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Abstract 
 

Fuel cell systems are part of a prominent key enabling technology for achieving carbon 

free electricity generation and can be used for stationary, mobile and portable applications. 

The last decade, significant research efforts have been allocated to the development of fuel 

cell components and integrated systems, since they constitute an efficient energy conversion 

technology for transforming hydrogen, and possibly other fuels, into electricity. During their 

operation various phenomena are evolving and their behavior is affected by many variables 

such as temperature, partial pressures, gas utilization and humidity. Therefore, it is necessary 

to be able to understand qualitatively and predict quantitatively the behavior of an integrated 

fuel cell system in order to protect its longevity and preserve its long-term performance. 

Driven by this motivation their optimum operation is of great importance. Thus, it is 

imperative to develop appropriate control strategies and algorithms that optimize their 

response so that they can accomplish certain intended functions and utilize the available 

resources, e.g. consumption of fuel, in an efficient manner and satisfy operating and physical 

constraints. The impact of control is evident not only in fuel cell systems, but also in a wide 

range of every day applications such as production of chemicals, automotive industry, 

generation and distribution of energy to name a few. Overall, control engineering provides 

the scientific foundation and technology for dynamically evolving systems by integrating 

concepts from computer science, mathematics, and systems engineering.  

This thesis has a multidisciplinary scope and it is concerned with the optimal operation 

of an integrated Polymer Electrolyte Membrane fuel cell (PEMFC) unit and the design and 

development of advanced model-based control schemes which are deployed to the 

automation system of a small-scale experimental PEMFC unit. More specifically, a dynamic 

nonlinear mathematical model is developed that describes the behavior of the PEMFC and it 

is experimentally validated using a formal systematic estimation procedure for the 

determination of the empirical parameters. Also, the automation infrastructure and the 

architecture of the Supervisory Control and Data Acquisition (SCADA) system is presented 

which is used as a platform for the verification of a number of advanced controllers.  



 

 

 

viii

After the determination of the operational requirements of a PEMFC system a 

modular model predictive control (MPC) framework is designed and the PEMFC acts as a 

motivating system where the behavior of multivariable nonlinear MPC (NMPC) and multi-

parametric MPC (mpMPC) controllers are evaluated. In addition to the NMPC and mpMPC 

methods, a novel synergetic strategy is proposed that empowers the performance of NMPC 

by exploiting a multi-parametric quadratic programming (mpQP) approach. At the core of 

the NMPC formulation lies a nonlinear programming (NLP) problem which is solved using 

a simultaneous direct transcription optimization method. The performance of the NLP 

solver is enhanced by a warm-start initialization and a search space reduction technique. This 

synergy transcends the traditional problem formulation of the NMPC aiming at the 

reduction of the computational time for the dynamic optimization problem without 

sacrificing the quality of the obtained solution.  

Τhe interconnection between the advanced model-based controllers and the 

automation system is facilitated through a custom developed software platform based on 

state-of-the-art industrial protocols. The establishment of such an infrastructure addresses 

the challenges related to the interface of control, computing and communication issues 

between the MPC and the integrated PEMFC unit. The MPC framework is deployed online 

to the industrial automation system and the performance of the controllers is assessed 

through a set of experimental studies, illustrating the operation of the PEMFC under varying 

operating conditions.  
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Περίληψη 
 

Τα συστήματα κυψελών καυσίμου (ΚΚ) έχουν προσελκύσει το ενδιαφέρον τόσο της 

βιομηχανικής όσο και της βασικής έρευνας τα τελευταία χρόνια, καθώς αποτελούν μέρος μιας 

φιλικής προς το περιβάλλον τεχνολογίας για την παραγωγή ηλεκτρικής ενέργειας. Κατά τη 

διάρκεια της λειτουργίας των ΚΚ εξελίσσονται διάφορα φαινόμενα και η συμπεριφορά τους 

επηρεάζεται από ένα πλήθος μεταβλητών που σχετίζονται με την θερμοκρασία, τις μερικές 

πιέσεις των αερίων, τη χρησιμοποίηση των αντιδρώντων και την υγρασία. Σε αυτά τα πλαίσια η 

ανάπτυξη κατάλληλων μεθόδων ελέγχου κρίνεται επιτακτική καθώς είναι σημαντικό το σύστημα 

ΚΚ να καθοδηγείται στην  κατάλληλη περιοχή λειτουργίας ώστε να επιτυγχάνεται η βέλτιστη 

απόδοση και να διασφαλίζεται η εύρυθμη λειτουργία του ενώ ταυτόχρονα να διασφαλίζεται η 

μακροβιότητα του.  

Η παρούσα διατριβή έχει διττό αντικείμενο ενασχόλησης. Το πρώτο αφορά στην 

αντιμετώπιση θεμάτων διαχείρισης ενός ολοκληρωμένου συστήματος ΚΚ μέσω της 

μοντελοποίησης και της βέλτιστης λειτουργίας του. Ενώ το δεύτερο σχετίζεται με την ανάλυση, 

διερεύνηση και ανάπτυξη μεθόδων προηγμένης ρύθμισης που βασίζονται σε μαθηματικά 

μοντέλα χρησιμοποιώντας αλγόριθμους προρρητικού ή προβλεπτικού ελέγχου (model 

predictive control - MPC). Σε αυτό το πλαίσιο το σύστημα ΚΚ αποτελεί το πεδίο 

πειραματικής εφαρμογής, επιβεβαίωσης και αποτίμησης των αναλυόμενων και προτεινόμενων 

μεθόδων. 

Αρχικά αναπτύσσεται ένα μαθηματικό μη-γραμμικό δυναμικό μοντέλο για συστήματα 

ΚΚ τύπου πολυμερικής μεμβράνης (Polymer Electrolyte Membrane – ΡΕΜ) το οποίο 

αποτελείται από ένα σύνολο διαφορικών και αλγεβρικών εξισώσεων (ΔΑΕ) που περιγράφουν τα 

βασικά ισοζύγια μάζας και ενέργειας καθώς και την ηλεκτροχημική συμπεριφορά του 

συστήματος. Σε αυτές τις εξισώσεις εμφανίζονται κάποιες εμπειρικές παράμετροι, οι βέλτιστες 

τιμές των οποίων προσδιορίζονται από μια γενικευμένη συστηματική μεθοδολογία εκτίμησης. 

Ο στόχος της μεθοδολογίας αυτής είναι να προσδώσει πειραματικά επιβεβαιωμένη εγκυρότητα 

στο μοντέλο που λαμβάνει υπόψη τις αλληλεπιδράσεις των υποσυστημάτων που επηρεάζουν την 

ΚΚ. 
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Στη συνέχεια παρατίθεται μια εμπεριστατωμένη ανάλυση μεθόδων προηγμένης ρύθμισης 

που αποτελούν μια ανερχόμενη στρατηγική καθώς μπορούν να αντιμετωπίσουν ταυτόχρονα μη-

γραμμικά συστήματα, πολλαπλά κριτήρια βελτιστοποίησης υπό περιορισμούς και να οδηγήσουν 

το σύστημα στην επιθυμητή κατάσταση μέσω της βέλτιστης λήψης αποφάσεων. Η μελέτη 

εστιάζει σε δύο μεθόδους προρρητικού ελέγχου, το μη-γραμμικό MPC (NMPC) και το 

πολυπαραμετρικό MPC (mpMPC).  Η πρώτη βασίζεται στην online επίλυση ενός δυναμικού 

προβλήματος βελτιστοποίησης μη-γραμμικού προγραμματισμού (Nonlinear Programming - 

NLP), ενώ η δεύτερη βασίζεται στην offline επίλυση ενός προβλήματος πολυπαραμετρικού 

τετραγωνικού προγραμματισμού (multi-parametric Quadratic Programming - mpQP). Τέλος 

προτείνεται μία νέα μέθοδος που συνδυάζει τα πλεονεκτήματα των δύο προηγούμενων 

(mpMPC, NMPC) τροποποιώντας κατάλληλα τον χώρο αναζήτησης των μεταβλητών μέσω της 

δυναμικής προσαρμογής του, σε ένα υποσύνολο του εφικτού με βάση την πολυεδρική 

καταμέρισή του. Η συνέργεια αυτή συμβάλει καταλυτικά στην βελτίωση της απόδοσης του 

βελτιστοποιητή που χρησιμοποιείται για την online επίλυση ενός NLP προβλήματος και 

αποτελεί νευραλγική συνιστώσα του προρρητικού ελέγχου. Ακολουθεί η σχεδίαση και ανάπτυξη 

ενός ολοκληρωμένου πλαισίου ελέγχου το οποίο ενσωματώνει ένα πλήθος πολυμεταβλητών 

ελεγκτών που βασίζονται στις μεθόδους προηγμένης ρύθμισης που σχεδιάζονται για το 

πειραματικό σύστημα ΚΚ.  

Επιπρόσθετα παρουσιάζεται η αρχιτεκτονική του βιομηχανικού συστήματος εποπτικού 

ελέγχου και της διεπαφής που επιτρέπει τη διασύνδεση των αλγόριθμων προηγμένης ρύθμισης 

με το σύστημα αυτοματισμού. Το πακέτο λογισμικού που σχεδιάστηκε και αναπτύχθηκε, 

αναλαμβάνει τη διασύνδεση και το συγχρονισμό της επικοινωνίας μεταξύ των ελεγκτών τύπου 

MPC και του εποπτικού συστήματος της μονάδας, καθιστώντας με αυτό τον τρόπο εφικτή τη 

μετάβαση από την θεωρητική μελέτη στην πρακτική εφαρμογή των στρατηγικών προρρητικού 

ελέγχου. Η μελέτη της απόκρισης των ελεγκτών και της συμπεριφοράς της μονάδας αναλύεται 

μέσα από ένα πλήθος πειραμάτων (σε επίπεδο προσομοίωσης και online), που παρουσιάζουν τα 

χαρακτηριστικά της κάθε μεθόδου σε σχέση με τους επιδιωκόμενους στόχους βέλτιστης 

λειτουργίας που τίθενται για το σύστημα. Για το σκοπό αυτό η μελέτη καλύπτει ένα μεγάλο 

εύρος λειτουργικών συνθηκών, την ύπαρξη διαταραχών και την έναρξη της λειτουργίας της 

μονάδας. 
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Chapter 1 
 

 

 

1 Introduction  
 

 

 

1.1 Motivation 
 

 Energy is a fundamental determinant of the economy and plays an important part 

in industrial growth. At the same time the present and future global energy demand is 

related to the problem of climate change which constitutes a major challenge that must be 

addressed. It is widely known that the energy demand worldwide is increasing. In order 

to meet the increased demand, reserves of fossil fuels such as oil are used, which are 

gradually diminishing. On the other hand the use of fossil fuels is a source of greenhouse 

gasses and other pollutants that cause global warming with very serious and irreversible 

effects on the environment. For example between 1990 and 2010 90 % of the increase in 

CO2 is attributed to the transport sector. More specifically road transport is responsible 

for 85% of the CO2 emissions. The fact that an average lorry generates six times more 

CO2 per tone/km than a train (European Commission, 2000) raises significant questions 

regarding the required actions that will firstly reduce this effect and secondly will 

decarbonize the road transport and the energy sector. Therefore, it is imperative to 
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transform not only the energy sector but also the transport sector into low-carbon sectors 

and to decouple the economic growth from resource and energy use and reduce 

greenhouse gas (GHG) emissions.  

 In order to keep climate change below 2ºC, specific targets are set towards the 

reduction of GHG emissions. More specifically Europe and G8 have committed to reduce 

their GHG emissions by 80-95 % by 2050 and in the shorter term by 2020, to reduce 

GHG by 20%, increase the share of renewables to 20%, and save 20% energy (European 

Commission, 2011). Another major issue is derived by the fact that fossil fuels are 

confined to a few areas of the world and their uninterruptible supply depends mainly on 

geopolitical, economic and sometimes ecological factors. Therefore, the energy security 

is vital for a stable economy. In addition, the mitigation of climate change through the 

reduction of GHG emissions and the security of energy supply must be considered within 

the context of sustainable development. All these issues constitute serious challenges that 

must be dealt with solutions that will provide a stable pathway towards a decarbonized 

energy and transport system during the next decades. 

 The shift towards a low carbon, efficient and secure economy requires targeted 

deployment of innovative technologies and increased exploitation of renewable energy 

sources. Furthermore, it is recognized that a technological shift and the development of 

new clean technologies are vital for a successful transition to a decarbonized and 

sustainable future economy. Although a number of diverse technologies exist that aim at 

the same target, such as biofuels and carbon capture and storage, the synergy between the 

increased use of renewable energy sources, renewable hydrogen and electricity from fuel 

cells represent one of the promising ways to realize sustainable energy. These 

technologies can simultaneously address the environmental concerns and the issues of 

security in energy supply and are considered as key solutions for the 21st century. 

Hydrogen and fuel cells can enable the so-called hydrogen economy (European 

Commission, 2003) and they can be utilized in transportation, distributed power and heat 

generation and energy storage systems. 
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1.1.1 The role of hydrogen  

The realization of a low carbon economy can be greatly assisted by the use of hydrogen 

which is not a primary energy source like coal and gas but it is an energy carrier with 

zero carbon content. Hydrogen is a very attractive fuel that can be obtained by a variety 

of diverse resources which means that it can alleviate the issue of energy security which 

is related to the confined production of a fuel at specific regions on the planet. Since 

hydrogen can be produced anywhere where there is water and a source of power, 

generation of fuel can be distributed and does not have to be grid-dependent. Thus the 

long-term use of hydrogen can decouple the link between the energy needs and the 

energy supply. It can be produced from all primary energy sources and generates no CO2 

when used to generate electricity in a fuel cell system or alternatively it can be produced 

from fossil fuels with CO2 capture and storage technologies. Furthermore, it can be used 

in a number of applications ranging from devices and products powered by fuel cells to 

heat and power generators in stationary systems for industrial and domestic use. Thus, the 

use of hydrogen could drastically reduce GHG emissions from the energy sector. Fig. 1.1 

presents the diversity of the hydrogen production and its use (European Commission, 

2003). 
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Figure 1.1 Hydrogen energy sources, energy converters and applications 

Hydrogen as an energy carrier can create links between a multitude of production 

methods and sources to various applications including fuel cell systems. But its 

usefulness is not limited to those. It offers an interesting solution for both short and long-

term storage in small or bulk quantities. In cases where the supply is more than the 

demand, the excess of energy can be transformed into hydrogen that can be easily 
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transported or remain onsite and serve the needs for power on demand. The transportation 

of hydrogen can be achieved by a number of alternatives including vehicle, ships and 

pipelines. Thus, the most cost-efficient method can be selected per case. Also, it can 

facilitate the integration of renewables in the energy supply system and offer the 

opportunity to increase the share of renewable energy. In the case of intermittent sources 

hydrogen can act as a temporary energy storage option that utilizes the excess of energy 

supply subsequently used to balance the demand upon request.  

 Today, large quantities of excess hydrogen are already available in some regions 

around the world. For example Germany has a surplus of 850 million Nm3 per year 

(European Hydrogen Association, 2008) which is burnt for thermal uses. This constitutes 

an interesting option for initial applications in transport and stationary that can use the 

hydrogen which is generated as a by-product in chemical processes. Nowadays the 

hydrogen distribution network is under design and it constitutes a major challenge for the 

availability of hydrogen worldwide and the penetration of fuel cells in the transportation 

sector.  

 Overall hydrogen is expected to play an important role in the future low carbon 

energy landscape and it can be used to close the cycle of energy generation, distribution 

and demand and has the potential to reduce emissions to half of those projected in a 

business as usual scenario by 2050 (IEA, 2007). However, the transition from a carbon-

based energy economy to a hydrogen-based one involves significant scientific and 

technological challenges for the implementation of hydrogen in conjunction with fuel 

cells as a clean energy solution of the future. 

1.1.2 The role of fuel cells  

Hydrogen and fuel cell technology have clear and mutually enforcing benefits for a 

sustainable growth. Fuel cells open a path to integrated energy systems that are able to 

simultaneously address environmental challenges and major energy issues since they 

have the flexibility to adapt to intermittent and diverse renewable energy sources. They 

are part of a promising environmentally friendly and benign technology that has attracted 

the attention of both industrial and basic research in the recent years. Significant effort 

has been allocated to fuel cell components and integrated system development since they 
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constitute the most efficient conversion device for transforming hydrogen, and possibly 

other fuels, into electricity. Furthermore, they have the flexibility to adapt to different 

intermittent renewable energy sources, enabling a wider energy mix in the future (Mishra 

et al., 2005). Fuel cells are electrochemical devices that convert the chemical energy of a 

gaseous fuel, usually hydrogen, directly into electricity (Fig. 1.2) without any mechanical 

work (Pukrushpan et al., 2004). The only by-product from their operation is heat and 

water.  
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Figure 1.2 Fuel Cell and energy conversion 

 Fuel cells have various advantages compared to conventional power sources, such 

as internal combustion engines (ICE) or batteries. For instance compared to ICE the fuel 

is not combusted. Instead, the energy is released electrocatalytically leading to high 

energy efficiency, which is increased when the generated heat by the reaction is also 

harnessed. Fuel cells can be placed close to the point of end-use, allowing exploitation of 

the heat generated in the process. As the fuel is not burnt the process is quiet and carbon 

free. Most fuel cells operate silently, compared to internal combustion engines. They are 

therefore ideally suited for use within buildings or for road transport. From the efficiency 

point of view, fuel cells are two to three times more efficient than ICE. Furthermore, a 

fuel cell system can be a zero-emission source of electricity when renewable hydrogen is 

used and subsequently reduce the carbon footprint of the end product of application. 

 Batteries and fuel cells produce electricity from an electrochemical reaction. 

However, a battery contains a specific amount of energy according to its capacity and 

once this is depleted the battery must be recharged using an external supply of electricity. 

On the other hand, in a fuel cell the electricity production is continuous as long as fuel 

and oxidant, usually air, is supplied. Unlike batteries, fuel cells do not have the "memory 



Introduction  

 

 

6

effect" when they operate, although in the long term there are some degradation issues. 

Table 1.1 presents some of the challenges that must be dealt in order to realize a low 

carbon future economy and the way that fuel cells can help towards this direction. 

Table 1.1 The role of fuel cells towards a low carbon economy 

Challenges towards a low-carbon economy Fuel cell potential 

 Reduce GHG emissions that cause climate 
change  

 Combined with renewable hydrogen, fuel cells 
have a near zero carbon footprint 

 Energy self-sufficiency and security of supply  Fuel cells can be used in a wide range of 
applications while hydrogen can be produced 
from a very wide variety of resources in 
distributed or centralized way 

 Decarbonization of the road transport that has a 
significant impact on urban areas and public 
health 

 Fuel cells allow considerable reduction of noise 
and air pollution 

 Management of the intermittency of renewable 
energy sources and energy storage 

 Fuel cells, coupled with hydrogen, facilitate the 
integration and storage of renewable energy 
sources 

 Energy efficiency and energy savings   Fuel cells are the most efficient energy conversion 
technology 

 
In order to take advantage of fuel cell’s great potential a number of technological 

challenges must be addressed that require significant efforts of research and development 

before they can be overcome. In addition, fuel cells are not likely to be implemented 

isolated, but as a part of a larger shift in fuel infrastructure and efficiency standards, 

which will require sustained efforts from industry and research sectors. 

 

1.1.3 The role of control 

Nowadays, the increase in energy demands, the tighter environmental regulations and 

various economic considerations require for the systems and processes to operate over a 

wider range of conditions and often near the boundaries of their admissible region. 

Moreover, the interconnection and cooperation of various systems into integrated units is 

a prerequisite for efficient resource handling and allocation. In the sight of these issues, 

control is an important area both from scientific and technological point of view, able to 

facilitate the improvement of the response and overall behavior of systems, processes and 
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end-user applications. Thus, it is important for the control technologies to be built upon a 

rigorous sensing, modeling, decision making and optimization basis as in many 

situations, the subsystems of a process have high degrees of autonomy and heterogeneity. 

