5 2.0 

30 5 100 200 0.1 1.5 1.414 62 5 100 200 0.1 1.5 2.0 

31 5 1000 100 0.1 1.5 1.414 63 5 1000 100 0.1 1.5 2.0 

32 5 1000 200 0.1 1.5 1.414 64 5 1000 200 0.1 1.5 2.0 
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The restoration probabilities of the process from any state (first row) to any other 

state (first column) are presented in Table 8-2. 

Table 8-2: Restoration probabilities for the 4VP  control scheme 

 (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) 

(0,0) 1 0 0 0 0 0 0 0 0 
(0,1) 1 0 0 0 0 0 0 0 0 

(0,2) 0.3 0.7 0 0 0 0 0 0 0 

(1,0) 1 0 0 0 0 0 0 0 0 

(1,1) 0.2 0.4 0 0.4 0 0 0 0 0 

(1,2) 0.05 0.1 0.3 0.25 0.3 0 0 0 0 

(2,0) 0.7 0 0 0.3 0 0 0 0 0 

(2,1) 0.05 0.25 0 0.1 0.3 0 0.3 0 0 

(2,2) 0.02 0.04 0.15 0.04 0.1 0.25 0.15 0.25 0 

The optimum design parameters, the expected quality control cost, the expected 

availability and the measures of statistical performance for each scenario are 

presented in Table 8-3. 

.
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Table 8-3: Economic-Statistical design for numerical examples 1-32: optimal control policy, cost, availability and related statistical 

measures for the 4VP  control scheme  

Optimum Design Parameters Statistical Measures 
Case h1 h2 n1 n2 wx kx,1 kx,2 ws ks,1 ks,2 ECTVP4 EA α 1-β ANOF ARL0 WARL ATC EATR 

1 1.4 1.4 2 11 1.3 2.5 1.6 2.0 3.6 2.0 28.393 0.993 0.0200 0.2558 0.0062 50.08 3.91 48.84 15.51 
2 1.5 1.5 2 12 1.2 2.6 1.6 2.0 3.6 2.0 29.008 0.993 0.0200 0.2773 0.0058 50.02 3.61 48.83 15.50 
3 0.5 0.2 2 10 1.2 2.6 1.6 1.8 3.7 1.9 81.163 0.992 0.0199 0.2380 0.0211 50.23 4.20 47.73 14.39 
4 0.5 0.3 2 11 1.2 2.6 1.6 1.8 3.7 1.9 83.262 0.992 0.0199 0.2509 0.0203 50.38 3.99 47.94 14.61 
5 1.7 1.7 2 13 1.2 2.6 1.7 1.8 3.7 1.9 30.183 0.993 0.0200 0.2981 0.0051 50.05 3.35 48.91 15.58 
6 1.7 1.7 2 13 1.2 2.6 1.7 1.8 3.7 1.9 30.689 0.993 0.0200 0.2981 0.0051 50.05 3.35 48.91 15.58 
7 0.5 0.4 2 11 1.2 2.6 1.6 1.8 3.7 1.9 86.663 0.992 0.0198 0.2541 0.0195 50.40 3.94 48.16 14.82 
8 0.5 0.5 2 12 1.2 2.6 1.6 1.8 3.7 1.9 88.496 0.992 0.0198 0.2670 0.0187 50.53 3.75 48.34 15.00 
9 0.4 0.4 2 58 2.1 2.2 2.2 3.1 3.3 3.1 115.314 0.941 0.0187 0.2735 0.0149 53.43 3.66 5.73 2.40 
10 0.6 0.6 2 62 2.2 2.3 2.3 2.8 3.0 2.9 116.940 0.943 0.0190 0.3201 0.0091 52.77 3.12 5.98 2.65 
11 0.2 0.2 2 14 1.1 2.7 1.7 1.7 3.7 2.0 264.800 0.939 0.0199 0.3282 0.0387 50.27 3.05 5.36 2.03 
12 0.2 0.2 2 14 1.1 2.7 1.7 1.7 3.7 2.0 268.669 0.939 0.0199 0.3282 0.0387 50.27 3.05 5.36 2.03 
13 0.5 0.5 2 70 2.2 2.3 2.3 3.0 3.0 3.0 118.837 0.943 0.0190 0.2939 0.0114 52.64 3.40 5.87 2.55 
14 0.6 0.6 2 56 2.1 2.3 2.1 2.8 3.0 2.8 122.752 0.943 0.0200 0.3290 0.0096 50.08 3.04 5.93 2.60 
15 0.2 0.2 2 13 1.1 2.7 1.7 1.7 3.7 2.0 277.308 0.939 0.0199 0.3184 0.0386 50.18 3.14 5.37 2.04 
16 0.2 0.2 2 13 1.1 2.7 1.7 1.7 3.7 2.0 281.164 0.939 0.0199 0.3184 0.0386 50.18 3.14 5.37 2.04 
17 1.4 1.4 2 6 1.7 2.5 2.2 1.6 3.2 1.7 21.473 0.993 0.0198 0.3509 0.0064 50.53 2.85 48.20 14.87 
18 1.5 1.5 2 7 1.8 2.5 2.4 1.6 3.2 1.6 22.037 0.993 0.0200 0.3626 0.0060 50.08 2.76 48.20 14.87 
19 0.5 0.2 2 6 1.7 2.6 2.3 1.4 3.3 1.5 61.090 0.992 0.0200 0.3312 0.0211 50.10 3.02 47.61 14.28 
20 0.5 0.3 2 6 1.7 2.6 2.3 1.4 3.3 1.5 63.168 0.992 0.0200 0.3343 0.0204 50.11 2.99 47.81 14.47 
21 1.7 1.7 2 8 1.7 2.5 2.3 1.6 3.3 1.6 23.168 0.993 0.0200 0.3824 0.0053 50.05 2.61 48.20 14.87 
22 1.8 1.8 2 8 1.8 2.5 2.4 1.5 3.3 1.6 23.686 0.993 0.0199 0.3864 0.0049 50.20 2.59 48.21 14.87 
23 0.6 0.3 2 7 1.6 2.5 2.4 1.3 3.4 1.6 66.453 0.992 0.0200 0.3576 0.0175 50.03 2.80 47.69 14.36 
24 0.6 0.4 2 7 1.6 2.5 2.4 1.3 3.4 1.6 68.186 0.992 0.0200 0.3608 0.0169 50.05 2.77 47.85 14.51 
25 0.4 0.4 2 9 1.8 2.5 2.4 1.6 3.4 1.7 92.639 0.939 0.0193 0.4362 0.0175 51.69 2.29 5.35 2.01 
26 0.4 0.4 2 12 2.2 2.4 2.3 1.9 3.1 1.9 93.522 0.939 0.0198 0.4206 0.0178 50.46 2.38 5.35 2.01 
27 0.2 0.2 2 8 1.6 2.5 2.4 1.3 3.4 1.7 201.088 0.939 0.0198 0.4118 0.0401 50.43 2.43 5.27 1.94 
28 0.2 0.2 2 9 1.8 2.5 2.4 1.4 3.4 1.6 204.988 0.939 0.0200 0.4082 0.0403 50.09 2.45 5.27 1.94 
29 0.5 0.4 2 12 2.0 2.5 2.4 1.7 3.3 1.7 98.784 0.939 0.0199 0.4558 0.0145 50.13 2.19 5.37 2.04 
30 0.6 0.6 2 25 2.2 2.3 2.3 2.0 3.3 2.0 99.446 0.939 0.0196 0.5033 0.0110 51.14 1.99 5.40 2.06 
31 0.2 0.2 2 9 1.8 2.5 2.5 1.4 3.4 1.6 213.382 0.939 0.0200 0.4082 0.0403 50.09 2.45 5.27 1.94 
32 0.2 0.2 2 8 1.6 2.5 2.4 1.3 3.4 1.7 217.515 0.939 0.0198 0.4118 0.0401 50.43 2.43 5.27 1.94 
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Table 8-4: Economic-Statistical design for numerical examples 33-64: optimal control policy, cost, availability and related statistical 

measures for the 4VP  control scheme 

Optimum Design Parameters Statistical Measures 
Case h1 h2 n1 n2 wx kx,1 kx,2 ws ks,1 ks,2 ECTVP4 EA α 1-β ANOF ARL0 WARL ATC EATR 

33 1.5 1.5 2 8 1.0 2.5 1.5 2.6 3.9 2.7 23.342 0.993 0.0200 0.3536 0.0059 50.07 2.83 48.74 15.40 
34 1.6 1.6 2 9 1.1 2.6 1.4 2.5 3.9 2.7 23.869 0.993 0.0199 0.3600 0.0055 50.20 2.78 48.71 15.37 
35 0.5 0.3 2 8 1.1 2.6 1.3 2.6 3.9 2.8 66.357 0.992 0.0199 0.3163 0.0203 50.32 3.16 47.91 14.58 
36 0.6 0.2 2 8 1.0 2.6 1.4 2.3 4.0 2.8 68.352 0.992 0.0200 0.3278 0.0183 50.10 3.05 47.60 14.27 
37 1.8 1.8 2 9 1.0 2.6 1.5 2.3 3.9 2.6 24.896 0.993 0.0199 0.3805 0.0049 50.14 2.63 48.81 15.48 
38 1.9 1.9 2 10 1.0 2.6 1.5 2.4 3.8 2.7 25.373 0.993 0.0198 0.3947 0.0046 50.42 2.53 48.80 15.46 
39 0.6 0.4 2 9 1.0 2.6 1.4 2.5 3.8 2.8 71.280 0.992 0.0200 0.3483 0.0169 50.03 2.87 47.99 14.65 
40 0.6 0.4 2 10 1.0 2.6 1.4 2.5 3.8 2.8 72.958 0.992 0.0200 0.3663 0.0164 50.11 2.73 48.15 14.82 
41 0.4 0.4 2 47 2.1 2.1 2.1 3.7 3.8 3.7 95.018 0.940 0.0197 0.3417 0.0167 50.84 2.93 5.54 2.20 
42 0.4 0.4 2 68 2.1 2.1 2.1 3.7 3.8 3.7 96.230 0.940 0.0197 0.3472 0.0168 50.84 2.88 5.53 2.20 
43 0.2 0.2 2 10 0.9 2.6 1.6 2.4 3.9 2.6 217.454 0.940 0.0189 0.4063 0.0378 52.89 2.46 5.34 2.00 
44 0.2 0.2 2 10 1.0 2.6 1.5 2.4 3.8 2.7 219.965 0.940 0.0200 0.3968 0.0398 50.11 2.52 5.34 2.00 
45 0.6 0.6 2 68 2.1 2.1 2.1 3.6 3.7 3.6 101.454 0.941 0.0200 0.4021 0.0104 50.01 2.49 5.67 2.34 
46 0.6 0.6 2 66 2.1 2.1 2.1 3.6 3.7 3.6 102.511 0.941 0.0200 0.4018 0.0104 50.01 2.49 5.67 2.34 
47 0.2 0.2 2 10 0.9 2.6 1.6 2.4 3.9 2.6 229.747 0.940 0.0189 0.4063 0.0378 52.89 2.46 5.34 2.00 
48 0.2 0.2 2 9 0.9 2.6 1.6 2.2 3.7 2.6 232.723 0.940 0.0199 0.3968 0.0396 50.29 2.52 5.35 2.01 
49 1.6 1.6 2 18 2.2 2.3 2.3 3.0 3.0 3.0 16.212 0.993 0.0195 0.5421 0.0056 47.92 1.84 47.92 14.58 
50 1.8 1.8 2 11 2.1 2.2 2.1 2.5 3.3 2.5 16.821 0.993 0.0197 0.5668 0.0050 50.75 1.76 47.89 14.56 
51 0.6 0.2 2 5 1.7 2.3 2.1 2.0 3.2 2.0 45.493 0.992 0.0198 0.5403 0.0171 50.58 1.85 47.51 14.18 
52 0.6 0.1 2 5 1.7 2.7 2.3 1.9 3.7 2.2 46.567 0.993 0.0086 0.4864 0.0076 116.27 2.06 47.78 14.45 
53 1.9 1.9 2 7 1.8 2.3 2.2 2.1 3.1 2.2 17.740 0.993 0.0199 0.5858 0.0048 50.21 1.71 47.95 14.62 
54 2.0 2.0 2 7 1.8 2.3 2.2 2.1 3.1 2.2 18.197 0.993 0.0200 0.5875 0.0046 50.11 1.70 47.95 14.62 
55 0.6 0.6 2 6 1.8 2.3 2.0 1.9 3.2 2.0 49.795 0.992 0.0200 0.5640 0.0161 50.01 1.77 48.06 14.73 
56 0.7 0.1 2 6 1.7 2.7 2.4 1.9 3.7 2.2 50.970 0.993 0.0086 0.5043 0.0063 120.22 1.98 47.79 14.45 
57 0.4 0.4 2 15 2.2 2.3 2.2 3.0 3.1 3.0 71.731 0.940 0.0197 0.5887 0.0190 50.66 1.70 5.25 1.92 
58 0.4 0.4 2 16 2.1 2.2 2.1 3.1 3.3 3.1 74.034 0.940 0.0192 0.5947 0.0186 52.05 1.68 5.25 1.91 
59 0.2 0.2 2 7 1.8 2.3 2.1 2.1 3.2 2.1 150.678 0.940 0.0197 0.5870 0.0414 50.72 1.70 5.23 1.89 
60 0.2 0.2 2 7 1.7 2.3 2.2 2.1 3.2 2.1 154.880 0.940 0.0195 0.5931 0.0409 51.34 1.69 5.23 1.90 
61 0.5 0.4 2 17 2.2 2.3 2.2 2.9 3.0 2.9 77.801 0.940 0.0194 0.6073 0.0149 51.49 1.65 5.27 1.93 
62 0.6 0.6 2 17 2.2 2.3 2.2 2.9 3.0 2.9 79.053 0.940 0.0194 0.6314 0.0116 51.62 1.58 5.29 1.96 
63 0.2 0.2 2 6 1.7 2.3 2.2 1.9 3.2 2.1 162.837 0.940 0.0198 0.5899 0.0416 50.48 1.70 5.23 1.90 
64 0.2 0.2 2 7 1.7 2.3 2.2 2.1 3.2 2.1 166.986 0.940 0.0195 0.5931 0.0409 51.34 1.69 5.23 1.90 
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The examination of the results presented above leads to the following useful 

conclusions. 

 It is apparent that larger values of OOC operation costs M and/or larger values of 

occurrence rates λ, lead to larger values of ECT. Furthermore, larger values of M 

and/or λ, dictate smaller values of 1h  and 2h . 

 The logical explanation of the aforementioned conclusions is that in such cases, a 

more “expensive” policy of frequent sampling and/or “tighter” threshold and control 

limits is needed in order to avoid a long-lasting OOC operation 

 Another conclusion is that the effects of the assignable causes to the mean and/or 

the standard deviation of the process, δ and γ, respectively, are inversely correlated to 

the values of ECT and the values of Type I errors α. This conclusion can be explained 

intuitively. In case of lower shifts of the assignable causes to the process, the 

difficulty of the scheme to identify an alarm and to distinguish whether this alarm is a 

true or a false one increases, which, inevitably increases ECT and Type I error a.  

Finally, the expected availability is lower in case of high occurrence rates, 

because of higher failure rates, which, unavoidably, increase the downtimes of the 

equipment and as a result lower the expected availability. 

The comparison of the economic performance of the proposed 4VP  control 

scheme with less sophisticated control schemes, is given in Tables 8-5 and 8-6. 