Therefore, a continuous research effort is imperative for the realization of system-level 

goals for performance, predictability, stability, and other properties through appropriate 

analysis, design and implementation. In this context, the proper control structure and 

methods can function as a catalyst that transforms technological innovation to systems 

engineering and process novelties (Fig. 1.3). 
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Figure 1.3 Role of control 

At a wider context, control engineering tools and platforms are used to facilitate the 

analysis and modeling of the system and explore its response and behavior. Besides that, 

control is necessary to overcome the limits of ad hoc solutions as it is a highly scalable 

technology. Nowadays, control is present at various levels of a system or a process, 

initially it is applied to individual sensors and actuators, then on multivariable systems, 

and finally at plant wide scale.  

 The operation of a process involves a large number of decisions which are 

distributed into a hierarchically connected structure (Fig. 1.4). At the top of the structure 

there exist the planning and scheduling layer that focuses on economic forecast, 

providing production goals and schedule the timing of actions which are obtained using 

various mixed integer programming formulations (Biegler et al., 2002). The time horizon 

in the planning layer is typically in months or weeks while for scheduling is weeks or 

days. The derived decisions are forwarded to the two-layered process operation level 

consisting of real-time optimization (RTO) and advanced process control. RTO is 
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concerned with the implementation of business decisions and production schedules based 

on a steady state model of the plant in order to optimize the profit of the plant and seeks 

additional profit margins based on parameter estimation and data reconciliation. The 

advanced process control (APC) layer adjusts the inputs to keep the process at the desired 

set-points at all times. One of the methodologies of APC is model Predictive Control 

(MPC) which uses a dynamic model of the process to predict the future dynamic behavior 

over a time horizon and therefore, allowing the computation of the optimal control 

actions to minimize the deviation of the output from the desired target (set-point tracking) 

(Mayne et al., 2000). The set points from the APC layer are subsequently fed to the 

regulatory level which communicates with the instrumentation and data acquisition layer 

where the Input/Output (I/O) field of the unit exists. 

 

Figure 1.4 Hierarchical process structure 

The impact of control technology is evident in a wide range of application areas, 

including fuel cells, as it is the necessary facilitator for achieving desired objectives and 

fulfilling application-specific goals. Fuel cell systems exhibit fast dynamics, 

nonlinearities and uncertainties that constitute challenges requiring appropriate control in 

order to be confronted effectively. The use of efficient control strategies would not only 

increase the performance of these systems, but would increase the number of operational 

hours as their lifetime is preserved by operating at optimal levels and also reduce the cost 

per produced kilowatt-hour. Overall control can be considered as a key enabling 

technology for the deployment of fuel cell systems as well as renewable energy systems.  



Chapter 1                                          9 

 

 

1.2 Fuel cell technology  
 

In general fuel cells represent a versatile and efficient electricity generation source that 

can be applied in a wide range of industries - from vehicles and primary energy systems 

to autonomous back-up power systems and portable consumer electronics devices. 

Although there are several types of fuel cells, all of them are structured around a central 

design which includes two electrodes, named anode and cathode and between them there 

is an electrolyte that facilitates the movement of the electrons. This electrolyte can be 

either solid or liquid and carries the ions between the electrodes. Also, in order to 

enhance and accelerate the reaction a catalyst is used. The electrodes and the electrolyte 

constitute the basic structure of a fuel cell and when a number of individual cells are 

composed they form the fuel cell stack. A fuel cell system has a number of subsystems 

and peripherals that control the flows of fuel and oxidant, the produced power, water and 

heat. However even though all types of fuel cells have the same structure, each one is 

suitable for different applications, uses different materials and requires specific fuel. Each 

fuel cell type also has its own operational characteristics which makes them a very 

versatile and flexible technology. Table 1.2 presents the basic characteristics of each type 

of fuel cell (Fuel Cell Today, 2011; U.S. Department of Energy, 2012). 

Table 1.2 Types of fuel cells 

Fuel cell type Electrolyte Operating 
Temperature  

Electrical 
efficiency 

Electrical 
power 

Polymer Electrolyte 
Membrane (PEMFC)  

Ion exchange membrane 
(water-based) 

40-100°C 40-60% < 250kW 

High Temperature 
PEM (HT-PEMFC)  

Ion exchange membrane 
(acid-based) 

120-200°C 60% <100kW 

Alkaline (AFC) Potassium hydroxide 60-90°C 45-60% 10-100kW 

Direct Methanol 
(DMFC) 

Polymer membrane 60-130°C 40% <1kW 

Phosphoric Acid 
(PAFC) 

Liquid phosphoric acid 150-200°C 35-40% >50kW 

Molten Carbonate 
(MCFC) 

Liquid molten carbonate 600-700°C 45-60% >200kW 

Solid Oxide (SOFC) Ceramic 600-1000°C 50-65% <200kW 
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 The existing categories of fuel cell systems are mainly classified according to type 

of the electrolyte that plays an important role as it allows the passing through of only 

certain appropriate ions and blocks the movement of the electrons. The list of fuel cell 

types (Table 1.2) does not include the types of fuel cells which are at the research and 

development only stage such as microbial fuel cells. As can be seen from Table 1.2, fuel 

cells are a collection of technologies that operate based on the same principle. Each type 

has different operating characteristics and is suitable for different applications offering 

different benefits in each case. In general the fuel cell technology is used in a number of 

applications that are categorized into three broad areas: 

 Stationary: provide primary or back-up power to fixed locations, such as 
uninterruptible power supply systems (UPS) or combined heat and power (CHP) 
facilities with power ranging from 0.5kW to few MWs. 

 Transportation: provide primary propulsion or range extension for vehicles, such as 
busses, trucks, material handling vehicles (e.g. forklifts) or scooters with typical power 
from 1kW to 100kW. 

 Portable: provide power or charge systems that are designed to move, including 
auxiliary power units for off-road vehicles, such as battery chargers, small personal 
electronics (mp3 players) or skid-mounted generators with power ranging from 5W to 
20kW. 

Each area has its own characteristics regarding the maturity of applications, the power 

level, the cost, durability and size. Nevertheless fuel cell technology (European 

Commission, 2003) is flexible and covers an evolving area of applications (Fig. 1.5). 
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Figure 1.5 Fuels and applications related to fuel cells 
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The commercialization of fuel cells for various applications began in 2007 (Fuel Cell 

Today, 2011) and although the market is very young, it is expected to move from a niche 

to a mainstream market by 2017. With a compound annual growth rate of 83% for the 

period of 2009 to 2011 (Adamson and Jerram, 2012) and an increasing number of 

shipments and installed megawatts by application (Fuel Cell Today, 2011), fuel cells are 

an emerging technology that will play in the long-term an important role in the future 

energy landscape.  
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Figure 1.6 Fuel cell shipments and megawatts by application over the last 5 years 

Fig. 1.6 illustrates that the shipments and installed megawatts per market segment are 

increasing the last 5 years and constitutes a clear indication of the fuel cell technology 

trend. The transport applications have increased in 2012 compared to 2011, due to the 

respective demand in material handling vehicles, especially in the US (Fuel Cells 2000, 

2012), whereas the fuel cell electric vehicles (FCEV) are not in commercial state yet. 

Although every major automotive company has announced that starting from 2015 a 

commercially model will be available, the share of FCEVs comparing to other electric 

vehicles or conventional ICE is expected to increase only after 2025 (McKinsey and 

Company, 2010). A significant increase in shipments is noticed in 2012 which is caused 

by the introduction to the market of portable chargers. But as they are small in produced 

power they do not affect the distribution of megawatts per application. On the other hand 

Fig. 1.7 shows the shipments per fuel cell type and the respective megawatts per type 

during the last 5 years. 
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Figure 1.7 Shipments and megawatts by fuel cell type over the last 5 years 

In terms of shipments, PEMFC systems are the dominant type due to their ability to be 

used in a number of applications. The growth that appears in 2012 is caused by the 

increase on portable consumer electronic devices. The rest of the shipments are by 

DMFC systems which are mostly used in portable generators. Finally in 2012 there is an 

increase in SOFC systems caused by a respective demand in Europe and in Japan.  

 On the other hand, the distribution in terms of megawatts per type is quite 

different, as expected, since PEMFCs are used in small systems while MCFC and SOFC 

systems are used for large stationary applications. The increased use of MCFCs in 2012 

is due to the high demand by South Korea (Fuel Cell Today, 2011). Also, as 

multinational companies need to reduce their carbon footprint (Yang, 2010), a number of 

large scale fuel cell installations are expected in the near future since they can alleviate 

the burden on GHG emissions. 

Fuel cell technology and research directions  

 Since fuel cell technology is relatively new and has not reached its full maturity, 

research efforts are necessary in order to improve the characteristics and overcome the 

challenges that these systems are facing. Research in the area of fuel cell systems is 

aimed at reducing the cost and improving the performance, durability and safety for 

stationary and transport applications. This includes development of process and materials, 

optimization of fuel cell components and sub-systems as well as modeling, testing and 
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validation. Furthermore, system integration is an important issue. Integrated fuel cell 

systems must present an optimized behavior in order to reduce the cost of electricity and 

exhibit their full potential to the end-user. Thus, research and development efforts related 

to integrated fuel cell systems are necessary that will include: power inverters and power 

conditioners, hybrid system designs and testing, operation and maintenance issues, and 

appropriate control for integrated systems. Overall the role and use of fuel cells in 

stationary and portable applications could be significant, especially if opportunities for 

integrated renewable systems are considered. 

 

1.2.1 Polymer Electrolyte Membrane (PEM) Fuel Cell  

Among the various fuel cell type, PEMFCs have some very appealing characteristics. 

Their low operating temperature, size and weight are only few of the features that make 

them more suitable for use in vehicles and portable devices. Thus, they have an increased 

role compared to other fuel cell types, derived by the fact that they are selected for a 

number of applications that currently are in an early market entrance stage (material 

handling equipment - MHE) or are expected to enter the market in the near future (such 

as FCEVs). Also, PEMFCs can be widely used in a number of small portable devices or 

small stationary applications to provide primary power (telecommunication stations) or 

backup power (autonomous power units). The range of the application that PEMFCs are 

suitable continues to grow.  Also, the global goal to reduce GHG emissions in the road 

transport sector, up to 95% until 2050 (European Commission, 2011), signifies that 

PEMFCs systems will be part of the future automotive industry, including busses and 

light duty vehicles (LDV). 

PEMFC technology challenges   

 PEM fuel cells have many advantages, but there are also a number of challenges 

that must be considered in order to be widely used. These challenges are mainly related to 

cost and performance issues while other issues include size, weight and management of 

water and heat (Martin et al., 2010). The main key challenges include: 
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• Cost. The cost of fuel cell power systems is by far the largest factor that limits the 

market penetration of fuel cell technology.  

• Lifetime and reliability. The durability of fuel cell systems is a challenging issue and 

specific targets are set that will make them more competitive.  

• Size. The size and weight of a PEM fuel cell system must be further reduced especially 

if they are designed to be used in the transport segment, transport vehicles or material 

handling vehicles. This applies not only to the fuel cell stack, but also to the components 

and subsystems that form the system’s balance of plant (BOP). 

• Air management. Air compressor technology needs to be further optimized since it is an 

important part that needs significant amount of energy to operate, especially for 

automotive fuel cell applications.  

• Thermal and water management. The temperature and hydration of the fuel cell are 

important factors that must be properly handled in order to have a stable system behavior.  

  

In order to overcome the barriers that are raised by these challenges, significant scientific 

and technological developments are required, complemented by proper regulatory codes 

and standards in order to advance the penetration of fuel cell technology and allow its 

wide commercialization. More specifically there are three distinct areas where the 

research efforts and development strategies are focusing on:  

 Stack components: Catalysts, electrolytes, MEAs, gas diffusion media, bipolar plates 
and interconnects. 

 System and Balance of Plant (BOP): BOP components, electronics, controls, 
instrumentation, assembly components, conditioning. 

 Operation and Performance: durability, operation in wide ranges of temperature and 
humidity, higher operating temperatures and improvements in efficiency for stationary 
fuel cells, higher energy density for portable fuel cells. 

According to the market segment where the PEMFC systems are used, these challenges 

have different impact on the final product. For instance in the transport segment the most 

important issues are the cost and the durability compared to ICE, whereas in the 

stationary segment, where cogeneration of heat and power is desired, the use of PEM fuel 

cells would benefit from improving the heat recovery mechanism. 
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1.2.2 Current status and perspective of PEM fuel cell systems 

The past few years PEM fuel cell technology has evolved significantly. The durability 

and the cost of a PEM fuel cell system have very specific targets to reach. More 

specifically, the lifetime required by a commercial fuel cell is over 5000 operating hours 

for light-weight vehicles and over 40,000 hours for stationary power generation with less 

than 10% performance decay (Wang et al., 2011). On the other hand, fuel cell 

components, such as the MEA (membrane electrode assembly), exhibit performance 

degradation after long-term use which significantly affects the lifetime of the system. 

However, research efforts have yielded substantial improvements in durability, with 

automotive fuel cell stack and system durability in laboratory testing increasing from 

approximately 2000 hours in 2006 to 4000 hours in 2011 (Kurtz et al., 2011). This 

improvement is also verified in the testing of automotive PEMFC stacks, from under 

1,000 hours in 2006 to 2500 hours in 2009 (Schmittinger and Vahidi, 2008). Table 1.3 

shows the evolution of some basic characteristics of an 80kW PEM fuel cell system 

based on projection to high-volume manufacturing (500,000 units/year) and the evolution 

of these characteristics over the last six years (U.S. Department of Energy, 2012). 

Table 1.3 Characteristics and cost analysis of PEMFCs over the last six years 

Characteristics  Units  2007  2008  2009  2010  2011  2012 

Stack power  kWgross  90  90  88  88  89  88 

System power  kWnet  80  80  80  80  80  80 

Cell power density  mWgross/cm2  583  715  833  833  1,110  984 

Peak stack temperature  °C  70-90  80  80  90  95  87 

Platinum Group Metal  loading  mg/cm2  0.35  0.25  0.15  0.15  0.19  0.2 

Platinum Group Metal content  g/kWnet  0.68  0.39  0.2  0.2  0.19  0.22 

Cost analysis               

Stack cost  $/kWnet  50  34  27  25  22  20 

Balance of plant cost  $/kWnet  42  37  33  25  26  26 

System Assembly and Testing  $/kWnet  2  2  1  1  1  1 

System cost  $/kWnet  94  73  61  51  49  47 

 

Table 1.3 shows that significant improvements have been achieved the last few years 

regarding the power density and the platinum content, as well as in the cost of the system. 
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Fig. 1.8 illustrates the modeled cost and its evolution towards a specific target which is 

set to reach by 2017 (U.S. Department of Energy, 2012b). 
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Figure 1.8 PEMFC system cost evolution from 2002 to 2012 

Figure 1.8 shows the current trend of production cost of a PEM fuel cell system during 

the last decade (2002-2012) which is steadily decreasing. The cost of PEMFC system has 

dropped 83% compared to 2002 and 36% compared to 2008. Currently (2012) its status is 

$47/kW. This reduction in cost is caused by a decrease of the loading of the platinum-

based catalyst, and by the reduction of the overall balance of plant (BOP) of the system. 

The same trend is observed in smaller production rates (Fig. 1.9). 

 
Figure 1.9  System cost and production rate 

It is observed that even at a lower-volume production rate the cost is significantly 

reduced over the last five years. Overall the cost of the system is reducing while the 
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lifetime is increasing. In that context the PEM fuel cell technology shows a promising 

future perspective.  

 A further analysis of the PEM fuel cell components can provide an overview of 

the areas and the respective impact that research and development efforts would have on 

the overall cost contribution. Fig. 1.10 illustrates the cost breakdown for a 5kW system 

used for a small stationary application. The analysis focuses on the fuel cell system and it 

is based on an annual production of 50000 units (Yang, 2010). 

 
Figure 1.10 Contribution of each component to the overall PEMFC cost 

From Fig. 1.10 it is interesting to notice that the stack is only 35.9% of the overall cost 

compared to the rest of the subsystems and the BOP of the system. Also, this analysis 

presents the distinct, yet interacting, subsystems that exist on a PEM fuel cell system and 

their significance to the system cost. Each subsystem requires monitoring and control 

actions which are imposed by the various actuators of the system. The development of 

appropriate control strategies has a strong effect not only at the performance of the stack, 

but also at the fuel, air, water and thermal management which is directly related to 

optimal response and the integrated operation.  

.  
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1.2.3 Monitoring and Control of a PEM fuel cell system 

Fuel cell systems (FCSs) have various electrochemical, mechanical and electronic 

components and subsystems along with a control system that ideally should enable proper 

functioning of all devices and components within predefined constraints considering the 

efficiency, safety and long-term reliability of the system. Nowadays, most of the 

developed systems contain only basic controllers, i.e. load control, stack temperature 

control, DC/DC converter voltage control and do not take into account the behavior of 

the load, the importance of optimization of the system’s operation and information 

related to the overall system’s performance. One of the reasons is the fact that there are 

still significant efforts that focus on the improvement of the materials for the MEA and 

the stack, less expensive catalysts, defining optimal working conditions, etc. 

Furthermore, even the manufacturers of commercially viable FCSs are satisfied with 

existing controls that enable only basic operational control of FCS with no or little regard 

towards an optimum state of operation. The reason for such decisions is the fact that the 

efforts focus on promoting the new technology and that the issues of its optimal operation 

can be resolved later.  

 On the other hand, control theory has developed to a great extent in the last two 

decades (Biegler et al., 2002; Engell, 2007). The concepts of supervisory control and 

advanced control algorithms together with modern data acquisition modules can assure 

proper conditions for the involved components and equipment (Pregelj et al., 2011) and 

can effectively handle the dynamics of a fuel cell. With an aim to industrialize and 

commercialize the fuel cell systems the need of developing suitable control strategies is 

becoming more and more important. The driving force behind the research and 

development efforts is the fact, that a customized control system can greatly improve the 

behavior and durability of FCS and also reduce its operating costs. In general the optimal 

control of a FCS is vital for improving the operation, as it influences the performance, the 

lifetime, the fuel utilization and the response times. For this purpose, it is necessary to 

develop strategies and advanced control algorithms which will also contribute to the 

long-term operation of the system.  
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Systemic development process 

Overall, the utilization of hierarchical supervisory control algorithms and advanced 

control methodologies that incorporate a priori knowledge and integrate additional online 

information gained from models can contribute to a great extent to the optimum operation 

and can also significantly reduce the long-term operating costs. Therefore, computer-

aided modeling and optimization methodologies are necessary to develop and implement 

these control related goals. Fig. 1.11 shows the whole analysis and design process of a 

typical fuel cell system. 

 

 

Figure 1.11 Fuel cell systemic analysis and design process 

The process starts by identifying a set of specifications and constraints, which mainly 

depend on the intended application of the fuel cell and results to a fully operational 

system that fulfils the predefined objectives. This systematic approach is coupled with the 

online deployment to a process unit and includes the integration of the various 

components at hardware, equipment and software level. In this thesis the development is 

based on this approach that will be analyzed in the subsequent chapters.  

 

1.3 Advanced Process Control  

The increasing design and operating complexity which is encountered at technologically 

evolving systems, such as fuel cells, requires an interdisciplinary research approach and 

development process based on a concrete control framework. It is a fact that the 

collaboration between control and other fields has been consistently productive. 