Specifically, the 4VP  control scheme is compared to the respective: (a) FP control 

scheme; (b) VSS control scheme; (c) VSI control scheme; (d) VSSI control scheme. 
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Table 8-5: Economic comparison between the 4VP  control scheme and other less 

adaptive control schemes. Numerical examples 1-32 

 ECT 4FP VP

FP

  

(%) 

4VSS VP

VSS

  

(%) 

4VSI VP

VSI

  

(%) 

4VSSI VP

VSSI

  

(%) Case FP VSS VSI VSSI VP4 

1 33.592 31.654 31.394 29.501 28.393 15.48 10.30 9.56 3.76 

2 34.647 32.627 32.388 30.966 29.008 16.28 11.09 10.44 6.32 

3 99.189 96.501 90.508 87.551 81.163 18.17 15.89 10.33 7.30 

4 103.876 99.426 93.947 90.644 83.262 19.84 16.26 11.37 8.14 

5 37.002 34.779 34.696 34.006 30.183 18.43 13.21 13.01 11.24 

6 37.924 35.617 35.541 35.095 30.689 19.08 13.84 13.65 12.55 

7 109.725 105.017 100.181 96.144 86.663 21.02 17.48 13.49 9.86 

8 112.177 107.942 103.243 99.237 88.496 21.11 18.02 14.28 10.82 

9 135.062 122.747 115.314 115.314 115.314 14.62 6.06 0.00 0.00 

10 135.259 124.475 124.475 117.265 116.940 13.54 6.05 6.05 0.28 

11 311.407 301.820 292.677 291.422 264.800 14.97 12.27 9.52 9.14 

12 318.809 304.589 299.591 298.910 268.669 15.73 11.79 10.32 10.12 

13 135.610 131.534 118.837 118.837 118.837 12.37 9.65 0.00 0.00 

14 135.839 132.710 132.710 124.014 122.752 9.63 7.50 7.50 1.02 

15 337.457 311.860 315.047 298.027 277.308 17.82 11.08 11.98 6.95 

16 344.859 314.603 324.486 301.968 281.164 18.47 10.63 13.35 6.89 

17 23.013 22.817 22.533 22.533 21.473 6.69 5.89 4.70 4.70 

18 23.780 23.561 23.297 23.250 22.037 7.33 6.47 5.41 5.22 

19 67.100 66.933 64.547 64.318 61.090 8.96 8.73 5.36 5.02 

20 69.533 69.304 67.046 66.718 63.168 9.15 8.85 5.78 5.32 

21 25.286 25.036 24.805 24.562 23.168 8.38 7.46 6.60 5.68 

22 25.960 25.703 25.482 25.151 23.686 8.76 7.85 7.05 5.82 

23 73.571 73.330 71.163 70.599 66.453 9.68 9.38 6.62 5.87 

24 75.928 75.678 73.511 72.272 68.186 10.20 9.90 7.24 5.65 

25 96.982 95.241 95.003 95.003 92.639 4.48 2.73 2.49 2.49 

26 99.334 97.202 97.202 97.018 93.522 5.85 3.79 3.79 3.60 

27 211.016 209.510 209.510 209.510 201.088 4.70 4.02 4.02 4.02 

28 219.199 217.635 217.635 216.857 204.988 6.48 5.81 5.81 5.47 

29 104.741 102.445 102.445 102.445 98.784 5.69 3.57 3.57 3.57 

30 106.394 104.062 104.062 104.062 99.446 6.53 4.44 4.44 4.44 

31 235.438 233.759 230.834 226.459 213.382 9.37 8.72 7.56 5.77 

32 243.621 239.860 236.100 230.815 217.515 10.72 9.32 7.87 5.76 
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Table 8-6: Economic comparison between the 4VP  control scheme and other less 

adaptive control schemes. Numerical examples 33-64 

 ECT 4FP VP

FP

  

(%) 

4VSS VP

VSS

  

(%) 

4VSI VP

VSI

  

(%) 

4VSSI VP

VSSI

  

(%) Case FP VSS VSI VSSI VP4 

33 29.015 24.636 26.623 24.284 23.342 19.55 5.25 12.32 3.88 

34 29.832 25.214 27.469 25.025 23.869 19.99 5.33 13.11 4.62 

35 85.936 71.331 74.365 70.964 66.357 22.78 6.97 10.77 6.49 

36 88.241 72.981 77.256 72.884 68.352 22.54 6.34 11.53 6.22 

37 31.215 26.286 28.607 26.147 24.896 20.24 5.29 12.97 4.78 

38 31.782 26.763 29.347 26.591 25.373 20.17 5.19 13.54 4.58 

39 92.362 76.167 82.160 75.905 71.280 22.83 6.42 13.24 6.09 

40 94.667 77.724 84.890 77.575 72.958 22.93 6.13 14.06 5.95 

41 114.815 98.031 104.231 95.706 95.018 17.24 3.07 8.84 0.72 

42 116.934 99.433 106.259 96.591 96.230 17.71 3.22 9.44 0.37 

43 264.410 231.576 238.775 229.589 217.454 17.76 6.10 8.93 5.29 

44 272.172 234.681 246.931 234.648 219.965 19.18 6.27 10.92 6.26 

45 123.103 103.773 113.010 102.201 101.454 17.59 2.23 10.23 0.73 

46 124.449 104.472 115.038 102.641 102.511 17.63 1.88 10.89 0.13 

47 289.290 243.528 262.841 241.886 229.747 20.58 5.66 12.59 5.02 

48 293.035 247.044 270.457 247.010 232.723 20.58 5.80 13.95 5.78 

49 17.495 16.212 17.102 16.212 16.212 7.33 0.00 5.20 0.00 

50 18.090 16.953 17.713 16.953 16.821 7.01 0.78 5.04 0.78 

51 48.880 45.770 47.101 45.770 45.493 6.93 0.61 3.41 0.61 

52 50.788 47.650 48.960 47.201 46.567 8.31 2.27 4.89 1.34 

53 19.236 18.040 18.840 18.040 17.740 7.78 1.66 5.84 1.66 

54 19.778 18.203 19.393 18.203 18.197 7.99 0.03 6.17 0.03 

55 53.942 50.395 52.076 50.295 49.795 7.69 1.19 4.38 0.99 

56 55.850 51.952 53.878 51.561 50.970 8.74 1.89 5.40 1.15 

57 79.205 72.566 76.480 72.566 71.731 9.44 1.15 6.21 1.15 

58 81.956 74.139 78.437 74.139 74.034 9.67 0.14 5.61 0.14 

59 167.227 151.570 158.660 151.005 150.678 9.90 0.59 5.03 0.22 

60 171.251 156.763 163.606 156.763 154.880 9.56 1.20 5.33 1.20 

61 86.447 78.719 83.106 77.869 77.801 10.00 1.17 6.38 0.09 

62 87.870 80.446 84.895 80.081 79.053 10.03 1.73 6.88 1.28 

63 179.375 165.430 173.149 165.430 162.837 9.22 1.57 5.96 1.57 

64 183.399 167.050 177.899 167.050 166.986 8.95 0.04 6.13 0.04 
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The cost savings achieved by the implementation of the proposed control chart 

are on average 13.24% compared to the FP control chart; 6.18% compared to the VSS 

control chart; 8.10% compared to the VSI control chart and 4.09% compared to the 

VSSI control chart. The economic improvement is inversely related to   and is 

greater in case M is large. 
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9. VP MULTIVARIATE CONTROL SCHEME FOR PROCESSES 

SUBJECT TO MULTIPLE QUALITY SHIFTS AFFECTING 

BOTH LOCATION AND SCALE (VP5) 

9.1 Introduction 

In this chapter, we investigate the economic-statistical design of a VP control 

scheme for monitoring multivariate processes, when multiple assignable causes may 

shift the location and/or the variability of the correlated quality characteristics.  

By considering mvm  possible assignable causes for the mean vector, there are 

mvp m  possible values of 
,i  , for every quality characteristic ρ  1,2,..., p   

being shifted from any possible assignable cause i  1,..., mvi m , i.e., 

 , 1,1 1, ,1 ,,..., ;...; ,...,
mv mvi p m m p     . In a similar manner, for cmr  assignable causes as 

regards the covariance matrix, the cmp r  possible values for the magnitude of a shift 

are  , 1,1 1, ,1 ,,..., ;...; ,...,
cm cmj p r r p     . Apparently, in case the process operates in the 

IC state, then 
0, 0   and 

0, 1  , for every 1,2,..., p  . 