Wherever dynamics and feedback are involved, the role of control is very important and 
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in some applications it is regarded as crucial (CSS, 2011). The objective of the control is 

to achieve a set of predefined conditions for the process and maintain the operation at the 

desired or optimal values (Qin and Badgwell, 2003). In general process control refers to 

the technologies that are necessary to design, develop and implement control systems for 

a process. The process control technologies include a multitude of components that 

constitute an integrated framework: 

 automation hardware and software (such as actuators, measuring instruments, 

communication infrastructure), 

 control structure design, 

 physical and empirical modeling, 

 computer-aided simulation and optimization, 

 advanced control strategies and related technologies such as process 

monitoring/diagnosis, 

 planning and scheduling solutions. 

 Theoretical and practical approaches through the effective integration of software 

and hardware components, aim at the development of a systemic methodology of 

measuring, controlling and decision-making techniques. The utilization of such 

methodology is expected to achieve increased energy efficiency, robust, predictable and 

adjustable behavior along with flexibility regarding potential system scale-up or 

application on similar existing and under development systems. The impact of process 

control (CSS, 2011) can be viewed from two different perspectives, the technical that 

prevails from the process design phase to the commissioning of a process, and the 

performance which is activated when the process is in its working phase. Once the basic 

control infrastructure is in place, advanced process control is one of the technologies 

most often used for improving the overall performance and behavior of the process. Once 

the process is constructed and delivered for operation, process control provides the means 

for maximizing efficiency and product quality. 

 Conventional control algorithms such as on-off, proportional integral derivative 

(PID) and heuristic controllers are considered for some processes inadequate solutions to 

optimally fulfill the operating objectives of these systems. On the other hand, advanced 
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control methodologies are applied to an even wider range of processes and applications 

as over the past few years there were significant improvements to the control theory and 

the computational requirements of such methodologies. Fig. 1.12 presents a comparative 

analysis related to the frequency that various advanced process control approaches are 

used (Bauer and Craig, 2008). 

 

Figure 1.12 Industrial Use of Advanced Process Control 

One of the factors that contribute to the success of advanced control technologies is the 

ability to model and optimize (online or offline) the process and then build appropriate 

strategies around this optimized model. Historically the process industries have been a 

major beneficiary of advanced control solutions. Auto tuning of PID loops, model 

predictive control (MPC), and real-time optimization have all had a substantial impact on 

the cost, efficiency and safety of the various process operations (CSS, 2011). But 

nowadays the implementation of MPC is expanding from the chemical and refining 

plants to industrial energy and power generation utilities. 
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1.3.1 Model Predictive Control (MPC) 

Model predictive control (MPC) also known as receding horizon control (RHC), is 

becoming a preferred control strategy for a large number of industrial processes (Bauer 

and Craig, 2008). The main reasons for the increased popularity include the ability to 

explicitly handle constraints and dynamics of the system. Moreover, the use of MPC can 

simultaneously consider economic and operating objectives based on an optimizing 

strategy. More specifically, the MPC approach has the following capabilities and 

features: 

 Model-based engineering approach that considers process dynamics and accelerates 

the development of accurate single variable or multi variable controllers.  

 Handling of input and output plant constraints based on specific process variables. 

 Consider the complex interactions between different subsystems of a process 

including various variables.  

 Integrating of powerful and robust optimization algorithms for the decision making 

process related to the manipulated variables, able to set priorities and weights for every 

objective. 

 Disturbance rejection due to the predictive nature of the controllers that compensate 

processes variations. 

In general MPC refers to a methodology which makes explicit use of a process model to 

optimize the future predicted behavior of a process (Qin and Badgwell, 2003). The main 

objective is to obtain control actions that minimize a cost function related to selected 

objectives or performance indices of the system (Fig. 1.13).  

 

Figure 1.13 Model Predictive Control concept 
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At each sampling time an optimal control problem is solved using measurements 

acquired from the system and it yields the appropriate control inputs for the system 

(Allgöwer et al., 2004). MPC is very flexible regarding its implementation and can be 

deployed and adjusted to a wide range of systems since its development is based on a 

model of the system. 

 During the past decades, model predictive control (MPC) has become a preferred 

control strategy for an increasing number of processes and integrated systems. For 

example in the petrochemical industry MPC is often combined with online optimization 

of the set-points on the basis of large, rigorous nonlinear stationary plant models (Biegler 

et al., 2002). Nevertheless, despite its well-known acceptance both in a theoretical and 

industrial level, the various categories of MPC are still subject to in-depth analysis and 

evaluation. Especially, nonlinear MPC is currently in a top position in the evolving area 

of advanced control as its use can lead to more accurate results, increased robustness and 

flexibility in hardware development, compared to the linear case of MPC and other 

conventional approaches. In this thesis MPC will be used as the selected method of APC 

that will be deployed to the PEM fuel cell unit under consideration. 

 

1.3.2 Overview of the development procedure 

Although the selection of the control strategy is very important, it constitutes only one of 

the various steps that are necessary to achieve the desired outcome, which is a fully 

functional system for a specific process. These steps constitute a generic development 

procedure (Fig. 1.14) and they are categorized into two main sets of actions related to: 

 Research and development  

 System engineering  

The first set is developed using a top-down approach while the later a bottom-up 

approach. Initially the objective is to specify a well determined set of requirements and 

specifications that will be used throughout the entire procedure. Also, it is important to 

select the appropriate topology and tools as by their integration the system structure will 

result. Finally, a decisive element to the success of the whole procedure is the automation 

and control system, since it constitutes the interface between the process and the rest of 
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the world. Fig. 1.14 illustrates a procedure where an APC methodology is present and 

more specifically MPC. This procedure involves the development of a model of the 

process and a simulation study that explores the response of the developed model prior to 

the development of the MPC controller which is based on the dynamic model. 
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Figure 1.14 Development Procedure 

 More specifically, the actions that are involved during the analysis and design of 

the control system are: 

 Determine the requirements and the boundaries of the system derived by the process 

operating specifications.  

 Select appropriate topology where the various components will be placed and also 

define the interactions between the components and the subsystem of the process. 

 Build a dynamic mathematical model of the process and validate its behavior against 

either experimental data supplied by the manufacturer or from the literature. 

 Analyze and design the control architecture based on the requirements and the control 

objectives of the process. When feasible use rapid prototyping tools to speed up the 

procedure. 

 Simulate the behavior and response of the process. 

 Develop the software that will be used by the automation system in order to deploy the 

selected advanced controller to the process. 
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Besides the definition of the boundaries and structure of the system, the outcome of these 

actions is a software platform able to communicate with the rest of the system according 

to the predefined specifications of the process operation. After these actions the rest of 

the procedure involves a number of steps which are necessary to develop and implement 

the selected topology and control structure: 

 Setup the I/O field by connecting the sensors and actuators of the process to the 

selected data acquisition system and configure the equipment in order to communicate 

using the appropriate industrial protocols. 

 Deploy the control infrastructure to the process and the software installation provided 

by the automation system’s vendors. 

 Perform a set of tests to verify the control structure, including the signal tracing. 

 Commission the process for nominal operation. 

 Assess the behavior of the process after an initial period of operation and tune the 

control loops if necessary. 

The fine tuning of the control system is of high importance since the overall response of 

the process depends on it. In the aforementioned procedure a number of challenges like 

computational issues, uncertainties and communication problems are of major concern 

that are confronted during software and hardware implementation. The ultimate aim is to 

select, according to needs of the system, a flexible, expandable, efficient and well defined 

control structure. 

 

 In this thesis this development procedure was used in order to parameterize and 

extend the control and automation infrastructure, including the mathematical model of the 

process under consideration as well as integrating to the system the advanced model-

based controllers which are applied to a small scale fully-automated PEM fuel cell unit. 
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1.4 Research objectives and Thesis Scope 

The main research objective of this thesis is to address a number of issues related to the 

advanced control and optimization of a PEM fuel cell system. More specifically the 

objectives are: 

 Develop a fuel cell mathematical model to accurately capture the behavior of the 

system. 

 Develop new algorithms to improve the performance of a typical NMPC formulation 

by exploiting features of the dynamic optimization problem. 

 Design and implement an integrated industrial automation system able to incorporate 

advanced model predictive controllers. 

 Demonstrate the applicability and efficiency of the newly developed algorithm and 

tools in the operation of a real experimental PEM fuel cell unit. 

 Monitor and evaluate the system’s performance at real time. 

In order to achieve these objectives various interdisciplinary actions are necessary, 

related to the analysis, design and development of a fuel cell system along with advanced 

model-based control techniques. Furthermore, emphasis is placed on the structure of the 

optimization problem which is solved online at each time interval. The latter objective is 

realized though the development of a framework with the following features: 

 Fast calculation of the optimal control action while taking into account the physical 

and operating constraints.  

 Flexibility to adapt to changing fuel cell response under the influence of disturbances 

or during start-up and shutdown.  

 Incorporation of a multitude of performance criteria under strict computational time 

demands. 

 Easily deployable and maintainable control and optimization solutions. 

The scope of this thesis is an interdisciplinary one involving:  

 the model predictive control (MPC) framework, 

 the fuel cell system and its subsystems, 

 the industrial automation system and the respective I/O field. 
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1.5 Thesis Outline  

The work in this thesis is organized into three interrelated parts. The first part (Chapters 

1-2) is concerned with the system engineering of the PEM fuel cell, whereas the second 

part (Chapters 3-5)  includes the design and development of the mathematical model of 

the system and its control. Finally the third part (Chapter 6) focuses on the 

implementation and testing of the developed control framework in a Fuel Cell System.  

 

Figure 1.15 Thesis outline 

More specifically:  

 Α detailed analysis of the PEM fuel cell unit which is used throughout this work is 

presented in Chapter 2. Furthermore, the automation infrastructure and the basis of the 

Supervisory Control and Data Acquisition (SCADA) system is also demonstrated as 

the basic platform for the verification of a number of advanced model-based 

controllers. Finally Chapter 2 presents the results of the stabilization and activation 

procedure that was applied to the PEM fuel cell and finally explores the behavior of the 

fuel cell at open loops at various conditions in order to test its operation.  
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 Chapter 3 presents a mathematical nonlinear dynamic model for the PEM fuel cell 

system involving a number of differential and algebraic equations. In this model a 

number of empirical parameters are used and are estimated using a formal parameter 

estimation method which is based on experiments performed specifically for this 

purpose. After the determination of the optimal values for these parameters, a number 

of validation tests were performed in order to experimentally validate the response of 

the model at various operating conditions. 

 Chapter 4 specifies the control objectives of the PEM fuel cell that will be used in the 

design of the various controllers developed in subsequent chapters.  Also, an 

experimental analysis is performed in order to define the behavior of the system with 

respect to key objectives involving the determination of the optimum region of 

operation for the minimization of the supplied fuel and oxidant. 

 Chapter 5 presents a thorough analysis of two well established model-based predictive 

control methods, the multi-parametric MPC (mpMPC) and the Nonlinear MPC 

(NMPC). Moreover, a simultaneous direct transcription dynamic optimization method 

that recasts the multivariable control problem into a nonlinear programming problem 

(NLP) using a warm-start initialization method is analyzed. The chapter concludes with 

the analysis and algorithmic development of a newly developed integrated control 

framework that empowers the performance of the NMPC, using a Search Space 

Reduction (SSR) technique, with the aid of multi-parametric Quadratic Programming 

(mpQP) method.  

 Chapter 6 discusses the deployment of the multivariable controllers to the fuel cell 

system and explores the response of the PEM fuel cell with respect to the control 

objectives introduced at Chapter 4. A number of experiments were performed revealing 

the potential and the performance of each control method and the overall framework is 

assessed. Chapter 6 is complemented by an analysis that focuses on the impact of the 

newly developed control method in both simulation and experimental level. 

Furthermore, the behavior of the fuel cell unit is investigated through a comparative 

analysis between various control configurations.  

 Finally, Chapter 7 outlines the results of this thesis, summarizes its contribution and 

draws up suggestions for future developments. 



  29 

 

 

 

Chapter 2 
 

 

 

2 PEM Fuel Cell Unit  
 

 

The scope of Chapter 2 is to present the overall design of the system and to specify the 

operation requirements and the technical features that are necessary for the 

implementation of an integrated supervisory control framework for a small scale 

automated PEM fuel cell unit. Furthermore, the structure of the automation system with 

its control topology is outlined and the architecture of the software that was utilized is 

presented. Finally the procedure for activation of the single PEM fuel cell is described, 

including a number of experimental tests that explore the behavior of the system. Overall 

Chapter 2 provides the basis of the subsequent work of the thesis as this experimental 

unit serves as the real-life application platform of the various control developments. The 

objectives of Chapter 2 are summarized as follows: 

 Definition of the requirements of the process subsystems (heat up, water management, 

power) and the equipment that were used (sensors, acquisition modules, supervisory 

system). 

 Definition of the synergies among the unit’s subsystems. 

 Derivation of a suitable architecture and a set of technical specifications of all 

components for the integrated system. 

 Development of the automation system and its user interface. 

 Exploration of the behavior of the selected PEM fuel cell under various operating 

conditions. 
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2.1 Requirements and specifications 

The main features of a PEM fuel cell is its fast response, the low operating temperature, 

high efficiency and low corrosion (Stefanopoulou and Suh, 2007). Overall the operation 

of a fuel cell is a multidisciplinary one, since various phenomena occur related to 

electrochemical reactions, mass and heat transfer. Therefore, it is necessary to design and 

develop a control system able to handle a number of issues related to power management, 

in the context of a safe operation which is achieved by proper fuel/air delivery and 

temperature control. Moreover, the need for a flexible system that can modify the 

operating conditions is regarded as an important component of the Balance of Plant 

(BOP) for an integrated fuel cell system (Bavarian et al., 2010). The development of an 

automated unit is realized through a decision making procedure that begins with the 

following basic steps: 

 Definition of the system’s boundaries.  

 Determination of the unit’s requirements.  

 Determination of the automation system’s specifications.  

The information which is gathered through these steps direct the selection of the topology 

and architecture of the unit based on which the system is built. In the case of the PEM 

fuel cell unit and its automation system the main requirements are: 

 Ability to test various fuel cells and stacks. 

 Modular and scalable architecture (e.g. bypass of hydrators). 

 Modifiable operating conditions related to temperature, humidity and pressure. 

 Consistent startup and safe shutdown procedures. 

 Supervisory monitoring and data archiving capabilities. 

 Flexible automation framework able to incorporate different model-based control 

schemes. 

Considering these requirements a small scale fully automated plant is designed and 

constructed at the laboratory of Process Systems Design and Implementation (PSDI) at 

CPERI/CERTH. The unit is able to measure all the necessary input signals, control the 

appropriate variables and adjust several system parameters. A dedicated hardware for the 
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data acquisition and system control of the unit is configured and successfully integrated 

with the unit’s components. This chapter aims to give an overview of the experimental 

unit and provide information about the selected design and the implemented choices of 

the automation system. 

 

2.2 Experimental setup of the unit  

Overall there are five distinct subsystems, the power, the gas supply, the temperature, the 

pressure and the water management subsystem. However, each subsystem interacts with 

the others although it has its own control objective (Vahidi et al., 2006). An integrated 

fuel cell system is equipped with various electrochemical and electronic components 

which are combined to form an integrated unit. Fig. 2.1 illustrates the simplified process 

and instrumentation diagram (P&ID) of the unit. 

 

Figure 2.1 Simplified Process and Instrumentation Diagram of the PEMFC Unit 

A brief description of the unit’s subsystems with their main features and equipment, 

along with the main specifications of the PEM fuel cell that is used is presented. 
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2.2.1 Fuel cell specifications 

In this thesis a single PEM fuel cell was used. The components were purchased by 

Electrochem Inc., whereas the assembly was made at CPERI. At Table 2.1 the detailed 

physical specifications of the fuel cell are presented. 

 

Table 2.1 PEM Fuel cell physical parameters 

Description Value 

Nominal Cell Voltage 0.6 +/- 0.05 V 

Nominal Current Density 400 +/- 50 mA/cm2 

Operating temperature  60-75 °C 

Total mass  1.378 kg 

Specific heat capacity 772.57 J/kg·K 

Active area  25 cm2 (5cm x 5cm) 

Channel Volume (anode,cathode) 0.136·10-4 m3  

Membrane type Nafion 1135 

Membrane thickness 0.0035in (89 microns) 

Backing layer catalyst loading 20wt.% Pt/C 

GDL type Carbon paper 

GDL thickness 0.019mm 

Bulk density 0.44 g/cm3 

Porosity 78% 

Heater resistance 0.867kΩ (55.8 W) 

 

The core component of the fuel cell is the membrane electrode assembly (MEA) that 

consists of the electrolyte membrane, anode and cathode catalysts, and the gas diffusion 

layers. The catalyst layer is made of carbon supported platinum loading. The (MEA) is 

placed between two current collectors and then between two non-porous graphite current 

collectors plates. A graphite separator plate is attached on each side of the electrodes of 

the fuel cell. These plates act as conductors and are gas impermeable. They distribute the 

flow of the reactant gas or liquid across the electrode covered by the flow field, making 
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sure that the maximum amount of the gas and liquid comes in contact with the electrode. 

The unit cell contains a parallel serpentine flow channels for gas delivery to both the 

cathode and anode of the cell. The channel width is 1.25mm and the depth is 1.72mm. 

Figs. 2.2 and 2.3 illustrate the graphite plate and the basic configuration of the fuel cell. 

  

Figure 2.2 Flow plate, MEA and  FC side 

view 
Figure 2.3 Single PEM FC connected 

to the unit 

2.2.2 Power management 

The integrated system is equipped with an electronic load from KIKUSUI (PLZ1004W) 

which simulates the power demands or the power fluctuations that occur in real systems 

where fuel cells are used for power generation. The electronic load has programmable 

characteristics that can be modified or adjusted according to the output load 

requirements.  It operates in four different modes: 

 Constant Current (CC) mode: In this mode the load current is constant even though the 

voltage at the terminals of the load changes. 

 Constant Voltage (CV) Mode: In this mode the load voltage is constant even though 

the current into the load changes. 

 Constant Resistance (CR) mode: The load behaves like a constant resistance. 
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 Constant Power (CP) mode: The load power is kept constant. 

The activation procedure is performed using the CV mode to avoid any damages to the 

MEA and to determine the current span the experiments for model validation were 

conducted in CC mode. After the determination of the maximum allowable current and 

since the activation stabilized the underlying system, the electronic load is operated in CC 

mode. In an application where a DC/DC converter is connected to the fuel cell, the 

converter requires a constant current. However, other applications might demand for 

variable voltage and current. Finally, a sequence of small current steps can be 

implemented with appropriate programming for the load in order to measure the dynamic 

response of the fuel cell. 

 

2.2.3 Gas supply subsystem 

The gas supply subsystem has two main lines, one for the hydrogen and one for the air or 

oxygen supply. A third auxiliary line for nitrogen supply is also present which is used for 

purging of the anode and the cathode of the fuel cell as gas sections must be flushed with 

nitrogen before opening. In each line a thermal mass flow controllers (MFCs) is used that 

consist of two separate items. The first is a flow meter while the second is a flow control 

valve based on a built-in controller. Prior to the MFC the pressure of the gas is adjusted 

through a manual pressure reducing regulator.  

 Hydrogen and air are sent through a heated humidifier before being fed to the 

anode and the cathode side respectively. At the end of each line, just before the vent, 

there is an outlet pressure control valve which is used for conducting experiments at 

elevated pressure conditions. The pressure loops are controlled by the automation system. 

Fig. 2.4 illustrates the front panel of the unit where the three lines are shown along with 

the respective hand valves and manometers before and after the inlet pressure regulator. 

Fig. 2.5 illustrates the back view of the panel. The MFC’s of each line are shown along 

with the respective check valves and piping.  
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Figure 2.4 Front panel of the unit 

 

Figure 2.5 Back panel of the unit (MFCs) 

 

Figure 2.6 Hydrators at the anode’s line 

 

Figure 2.7 Pressure control valves 

 

2.2.4 Water management 

The water management subsystem maintains the hydration of the fuel cell membrane. 

Humidification of the feed streams is necessary to maintain conductivity of the 

electrolyte membrane. The unit was designed to be able to adjust the humidity of the inlet 

gasses which are supplied in dry form by the pressurized cylinders. For this purpose one 

hydrator per line is used that employs a heated vessel with deionized water which is 

placed after the mass flow controller in each gas line. This vessel is equipped with a level 

indicator and when the water drops below a predetermined level a solenoid valve opens 

and water from a water tank is filled up to the nominal point. The humidity can be 
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adjusted independently through respective temperature control loops. Fig. 2.6 shows the 

hydrator which is placed at the anode’s line. 

 The two hydrators maintain proper humidity conditions inside the cell, which is 

crucial to ensure the optimal operation of the membrane. To prevent water from 

condensing in the line between the hydrators and the FC, a heated line was used to 

maintain the line temperature. The heating of the humidifiers and the lines is 

accomplished using a heating tape. This subsystem can be bypassed in case we want to 

perform experiments without humidified gases. 

 

2.2.5 Fuel cell thermal management 

The temperature management is based on a fan assisted air cooling and an electrical heat 

up subsystems that allow to either heat the fuel cell to its operating temperature or 

maintain a temperature under reduced load conditions. The operation range is between 

45°C and 75°C. The thermal management subsystem is active through the entire 

operation of the unit, during startup, shutdown and at nominal operation. During startup 

the fuel cell is heated in order for the temperature to reach at least 45°C, whereas at 

shutdown it is cooled down to avoid unnecessary heat stress to the membrane. When the 

fuel cell operates at nominal temperature levels the heat-up and cooling subsystems are 

used interchangeably depending on the load conditions. The process specifications are 

summarized in Table 2.2 

 

Table 2.2 Process specifications 

 Range 

Hydrogen Feed (gas) Flow Range : 0..2500 cc/min  

Nitrogen Feed Flow Range : 0..2500 cc/min 

Air Feed  Flow Range : 0..4000 cc/min 

Water quality (Resistivity) ~2MΩ/cm 

Hydrators and Heated Line Temperature 0..120°C 

Operating Pressure  0..3 bar   
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The various components of each individual subsystem were assembled at CPERI/CERTH 

and as a result a small-scale rig that houses all of them was developed. Next to the unit 

rig the electrical cabinet or interface box (IBX) was constructed and inside this cabinet 

the automation system was placed which gives life to the unit from the electrical point of 

view. 

 The IBX accepts power supply from the building which is converted to 

appropriate form (e.g. from 220V to 12V) and distributes it to various components. The 

role of the IBX is to establish a bidirectional connection between the unit and control 

station, which is a computer based system. The IBX accepts various types of process 

signals, converts them to digital signals and transmits them through the data acquisition 

system and vice versa (Fig. 2.8). 

 

 

Figure 2.8 I/O terminals and concentration couplers 

As the scope of this thesis is to explore and optimally control the unit, the focus is 

towards the automation system and its operations. Thus, the electrical cabinet and its 

design are not analyzed although it is an essential communication intermediate between 

the process and the control station. 
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2.3 Automation System  

Although each subsystem has its own control objective, they also interact with each 

other. Therefore, the exploration of the PEM fuel cell’s behavior is realized through the 

measurement of a variety of variables that reveal the status of each subsystem. Also, it is 

important to be able to adjust the operating environment on-demand through respective 

actuators. Thus, actuators at specific points of the unit are placed that apply the 

corresponding action based on the desired set of operation. Overall, the variables related 

to sensors and actuators constitute the unit’s Input/Output (I/O) field and their respective 

signals must be properly acquired by the automation system of the unit which is selected 

for the specific application, a fuel cell testing unit.  

 

2.3.1 Supervisory Control and Data Acquisition (SCADA) 

Based on the aforementioned requirements the online monitoring of the unit and the 

flexible control structure is a prerequisite that the automation system must fulfill. This 

objective is accomplished by the use of an industrial Supervisory Control and Data 

Acquisition (SCADA) system. Although there are various alternatives for the selection of 

the automation system, such as simple data acquisition systems or PLCs, the most 

appropriate solution that can accomplish the requirements of this thesis, is a SCADA 

system. This choice was made based on the SCADA’s features in conjunction with the 

operation objectives of the fuel cell unit. The main features that made this type of system 

attractive for this thesis are: 

 Open architecture able to incorporate a wide range of process equipment  

 Ability to send data to information systems for archiving purposes 

 Communicate with heterogeneous software platforms based on OPC protocol 

 Supervisory functions that support rapid software prototyping 

Apart from these interesting features the selected type of system is implemented on a 

computer-based architecture which means that the software platform is installed, 

developed and parameterized on a PC. The use of a computer-based system has many 

advantages as it allows the use of a common place for software development including 
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I/O drivers and programming platforms such as Matlab, gPROMS or simple 

programming languages such as Fortran. Particular emphasis was placed on being able to 

integrate advanced process controllers. 

 In general a SCADA system is a process control platform that collects data from 

sensors or other devices on a plant level or in remote locations. The data is then sent to a 

central computer for management and process control. SCADA systems provide data 

collection features and allow manipulation of output variables through the respective 

software for monitoring and reporting. A typical characteristic of SCADA systems is its 

flexible, dynamic and often centralized architecture, which makes possible their 

interoperability with other systems. There are two basic parts in a SCADA system, the 

client part, which handles the human machine interaction and the data server part which 

handles most of the process control activities. The data server communicates with the 

devices at the I/O field through dedicated input/output measurement systems.  

 From the software point of view, the development of a SCADA system involves a 

multitude of different programs that are executed upon request or continuously when the 

SCADA system is enabled. The programs that are used in order to result to a fully 

functional automation system are related to: 

 System configuration: the environment of the project is setup, including unit name, 

I/O drivers that will be used, enabling of appropriate network protocols.  

 I/O drivers: the link with the various drivers (such as OPC servers) is established and 

the required I/O points are configured. This is the place where the MPC controllers are 

linked with the SCADA system. 

 Process database: define the process variable with respect to the data from the I/O 

drivers and determine their characteristics such as range of measured values, sampling 

time, alarm levels, addressing and signaling options. 

 Monitoring interface: design a graphical interface that represents the simplified P&ID 

of the unit with respect to the measured variables. Also, a full featured menu that 

includes the necessary subinterfaces for the control of the unit is developed. 

 Historical data archiving: determine which of the variables from the PDB are 

important to be archived and at what sampling rate. 



PEM Fuel Cell Unit  

 

 

40

This list clearly indicates that the development procedure demands a multitude of actions 

involving various software programs that are collaborating to form the final SCADA 

system. The automation system of the developed unit is based on the industrial platform 

Proficy iFIX from General Electric. All system components (pumps, heaters, valves and 

so forth) are controlled through a computer based system by digital commands and pre-

programmed procedures. The various temperatures and pressures are maintained at the 

desired set points by the SCADA system, via decentralized PID controllers, allowing for 

independent gas conditions to the fuel cell. Furthermore, the automation system allows 

the executions of predetermined operations, offers safety management, alarm handling 

and performs data archiving.  

 

2.3.2 From the I/O signals to the information flow 

As stated earlier the automation system of the unit is based on a SCADA that acquires 

and monitors the I/O field. In order to implement the interfacing of the various 

components that comprise the integrated unit, different communication methods and 

respective protocols are utilized. The path that the I/O signals have to take in order to be 

converted into data and then into useful information for the SCADA system has two 

parts. The first starts from the field and ends at the computer of the unit where the signals 

are transformed into data through the respective network protocol. The second part 

involves the transformation of the data into a homogenous format for the SCADA system 

using a common standard regardless of the physical or network protocol.  

Signals to data 

Initially the signals from the unit’s I/O field are collected using terminals from Beckhoff 

according to their type, e.g. 4-20mA, 0-10V, etc. These signals are handled by the bus 

terminals which are organized into acquisition couplers that form a distributed bus type 

network that connects the I/O field to the SCADA system. A bus terminal is the interface 

between a fieldbus system and the sensor / actuator level. For each signal type, a 

respective terminal is available with I/O channels. All the terminal types have the same 

mechanical construction, so that difficulties of planning and design are minimized. 
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 The industrial protocol that was selected for the implementation of this 

connectivity is Profibus which is a manufacturer - independent, open fieldbus standard 

with a wide range of applications in manufacturing and process automation. It allows 

devices from different manufacturers to communicate without the need for specially 

adapted interfaces and it is suitable both for fast, time-critical applications and for 

complex communication tasks. The unit’s programmable electronic load communicates 

through a serial interface (RS232). A driver for this communication was also developed 

during this thesis.  

Measurement  accuracy 

The operating decisions for each subsystem are based on the data acquired by the I/O 

field. Thus, it is important to rely on precise measurements in order to be able to make 

the optimal decisions for the operation of the unit. The variables acquired from the field 

are related to pressure, temperature, air flow, hydrogen flow, power, current and voltage. 

The transmission of the analog measurement signals is made through the input terminals 

to the automation system. The sensor signals are wired to the I/O terminals which are 

connected in a centralized way to the bus coupler. These I/O terminals transform the 

sensor signals with a 12bit resolution into digital data which are subsequently processed 

by the SCADA system. The measurement error is less than ±0.3% of the full range scale 

and each input signal is represented by 16 bits. The polling time of each measurement is 

set to 500ms.  

Data to OPC format 

The second part of the data path is necessary for the creation of a homogeneous format 

for all data based on a common standard. Since the SCADA system is structured upon an 

open architecture, the appropriate format for the data is selected to be the OPC standard. 

By this formation a uniform standard of communication is adopted at the application 

layer which is independent of the physical medium used for the data transmission.  

 In general OPC is an open standard specification that refers to open connectivity 

via open standards and it is the interoperability standard for industrial automation and 
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other related domains. This standard specifies the communication of real-time plant data 

between control devices from different manufacturers. It is not just a typical application 

level communication protocol but a collection of a standard set of objects, interfaces and 

methods which are used in process control and automation systems to facilitate 

interoperability. The vision of interoperability in multi vendor systems has become a 

reality, via the OPC standards. OPC servers provide a method for many different 

software packages of software platforms to access and send data to process devices, such 

as PLCs and data acquisition systems. The purpose of the OPC is to define a common 

interface that is developed once and then it can be connected by any OPC-enabled 

software.   

 The considered SCADA requires two OPC servers for I/O field data, one for the 

data originating from the Profibus network and one for the data acquired from the serial 

interface. Also, a number of OPC servers will be attached to the system in order to enable 

the communication with the model-based controllers that are developed at Chapter 6. The 

utilization of such architecture creates a uniform centralized environment for the SCADA 

system. 

OPC data and process database 

The role of the process database (PDB) with respect to the information flow, is to send 

and receive I/O values from the Driver Image Table (DIT), which is the place where the 

OPC client places the process values collected from the lower level OPC servers. The 

value of each I/O point is compared against alarm levels and there is an initial check of 

validity. On this level the SCADA system handles the process values according to user 

instructions or a predefined control strategy. The various functions involving the PDB 

and the DIT are performed by a dedicated system program which is responsible for the 

scan, the alarm and the control (SAC) of the process data. Some of the most important 

functions are:  

 Data retrieval from the various I/O sources through the DIT. 

 Translation of the data into the format expected by the PDB. 

 Cross-checking whether the values of the data against the alarm limits. 
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 Generation of alarm messages. 

 Execution of the control logic. 

 Updating the database. 

Once the data reach the SCADA system they are organized in the PDB and each I/O 

signal is assigned to a record named tag. Each tag can be sampled at different rate which 

is selected according to the nature of the measured input. The values at the PDB are 

updated based on the scan period setting, although the data from the I/O field can be 

acquired at smaller intervals, depending on the communication protocol and the driver 

(polling time). The SCADA system enables us to acquire all the available signals 

(analogue and digital) and to manipulate all system components (heaters, valves and so 

forth) by D/A commands.  

Flow of information and archiving 

Overall the control framework used in this thesis, has a number of interacting entities that 

form a common platform for the monitoring and control of the PEM fuel cell unit. The 

path of the process measurements from all the devices starts from the sensor signaling 

and finishes at the archiving system. This information flow, from the I/O field to the end 

user, is shown in Fig. 2.9. Furthermore Fig. 2.9 illustrates the interconnection of the 

control system’s entities and the I/O field including the conceptual flow of information 

from the signal acquisition to the final presentation at user level through the development 

of a graphical interface. Throughout this hierarchically layered infrastructure the raw data 

are transformed into meaningful information blocks.  
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Figure 2.9 Interconnection of the control system and the I/O field 

 Besides the control and the data acquisition, it is important to be able to monitor 

the long-term system behavior. A comprehensive way to view the evolution of each 

experiment and the response of each subsystem is the use of diagrams based on 

historically acquired data. The SCADA system is able to communicate with other process 

system or information management system due to its open architecture. In our case a 

Process Information Management System (PIMS) from OSISoft is used in order to 

archive the online data of the PEM fuel cell unit through the SCADA. The use of a PIMS 

increases the visualization of the unit’s behavior and enhances the decision making at the 

supervisory level. 

 

Integration of Advanced process control features to the unit 

Although the basic data acquisition and process is performed by the SCADA software 

platform, the supervisory framework is complemented by custom-made software 

(Appendix A) related to the advanced controllers and more specifically to model-based 
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predictive controllers (MPC). The programming environment for this communication 

software is LabView from NI. This software acts as an intermediate between the 

optimization solver with the dynamic mathematical model and the automation system 

with the signals from the I/O field and has the following features: 

 Model-based engineering approach that considers process dynamics and accelerates 

the development of accurate single variable or multi variable controllers.  

 Handling of input and output plant constraints based on specific process variables. 

 Consideration of the complex interactions between different subsystems of the process 

based on a multivariable approach.  

 Integration of powerful and robust optimization algorithms to the automation system, 

able to set priorities and weights for every objective. 

 Disturbance rejection due to the predictive nature of the controllers that compensate 

processes variations. 

 User friendly environment that provides an interface to the tuning parameters of the 

MPC algorithm ensuring flexible behavior. 

The communication is based on the OPC protocol which is enabled in both software 

platforms, the SCADA and the custom-made APC software platform. A thorough 

analysis of its purpose and objectives will be presented in subsequent chapters.  

 

2.3.3 Interactive Monitoring Interface  

All the system components (mass flow controllers, heaters, valves, etc) are controlled by 

digital commands which are initiated by an interactive monitoring interface which is 

connected with the server part of the SCADA. This monitoring interface constitutes the 

client part of the SCADA and it is responsible for presenting process data to the user by 

interacting with the database system of the server part and it is often referred as the 

Human Machine Interface (HMI).  In a system that works exclusively with sensors, 

controls, and process hardware, the HMI provides a graphical representation of the 

overall process. The development of user friendly graphical interfaces enables us to 

monitor, supervise, apply control actions to the system and be aware of any alarm 

conditions. This graphic representation is an important feature as it minimizes the 
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deployment cycle compared to traditional programming of user interfaces. On these 

interfaces real-time data are presented. A representative screen of the HMI for the 

monitoring of the fuel cell unit and the control of the various set-points is illustrated in 

Fig. 2.10.  

 

 

Figure 2.10 Human-machine interface (HMI) for the monitoring of the fuel cell unit 

The interface of Fig. 2.10 is a simplified version of the unit’s P&ID in a graphical form. 

Real-time data are shown as graphic shapes over a static background. As the data change 

in the I/O field during the operation of the fuel cell the corresponding values on the 

interface are updated, e.g., a valve may be shown as open (green) or closed (red). The 

HMI includes a number of interfaces which are presented in Appendix A. 

One of the requirements for the automation framework is to have the ability to 

incorporate different model-based control schemes and provide a flexible way to evaluate 

their response and modify the parameters that are related to the various control 
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objectives. This requirement is realized through a user friendly interface with the 

following functions: 

 Enable or disable the MPC framework. 

 Start, pause or stop the operation of an MPC controller. 

 Select the type of the MPC controller. 

 Enable or disable auxiliary schemes that enhance the fuel cell operation, such as the 

minimization of the hydrogen consumption. 

 Modify the set-point for each control loop. 

 Override a controller by turning to manual the respective control action. 

 Overview of the current status of each available function. 

Fig. 2.11 illustrates the visualization of these functions which is part of the HMI system 

that was developed during this thesis.  

 

Figure 2.11 Overview of the control parameters 

The interfaces that were developed for the fuel cell unit also have navigation and 

reporting features that enable the supervision of the state of the overall system and the 

user can select from a central menu screen or navigate from one screen to another. 
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2.3.4 Input and output variables  

A number of sensors measure a variety of signals from the unit along with the respective 

actuators that control each of the unit’s subsystems. A subset of these signals is of interest 

for the control problem formulation and they are considered as variables at the APC 

framework which is developed in the subsequent chapters. These signals are categorized 

into analog input and analog output. The available analog input measurements as shown 

in Fig. 2.12 are: 

 the inlet flows of air and hydrogen ( , 2,,air in H inm m  ),  

 the temperature of the hydrators ( , ,,h ca h anT T ), 

 the line temperature, before and after the fuel cell ( , , , ,, , ,ca in an in ca out an outT T T T ),  

 the fuel cell temperature ( fcT ),  

 the inlet and outlet pressure at the anode and cathode ( , , , ,, , ,ca in an in ca out an outP P P P ),  

 the pressure difference between the anode and the cathode ( P ),  

 the DC load which provides the measurement of fuel cell voltage ( fcV ).  
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Figure 2.12 Analog input and output variables with respect to the unit flowsheet 
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Furthermore, a number of analog output signals exist in the unit: 

 flow of the gases ( 2,air Hm m  ),  

 heat-up and the cooling percentage ( ,ht clx x ),  

 current ( fcI ) or the voltage ( fcV ) applied by the DC electronic load depending on the 

mode of operation, 

 percentage of operation for the temperature of the hydrators and the heated lines 

( , , ln, ln,, , ,ht an ht ca an cax x x x ). 

Finally, there are a number of digital signals (with Boolean state, open/close, high/low) 

related to the electro-valves of the unit, e.g. there are valves after the MFCs, at the top 

and at the bottom of the hydrators, valves at the inlet and at the outlet of the fuel cell and 

indication of the status level of the water at the hydrators (high/low). During the normal 

operation of the unit these valves do not change therefore they are not considered as 

variables for the control studies that will be presented in the subsequent chapters.  

 

2.4 Initial behavior of the fuel cell unit  

After the setup of the unit and the adjustment of its automation system, an experimental 

procedure was performed that explores the initial response of the unit and the behavior of 

the fuel cell. The purpose of this experimental study is twofold. Firstly, the fuel cell unit 

had to be initially stabilized (temperature and pressure loops) and the MEA of the fuel 

cell had to be activated. Secondly, the nominal point of operation, as provided by the 

manufacturer, had to be achieved in order to explore whether the system can reach its 

expected behavior or not. A performance metric during these experiments is the 

polarization curve of the fuel cell, cell voltage vs. current density.  Another measure of 

performance is the power density, a product of voltage and current density which is 

proportional to the efficiency. The higher achievable power density means smaller fuel 

cell size which directly affects the cost of the system. Although maximum power density 

is achieved at ~0.5 V, the nominal power density is typically selected at 0.6-0.7 V to get a 

higher efficiency.  
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 The single cell that was used during this thesis was not conditioned by the 

manufacturer, therefore after initial stabilization of the unit; the membrane had to be 

activated. The activation procedure was divided into two stages, the initial activation and 

the full activation of the membrane. The distinguishing characteristic between these 

stages was the minimum allowable voltage.  

 Various experimental studies can be found in the literature exploring the behavior 

of a PEM fuel cell system. Each study focuses on a different aspect of the fuel cell 

operation such as step changes in current at various temperatures (Kim and Min, 2008), 

start-up behavior (Chen and Zhou, 2008), characterization of the electrical behavior 

(Kunusch et al., 2010), individual cell behavior (Jang and Chiu, 2008; Sun et al., 2009). 