Specifically, a VP T2 Hotelling’s control chart is employed to monitor the mean 

vector through the statistic    2 1

0 0' 'q qT n x x 


      , where 'x  is the sample 

mean vector derived from a collected sample of size 
qn . Whenever the process 

operates IC, the T2 statistic is a continuous, random variable that follows a chi-square 

distribution with p degrees of freedom. In case the process operates OOC, the T2 

statistic is distributed as a non-central chi-square distribution with p degrees of 

freedom and non-centrality parameter 
 
2

,q i j
n d , where 

   0,
' '

i j
d x 



  

 1

0' 'j x     represents the Mahalabonis distance of a sample mean vector 'x  from 

0 ' , when the mean vector and the covariance matrix are under the effect of 

assignable causes i and j, respectively  ' ',i j     . 
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Regarding the covariance matrix, a fully adaptive Shewhart control chart is 

employed to monitor the variability of a p-dimensional multivariate variable mX , 

based on the value of its entropy. This chart is an extension of the entropy approach 

for the simple Shewhart control chart proposed by Guerrero-Cusumano (1995) to the 

adaptive case. 

The statistic 
 

,

1 0,

2 1
ln

p
q

q t

n R
E

p



 

   
    

 
  is utilized in order to monitor the 

dispersion of the multivariate normal distribution and estimates the difference 

between the sample entropy and theoretical entropy. The range of the ρth quality 

characteristic, denoted by R , is derived from a collected sample of size 
qn , i.e., 

1, 2, , 1, 2, ,max , ,..., min , ,...,
q qn nR x x x x x x      

    
   

 and 
0,  is the in-control 

standard deviation of the ρth quality characteristic. 

The 
qE  statistic is assumed to follow a normal distribution with mean 

0, qE  and 

variance 2

0, qE  derived from the general expressions: 

0,

1 0,

2 ( 1)
ln

q

p
q

E

n R
E

p



 




   
      

  
            (9.1) 

2

0,

1 0, 0, 0,

2 ( 1)
ln ln , ln

q

p p
q f

E

f f

n RR R
Var Cov

p

 

  


   

         
                    

         
     (9.2) 

After some complicated mathematical manipulation, Guerrero-Cusumano (1995) 

concluded that 
0, qE  and 2

0, qE
 
can be evaluated through the following equations: 

 0, 2 ( 1)
qE qp n E y                       (9.3) 

   
2 22

0, 0

1
2 ( 1) ( ) ( )

qE qn Var y E y Tr P I
p

                  (9.4) 

where,  0,ln /y R  , Tr(A) is the trace of matrix A, I the identity matrix of size 

p p ,      ln 2 / / 2E y c        and    2
1 / 2Var y      (where   and 
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1  are the first (digamma function) and second (trigamma function) derivative of the 

natural algorithm of the gamma function, respectively, and , ,c   constants). 

The values of , ,c   and, so, the values of  E y  and  Var y  can be found in 

Cadwell (1953), for any sample size 
qn   2 20qn   and have been tabulated below 

(Table 9-1). The range of the possible sample sizes  2,..., 20qn   is consistent with 

the contemporary industry policies that dictate frequent sampling of relatively small 

sample sizes (Montgomery, 2009). 

Table 9-1: Mean   E y  and variance   Var y  of variable  0,ln /y R   

nq E(y) Var(y) nq E(y) Var(y) 

2 0.2886 1.2337 12 1.15204 0.0599668 

3 0.3576 0.4123 13 1.17759 0.0556675 

4 0.617684 0.237065 14 1.20026 0.0520683 

5 0.768099 0.166459 15 1.22057 0.0490106 

6 0.869731 0.129121 16 1.23921 0.0464001 

7 0.944558 0.106262 17 1.25585 0.0440956 

8 1.00293 0.0909723 18 1.27150 0.042082 

9 1.05018 0.0797 19 1.28538 0.0402908 

10 1.08952 0.0716104 20 1.29861 0.0387774 

11 1.12295 0.0651794    

The assumption that 
qE  is a normally distributed variable is determined through a 

normality test. In specific, a simulation study for the distribution of 
qE  has been 

conducted with 10000 random samples for different values of sample size 

 2,..., 20qn   and different correlation coefficients 

 0.1, 0.2,..., 0.9, 0.95, 0.99cr        when two  2p   or three  3p   quality 

characteristics are monitored simultaneously. The normality of 
qE  has been tested 

through the chi-square goodness of fit test. For the bivariate case  2p  , and for 

every possible combination of 
qn  and cr  the null hypothesis that 

qE  is normally 

distributed fails to be rejected at a 5% significance level. For the trivariate case 
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 3p  , the normality assumption is appropriate for the statistic 
qE  for every 

qn  and 

cr , except when high correlation is present  0.95cr   ; in such cases a sample of 

size 4qn   is required. 

It should be mentioned that for the chart that monitors the covariance matrix of 

the process, the standardized value of statistic 
qE  is utilized, denoted by 

qEz . 

The remainder of this chapter is organized as follows. In Section 9.2, we present 

the mathematical model. Section 9.3 contains the design of the proposed control 

scheme. Section 9.4 presents the optimization problem and Section 9.5 provides a real 

example from the aircraft industry in order to illustrate the application of the proposed 

scheme. 

It should be noted that this chapter uses material from Tasias and Nenes (2016c). 

9.2 Mathematical Model 

The proposed control scheme is denoted by 5VP , and as it is already mentioned in 

Chapter 3, is fully defined by the following design parameters 

 , , , ,, , , , ,q q mv q mv q cm q cm qn h w k w k . 

However, in real applications, the difficulty in computing the value of the mean 

or variance of each quality characteristic is not the same. For example, in a 

chemical/pharmaceutical industry, computing the mean weight of a predefined sample 

of pills is much easier, less time-consuming and with lower cost than computing the 

mean percentage portion of an ingredient of a pill. So, in order to achieve even better 

economic results, different sample sizes (subsamples) of each quality characteristic, 

within a collected sample of size 
qn , are considered for the computation of the mean 

and variance of the quality characteristic. These additional design parameters are 

denoted by 
,1 ,2 ,, ,...,q q q p qn n n n  and, in conjunction with the above, have also two 

possible values, a relaxed  1,1 1,2 1, 1, ,..., pn n n n  and a tightened one 

 2,1 2,2 2, 2, ,..., pn n n n . 



149 

 

The subgroup statistics    2 1

0 0' 'q qT n x x 


     
 

and 

 
,

1 0,

2 1
ln

p
q

q t

n R

p



 

   
     

 
  are plotted on the two charts that monitor the mean 

vector and the covariance matrix, respectively and their values are compared to the 

warning and control limits of each chart. 

The process is considered to be IC if both statistics are below the respective upper 

warning lines (central zone) ( 2

q mvT w  and 
qE cmz w ). Then, the decision made at the 

t-th sampling inspection is that the process should continue its operation and relaxed 

parameters should be used for the next sampling  0ta  . In case at least one of the 

two statistics lies between the upper warning and control lines (warning zone), but 

none of them outreaches the control limit, ( 2

,mv q mv qw T k  and 
,qE cm qz k  or 

2

,q mv qT k  and 
,qcm E cm qw z k  ), then the process should continue its operation, but 

the tightened set of parameters should be utilized for the next sampling  1ta  . 

Finally, if at least one of the subgroup statistics outreaches the respective control limit 

(action zone) ( 2

,q mv qT k  and/or 
,qE cm qz k ), then the process is halted, an inspection 

takes place and the process is perfectly restored to the IC state  2ta   if any 

assignable cause had indeed occurred. 
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The control policy for the two control charts is illustrated graphically in Figure 9-

1. 

             

       

              

     

                                                                               
   

 

 

 

 

Figure 9-1: Regions of the  control scheme 

Since there are    1 1mv cmm r    possible states for the mean vector and the 

covariance matrix and three possible decisions, as described above, the Markov chain 

has    1 1 3mv cmm r     possible states. Each state of the process is indicated by 

both the actual state of the process, denoted by  ,i j  when the mean vector is 

affected by assignable cause i and the covariance matrix by assignable cause j, and the 

decision made, which is indicated by either 0ta  , if no action is taken, 1ta  , if the 

scheme warns for the effect of an assignable cause and 2ta  , if an alarm is issued. 

The transition probability matrix of the Markov chain is shown in Figure 9-2. 
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2
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 0
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Figure 9-2: Transition Probability Matrix of the  control scheme5VP
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The probability of the process transition from state  ,i j  to  ,k l , 
( , )
( , )

( )i j q
k l

p h , is 

the extension of equation (6.1) to the multivariate case and equals the product of 

multiplying the probability of the mean vector’s transition to the respective transition 

of the covariance matrix: 

 
 

     
      

     
   

      

   

, ,

0

, ,,

,

, ,

1,..., \0

, ,

0

, ,

exp exp

exp

exp exp

exp

q

q

mv

q

h

mv i mv k qmv i k

q mv i q cm j qi j h
k lk l

mv i mv y qmv i y
ky m k

h

cm j cm l qcm j l

cm j cm zcm j z
l

v t v h t dt

p h p h p h

v t p h t dt

v t v h t dt

v t p


















 
        

 
    

      
 
 

       



    







 
   1,..., \0

q

cm

h

q

z r l

h t dt


 
 
 
 
 
 
 



(9.5) 

Now, let us see how the probability of the chart statistics to lie either in the 

central  0ta  , warning  1ta  , or action  2ta   zone is derived. 

Firstly, as already mentioned, the chart statistic 2

qT , follows a non-central chi-

square distribution with p degrees of freedom and non-centrality parameter 
 
2

,q i j
n d . 

By denoting the cumulative distribution function of 2

qT  by   2
,

, , q i j
F x p n d , the 

probabilities for 2

qT  to be either in the central, warning or action zone, are: 

    2 2

,
, ,q mv mv q i j

P T w F w p n d              (9.6) 

       2 2 2

, . , ,
, , , ,mv q mv q mv q q mv qi j i j

P w T k F k p n d F w p n d     
  
       9.7) 

    2 2

, , ,
1 , ,q mv q mv q q i j

P T k F k p n d               (9.8) 

Apparently, in case the mean vector equals its target value  0i   then, the 

statistic 2

qT  follows a chi-square distribution and the value of the non-centrality 

parameter equals zero   2

,
0q i j

n d  . 
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On the other hand, as regards the normally distributed statistic 
qE , an assignable 

cause j that affects the covariance matrix Σ, shifts only the mean of 
qE  from 

0, qE  to 

, qj E , but its variance remains constant and equal to 2

0, qE . This can easily be 

concluded from the general expressions of the mean and variance of 
qE  (equations 

(9.1) and (9.2)) and by taking into account that the occurrence of an assignable cause j 

shifts the standard deviation of each quality characteristic ρ from 
0,  to 

, 0,j    . 

Consequently, the occurrence of assignable cause j shifts only the value of the mean 

of 
qE , upwards, to

, 0, ,q qj E E j q   . The magnitude of the shift, denoted by ,j q , 

depends not only on the effect of assignable cause j to the standard deviation of each 

quality characteristic 
,j  , but on the sample size 

qn  as well, and can be computed 

from the following equation: 

 
, ,

1

2 1
ln

p
q

j j

n

p
 






   
   

 
            (9.9) 

The respective probabilities for the standard normal variable 
qEz  to lie either in 

the central, warning or action zone, under the effect of assignable cause j, are the 

following: 

  ,

0,
q

q

j q

E cm cm

E

P z w w


 
    
 
 

    (9.10) 

  , ,

, ,

0, 0,
q

q q

j q j q

cm E cm q cm q cm

E E

P w z k k w
 

    
         
   
   

            9.11) 

  ,

, ,

0,

1
q

q

j q

E cm q cm q

E

P z k k


 
    
 
 

        (9.12) 

The probability of each possible decision can be now computed through 

equations (9.6)-(9.8) and (9.10)-(9.12): 

     20
qt q mv E cmP a P T w P z w        (9.13) 
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            2 2

, ,1 1 1 \
q qt q mv q E cm q q mv E cmP a P T k P z k P T w P z w         

 

(9.14) 

     2

, ,2
qt q mv q E cm qP a P T k P z k    

  
   (9.15) 

As already mentioned, the transition probabilities equal the product of 

multiplying the probability of each possible transition to occur (equation (9.5)) to the 

probability of the decision made (equations (9.13)-(9.15)) and are derived from the 

following general expression: 

 

 
 

    

 
 

 
  

  

 
 

 

1

,2

, ,

, 0,

,2

, ,,

0,

( , ) ,
( , ) ,

,2

,

0,

,

,

, , 0

, ,

1

, ,

1

q

q

t

t

q

j q

q mv q cm ti j i j

k l E

j q

mv q q cm qi j

E

i j a q q ti j
k l a k l

j q

mv q cmi j

E

qi j

k l

p h F w p n d w a

F k p n d k

Prob h p h a

F w p n d w

p h F









 
     
 
 

  
     

   
    

  
     
    

 
   ,2

, ,,

0,

, , 2

q

j q

mv q q cm q ti j

E

k p n d k a
















   
     

       

(9.16) 

Note that in case , i.e., when the chart issues an alarm, the process 

always restarts its operation from the IC state and so the transition probabilities are 

computed from the following equation: 

   ( , )2 (0,0)0 1
( , ) ( , )t t

i j q
k l a k l a

Prob h Prob h    (9.17) 

From the Markov chain theory, it is concluded that as the number of the collected 

samples N increases, the limiting probability for the process transition to tY  and ta  is 

independent of the initial state of the process 1tY   and 1ta   and is the unique non-

negative solution of the following linear system: 

 
 

 

1 1 1 1

1 1

, 2

0,0 0

mv cm

t t t t t t

t tt t

m r

Y a Y a q Y a
Y aY a

Prob h 
   

  

    and           (9.18) 

1 2ta  

( , ) 2

(0,0) 0

1
mv cm

t t

t t

m r

Y a

Y a


 

 
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9.3 The Economic-Statistical Design 

As it is already mentioned, the OOC operation cost per time unit, denoted by 

( , ) ( )i j qK h , when the process operates under the effect of state  ,i j  at any given 

sampling instance, depends on the number of the assignable causes that may occur 

within an interval and their sequence of occurrence. 

The computation of the aforementioned cost in presence of multiple assignable 

causes was described in Chapter 6 and its extension to the multivariate case is 

presented below: 

        

            
   

            
   

, ,, ,

, , , , ,
1,..., \0

, , , , ,
1,..., \0

exp

exp exp

exp exp

q

mv

q

cm

q q mv i cm j qi j i j

h

cm j q mv i qmv i y i j mv y j
y m i

h

mv i q cm j qcm j z i j cm i z
z r j

K h M h v v h

v h v t t M K h t dt

v h v t t M K h t dt











      

 
            
  

  
              
 





   
        1 2

1 1

,1 2
,1,..., \ 1,..., \ 1 1

,
mv cm

mv cm

m r

i jq
y zy m i z r j fn fn

ECK h fn fn
 

   

 
  

 
   

 

(9.19) 

The variables 1fn  and 2fn  denote the number of the assignable causes that occur 

within a transition step and affect the mean vector and the covariance matrix of the 

process, respectively, for a process transition from state  ,i j  to  ,k l . 

Taking into account that the process is charged with different fixed and variable 

costs for sampling and testing for each quality characteristic, b  and c  

 1,2,..., p  , respectively, and because different sample sizes are utilized from a 

collected sample of size 
qn  for the computation of the mean and variance of each 

quality characteristic  ,1 ,2 ,, ,...,q q q p qn n n n , the average cost and duration of a 

transition step are computed from the following expressions: 
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(9.20) 

         (9.21) 

9.4 Optimization Problem 

Let  , , , ,, , , , ,q q q mv q mv q cm q cm qDP n h w k w k  q=1,2 denote the optimal values of the 

design parameters and  ,1 ,2 ,, ,...,q q q q pN n n n , the optimal values of the individual 

sample sizes for each quality characteristic.  