In the following analysis the performance of the system was tested against various 

operating conditions, involving different temperature, humidity, pressure and flow rates. 

2.4.1 Stabilization phase 

The purpose of this stage was to investigate the response of the developed fuel cell unit 

and to startup the system in a systematic way. Initially the fuel cell was purged with 

nitrogen. Subsequently, the gases were humidified using the hydrators that were set at 

low temperature (45°C) while the lines between the hydrators and the fuel cell were set at 

80°C. The flow rate of the hydrogen and air was set at 500cc/min and 1000cc/min 

respectively. The initial load that was applied to the fuel cell by requesting a constant 

voltage demand at 0.70V and the corresponding current density steadily increased from 

0.2 A/cm2 to 0.23A/cm2.  

 The current density was monitored by the respective interface of the SCADA 

system and when it reached a steady state the load was modified through a 

preprogrammed procedure. This procedure involves a series of small fixed length step 

changes in current load with a specific range, which constitute a cycle.  The variations of 

the voltage were applied through a ramp procedure from 1.0V to 0.50V and conversely 

with a step change of 100mV every 10s. During each step, the 10s interval, the voltage 

was constant and it was observed that after each cycle the current density increased (Fig. 

2.13).  
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Figure 2.13 Initial fuel cell cycles (without external heating) 

The fuel cell temperature was between 35°C and 40°C which indicated that the system 

should be heated in order to reach the working temperature (at least 50°C). Thus the 

respective control loops were activated using a PID algorithm controller implemented by 

the SCADA system. Also, the hydrators were controlled at 5°C higher than the desired 

temperature and a minor modification was made to the ramp procedure. The minimum 

voltage was set to 0.45V and a hold period of 4min was inserted when the minimum 

voltage was reached. Although the line between the hydrators and the inlet of the fuel cell 

was heated, some water droplets appeared after some time. In order to avoid this 

phenomenon the line heating temperature was increased by 20°C.  

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.03 0.07 0.11 0.15 0.19 0.23 0.27 0.31

Current Density  (A/cm2)

P
o

w
er

 (
W

)

cycle 6
cycle 7
cycle 8
cycle 9

 

Figure 2.14 Initial cycles (with heat-up at 50°C) 
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The system performs as it was expected which is illustrated at Fig. 2.14 where it is 

observed that at the same voltage point (0.45V), the maximum power increases with 

respect to the current density after each cycle. The next step, before the fuel cell 

activation stage, involves the test of the pressure control loop. The response of the overall 

system was investigated at slight overpressure by activating the pressure control loop at 

1barg. Initially the system was not able to reach steady state at the elevated pressure 

because the valves could not control the outlet pressure (Fig. 2.15). Both anode and 

cathode outlet valves presented oscillatory behavior and the produced power was 

unstable, due to abrupt controller changes. 
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Figure 2.15 Pressure control loop (unstable) 
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Figure 2.16 Adjusted pressure control loop (stable) 
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Such behavior was caused because the single cell was operated with low flow rates while 

the setup of the valves was for larger flows. As a consequence the valves were unable to 

control the pressure and proper tuning actions were applied. The system stabilization was 

tested once more at the same conditions (anode and cathode pressure at 1 barg). Also, the 

overall system was fine-tuned through the properly selected proportional and integral 

control parameters for the PIDs and as a result the current density and the corresponding 

produced power were stabilized. This behavior is depicted in Fig. 2.16, where the current 

density remains stable at constant voltage (0.45V). 

 The purpose of this stabilization phase was to ensure that the experimental unit 

was able to provide a stable environment for the activation of the single cell and that it 

could be used for the overall study. Also, we wanted to be able to monitor the various 

phenomena that are evolving during the fuel cell testing procedure.  

 

2.4.2 Activation Procedure  

Overall the procedure is divided into two stages, the initial and full activation, where 

different low voltage points were targeted. In both stages the response of the fuel cell is 

measured after the occurrence of small changes in the voltage demand. During the first 

stage a reference voltage point was set at 0.45V (Vref) and used as an indicative point of 

comparison between each cycle in order to measure the evolution of the membrane 

activation. The nominal point of operation, provided by the manufacturer, was 0.40A/cm2 

at 0.6V and it constitutes an indication that the membrane is ready for use. During the 

initial activation the voltage demand was regulated through a ramp procedure and 

gradually decreased from 1.0V to 0.45V and conversely with a step change of 100 mV 

every 10s. Fig. 2.17 illustrates that the current density was steadily increasing, from line 

A to line D. However, after a series of cycles it reached a certain point where the 

response was stable, but compared to the nominal point it could be further improved. 

Therefore, the full activation procedure was employed by applying the same ramp profile 

with some modification to the step interval (from 10s to 30s) and to the hold time at the 

lowest point (from 4 min to 1min).  
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Figure 2.17 Initial activation stage 

After each cycle the fuel cell remained under constant voltage (Vref =0.45V) at the same 

conditions until the voltage is stabilized. The conditions of the activation stage are 

described in the Table 2.3. 

 

Table 2.3 Operating conditions for full activation 

Description Value 
Pressure (anode & cathode) 1barg
Temperature : fuel cell 65°C
Temperature : hydrators  70°C 
H2/ Air  flow rate 2000cc/min / 3000cc/min

 

Since the membrane was fresh we decided to use rather high hydrogen and oxygen flow 

rates. The flow rates were deliberately kept very high to avoid any stressful conditions to 

the system and to avoid voltage drops due to the lack of oxidant concentration. Each 

cycle uses the abovementioned ramp procedure to gradually decrease the voltage, so 

initially there were five cycles with a sequentially decreasing minimum voltage of 0.45V, 

03V, 02V, 0.1V, 0.0V. Between consecutive cycles the system remained for ~20min at 

Vref . Table 2.4 presents the evolution of the current density and the respective power. It is 
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observed that the current density at Vref is increased and is at the nominal point that was 

initially targeted (0.6 A/cm2). 

Table 2.4 Activation cycles - Evolution of current density and power 

 
Current Density 

(start) 
Current Density 

(end) 
Power 
(start) 

Power 
(end) 

Before the cycles 0.592 A/cm2 0. 619 A/cm2 6.62W 6.90W 

Cycle Vmin: 0.45V 0.606 A/cm2 0. 631 A/cm2 6.78W 7.10W 

Cycle Vmin: 0.3V 0.626 A/cm2 0. 638 A/cm2 7.00W 7. 17W 

Cycle Vmin: 0.2V 0.615 A/cm2 0. 645 A/cm2 6.90W 7.26W 

Cycle Vmin: 0.1V 0.633 A/cm2 0. 644 A/cm2 7.10W 7.25W 

Cycle Vmin: 0.0V 0.645 A/cm2 0. 667 A/cm2 7.22W 7.49W 

 

Table 2.4 illustrates that after each set of cycles the membrane is further activated, since 

the current density increases. During these tests the input pressure was slightly increased 

both in anode (30 to 50 mbar) and cathode (90 to 110 mbar) due to the large flow rates, 

but as we mentioned earlier these rates were selected only for the initial and full 

activation of the system. After these series of cycles, the flows are reduced to normal 

rates and the pressure loop was deactivated.  
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Figure 2.18 Full activation stage 
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Fig. 2.18 illustrates that the current density was very close to the nominal one and after a 

series of cycles at the same conditions the membrane presented a repeatable and stable 

behavior, which was a clear indication that the membrane was fully activated. 

2.4.3 Response of the System under Different Operating Conditions   

A detailed experimental study was performed in order to investigate the behavior of the 

system under different operating conditions to obtain a better understanding of the 

developed unit. Thus, a similar to the above cyclic operation procedure was applied 

involving a ramp procedure of fixed length voltage steps. The scope of this study is to 

explore the response of the fuel cell unit under a wide range of normal and stressful 

conditions (elevated pressure, low gas flows) in order to explore the boundaries of its 

performance. The objective of the study is to analyze the influence of the tested measured 

variables (temperature, pressure, mass flow rates and humidity) on the dependent variable 

(voltage) and to quantify their effects.  

       For each condition a series of cycles were performed. Only one operating variable 

was altered while the rest remained at a predetermined value. To avoid any influence on 

the measurements from one cycle to the next or between different conditions, the fuel cell 

was operated for at least 60min at nominal steady-state load (0.45V). The conditions that 

were modified were related to temperature, humidity, excess ratio of oxygen and 

pressure. The excess ratio of oxygen is calculated based on: 

flow applied

stoichiometric flow at maximum current density
    (2.1) 

For every experiment the flow rate of reactants was kept constant at a flow relative to the 

maximum theoretical stoichiometric flow predicted by the maximum achievable current 

density of the fuel cell system under consideration. 

 

2.4.4 Experiments at different temperature levels 

Initially a number of experiments were performed at different temperatures levels (50°C, 

60°C, 65°C, 70°C). The hydration temperature was fixed at 70°C, the system operated at 

ambient pressure (0barg) and the excess flow ratio for anode and cathode flows were 2.3 
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and 1.5 respectively. Fig. 2.19 illustrates the effect of temperature on the performance of 

the fuel cell in terms of power versus current density and voltage versus current density.  
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Figure 2.19 Effect of temperature to voltage and power 

The lower operating temperature provided by the membrane manufacturer was 60°C. At 

the low temperature (50°C) a significant decrease in maximum power and current density 

was observed, which indicated that the full capacity of the fuel cell was not utilized. 

Between 60°C and 65°C the performance was similar up to the maximum delivered 

power but after that, the power at the elevated temperature was decreased at higher 

current densities. Finally a small difference exists between 65°C and 70°C.  

 These results indicate that overall the performance is improved as temperature 

increases and that the supply of fuel and water is sufficient to improve the proton 

conductivity. Also, it is observed that at low current densities a small difference in 

voltage and power exists, but as the current density increases the difference is more 

obvious. Although the operation at higher temperature could deliver more power, to 

preserve the lifetime of the membrane, the chosen temperature for the experiments was 

65°C.  
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2.4.5 Experiments at different humidity levels 

The second testing condition was the change of the hydration temperature at 65°C, 80°C 

and 90°C, for both anode and cathode electrodes. The second testing condition was 

related to the modification of the hydration temperature and more specifically three 

different point were applied (65°C, 80°C and 90°C) for both anode and cathode 

electrodes. The effect of the humidity on the fuel cell voltage and power is illustrated in 

Fig. 2.20. 
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Figure 2.20 Effect of humidity to voltage and power 

The performance was improved for hydrator’s temperature up to 80°C. This is because 

the increased humidity in the gases, results in a decrease of the internal resistance of the 

cell. However the performance is decreased at 90°C due to flooding phenomena. The 

water content inside the fuel cell is accumulated at a rate higher than it can be removed 

therefore the produced voltage decreases. The accumulation of water increases the 

inactive area and the gas diffusivity is reduced. Since the suggested operating 

temperature from the previous experiment is 65°C the hydrator’s temperature is chosen to 

be 5°C to 10°C higher. This would avoid flooding and at the same time it would keep the 

membrane adequately hydrated.  
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2.4.6 Experiments at different flow rates 

After the selection of the operating temperature and the humidity points, experiments 

with different excess ratio levels. More specifically the experiments were performed at 

excess ratios for air of 1, 2, 4, 6 which were translated to flow rates of 500cc/min, 

1000cc/min, 2000cc/min and 3000cc/min respectively. Fig. 2.22 illustrates the effect of 

the flow rate to the voltage and power of the fuel cell. 
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Figure 2.21 Effect of flow rates to voltage and power 

At low excess ratio the oxidant is not sufficient and even at low current densities a 

fluctuation of the produced voltage is observed. Also, after the maximum power point a 

sharp voltage drop appears which indicates a lack of oxidants in the channels. On the 

other case side at high excess ratio (λ=6) the produced power was lower than the one with 

ratio 2 and 4. The water removal rate is analogous to the air flow rate which causes 

drying of the membrane and an increase to the electrical resistance. Therefore, any ratio 

between 2 and 4 can deliver satisfactory results. The air flow rate affects the performance 

of the system which is verified by the experimental analysis. Fig. 2.22 shows two step 

changes of current (8A, 12A, 8A) at different flow rates and the respective produced 

voltage. 
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Figure 2.22 Dynamic response of the voltage at different flow rates 

On the other hand, the hydrogen flow rate had very limited influence on the performance 

and it was selected at a stoichiometric ratio of 2.3 (500cc/m) to maintain sufficient 

reaction.  

2.4.7 Experiments at different pressures 

Finally, the pressure is an important parameter for the fuel cell, since it affects the 

homogeneity and the partial pressure of the reactants in the channels, the inlet gas 

compositions and the diffusivities of the gases through the gas diffusion layers and the 

rate of electrochemical reaction. The pressure was maintained at a certain level by two 

pressure regulators at the outlet lines. By controlling the outlet pressure the pressure 

inside the cell was also regulated. Fig. 2.23 shows the effect of the pressure (0 to 2barg) 

to the produced power and the voltage. 
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Figure 2.23 Effect of pressure to voltage and power 
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It is observed that the elevated pressure is beneficial to the performance. Even at low 

current densities a noticeable improvement is observed as the activation overpotential 

decreases with an increase of the pressure. Between 1.5barg and 2barg there was no 

apparent improvement. Furthermore, at 1.5barg, the inlet pressure at the cathode side was 

increased and consequently the pressure difference was increased between the anode and 

the cathode. This is an unsafe operating condition which should be avoided for lifetime 

and safety issues. Therefore, the preferred pressure would be between 0barg and 1barg. 

 The experimental results show that the increase of pressure results to an increase 

of the produced power. But a side effect is that a small change of the operating conditions 

can influence the stability of the system and most importantly the pressure difference 

between the anode and the cathode, which could cause an irreversible damage to the 

system. Also, there are a number of implementation issues when considering pressure 

control loop which would not make the elevated pressure a practical choice. Therefore, 

the ambient pressure is selected to be used at further studies. 

 

2.4.8 Steps changes at constant current mode 

The aforementioned experimental study was conducted with the DC electronic load set at 

constant voltage mode. A similar study was performed that explores the behavior of the 

system at constant current mode. This procedure was performed with fixed length 

changes of the current demand and applied at the fuel cell.  
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Figure 2.24  Voltage response to current step changes 
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An indicative plot involving few steps at different pressures is shown for completeness 

reasons as this mode will be used at the subsequent chapters. Fig. 2.24 illustrates the 

produced voltage after two current step changes for various pressure levels. The first 

change was from 8A to 4A and after 120 s a second change occurred, from 4A to 6A and 

finally from 6A to 2A. It is observed that the voltage increases as the pressure increases 

and the system has the same fast dynamic response to current changes, regardless of the 

pressure level. Similar experiments were performed for different temperature, flow rates 

and humidity levels and they revealed the dynamic nature of the experimental system. 

2.4.9 Selected conditions for the fuel cell operation 

It is clearly derived from the results that the temperature and pressure have a predominant 

effect on the system. Also, proper gas and water management are essential to achieve and 

maintain high power output. The increased gas flow rate is beneficial to fuel cell 

operation if the positive effects of increased availability of oxygen offset the negative 

effects of membrane dehydration. The objective of this study was to determine the 

operating conditions for safe and reliable operation of the PEM fuel cell unit as 

summarized in Table 2.5.  

 

Table 2.5 Selected operating conditions for the estimation procedure 

Pressure (anode & cathode) 0barg 

Temperature : fuel cell 65°C 

Temperature : hydrators / line 70°C / 120°C 

H2/ Air  flow rate 500cc/min / 750cc/min 

 

The aforementioned experimental study will provide the basis for the determination of 

the values of certain empirical parameters of the model. 
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2.5 Concluding remarks 

The design and development of an experimental integrated fuel cell unit is a combined 

effort that involves a number of multidisciplinary actions from the fields of control 

engineering, chemical engineering and computer science. It is important to specify the 

scope of the system and its specifications at an early stage of the whole procedure as the 

requirements and the boundaries of a unit determine the overall framework that will be 

eventually developed and constructed.  

 This chapter presented the basic entities for the development of a small-scale 

PEM fuel cell unit, used for system evaluation purposes. The characteristics of the 

various subsystems of the unit were described along with the respective variables that 

constitute the I/O field of the process. Furthermore, specific emphasis was given to the 

analysis and synthesis of the automation system of the unit which is oriented towards 

industrial standards as the rest of the construction. Also, the interoperability of the unit 

with other information systems based on an open architecture was considered throughout 

the development procedure. The criteria that led to the selection of a SCADA system 

were derived by the overall research objectives of this thesis and more specifically the 

imperative need for flexibility of the control structure that will be explored in subsequent 

chapters. 

 Finally, an experimental study was performed at the developed unit that initially 

conditioned the PEM fuel cell based on an activation process. A number of tests were 

performed at various operating conditions that explored the behavior of the PEM fuel cell 

and the overall response of the unit. The results obtained by these experiments were 

analyzed and a set of operating conditions was selected to be used in the subsequent 

Chapter 3 for the modeling of the system. 
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Chapter 3 
 

 

 

3 A Modeling Framework of a PEM Fuel 

Cell System 
 

 

 

The scope of this chapter is a new dynamic nonlinear mathematical model that takes into 

account the main variables and parameters of a fuel cell, such as the partial pressures of 

all gases, the fuel cell current and the operating temperature. The main prerequisite that 

directed the development choices is that the model should be oriented towards 

optimization and control as it will be used for the formulation of advanced model-based 

controllers. For this reason it should simulate the dynamic behavior of the fuel cell unit 

under fast execution times and enough accuracy for control purposes. Thus, a semi-

empirical approach was selected where first-principle equations are combined with 

equations having empirical parameters. In order to increase the model’s accuracy a 

systematic parameter estimation procedure was developed that can determine the 

empirical parameters of the model using experimental data under various operating 

conditions.  
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3.1 Importance of modeling  

In order to study and improve the behavior and performance of PEM fuel cell systems it 

is important to measure a variety of variables. But some of them are difficult to measure 

or even inaccessible due to the physical nature of the system, due to its layered structure 

and the fact that each cell is sealed. Also, it is difficult to understand the phenomena 

evolving inside the cell due to the variable’s interrelations. Therefore, it is important to be 

able to study these phenomena and extract information about the time evolution of them 

by simulation methods. Such methods can provide a better insight of the system, as 

mathematical equations can be used to describe the various phenomena.  

A simulation methodology utilizes mathematical models that play an important 

role in the development of fuel cells and describe the real behavior of the physical 

system. The aim of the current analysis is to provide an overview of the most important 

criteria that are considered for the selection of the proper modeling technique according 

to the requirements of the specific fuel cell system. Mathematical modeling is an 

important tool that can be used to determine the performance of new designs without the 

need for experimental investigations. Therefore, the models are used to improve 

performance and reduce design cycle times which can lead to the minimization of the 

development cost. Overall models play an important role in the development of PEM fuel 

cell technology as they facilitate the understanding of the electrochemical reaction, 

thermal dynamic phenomena, and fluid transfer mechanisms. Also, an important issue 

which can be resolved with the use of models is that the difficulty of direct measurements 

of the various phenomena is eliminated, because models provide details on the physical 

processes occurring within the fuel cell during its operation. Regarding the performance, 

it is important to determine the factors that affect it and to investigate the role of each fuel 

cell parameter to these factors with the aid of mathematical models.  

There are many models or types of models available in the open literature and 

each one serves a different purpose or it is oriented toward a specific issue or application 

involved, with varying degrees of simplifications. Each modeling attempt has a specific 

goal, to describe a phenomenon or to be used in a specific study. For example if the 

purpose of the project is to study thermal and water transport phenomena, the model 
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should contain not only electrochemical relationships but also thermodynamic and fluid 

dynamic equations. On the other hand if the purpose of the modeling is an initial study of 

the behavior of an integrated system, then the model can contain only simplified semi-

empirical electrochemical equations that mimic the polarization curve for certain 

operating conditions. Both models are correct and useful, since the degree of complexity 

and the amount of details are specified by the overall project that the fuel cell system is 

going to be used for.  

3.1.1 Type of models and structural criteria  

The most important key features of a model are defined by making the following choices: 

the modeling approach, the system boundary, the state and the spatial dimension. Also 

the level of complexity is an important characteristic of a model which is defined after 

the previous desired features are set. In Haraldsson and Wipke (2004) criteria on how to 

select a fuel cell model according to its application are presented and several models 

proposed in the literature are described. Overall PEM fuel cell modeling has evolved 

from steady state to dynamic, from lumped or  simple zero-dimensional to complex three-

dimensional models, from isothermal to non-isothermal, from single phase to multi 

phase, and recently from straight channels to more complex field structures, like 

serpentine flow fields. 

Prior to the development of a model it is very important to set the boundary of the 

system that will be studied, which corresponds to the area of interest of the model and to 

define the key features for the desired model. Usually the categories are related to the 

scope of the study and most importantly to the boundary of the system: 

 Inner level: includes the membrane, electrodes, the geometry of the flow fields etc. 

 Cell level : single fuel cell or fuel cell stack as an autonomous entity 

 System level: fuel cell stack with auxiliary components such as an air compressor  

This is a very important decision as it affects the overall outcome of the modeling 

procedure and although vital, these initial criteria often tend to be overlooked or not 

specified in detail. It is useful to state the simulation objective clearly. If the simulation 

objective is to provide a tool for control studies, the development and validation of a fuel 
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cell model based on semi-empirical equations is a useful way of gaining knowledge. 

Thus, the optimal model choice differs for each application and the initial decisions are 

important to avoid costly changes later in the model evaluation process. Once the initial 

criteria are defined further structural details can be set.  

Modeling approach 

The modeling approach plays an important role on simulating the behavior of the system 

and is closely related to the purpose of each project or application that the model will be 

used for. The optimal modeling approach differs for each application and there are 

several types of approaches. The line separating these approaches is often blurry. 

Essentially however, the approaches may be classified as theoretical or semi-empirical. 

The theoretical models are detailed and complex and various phenomena are 

described. The theoretical approach can be subdivided into (a) analytical and (b) 

mechanistic that use computational fluid dynamics (CFD) simulation. The semi-empirical 

models on the other hand can include first-principle equations or be completely 

empirical. Each approach has advantages and disadvantages, as discussed in (Haraldsson 

and Wipke, 2004). When the boundary of the simulation study is an integrated system, 

fuel cell stack and auxiliaries, a combination between the theoretical and the semi-

empirical models can co-exist. For example a simplified approach for the electrochemical 

aspects such as electrode kinetics can be used since the focus is on the system level.  

State of the model 

Besides the modeling approach, a structural characteristic that should be defined is the 

state of the model, which is closely related to the purpose of the modeling study and the 

modeling approach. The state of the model is either steady state or dynamic in nature. 

Dynamic models are used to analyze step changes in operating variables, such as 

temperature, for start-up and shutdown procedures, analysis of the influence of various 

flows during operation and optimization of the response time on load demands. For 

example, for vehicular applications it is important to be able to respond to variable 
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fluctuations, therefore the model should be dynamic to some degree to account for the 

important transients in the system.  

Steady-state models, using one operating point in each step, are useful for sizing 

components in the system, calculating amounts of materials such as catalysts and 

parametric studies (Haraldsson and Wipke, 2004). Typically, laboratory fuel cells are 

operated at steady-state. Therefore, when the purpose of the study is component design, 

where accuracy and detailed modeling of each component is required, a steady state 

model is necessary, since the simulation involves specific points of operation.  

Dimensionality 

Spatial dimension is also an important structural characteristic of a model, which is 

application dependent. In general, models can be distinguished by their dimensionality to 

lumped or zero-dimensional, one-dimensional or multi-dimensional. Usually when there 

is no spatial consideration the model is also semi-empirical in nature and they are used 

for polarization curve analysis. The zero and one-dimensional describe the fuel cell layers 

in a macroscopic manner and although they don’t provide detailed analytical 

representation, they can incorporate all the dynamics involved in a fuel cell system and 

the interactions between the subsystems. Therefore, models with one-dimensional 

approach are preferred for investigating the dynamics of the system. A description of a 

fuel cell that takes into account mass transport limitation phenomena is represented with 

at least one dimension. On the other hand, to understand the water transport phenomena 

that occur, two-dimensional representation is required. These models are useful in 

providing insight when intermediate details are necessary, such as water transport.  

In order to have a better understanding of how the phenomena are evolving and to 

gain detailed results, it is necessary to have a three-dimensional model. The multi-

dimensional model solves governing equations by using CFD methods and provides a 

high resolution of flow characteristics of reactants, fuel, byproducts, and transport of 

charges. For example if the study focuses on the electrode layer it is necessary to model 

the spatial distribution of the current density on the membrane in both the direction of the 

flow and the direction which is orthogonal to the flow but parallel to the membrane (Lum 
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and McGruik, 2005). Usually 3D models are applied to the study of complex parts such 

as flow fields of a single cell. 

 

3.2 Literature review on PEM fuel cell modeling 

The aim of the current literature review is to provide a generic overview of the evolution 

of PEM fuel cell models since many theoretical works can be found in the literature. As 

stated earlier the categories which are defined by the scope of approach are analytical, 

mechanistic CFD and semi-empirical models. Initially a brief description of analytical 

and CFD models is provided. Subsequently, the analysis focuses on semi-empirical 

models since the subsequent developed model is developed for control purposes and used 

a semi-empirical approach.  

3.2.1 Analytical PEM fuel cell models 

Analytical models are based on electrochemical, thermodynamic and recently fluid 

dynamics and they tend to use various assumptions in order to represent the system with 

a theoretical perspective. The early fuel cell models were analytical in nature. The 

milestone for the analytical models is the work of Bernardi and Verbrugge (1991) and 

Springer et al. (1991). They developed a one-dimensional, steady-state, isothermal 

models of the membrane electrode assembly (MEA) and the gas flow channels. However, 

the two models differed in the way that they handle the transport of ions and water in the 

polymer electrolyte and the treatment of the catalyst layers. Bernardi and Verbrugge 

(1991) developed a model based on fundamental transport properties where the cell 

voltage is reduced due to losses incurred by the activation overpotential of the anode and 

cathode reactions, the ohmic losses due to the resistance in the membrane and to the 

electrodes. The model does not account for the concentration overpotential region of the 

polarization curve. They assumed that the membrane is fully humidified and the void 

regions of the catalyst layer are assumed to contain membrane phase only. In Springer et 

al., (1991) they considered only the losses caused by the cathode reaction and the 

membrane. The membrane model allowed for variable hydration between the anode and 

cathode and thus variable ohmic resistance due to the hydration of the membrane. An 
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empirical formula was used to relate the hydration of the membrane to the conductivity. 

The entire polarization curve was modeled by incorporating flooding in the catalyst and 

backing layer, which was achieved by decreasing the porosity of the catalyst and backing 

layers that resulted in the increase of the transport losses and the cathode overpotential. 

Weisbrod et al. (1995) used the membrane model of Springer et al. (1991) with 

the catalyst layer model of Bernardi and Verbrugge (1991) and added to it an activation 

overpotential term. But they ignored the concentration losses as they didn’t consider the 

diffusion through the membrane phase of the catalyst layer and they assumed that the 

catalyst layer was not flooded. 

However in these early models, the temperature of membrane and electrodes were 

not differentiated, despite that a significant temperature variation in those regions exists 

in both the through-membrane and flow directions depending on the geometric and 

operating conditions. Furthermore, the major heat source terms, the entropic and 

irreversible reaction heats, were not specified in their models. Based on the concentrated 

solution theory, Fuller and Newman (1993) built a more compact quasi two-dimensional, 

steady state model to describe the water transportation mechanisms and investigated 

strategies for thermal management. The model accounts for one-dimensional mass 

transfer in the through-membrane direction and one-dimensional heat transfer in the flow 

direction. Based on the known enthalpy change of the overall electrochemical reactions, 

the model calculated also the temperature rise of the flowing gas streams with various 

external heat transfer coefficients.  

In Nguyen and White (1993) a similar model approach was used, except that the 

electrolyte model of Springer et al. (1991) was used and the catalyst layers were treated 

as interfaces. They developed a quasi two-dimensional model to account for heat and 

mass transport between the electrode and reactant gas mixture in the flow channel. The 

model considers phase change of water in the flow channel as the only heat source, 

allowing convective heat transfer between gas and solid phases. They modeled the water 

and heat management to describe the electro-osmotic drag and back diffusion process, 

heat transfer from solid phase to gas phase, latent heat associated with water evaporation 

and condensation in the flow channels. 
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Both, Nguyen and White (1993) and Yi and Nguyen (1998) developed two-

dimensional, steady state models that considered both the changes across the membrane 

and in the direction of the bulk flow. In these models, the authors demonstrated the 

important roles played by water and thermal management in maintaining high 

performance of PEM fuel cells. In  Yi and Nguyen (1998) the work of Nguyen and White 

(1993) was extended to include the entropic and irreversible reaction heats along with the 

phase change heat. However, this model allowed the temperature variation of the solid 

phase in the flow direction only, assuming uniform temperature in the through-membrane 

direction. 

At Eikerling and Kornyshev (1998) some approximations were used in order to 

find analytical solutions to the governing equations of the PEMFC for different regions in 

the cell polarization curve. But their model does not incorporate the concentration at the 

overpotential region. The importance of accounting for temperature gradients in fuel cells 

modeling was demonstrated in the work of Wohr et al. (1998) and Djilali and Lu (2002). 

Wohr et al. (1998) developed a one-dimensional thermal model for heat and mass 

transfer in the through-membrane direction, particularly for PEMFC stacks. Accounting 

for the entropic and irreversible reaction heats, they computed the temperature profile in 

the through-membrane direction and predicted the maximum temperature as a function of 

the number of cells contained in a stack. 

In Marr and Li (1999) a steady-state, isothermal engineering model of a PEMFC 

was developed based on the catalyst layer of Weisbrod et al. (1998) and the membrane 

model of Bernardi and Verbrugge (1991), including the electrochemical kinetics and 

mass transport processes of reactant gases to provide the optimal operating and design 

parameters in aiding the design of PEMFC system. Also, they considered the flow in the 

gas flow channels as one-dimensional pipe flow. Baschuk and Li (2000) further modified 

the catalyst layer model, considering it composed of reactant gases, liquid water and 

polymer electrolyte. Rowe and Li (2001)  also developed a one-dimensional model in the 

through-membrane direction. Including entropic, irreversible, and phase change heats, 

they further took account of Joule heating in the membrane and anode/cathode catalyst 

layers. This work predicted the temperature variation in the through-membrane direction 
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under the various current densities and electrode thermal conductivities. In Wu et al. 

(2007) the objective was to extend the steady-state model of Hum and Li (2004) by 

considering the transient effects of different transport phenomena. A two-dimensional, 

isothermal, transient model has been developed. For comparison purposes, both steady-

state and transient analysis have been conducted. The variation of reactants 

concentration, activation overpotential, reaction rate and corresponding current density 

distribution in the catalyst layer (CL) was analyzed in detail. 

At Kulikovsky (2001) an analytical quasi-three-dimensional model was developed 

for studying the catalyst layer performances with respect to feed gas consumption in the 

channels. Furthermore, this work was extended in Kulikovsky (2004)  developed a semi-

analytical model 1D+1D taking into account oxygen and water transport across the cell 

and deriving an expression for the limiting current density. Finally Cheddie and Munroe 

(2007) presented a two-phase model of an intermediate temperature PEMFC taking into 

account polarization and transport phenomena. Their model considers also the 

dependence of the fuel cell performance on membrane level, catalyst activity, and 

transport properties of dissolved gases in the electrolyte medium. The aforementioned 

models are some of the representative works that summarize the evolution of analytical 

modeling.  

 

3.2.2 CFD PEM fuel cell models 

The evolution of computing technology made feasible the development of 

complex, more comprehensive three-dimensional full-cell models. Such technology 

enables the investigation of the phenomena within the cells, a task hardly achievable 

through experimental studies. Earlier models were primarily analytical and used a 

number of assumptions due to limitations posed by the numerical techniques. More 

recently, a general trend can be observed to apply the methods of computational fluid 

dynamics to fuel cell modeling. Also, multi-dimensional thermal models were presented 

by many PEMFC modeling groups. 
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The work of Gurau et al. (1998) was the first to use computation fluid dynamics 

(CFD) in the PEM fuel cells and their model is a fully two-dimensional model of a whole 

fuel cell, two gas-flow channels separated by the MEA. They developed a unified model 

that used the water transport model of Bernardi and Verbrugge (1991) and the ion 

transport model of Springer et al. (1991). They presented a unified approach by coupling 

the flow and transport governing equations in the flow channel and the gas diffuser, but 

only single-phase and incompressible fluid model was used.  

To accurately represent the important transport phenomena in PEM fuel cells, a 

two-phase flow model is necessary because both liquid and gaseous phases exist under 

normal fuel cell operating conditions. With the representative work of Natarajan and 

Nguyen (2004) and Wang et al. (2001), the analytical fuel cell models have been 

developed into three-dimensional, two phase, non-isothermal, transient ones nowadays. 

Natarajan and Nguyen (2004)   presented a two-dimensional, two-phase, transient model 

for the PEMFC cathode. Both multi-species flow and capillary flow of liquid water are 

accounted for in their model, and they concluded that the performance of the cell is 

dominated by the dynamics of liquid water rather than gas reactants transport. Wang and 

his associates (Um et al., 2000; Wang and Wang, 2005) have also championed a unified 

approach, using a different water transport model than that of Gurau et al. (1998). 

Um et al. (2000) have developed a similar 2D model and included two phase flow 

along with the description of the transient behavior of the bulk flow, species and electro-

chemical reactions in a single cell. However, the underlying assumption was isothermal 

behavior, which is a serious modeling limitation. In following work Um and Wang 

(2004) the model was extended to 3D, elucidated electrochemical kinetics, current 

distribution, hydrodynamics, and multi-component transport.  

Furthermore, Wang and Wang (2005) presented a three-dimensional dynamic, 

single-phase, isothermal model of a PEMFC to investigate the transient phenomena of 

electrochemical double layer discharging, gas transport through the gas diffusion layer 

(GDL) and membrane hydration as well as the evolution of water accumulation in the 

membrane corresponding to operating condition changes. They simulated a single cell 
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with 36 gas serpentine channels taking a low humidity condition and presented the 

mechanism of the species transport and the associated current density distribution. 

In Berning et al. (2002) the need to account for thermal gradients and multi-

dimensional transport simultaneously was addressed that couples convective transport in 

the gas-flow channels with transport and electrochemistry in the MEA. They developed a 

3D non-isothermal two-phase model which simplified the water transport by assuming 

liquid phase water transport in both GDL and the membrane layer. This work was 

extended in Berning and Djilali (2003) with the inclusion of phase change in the model. 

They presented a two-phase flow model for GDL and flow channel in both anode and 

cathode sides; however, the MEA was excluded from simulation.  

At Dutta et al. (2000) a similar work to Berning et al. (2002) was published based 

on a  three-dimensional non-isothermal computational model except that it accounts for a 

partially dehydrated membrane using an empirical approach and includes the modeling of 

the isothermal flow in a cell that embeds a serpentine-type gas channel. In Kim et al. 

(2004) reported the influences of reservoirs, fuel dilution and gas stoichiometry on the 

dynamic behaviors during load changes and they observed the overshoot/undershoot of 

the current density during cell voltage switch. The work of Shimpalee et al. (2006a) uses 

a commercial CFD solver to simulate the transient response of a PEM fuel cell subjected 

to a variable load and particularly focused on the overshoot/undershoot behavior under 

different flow stoichiometry conditions. Their modeling study was based on their 

previous experimental observation of overshoot/undershoot in transient state presented in 

Kim et al. (2004). 

The aforementioned studies focused on the description of a single cell, ignoring a 

stack and time-varying behaviors. On the other hand, the dynamic behavior of a stack can 

be improved by adding a simplified thermodynamic model, which is proposed by 

Sundaresan and Moore (2005). The model regards a cell as a composition of layers and is 

used to analyze the start-up behavior from a sub-freezing temperature. The model regards 

a cell as a composition of layers and is used to analyze the start-up behavior from a sub-

freezing temperature. The work of Siegel et al. (2004) developed a multi-phase, two-

dimensional model to take into account the liquid water saturation and flooding effect, 
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and they have studied transport limitations due to water build up in the cathode catalyst 

region. In Promislow and Wetton (2005) a stack thermal model with the coolant channel 

coupled with a 1D cell model was proposed that shows a significant temperature gradient 

of the stack, but with no dynamics.  

In Shan and Choe (2006) an enhanced quasi 1D stack model was proposed that 

considers the thermal and fluid dynamics, resulting in the capturing of the dynamic 

temperature distribution including the asymmetrical effects in the stack, but missing the 

water distribution that are improved by adding an empirical relationship between the 

flooding effect and the current density and temperature. At Al-Baghdadi and Al-Janabi 

(2007) a three-dimensional CFD model was presented that accounts for species mass 

transport, heat transfer, potential losses, electrochemical kinetics, and transport of water 

through the membrane. Also, a two-dimensional CFD model of a PEM fuel cell was 

developed by Sahraoui et al. (2009) by taking into account electrochemical, mass and 

heat transfer phenomena.  

The work of Li’s group (Baschuk and Li, 2000; Rowe and Li, 2001; Wu et al., 

2007) was extended in Baschuk and Li (2009) by the development of a unified model that 

utilizes a membrane transport model that is based on the generalized Stefan–Maxwell 

equations. Finally in Wu et al. (2009) a comprehensive 3D model was developed with 

appropriate water production assumption which can be readily switched between single- 

and two-phases, steady and unsteady, isothermal and non-isothermal modeling 

approaches. Furthermore, both non-equilibrium membrane water sorption/desorption 

processes and non-equilibrium condensation/evaporation processes have been 

incorporated in this model. 

All these models describe the evolution of mechanistic models that use CFD 

methods. These CFD models are steady state in nature and they study the design 

characteristics using a multidimensional approach. Each work has a specific purpose 

oriented towards the evolution of a certain phenomenon inside the cell or the behavior of 

the materials under different conditions.  
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3.2.3 Semi-empirical PEM fuel cell models 

A interesting and comprehensive review of PEM fuel cell models can be found in 

Cheddie and Munroe (2005) and Haraldsson and Wipke (2004) where the focus is on the 

evaluation of models, whereas the review by Sousa and Golzalez (2005) is concerned 

with modeling at the cell level. More recently, a detailed review of PEM modeling and 

SOFC modeling is presented in Bavarian et al. (2010). In general, mechanistic modeling 

has many advantages regarding the thorough investigation of the fuel cell’s insight and 

increased accuracy on phenomena analysis, but in some cases a model that responds in 

real time without many internal details is adequate enough. On the contrary, the semi-

empirical approach can rapidly produce models able to describe the fuel cell response 

without the need of insight process details. Therefore, they can be used to accurately 

predict the fuel cell system performance for engineering applications, such as small 

distributed electrical generation systems, portable electronics and vehicles (Moreira and 

da Silva, 2009). All of these models are reduced in terms of dimensionality and 

comprehensiveness. 

 At his context a pioneering work on PEM fuel cell modeling is presented by 

Amphlett et al. (1995a) and Amphlett et al. (1995b), where a steady-state model for the 

Ballard Mark IV fuel cell has been proposed that combines performance losses into 

parametric equations based on operating conditions, such as the pressure and the 

temperature. The work of Mann et al. (2000) extended that model and presented a 

generalized steady-state electrochemical model, based also on Springer et al. (1991) and 

on the experimental data of Buchi and Scherer (1996) for the resistance of the membrane. 

The work of Amphlett et al. (1996) proposed a transient model to predict efficiency in 

terms of voltage output and heat losses and included heat transfer coefficients for the 

stack and an energy balance.  