It should be noted that in accordance to the univariate case, without loss of 

generality, in order to reduce the complexity of the model and based on the 

conclusion of Park and Reynolds (1999) that the use of more than one warning limits 

leads to a relatively small cost reduction, we employed one warning limit for each 

control chart, i.e., 
,1 ,2mv mv mvw w w   and 

,1 ,2cm cm cmw w w  . 

The optimization problem can be formulated as follows: 

,
min

q qDP N
ECT

 

s.t.  
1 2 1 2 ,1 ,2 ,1 ,2, , , , , , , , , 0mv mv mv cm cm cmh h n n w k k w k k   

 

,1 ,2 ,, ,...,q q q p qn n n n
 

           2 1h h
                       (9.22) 

2 1n n
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The program software MATLAB (R2014a) is utilized for finding the optimal 

design parameters of the monitoring scheme *

qDP  and the sample sizes for each 

quality characteristic *

qN . 

9.5 An Illustrative Example 

In this section, a real example from the maintenance division of a fighter aircraft 

squadron is utilized in order to illustrate the operation and evaluate the performance 

of the proposed scheme. 

We consider the proposed scheme to be the main SPC tool for the on-line 

monitoring of the aircraft availability in a fighter aircraft squadron, which operates a 

fleet of 50 aircrafts. It should be noted that availability is defined as the proportion of 

the number of airworthy aircrafts out of the total number of aircrafts of the squadron 

and reflects the maintenance efficiency.  

The early detection of a quality shift in the aircraft availability would be of great 

benefit to the squadron both in the short and long run. For example, it would provide 

greater breadth and depth of maintenance capability, save maintenance costs, increase 

the operational efficiency of the squadron, have a positive effect on the safety of 

operations etc. 

Consequently, two quality characteristics  2p   are assumed to fully 

characterize the maintenance efficiency of the squadron: the daily Mean Time 

between Failure  MTBF  and the daily Mean Time to Repair  MTTR . Due to the 

dependence between failure and repair rates that often exists in the aircrafts, MTBF  

and MTTR  are considered to be positive correlated  0.81cr  . 

From a statistical analysis of historical data and by taking into account the 

operational demands of the squadron, the target values of the means of the two quality 

characteristics are equal to 0, 30MTBF   hours and 0, 4MTTR   hours   0 ' 30,4  . 

On the other hand, the target values of the standard deviations are 
0, 0.837MTBF   and 

0, 0.316MTTR  . 
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Three assignable causes affect the mean vector  3mvm   and three the 

covariance matrix  3cmr   of the monitored process. Specifically, bad lubricant 

control shifts only the mean of MTBF downwards to 29.75 hours  1 ' 29.75,4.0  , 

poorly planned maintenance increases the mean of MTTR to 4.126 hours 

 2 ' 30.0,4.126 
 
and poorly trained personnel affects both the means of MTBF and 

MTTR  3 ' 29.582,4.19  . On the other hand, insufficient calibration processes 

increase the standard deviation of MTBF  1,1 1,21.3, 0   , inappropriate handling 

procedures result in an upward shift of the standard deviation of MTTR 

 2,1 2,20, 1.4    and, finally, bad inventory management increases the standard 

deviations of both quality characteristics  3,1 3,21.5, 1.6   . 

Consequently, the covariance matrix is shifted by the three assignable causes 

from its target value 0

0.7 0.215

0.215 0.1

 
   

 
 to 1

1.183 0.2795

0.2795 0.1

 
   

 
  1j  , 

2

0.7 0.301

0.301 0.196

 
   

 
  2j   and 3

1.575 0.516

0.516 0.256

 
   

 
  3j  , respectively. 

For the specific example, three additional constraints should be implemented in 

the optimization problem (equation (9.22)): (a) because a reliable measurement of 

MTBF and MTTR can, only, be made at the end of a flight day, the sampling intervals 

should be integers ( 1 2,h h  ), obviously positive; (b) q qn h , in order to assure that 

the production rate, i.e., flight days, will not constraint the measurement procedure; 

(c) as regards the statistical constraints, an upper bound has been set for WARL to be 

less or equal to one flight week, i.e., five flight days,  5WARL  , in order to avoid a 

long-lasting out-of-control operation, which would result in a loss of confidence of 

the squadron to the proposed on-line monitoring tool. 

Because the process continues its operation during search or repair the 

expressions of EC (equation (9.20)) would be slightly modified to account for this 

differentiation:  
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(9.23) 

All the economic and statistical parameters of the process are presented in Table 

9-2. 
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Table 9-2: Parameter set of the illustrative example for the 5VP  control scheme 

Occurrence Rates 

(failures/day) 
Magnitude 

of Shifts 

Costs  

($) 
Time Delays 

(days) 

   0 1 0 1
0.1

mv cm
 

 
 

   0 2 0 2
0.1

mv cm
 

 
 

   0 3 0 3
0.01

mv cm
 

 
 

   1 2 1 2
0

mv cm
 

 
 

   1 3 1 3
0.05

mv cm
 

 
 

   2 1 2 1
0

mv cm
 

 
 

   2 3 2 3
0.05

mv cm
 

 
 

   3 1 3 1
0

mv cm
 

 
 

   3 2 3 2
0

mv cm
 

 
   

1,1 0.3  

1,2 2,1 0  

2,2 0.4 

3,1 0.5  

3,2 0.6 

1,1 1.3 

1,2 2,1 1  

2,2 1.4 

3,1 1.5 

3,2 1.6   

Sampling  

Out-of-

control 

Operation 

Removal of 

assignable 

causes
 

 0,0
0.125T 

 0,1
0.25T 

 0,2
0.25T 

 0,3
0.35T 

 1,0
0.2T 

 1,1
0.3T 

 1,2
0.4T 

 1,3
0.45T 

 2,0
0.2T 

 2,1
0.4T 

 2,2
0.5T 

 2,3
0.55T 

 3,0
0.35T 

 3,1
0.45T 

 3,2
0.55T 

 3,3
0.6T   

1 10c    0,1
130M   

 0,0
150L   

2 10c 

1 5b 

2 5b   

 0,2
150M 

 0,3
170M 

 1,0
100M 

 1,1
140M 

 1,2
170M 

 1,3
210M 

 2,0
120M 

 2,1
150M 

 2,2
180M 

 2,3
210M 

 3,0
150M 

 3,1
160M 

 3,2
200M 

 3,3
250M   

 0,1
240L 

 0,2
240L 

 0,3
260L 

 1,0
200L 

 1,1
250L 

 1,2
290L 

 2,0
200L 

 2,1
250L 

 2,2
290L 

 2,3
340L 

 3,0
230L 

 3,1
270L 

 3,2
310L 

 1,3
340L 

 3,3
350L   

 

 

 

 

The solution of the optimization problem dictates the optimal inspection policy to 

the maintenance officer who is responsible for the implementation of the proposed 

scheme. Specifically, the optimum values of the design parameters for our example 

are defined to be equal to: 1 11h  , 2 10h  , 1 3n  , 2 6n  , 0.1mvw  , 
,1 24.4mvk  , 

,2 24.2mvk  , 0.1cmw  , 
,1 3.3cmk  , 

,2 2.5cmk  .  

As a result, a measurement of MTBF  and MTTR  should be done every 11 flight 

days  1 11h   for the last 3  1 3n   flight days and the values of the two statistics, 

2
1T  and 

1Ez , should be compared to 
,1 24.4mvk 

 
and 

,1 3.3cmk  , respectively. In case, 

at least one of the chart statistic lies between the warning and control limit, but none 

of them outreaches the control limit, then, a new measurement should be made for the 
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last 6  2 6n   out of 10  2 10h   flight days after the last inspection, and the 

“tightened” statistics 2
2T  and 

2Ez , should be compared to 
,2 24.2mvk 

 
and 

,2 2.5cmk  , 

respectively. Finally, if the proposed scheme issues an alarm, a senior engineer should 

investigate and correct any abnormalities in the aircraft maintenance procedures. The 

optimal ECT equals 19.4235 $/ flight day and 4.997WARL   flight days. 
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10. CONCLUSIONS AND FUTURE RESEARCH 

10.1 Summary 

In this thesis, fully adaptive control schemes are economically and statistically 

optimized in order to monitor processes under the assumption of multiple assignable 

causes that may affect both the location and scale of the process. For this purpose, the 

Markov chain theory has been utilized to model the operation of the proposed control 

schemes. 

Specifically, a new adaptive control scheme for monitoring production processes 

subject to two assignable causes, one affecting the mean and the other the standard 

deviation of a quality characteristic, has been developed. The design parameters are 

allowed to vary in order to minimize the quality-related costs. The economic 

superiority of the proposed VP X -s Shewhart control scheme, compared to less 

sophisticated control schemes has been verified through an extended numerical 

investigation.  

Furthermore, a VP control chart for monitoring production processes subject to 

multiple assignable causes that affect the process mean of a quality characteristic has 

been developed. The design parameters are optimized economically with and without 

statistical performance constraints. The economic superiority of the proposed VP 

Shewhart control chart compared to less adaptive control charts is evaluated through 

an extended numerical investigation. 

It should be mentioned that two different methods for the computation of the 

probability of a process transition and two methods for the computation of the OOC 

operation cost in the mathematically hard to formulate case of multiple assignable 

causes which may affect both the process mean and the process dispersion are 

developed. These approaches may be employed equivalently and their analytical 

presentation allows the reader to conceive the theoretical background of the modeling 

of this difficult problem. 

Subsequently, a VP control scheme for monitoring production processes subject 

to a multiplicity of independent assignable causes that affect the process mean and/or 

the standard deviation of a specific quality characteristic is proposed. The values of 
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the design parameters are derived through economic optimization but they also satisfy 

specific statistical constraints. The economic and statistical performance of the 

proposed control scheme is evaluated for an extended benchmark of scenarios. 

Finally, significant cost savings are verified by comparing the economic outcome of 

the scheme for each of the investigated cases, when instead of a multiple assignable 

cause mechanism, only one cause affecting the mean and another one the standard 

deviation are erroneously considered. 

Additionally, a fully adaptive integrated maintenance and quality control scheme 

is developed. The proposed model can monitor processes subject to a multiple 

assignable cause mechanism which may affect both the process location and scale. 

Apart from the quality shifts that deteriorate the process performance, failures that 

cease the process operation may also occur. The detection of a quality shift from the 

control scheme triggers a PM action which is preferable to the CM action triggered in 

case of a failure. The values of the design parameters are selected so as to achieve 

economic optimization, assure acceptable statistical performance through specific 

statistical constraints and maximize the availability of the equipment. An extended 

benchmark of examples has been generated to compare the performance of the VP 

control scheme against simpler approaches.  

Finally, a fully adaptive control scheme which tackles the common in a wide 

variety of industry applications problem of simultaneous monitoring of multiple 

correlated characteristics for processes whose location and scale may be affected by 

multiple independent assignable causes. This complicated problem is approached 

through a simple on-line monitoring tool which utilizes the commonly used 

Hotelling’s statistic and the familiar to practitioners sample range in order to detect 

the occurrence of an/some assignable cause/es. The economic-statistical design of the 

control scheme is modeled as an optimization problem and the values of the optimal 

parameters are defined through an exhaustive algorithm. A realistic example from the 

aviation industry is employed to demonstrate the applicability and evaluate the 

performance of the proposed scheme. 

It is apparent that each of the proposed models deals with real-world industry 

problems and can be implemented in a wide variety of processes, despite the fact that 

the general problem setting of the models results, unavoidably, in a hard mathematical 
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formulation. However, through suitable software with a user-friendly, intuitive 

interface, the complexity of the mathematical model does not limit the applicability of 

the control scheme for practitioners. 

Specifically, after a comprehensive initialization process, implemented by the 

quality division of the industry, in order to define the statistical and economic 

parameters of the monitored process (inputs), the software would dictate the optimal 

design parameters (output). Then, in the production line, the practitioners should only 

enter iteratively the measured values of the quality characteristic from each sample 

(inputs) in the program, which processes these data and defines the optimum sampling 

policy (output) each time. 

10.2 Conclusions 

The development of fully adaptive control schemes for monitoring processes 

subject to multiple assignable causes that affect both the process mean and the 

dispersion of the process led to the following useful conclusions. 

First of all, the proposed VP control schemes have a better economic performance 

compared to respective control schemes with fewer adaptive parameters. This 

conclusion has been verified through multiple comparisons for a wide benchmark of 

different cases and for the majority of the developed models. 

Moreover, the tightened value of the sampling interval  2h  equals the minimum 

allowable value in the majority of the examined cases. Regardless of whether the 

value of 2h  is allowed to be equal to zero, as examined in Chapter 4, or not, a warning 

of the control schemes dictates an immediate sampling. This fact leads to the 

conclusion that the DS policy is the most economically advantageous sampling 

strategy in a wide variety of scenarios. 

Another conclusion is that an erroneous consideration of a single assignable 

cause mechanism when multiple quality shifts are possible to occur, has significant 

economic repercussions on the mean total quality-related costs. It is apparent that this 

conclusion enhances the necessity of application of the proposed models in processes 

subject to multiple quality shifts. 
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10.3 Future Research 

Interesting topics for future research may include the development of regression 

models based on the results of the numerical analysis sections, in order to figure out 

the effect of each parameter to the economic performance of the proposed control 

schemes. 

A sensitivity analysis of the process parameters misestimation to evaluate its 

effect to long-run average cost per time-unit may be considered. Moreover, the 

evaluation of the robustness of the proposed control scheme to the assumption of 

normally distributed quality characteristics may be useful. 

An area for potential future work is to remove the assumption of normally 

distributed quality characteristics and develop non-parametric univariate and 

multivariate control schemes for monitoring processes subject to multiple assignable 

causes affecting location and/or scale. 

Furthermore, the general conclusion of the performance superiority of adaptive 

control schemes against the respective, less-adaptive ones, makes the allowance of 

more than two sets of design parameters, and the evaluation of how the economic 

performance is affected, an interesting topic for future work. 

Finally, as regards the proposed multivariate control scheme, i.e., 5VP , a 

comparison with other approaches could be considered. In addition, the extension of 

the proposed model to also monitor changes in the correlation structure and the 

extension to multivariate processes where autocorrelation within the variables is also 

present, may be considered. 
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APPENDICES 

APPENDIX A Nomenclature 

    probability density function of gamma distribution 

    cumulative density function of the standard normal distribution 

    probability density function of digamma distribution 

 1   probability density function of trigamma distribution 

 F   cumulative density function of noncentral chi-square distribution 
 

4,qc  coefficient for the sample size: 1q    2q   when relaxed (tightened) 

parameters are used 

X  critical to quality characteristic 

mX  critical to quality multivariate variable 

T  target mean 

T  target standard deviation 

0,  in-control mean of ρth quality characteristic ( 0  
in case 1p  ) 

0,  in-control standard deviation of ρth quality characteristic ( 0  
in case 1p  ) 

0 '
 

in-control mean vector 

0

 

in-control covariance matrix 

,i   out-of-control process mean of ρth quality characteristic when assignable 

cause i has occurred  , 0, , 0,i i          ( i  
in case 1p  ) 

,j   out-of-control standard deviation of ρth quality characteristic when assignable 

cause j has occurred  , , 0,j j       (
j
 
in case 1p  ) 
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'i  out-of-control mean vector when assignable cause i has occurred 

 1 ,1 1 ,' ,...,i i p i p p          
 

j

 

out-of-control covariance matrix when assignable cause j has occurred 

0, qE  in-control of statistic 
qE   

, qi E  out-of-control mean of statistic 
qE  when assignable cause i has occurred  

0, qE  in-control standard deviation of statistic 
qE   

, qj E  out-of-control standard deviation of statistic 
qE  when assignable cause j has 

occurred  

jD  diagonal matrix of the standard deviation vector when assignable cause j has 

occurred   ,j jD diag 
 

,i   magnitude of the shift in the process mean of ρth quality characteristic due to 

assignable cause i ( i  in case 1p  ) 