 In Golbert and Lewin (2004) a transient along-the-channel model for control 

purposes was developed, which includes mass balances of liquid water and water vapor 

and heat transfer between the solid, the channels and the cooling water. Pukrushpan et al. 

(2004) presented a transient dynamic model, which includes the in-compressor flow and 

inertia dynamics, the manifold filling dynamics, the reactant partial pressures and the 
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membrane humidity. Yerramalla et al. (2003) considered the humidifier and stack 

pressure. A linear and a nonlinear model were developed and the results showed the risk 

involved with linearizing the model.  

 A common simplification in contributions Pukrushpan et al., (2004), and 

Yerramalla et al., (2003) is that the temperature transient behavior is neglected. Xue et al. 

(2004) considered the effect of temperature transient behavior and used a three control 

volume approach to develop a set of dynamic equations that govern the system dynamics. 

Pathapati et al.(2004) developed a complete fuel cell system-level that include mass and 

energy balance equations for the gases and the dynamics of flow and pressure in the 

channels, along with the capacitor effect of charge double layer. Muller and 

Stefanopoulou (2006) presented a model for the thermal dynamics containing a power 

section and a humidification section and have compared experimental and theoretical 

data to validate it.  

 Lee and Lalk (1998) used an object-oriented approach based on stationary 

equations and they analyzed the temperature variation and thermal efficiency under 

regular load fluctuation. The influence of flooding on the dynamic behavior was modeled 

by McKay et al. (2005). Both gas diffusion layers (GDLs) and gas flow fields have been 

modeled, considering lumped parameters, by dividing each GDL into three control 

volumes and each flow field into one. More recently, a simple empirical equation has 

been introduced by del Real et al. (2007), to model the fuel cell voltage with variations in 

main variables. The fluid dynamics part of their model is based on (McKay et al., 2005) 

but the GDL has simpler structure reducing the computational cost.   

 The aforementioned models describe the evolution of the semi-empirical 

modeling approach. Although these models do not include many details of the system and 

they focus on specific operating conditions, in contrast with the analytical and 

mechanistic CFD models, they are very useful for application to real systems and control 

studies. A significant modeling effort has been done recently aiming to achieve the 

proper tradeoff between the usability and the accuracy of the semi-empirical based 

models. A summary of key contributions from the open literature are presented in Table 

3.1.  The enumeration is based on the year of publication. For each work a summary is 

presented along with the dimensionality and the state. 
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Table 3.1 Indicative semi-empirical PEM fuel cell models 

 Author Description and Focus 
1 Fowler (2002) Study of the voltage degradation and the end of life issue 
2 Ceraolo et al. (2003) Identification of numeric values for parameters, assumption of uniform 

pressure, procedure for evaluation of the parameters 
3 El-Sharkh et al. (2004) Stand alone PEM fuel cell power plant for residential applications, gas 

reformer and power conditioning  
4 Al-Baghdadi ( 2005) Investigate the impact of operating conditions on performance, not extensive 

calculations 
5 Caux et al. (2005) Modeling of control auxiliaries, control, boost conv, quasi static, use in 

vehicular applications 
6 Pathapati et al. (2004) Effects of charge double layer & behavior on sudden load changes, transient 

phenomena 
7 Wishart et al. (2006) Develop a methodology to obtain optimal operating conditions, include BOP. 

Two performance objectives: maximize net system power and the efficiency 
8 Zong et al. (2006) Analyze water transport across the membrane and shift change effect, 

pressure variation along the channel 
9 del Real et al. (2007) Development and experimental validation of a dynamic model. Suitable for 

control studies 
10 Hou et al. (2007) Simplified model applied for vehicle applications. Effect of temperature & 

pressure into performance 
11 Litster and Djilali 

(2007) 
Ambient air breathing fuel cell for portable devices. Effects of coupling 
between ambient air temperature and humidity 

12 Wingelaar et al. 
(2007) 

Electric circuit representation with small signal and large signal 
characteristics. Use electrochemical impedance spectroscopy 

13 Andujar et al. (2008) Linearized state space approach and representation electrical circuit. Model a 
DC/DC & boost converter to control duty cycle  

14 Huisseune et al. 
(2008) 

FC behavior Based on two discrete models : thermodynamic & 
electrochemical 

15 Outeiro et al. (2008) A parameter optimized model as an electrical equivalent circuit including 
temperature effects  

16 Al-Dabbagh et al. 
(2009) 

Use of conditioning circuits & controllers. DC/DC converter and AC inverter 

17 Caux et al.(2010) Model suitable for energy optimization purposes with electrochemical & 
electrical characteristics 

18 Lazarou et al. (2009) Electric circuit model, use of simple lumped electric circuit elements. Case 
study: connection or disconnection of load 

19 Li et al. ( 2009) Fast approach to predict the performance. Analysis through a series of 
experiments 

20 Miansari et al. (2009) Thermodynamic approach with study of channel dimension. Effect of 
temperature, pressure and air stoichiometry on the irreversibilities 

21 Moreira et al. (2009) Practical model for performance evaluation with few calculations and sum up 
into one equation 

 

Fig. 3.1 illustrates the dimensionality and the system state, along with the existence of 

temperature and water management subsystems.  
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Figure 3.1 Characteristics of PEM fuel cell models 

The presented models can be steady state or dynamic and they study the response of the 

system to changes and its performance under various conditions. Each work has a 

specific purpose oriented towards fast development and considers only the required 

amount of detail needed for the scope of the project involved. It is important to note that 

these models are either one dimensional or lumped parametric models. When the 

dimensionality is ignored, usually the temperature variation and the water handling are 

also ignored and vice versa. The former focuses on simulating the fuel cell polarization 

curve while the latter generally pays more attention to thermodynamic aspects. These 

models are used in practical applications and it has been recognized that although a large 

number of theoretical models have been developed recently, an analogous number of 

semi-empirical models has been developed too. 

 Compared to all these models, the model presented in this work is developed for 

the purpose of online control in the PEM fuel cell unit described in Chapter 2. As such, it 

needs to have reduced execution times and enough accuracy for control. It is important to 

include details regarding the thermal behavior of the system as the regulation of the flow 

and the temperature are considered. Thus an approach that combines both empirical and 

mechanistic equations is employed. The proposed model has the potential to couple both 

the theoretical validity and the inherent simplicity of the empirical application. 
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3.3 Structural model analysis and assumptions 

In general mechanistic models are being valid over a wide range of process operations 

and provide physical insight into the reaction processes. However, mechanistic models 

have increased computational needs and require the knowledge of parameters which are 

not readily available, such as transfer coefficients or active catalyst layer thicknesses. 

Empirical models, on the other hand, are developed rapidly by utilizing experimental data 

without requiring detailed insight into the process. In the published literature there exist 

many models based on empirical equations. Such models are developed for a specific set 

of operating conditions and are adapted to specific applications. They are used in 

engineering studies, as they provide a rapid start into fuel cell modeling.  

 An approach combining both theoretical and empirical modeling techniques can 

take advantage of the theoretical validity and the semi-empirical simplicity (Li et al., 

2009). However, a semi-empirical model needs thorough validation and possible 

parameter adjustment for new applications or operating conditions, as their empirical 

coefficients need to be adjusted for every new configuration. They are validated against 

experimental data and they typically do not provide as many details as theoretical models 

do. Such models are suitable for initial system optimization or control studies using 

realistic time scales. 

 The proposed model relies on mass and energy conservation equations combined 

with equations having experimentally defined parametric coefficients thus resulting in a 

semi-empirical dynamic model. To model mass transport phenomena a five volume 

approach was adopted. The model accounts for mass dynamics in the gas flow channels, 

the gas diffusion layers (GDL) and the membrane. The equation of the voltage as a 

function of the current and the relationship between the current drawn from the fuel cell 

and the consumption of the reactants describe the operation of the fuel cell. Finally, in 

this scheme the energy balance of the fuel cell was also considered. 

 To simplify the overall modeling framework and reduce the computational 

requirements several assumptions have been employed without sacrificing the accuracy 
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of the model. Some of these are theory related and others were derived from the operation 

of the testing unit. The theory related assumptions are:  

a) the ideal gas law holds for gases which are  uniformly distributed,  

b) the temperature is uniform at the anode and the cathode side,  

c) each channel is homogeneous in respect to pressure as all channels have a fixed 

length volume.   

The assumptions derived from the operation of the fuel cell testing unit are: 

a) humidified hydrogen and air are fed in the fuel cell 

b) the produced water is continuously removed through the cathode flow  

c) the condensed water in the anode channel is dragged by the flow of the 

unreacted hydrogen. 

 

3.4 Mass dynamics  

The model equations consist of material balances of all components whereas every gas 

follows the ideal gas law. Therefore, the mass of each gaseous component is described 

through the partial pressure of each gas in the material balances. The mass balance is 

applied to the cathode and the anode channel volumes for the respective species. Also, 

the inlet and outlet flows of each channel and the exchange flow between the gas 

diffusion layers are incorporated. The mass transport throughout each FC volume that has 

been considered in the model is graphically illustrated in Fig. 3.2. 
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Figure 3.2 Structure of the Dynamic Model 

3.4.1 Mass balances in cathode and anode channels 

The model equations consist of the material balances of each species. Every individual 

gas follows the ideal gas equation. The concentration of each gas in the channel is 

calculated based on conservation of mass assuming that the channel is homogeneous with 

respect to concentration and temperature. Applying mass balance to the cathode channel 

volume, assessing the inlet and outlet flows of the channel and the exchange flow 

between the channel and the gas diffusion layer, the following equations are derived: 

2

22 2

,
,, , , ,

dmO cach
m m mO GDLO cach in O cach outdt

      (1.1)  

2

2 2

,
, , , ,

dmN cach
m mN cach in N cach outdt

    (1.2)  

,
,, , , , ,

dmv cach
m m m mv caGDLv cach in v cach out evap cachdt

           (1.3) 

0, , , , ,m m ml cach in l cach out evap cach    
 (1.4) 
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In order to calculate the inlet mass flow rate of the individual species at the cathode 

(oxygen, nitrogen, vapor) the ratio of the mass of water vapor to the mass of dry air (ω) is 

used which is also referred to as humidity ratio. 

, , , ,
,

, , , , ,

( )
( )

m p TsatMv cach in cach in cach inv
ca in m M p p Taa cach in satcach in cach in cach in





 


 (1.5) 

The relative humidity (φ) gives a good representation of the humidity of the mixture as 

the maximum amount of water that the air can hold (saturation) is included. The 

saturation pressure (psat) is calculated using the equations proposed in Nguyen and White 

(1993). 

The mass flow rate of dry air (ma,cach,in) and vapor (mv,cach,in) entering the cathode is 

, , , , ,   cach in a cach in v cach inm m m     (1.6) 

, , ,
,

1
   

1a cach in cach in
ca in

m m





   (1.7) 

,
, , ,

,
   

1v

ca in
cach in cach in

ca in
m m







   (1.8) 

The mass flow rates of the oxygen and nitrogen to the cathode channel are calculated as 

follows: 

2 2, , , , ,
,

1
  , [ , ]

1i ii cach in a cach in cach in
ca in

m x m x m i O N


  


    (1.9) 

The mass fraction of oxygen (xO2) and nitrogen (xN2) in the dry air are defined as:  

2 2 2

1
aO O Ox y M M    (1.10) 

2 22

1(1 ) aN NOx y M M     (1.11) 

The molar mass of dry air (Μα) is expressed by the sum of the mass fraction of oxygen 

and nitrogen and the respective molar masses: 

22 2 2
(1 )a NO O OM y M y M     (1.12) 

The above equations (1.1-1.12) describe the dependence of masses from the inlet mass 

flows in the channel and the dynamics in the cathode’s GDL. The outlet mass flows are 

also required to conclude the description of the dynamics evolving at the cathode. We 
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assumed that no liquid water enters the cathode or the anode channel. Also, the 

membrane allows only the transport of water in vapor state due to its waterproof nature. 

Therefore, the liquid water is produced by the reaction inside the cathode and part of it is 

evaporated or condensed inside the channel. The evaporation/condensation dynamics 

inside the cathode are expressed by: 

, ,
( ) vcach cond

satevap cach fc v cach fc

V k M
m p T p

RT

 
  
 

  (1.13) 

The overall mass balance of the water in liquid phase is: 

,, , , evap cal cach out l caGDLm m m     (1.14) 

The outlet mass flow rate of the oxygen, nitrogen and vapor in the cathode channel can 

be determined by: 

2 2
,k=[ , , ]

,
, , ,

, ,

   O N v
k cach

k cach out cach out
a cach v cach

m
m m

m m



   (1.15) 

At the cathode the condensed liquid water is dragged by the air, so the outlet flow is:  

 , ,m K p poutcach out cach out cach 
 (1.16) 

The partial pressures of the gases in the channel are calculated using the ideal gas law and 

the overall cathode pressure is determined by the summation of the partial pressure of 

each species: 

  , ,     , =[ , , ]2 2

RTfc
p mk cach k cach k O N v

cach kV M
  (1.17) 

cachvcachNcachOcach pppp ,,, 22


 (1.18) 

The equations that describe the anode part of the fuel cell are analogous to the ones 

describing the cathode part. The values of all parameters used for channel dynamics are 

summarized in Table 3.2. 
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Table 3.2 Flow channel parameters 

Parameter Value 

mfc 1.378 kg 

Cpfc 772.57 J/kg·K 

Afc 25 cm2 

Vanch ,Vcach 0.136·10-4 m3 

δanch , δcach 1.25mm 

Kanch,out 0.001kg/(bar·s) 

Kcach,out 0.001kg/(bar·s) 

kcond 100 s-1 

 

3.4.2 Gas Diffusion Layer (GDL) dynamics 

Each gas diffusion layer is considered a volume with homogeneous properties. A mixture 

of hydrogen and water vapor flows through the anode GDL, while a mixture of oxygen, 

nitrogen, and water vapor flows through the cathode GDL. The above gases must diffuse 

throughout the GDL to reach the membrane. Nitrogen diffusion is neglected since it is an 

inert gas. The oxygen and hydrogen mass flow rates between the GDL and the cathode 

and the anode channel respectively are described by: 

2 2  , [ , ], ,m A M N k O Hk GDL fc k k GDL   (1.19) 

The molar flux of the vapor that is generated via the electrochemical reaction and the 

molar fluxes of the reactants are calculated from the electric current and the 

stoichiometry of the reaction as follows: 

fc
genv FA

I
N

2,
  (1.20) 

2 , 4O GDL
fc

I
N

FA
  (1.21) 
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2 , 2H GDL
fc

I
N

FA
  (1.22) 

The water vapor mass flow rate depends on the membrane active area, the vapor molar 

mass and the vapor diffusion molar flux flow between GDL and anode and cathode: 

2
  , [ , ], ,m A M N k an caH Ov kGDL fc v k   (1.23) 

where Nv,k is the molar flow rate per unit area (flux) of the vapor diffusion which is 

calculated by the effective diffusivity (Deff) the thickness of the diffusion channels (δGDL) 

and the concentration gradients (cv,anGDL,cv,caGDL): 

 
 , [ , ]

2

, ,
, ,

GDL

c
k an ca

v kch v kGDL
v k eff H O

c
N D  


   (1.24) 

As the oxygen is assumed to be in the same pressure with the channel, diffusion will be 

imposed by the electrochemical reaction. The effective diffusion coefficient that will be 

used for the calculation of the pressure is a function of the porosity (εpor) of the layer as 

described in Nam and Kaviany (2003): 

1

da

por p

p

D D poreff ref
 




 
   

  (1.25) 

where εp is a percolation threshold which for porous media is composed of two-

dimensional, long and overlapping, random fiber layers, εp is equal to 0.11 and da is an 

empirical constant which is 0.785 for cross-plane diffusion (Dutta et al., 2001). 

The partial pressure of water vapor in each GDL is calculated through the respective 

mass balance equation: 

, , ,,
fc

GDL

v gen v mem v cav caGDLdp N N N
RT

dt 
    

 
 (1.26) 

, , ,

GDL

v anGDL v an v mem
fc

dp N N
RT

dt 
   

 
 (1.27) 
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Since a uniform diffusion is assumed, the partial pressures of oxygen and hydrogen inside 

the respective GDL are expressed by: 

2
, , ,2 2 , 2

GDLRT fc
p pO GDL O cach O GDL

eff O
N

D


   (1.28) 

2
2 2

2
, , ,

,

fc GDLRT
p pH GDL H anch H GDL

eff H
N

D


   (1.29) 

 

3.4.3 Membrane model 

The membrane hydration model calculates the water mass flow rate that crosses the 

membrane and the water content in the membrane. Given that the membrane only allows 

the transport of vapor water, the following equations are only considering gaseous water, 

which is also assumed to be uniformly distributed over the surface area of the membrane. 

A set of semi-empirical equations are employed from Dutta et al. (2001). The overall 

mass flow rate of vapor that crosses the membrane is given by: 

2, ,v mem H O fc v memm M A N    (1.30) 

The flow of vapor water through membrane is affected by two phenomena, the electro-

osmotic drag (Nv,osm), caused by hydrogen ion drag, and the back diffusion (Nv,diff), caused 

by water concentration gradient between the cathode and the anode. These two 

phenomena are mathematically expressed by: 

,v osm d
fc

I
N n

A F
  (1.31) 

, ,
,

v cach v anch
v diff w w

mem

c c
N a D




  (1.32) 

Where nd is the drag coefficient, Dw is the diffusion coefficient, δmem is the membrane 

thickness and cv,anch, cv,cach are the water concentration in anode and cathode channel 
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respectively. Based on the combination of those phenomena the net overall vapor molar 

flow (Nv,mem) across the membrane is expressed by: 

, , ,v mem v osm v diff
N N N   (1.33) 

The vapor concentration at anode and cathode surfaces (cv,anch, cv,cach) of the membrane is 

a function of the water content at these surfaces and it is calculated by the membrane dry 

density ρmem,dry and the membrane dry equivalent weight Mmem,dry: 

,
,

,
  ,k=[anch,cach]

mem dry
v k k

mem dry
c

M


   (1.34) 

To calculate the water content at the membrane surfaces the vapor activity inside each 

GDL is (Springer et al., 1991): 

 ,k=[an,ca]
2 30.043 17.81 39.85 36k k kkch

a a a          (1.35) 

The vapor activity (ακ) is the ratio of the water vapor pressure to the saturation pressure 

which in case of gas it is equivalent to relative humidity (φκ) of each GDL channel.  

,
 ,k=[an,ca]

( )
v kGDL

sat fckGDL

p

p T
         (1.36) 

The relationship between the water content at the anode surface of the membrane and the 

electro-osmotic drag coefficient nd is given by Dutta et al. (2001): 

192 104.305.00029.0  anchanchd
n       (1.37) 

The water diffusion coefficient (Dw) is expressed by the membrane water content at the 

anode surface: 









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
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st
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D
w

D
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1

303

1
2416exp


      (1.38) 

Where (Dλanch) is modified based on the relative humidity level that affects the water 

content at the anode surface (λanch): 

10

10

10

10

10 2

10 (1 2( 2)) 2 3

10 (3 1.67( 3)) 3 4.5
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anch anch
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 

 
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
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



 


   


   
  

       (1.39) 
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The physical parameters in the membrane model and the GDL dynamics are taken from 

the fuel cell specifications used on the actual unit. These parameters are summarized in 

Table 3.3.  