,j   magnitude of the shift in the standard deviation of ρth quality characteristic 

due to assignable cause j (
j  

in case 1p  ) 

,j q  magnitude of the shift in the mean of statistic tE  when a sample of size 
qn  is 

collected 
 

, ,

1

2 1
ln

p
q

j q j

n

p







   
     
   

  

 ,i j
d  Mahalabonis distance of a sample mean vector from the in-control process 

mean vector for operation under the effect of state  ,i j  

m total number of different assignable causes that may affect the process mean 

r total number of different assignable causes that may affect the standard 

deviation of the process 

mvm  total number of different assignable causes that may affect the mean vector 
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cmr  total number of different assignable causes that may affect the covariance 

matrix 

p total number of correlated quality characteristics 

cr  correlation coefficient 

tz  standardized sample mean at tth sampling instance 

ts  standard deviation of a sample at tth sampling instance 

,q tE  sample statistic for estimation of multivariate process dispersion at tth 

sampling instance for relaxed  1q   or tightened sampling  2q   

,q tEz  standardized value of 
,q tE  at tth sampling instance for relaxed  1q   or 

tightened sampling  2q    

2
,q tT  Hotelling’s statistic at tth sampling instance for relaxed  1q   or tightened 

sampling  2q   

R  range of ρth quality characteristic of a sample of size 
qn

 1, , 1, ,max ,..., min ,...,
q qn nR x x x x    

    
   

 

'x  sample mean vector
 

 x i k


  
occurrence rate of assignable cause k when the process mean is already under 

the effect of assignable cause i
 

 s j l


  
occurrence rate of assignable cause l when the standard deviation of the 

process is already under the effect of assignable cause j 

Fx i


 
failure rate when the process mean is under the effect of assignable cause i 

Fs j
  failure rate when the standard deviation of the process is under the effect of 

assignable cause j 

 mv i k



 occurrence rate of assignable cause k when the process mean vector is 

already under the effect of assignable cause i 
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 cm j l



 occurrence rate of assignable cause l when the covariance matrix of the 

process is already under the effect of assignable cause j 

,x iv
 

transition rate to any inferior state of the process mean when the mean is 

already under the effect of assignable cause i 

,s jv
 

transition rate to any inferior state of the standard deviation of the process 

when the standard deviation is already under the effect of assignable cause j 

,mv iv
 

transition rate to any inferior state of the process mean vector when the mean 

vector is already under the effect of assignable cause i 

,cm jv
 

transition rate to any inferior state of the covariance matrix of the process 

when the covariance matrix is already under the effect of assignable cause j 

1 1 ,1 ,1, , , , ,x x s sn h w k w k  univariate control scheme’s parameters for relaxed sampling  

2 2 ,2 ,2, , , , ,x x s sn h w k w k  univariate control scheme’s parameters for tightened sampling  

1 1 ,1 ,1, , , , ,mv mv cm cmn h w k w k  multivariate control scheme’s parameters for relaxed 

 sampling  

2 2 ,2 ,2, , , , ,mv mv cm cmn h w k w k
 

multivariate control scheme’s parameters for tightened 

 sampling  

1,n   relaxed sample size of ρth quality characteristic 

2,n   tightened sample size of ρth quality characteristic 

,s qUWL  upper warning limit of the s control chart
 

,s qUCL
 

upper control limit of the s control chart 

tY  current state of the process at t-th inspection 

ta  decision that should be taken according to the last point plotted on the 

control chart at t-th inspection  

( , )
( , )
i j
u v

q  restoration probability of the process from state  ,i j  to a superior state 

 ,u v  
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 ( , )
( , )
i j q
k l

p h  probability for the process moving from state  ,i j  to state  ,k l  during a 

sampling interval of duration 
qh

 

 ,x i q
k

p h  probability for the process mean moving from state i to state k during a 

sampling interval of duration  

 ,s j q
l

p h  probability for the process standard deviation moving from state j to state l 

during a sampling interval of duration  

 ,mv i q
k

p h  probability for the process mean vector moving from state i to state k during 

a sampling interval of duration  

 ,cm j q
l

p h  probability for the process covariance matrix moving from state j to state l 

during a sampling interval of duration  

 
1 1t t

t t

Y a q
Y a

Prob h
 

 transition probabilities during a sampling interval of duration 
qh  

t tY a  steady-state probabilities (in case of failure  tY F  
t tY a  is denoted by F ) 

c  variable sampling cost per unit of ρth quality characteristic ( c  in case 1p  ) 

b  fixed sampling cost of ρth quality characteristic ( b  in case 1p  ) 

 ,i j
L  cost of process restoration from state  (

 0,0
L  cost of a false alarm)  

FL  cost of a CM action 

 ,i j
M  cost per time unit for operation under the effect of state  ,i j

 

P transition probability matrix 

P0 correlation matrix 

 ,i j
T  time delay for a process restoration from state  ,i j

 
(

 0,0
T  time delay to 

detect a false alarm) 

FT  time delay for a CM action 

qh

qh

qh

qh

 ,i j
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1fn
 

number of assignable causes that occur within a transition step and affect the 

process mean 

2fn
 

number of assignable causes that occur within a transition step and affect the 

standard deviation of the process 

( , )
( , )
i j
k l

SC  set of all the possible scenarios for a process transition from state  ,i j
 
to 

 ,k l  

  ( , )1 2
( , )

Pr , i jq
k l

h fn fn  probability of a specific scenario to occur in order for the 

process to move from state  ,i j  to  ,k l  when  1 2fn fn  assignable 

causes occur within the interval of duration 
qh
 

   
 

,1 2
,

, i jq
k l

CK h fn fn  out-of-control operation cost of a specific scenario to occur in 

order for the process to move from state  to  when  

assignable causes occur within the interval of duration 
qh  

   
 

,1 2
,

, i jq
k l

ECK h fn fn  expected out-of-control operation cost in order for the 

process to move from state  to  when  assignable 

causes occur within the interval of duration 
qh  

 ( )g

qh
 
expected time of the occurrence of the gth assignable cause of a specific 

scenario within an interval of duration 
qh  

   / 0,0 qIC
h  expected IC time of the process within a sampling interval of duration 

qh  

   / , qOOC i j
h  expected OOC time of the process for state  ,i j  being the initial state 

of a sampling interval of duration 
qh  

   , qi j
K h

 
expected OOC operation cost of the process, for state  ,i j  being the 

initial state of a sampling interval of duration 
qh  

 ,i j  ,k l  1 2fn fn

 ,i j  ,k l  1 2fn fn
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   , , qx i j
K h  expected OOC operation cost of the process, for state  being the 

initial state of a sampling interval of duration  in cases where the standard 

deviation of the process remains unaffected during the interval 

   , , qs i j
K h

 
expected OOC operation cost of the process, for state  being the 

initial state of a sampling interval of duration  in cases where the process 

mean remains unaffected during the interval 

   , , qmv i j
K h  expected OOC operation cost of the process, for state  being the 

initial state of a sampling interval of duration  in cases where the 

covariance matrix of the process remains unaffected during the interval 

   , , qcm i j
K h

 
expected OOC operation cost of the process, for state  being the 

initial state of a sampling interval of duration  in cases where the process 

mean vector remains unaffected during the interval 

0ARL  in-control average run length 

ANOF average number of false alarms per time unit 

ATC  average time of a cycle 

  Type I error probability  

1   control chart’s power 

EATR expected time from the occurrence until the detection and removal of an 

assignable cause 

EATS expected average time to signal 

WARL weighted out-of-control average run length  

EC expected cost of a transition step, i.e., the actual duration between the 

beginning of two successive sampling intervals 

ET expected duration of a transition step, i.e., the actual duration between the 

beginning of two successive sampling intervals 

ECT expected cost per time unit  /EC ET  

 ,i j

qh

 ,i j

qh

 ,i j

qh

 ,i j

qh
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AT  expected uptime of equipment 

EA expected long-run availability  /AT ET  
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