 

Table 3.3 Membrane parameters 

Parameter Value 

Mmem,dry 1.1 kg/mol 

ρmem,dry 1.98·103 kg/m3 

δmem 8.89·10-5 m 

δGDL 1.9·10-5m 

εpor 78% 

 
 

3.5 Energy Balance 

A dynamic thermal model describes the behavior of the fuel cell temperature based on the 

overall energy balance equation of the fuel cell. The amount of energy which is not 

converted to electrical power is expressed by a set of various energy terms that are 

associated with the fuel cell operation: 

cofc ca chem R
fc

an nvfc rad elec

dT
m Cp Q Q Q P

dt
               (1.40) 

where fcm  denotes the mass of the fuel cell and fcCp  is the specific heat calculated for 

the system under consideration. The above equation takes into account the differences of 

the energy flow rates between the input and output streams at the anode ( an ) and the 

cathode ( ca ), the rate of energy produced by the chemical reaction ( chem ), the rate 

of energy which is released to the environment through radiation ( radQ ) and the rate of 

heat losses to the environment ( ambQ ). Also, the heat supplied by the heating resistance 

( RQ ) is included along with the heat which is removed by the air cooling system ( clQ ). 
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The last term elecP  is the amount of energy which is converted to electrical power. The 

changes of the anode and cathode energy flow rates are given by the changes of enthalpy 

as follows: 

2 2 ,H H O anan               (1.41) 

2 ,Air H O caca               (1.42) 

Only a part of the oxygen and hydrogen fed in the inlet channels participate in the 

reaction. Therefore, the remaining amount of energy passes through the system to the 

outlet. For each gas the enthalpy change is calculated as follows: 

2 2 2 2, , , , 2, ,H H anch in H an in H anch out Hm h m h            (1.43) 

2 2 2 2 2 2 2 2, , , , , , , , , , , , , ,( () )Air O cach in O ca in N cach in N ca in O cach out O ca N cach out N cam h m h m h m h            (1.44) 

 
2 2 2 2, , , , , , , , , , , ,  , [ , ]H O k v kch in H O v k in v kch out H O v l kch out H O lm h m h m h k an ca           (1.45) 

It is assumed that the required energy for the change of water phase is negligible 

therefore it is not incorporated in the above equations. In order to calculate the enthalpy 

differences at the anode and the cathode, the changes of mass specific enthalpies with 

respect to a reference state of the participated gases are used, assuming constant specific 

heat. 

 , , , 2 2 , [ , , ]i an in i an in ref vCph T T i H H O         (1.46) 

 , , , 2 2 2 , [ , , , ]i ca in i ca in ref vCph T T i O N H O        (1.47) 

  2 2 2 2 2, [ , , , , , , ]i i fc ref l vCph T T i H O N H O H O        (1.48) 

Where Tref is the reference temperature. 

The reaction that converts the chemical energy into electricity and forms liquid water is 

always exothermic and the produced enthalpy is calculated as the difference between the 

enthalpy of the produced water and that of the reactants at the anode and the cathode 

GDL. 

2 2 2 2 2 2, , , , , , , ,
2

( )r ref
chem H GDL H an in O GDL O ca in H O gen H O v

H O

H T
m h m h m h

M


 
       

 
      (1.49) 

Where ΔHr
o is the mass specific enthalpy of formation of liquid water. 
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A part of the produced heat is released to the environment through radiation: 

4 4 ( )rad em tot fc refQ A T T           (1.50) 

Where εem is the emissivity of the fuel cell body, the σ is the Stefan-Boltzmann constant 

and Atot denotes the overall outer surface of the fuel cell. 

 As stated earlier due to the reaction an excess amount of heat is generated during 

the operation of the fuel cell since only a part of the produced enthalpy is converted to 

electrical energy and the rest is converted to thermal energy, resulting in an increase of 

the temperature. Also, as the fuel cell has a different temperature than its environment, 

heat is lost through convection ( convQ ) to its environment. The amount of heat which is 

transferred to the surroundings consists of a natural convection term and a forced 

convection term.   

conv amb clQ Q Q            (1.51) 

The heat loss to the environment caused by natural convection is expressed by: 

( )totamb amb fc ambQ h A T T          (1.52) 

where hamb is the natural convection heat transfer coefficient. 

 A cooling system is used for the removal of the excess heat and to maintain the 

desired fuel cell temperature. The heat energy removed by the cooling system is 

expressed by: 

( )cl forc cl fc clQ h A T T          (1.53) 

2

1
clK

clforc clh K P          (1.54) 

where hforc is the forced convective heat transfer coefficient and Acl is the effective 

surface for the cooling system. The forced convection heat transfer coefficient is 

calculated based on two experimentally defined parameters (Kcl1,Kcl2) and the power (Pcl) 

of the fans.  

The heat supply for the initial heat up of the fuel cell is expressed by: 

R R RQ P x           (1.55) 

where PR is the power of the heater and xR is the fraction of power used for heating. The 

parameters used in the energy balance are summarized in Table 3.4. 
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Table 3.4 Thermal model parameters 

Parameter Value 

Atot 355.27·10-4 m2 

Acl 311.84·10-4 m2 

hamb 1.73·10-3 W/(m2K) 

Kc1l 1.24 

Kcl2 1.38 

PR 55.8W 

Pcl 25W 

 

3.6  Electrochemical equations 

The typical characteristics of the fuel cell are normally expressed in the form of a 

polarization curve, which is a plot of cell voltage versus cell current density. To 

determine the voltage-current relationship of the cell, the cell voltage has to be defined as 

the difference between an ideal Nernst voltage and a number of voltage losses (Fig. 3.3) 

as it is described in the current section.  

 

Figure 3.3 Theoretic vs. operational voltage 
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The main losses are categorized as activation, ohmic and concentration losses. The 

equation that takes under consideration the above losses expresses the actual cell voltage: 

cell nernst act ohm conc
V E V V V            (1.56) 

The above equation is able to predict the voltage output of PEM fuel cells of various 

configurations. Depending on the amount of current drawn the fuel cell generates the 

output voltage. The electric power produced by the system equals the product of the stack 

voltage Vcell and the current drawn I: 

cellP I V             (1.57) 

The Nernst voltage or open circuit voltage (OCV) falls as the current supplied by the 

stack increases. The reversible thermodynamic potential is calculated using the Nernst 

equation and can be expressed as: 

2 2

2

0 ln
2

H O

nernst
H O

p pRT
E E

F p

 
  
 
 

        (1.58) 

The activation losses are caused by the slowness of the reactions taking place on the 

surface of the electrodes. A portion of the voltage generated is lost because of the 

chemical reaction that transfers the electrons to or from the electrodes. The activation 

losses are described by the Tafel equation (Mann et al., 2000), which can be calculated 

as: 

1 2 3 4 2ln( ) ln( )act fc fc fc OV T T I T c              (1.59) 

This description for the activation overvoltage takes into account the concentration of 

oxygen at the catalyst layer and various experimentally defined parametric coefficients. 

 At a later stage of the fuel cell operation, as current density rises, ohmic losses 

(Vohm) prevail. They are derived from the membrane resistance to the flow of electrons 

through the material of the electrodes and the various interconnections, as well as by the 

resistance to the flow of protons through the electrolyte (Pathapati et al., 2004): 

5 6 7( )ohm fcV T I I               (1.60) 

Finally the mass transport or concentration losses result from the change in concentration 

of the reactants at the surface of the electrodes as the fuel is used. To calculate the 

diffusion losses a semi-empirical equation by (Kim et al., 1995) was used: 
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8 9exp( )concV I              (1.61) 

The empirical parameters are related to the conductivity of the electrolyte (ξ8) and to the 

porosity of the gas diffusion layer (ξ9).  

 In the above equations ξk,(k=1..9) represent experimentally defined parametric 

coefficients the value which can vary from stack to stack. The values of these parameters 

are presented in Table 3.5. Some of these parameters are defined by the estimation 

procedure as described in the subsequent section. 

Table 3.5 Electrochemical parameters 

Parameter Value 

1 2 3 4, , ,     1.3205, -3.12·10-3, 1.87·10-4, -7.4·10-5 

5 6 7, ,    3.3·10-3, -7.55·10-6, 7.85·10-4 

8 9,   3·10-5, 6·10-2 

The developed model can couple both the theoretical validity (mechanistic equations) and 

the inherent simplicity of the empirical application (semi-empirical equations). Based on 

the aforementioned equations the model structure and the interactions between its parts 

are shown in Fig. 3.4. 
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, ,, , ,cach in cach in cach inT m p

,v anGDLN
,, 2,v anch H anchp p 

Anode 
Channel

Cathode 
Channel

, ,, 2, 2,v ca O ca N cam m m   

,v caGDLN
,, 2,v cach o cachp p 

,, 2,v an H anm m  

,v memN

fcT

,, 2,v caGDL o caGDLp p 

2,H anGDLp 

,v memN

,v caGDLp 

,v anGDLp 

,, 2,v ca o GDLN m 

fcT

,, 2,v an h GDLN m 
fcT

fcT  Voltage

Anode GDL

Cathode GDL

Temperature

, ,, , ,anch in anch in anch inT m p

fcV

 

Figure 3.4 Fuel cell model structure 
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The described dynamic model is not system dependent as it can be adjusted to describe 

any other PEM fuel cell system by performing a number of sequentially executed actions. 

These actions are related to the determination of the physical characteristics of the PEM 

fuel cell, the unit specific parameters and finally the empirical parameters utilized by the 

electrical subsystem of the model. The value of the empirical parameters can be specified 

by a systematic parameter estimation procedure as long as experimental data or data from 

the manufacturer are provided. Finally the resulted estimated values are included to the 

model and a different set of data is necessary to explore the validity of the model against 

the fuel cell unit. The following section described the necessary actions to implement 

such procedure. 

 

3.7 Parameter estimation and model validation 

In order to assess the validity of the developed model, the PEM fuel cell unit described in 

the previous chapter, was used to generate experimental data under various conditions. 

Power load profiles up to the maximum point have been used for the estimation of model 

parameters and for the experimental validation of the model. There are two sets of model 

parameters: physical or estimated. The physical parameters are based on the fuel cell 

hardware specifications and listed in Tables 3.2, 3.3, 3.4 along with their values. The 

estimated parameters are the ones that cannot be physically determined. For this reason a 

formal systematic parameter estimation technique was employed in order to find the 

optimal values for the parameters. The purpose of this formal technique is to minimize 

the deviation between the model predictions and the experimental data. 

 The aforementioned model describes voltage as a function of the current, 

temperature and partial pressures. The polarization curve resulting from a set of 

electrochemical equations includes a few parameters, some of which are unknown, 

depending on the operating conditions, while others have been taken from the open 

literature. When an experiment is executed, to obtain the polarization curve, the voltage 

(dependent variable) is measured directly, but the parameters are not. Therefore, an 

estimation of these critical parameters is necessary in order to increase the predictive 

power of the model. The estimation procedure results in the determination of the optimal 
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values for these parameters. After the adjustment of the model to the optimal values, a 

validation procedure was performed under different operating conditions to assess the 

model accuracy.   

 

3.7.1 Procedure and Representative set of data used 

The technique that was followed for the parameter estimation relies on the variation of 

current, which is directly connected to the actual power demand and affects the 

temperature and the partial pressures of the reactants in the fuel cell. Consequently the 

change of the current affects voltage according to the polarization curve. Thus, the focus 

of the parameter estimation procedure is on the semi-empirical equations that describe the 

voltage losses. The estimation of critical voltage drop coefficients was made with using 

measurements that allowed the optimal tuning of the semi-empirical model. 

 The experimental procedure consists of reading the dynamic response of the cell 

voltage and cell power after the occurrence of small successive changes in the load 

demand. This experimental procedure intended to derive the fuel cell polarization curve 

and acquire data from the overall operational range. Two sets of experiments were 

conducted for the generation of data for the parameter estimation procedure. More 

specifically, in each experiment 11 different load levels were requested from the fuel cell. 

The duration of each request was set to 2min which is sufficient enough to obtain a 

steady-state voltage. The requested load varied from 0A to 20A with a step change of 2A. 

The varying operating condition was the pressure, 0barg and 1barg. The FC temperature 

was kept constant at 65°C and the humidification temperature was 75°C. The air flow 

was 2000cc/min and the hydrogen flow 500cc/min. The reproducibility of the 

experimental procedure and the accuracy of the results were ensured by the two above 

mentioned sets of experiments, consisting of four experiments at each condition. 
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3.7.2 Parameter Estimation and Results  

The developed model has been implemented in the gPROMS modeling environment 

(PSE Ltd, 2010). Once the model was constructed, a sensitivity analysis was performed 

to identify the most critical model parameters which were further optimally selected. A 

detailed sensitivity analysis based on simulation results revealed the most critical 

parameters to be estimated. Thus comparing the prediction of the model to the 

experimental data a major deviation was observed at the beginning of the polarization 

curve, the area where the activation losses appear. Therefore, a parameter related to the 

activation losses equation was selected for the estimation procedure. Another important 

deviation was observed in the slope of polarization curve at the area of the ohmic losses. 

This indicates that the parametric coefficients at the ohmic losses should optimally be 

estimated. Finally the area of the concentration losses were not considered, as it should be 

avoided during normal operation, in order to avoid system failure. 

 A nonlinear regression technique with a constant variance model defining a 

maximum likelihood estimation problem was employed to determine the optimal values 

for the selected parametric coefficients. For the scope of the estimation procedure the 

model parameters (ξ1, ξ7) were expressed as (θ1, θ2) representing the estimated variables 

used in the maximum likelihood problem.  

 In the estimation procedure the parameters can be fitted independently or 

simultaneously. Although the independent parameter estimation is numerically more 

reliable, it cannot represent the coupling between the parameters; therefore the 

simultaneous approach is used. The data acquisition of the system variables is performed 

by various sensors. Each variable is associated with one sensor, which introduced an 

uncertainty in the data measurements or otherwise stated a measurement error. When 

solving an estimation problem the measurement errors (εi) are modeled by a variance 

model. In the aforementioned testing unit the measurement errors are assumed to be 

statistically independent and normally distributed with zero mean and therefore a 

constant variance model was used:  

2 2 2 2( , ) ( )z B z               (1.63) 
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where z is the model prediction of the measured quantity, ω is a parameter of the variance 

model and ε is a small but non-zero constant that ensures that the variance is still defined 

for predicted values that are equal to zero or very small. 

 

Table 3.6 Parameters of the estimation procedure 

Model Prediction Measurements Parameter ω Constant ε 

1z  1z  ω1=0.05 ε1=0.1·10-3 

2z  2z  ω2=0.0047 ε2=0.1·10-5 

 

The proposed nonlinear regression technique attempts to model the relationship between 

the measured data and the response of the model by fitting a quadratic equation to 

observed data. The estimation procedure is based on a maximum likelihood formulation 

which provides simultaneous estimation of parameters in the dynamic model of the fuel 

cell and the variance model of the measuring sensors. Τhe maximum likelihood goal can 

be expressed by the objective function: 

2 2 2 1

1 1

1
ln(2 ) min ln( ) ( ) ( )

2 2

iji
nMnVnE

ijk ijk ijk ijk
i j k i

N
J z z    

  

            (1.64) 

where N is the total number of measurements taken during all experiments, θ are the 

model parameters to be estimated, constrained between a lower and an upper bound, nE 

are the number of experiments performed (nE=8), nVi are the number of variables 

measured in the ith experiment (nVi=2) and nMij are the number of measurements of the 

jth variable in the ith experiment (nMij=660).  

 The solution of the maximum likelihood problem determines the values for the 

uncertain physical and variance model parameters, (ξ1, ξ7). These values maximize the 

probability that the dynamic model will predict the measurement values obtained from 

the experiments. The measured variables ( 1 2,z z  ) are the produced voltage and power, 

having a sample time of 2s and (z1,z2) are the model predicted values. The variation of the 

load is handled as a piecewise constant term during the estimation procedure, using the 

same interval duration (2min) as described in the experimental procedure. After the 
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solution of the aforementioned problem in gPROMS the estimated parameter values are 

summarized in Table 3.7. 

 

Table 3.7 Results of the parameter estimation procedure 

Variables Est. Value Up Bound Low Bound Std. Dev 95% Conf Int 95% t-value Ref. t-value 

1  1.3205 1.4 0.954 31.04 10  32.04 10  26.464 10  
1.645 

2  47.85 10  34.3 10  61.1 10  64.12 10  68.1 10  20.969 10  

 

The estimation results have sufficient accuracy and therefore the values of the parameters 

can be applied to the model for its validation. This is justified by the fact that the standard 

deviation is more than two orders of magnitude lower than the estimated value. Also, a 

clear indication of this accuracy is the 95% t-values of both estimated parameters which 

are larger than the reference t-value.  

 Besides the 95% confidence interval of each estimation parameter, another 

measure that indicates that the parameters are optimally defined is the confidence 

ellipsoid. It takes into account the correlation between the estimates of θ1 and θ2. The 

individual 95% confidence intervals are appropriate to validate the possibility of 

specifying the range for each parameter under consideration independently of the value of 

the other parameter. The confidence ellipsoid interprets these intervals simultaneously. 

This alternative significance test is considered in Fig. 3.5 and it is based on whether the 

elliptically shaped area representing the joint confidence region encloses the optimal 

point at its center neighborhood. The joint confidence region illustrates that the 

parameters are known with the same precision and that the estimated point is optimal for 

both of them. 
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Figure 3.5 95% Confidence ellipsoid of the estimated values 

Another measure which indicates that the estimation was performed successfully is the 

examination of the residuals using a corresponding diagram which illustrates the 

distribution of the observed error against time. 
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Figure 3.6 Residual Analysis 

Fig. 3.6 illustrates a horizontal band of residuals   which is indicative that a long-term 

effect is not influencing the data. Also, the observed error between the experimental and 

the predicted data is independent and it is randomly distributed. There are no significant 

outliers present which confirms that the applied regression technique provided accurate 
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results. This accuracy is better depicted by the corresponding polarization and power 

curves in Fig. 3.7.  
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Figure 3.7 Experimental and model voltage and power (0barg, 1barg) 

Model predictions are in a very good agreement with the experimental data for both 

conditions. It is found that the mean square-root difference between the experimental and 

the predicted voltage is 0.0389V. Thus, the optimal parameters provide to the model the 

accuracy to properly describe the behavior of the output voltage.  

 The optimal values for parameters ξ1(θ1) and ξ7(θ2)  are presented in the second 

column of  Table 3.7. It is not possible to fairly compare these parameters with those 

from other fuel cells units, since they are related to the specific system and they are 

empirical in nature. This is clearly illustrated in both the statistical metrics (Table 3.7, 

Fig. 3.5-3.6) and the comparison against experimental data   (Fig. 3.7). 

3.7.3 Model validation 

To perform a comprehensive model validation study, the model with the optimal 

parameters was simulated with a few step changes of the input variable (current). In this 

section in order to validate the accuracy of the derived model (which incorporates  the 

optimal parameter values), we compare its predictive power with new experimental data 

at various operating conditions. These conditions are different from the ones used for the 

parameter estimation procedure. An indicative set of experiments are presented to 
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demonstrate the accuracy of the model. The varying condition between the validation 

experiments is related to the pressure at two different levels, 0.5barg and 1.5barg. Fig. 3.8 

illustrates a comparison between model prediction and experimental data. Again a good 

agreement is achieved.  
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Figure 3.8 Experimental and model voltage and power (0.5barg, 1.5barg) 

It is clear that under different pressure conditions the model response is very close to the 

experimental behavior for the whole range of current variation. Fig. 3.9 further illustrates 

the accuracy of the model with respect to response in two step changes in current (6A, 

8A). The sampling time is 500ms and the duration of each step is 120s. A good 

agreement is observed between the measurements and the model predictions with a 

maximum error of 0.0027V. 
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Figure 3.9 Voltage validation (0.5 barg, 1.5 barg) 
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During step changes in current an adequate voltage prediction is achieved by reproducing 

both the steady-state behavior between the step change and the dynamic behavior due to 

the instantaneous increase in current. In summary the proposed model demonstrates an 

excellent behavior both at steady and transient conditions and therefore it can be used 

both in startup and during variable load changes. 

 

Figs 3.12 and 3.13 illustrate the steady-state and the dynamic response of the model  

against the experimental data from the unit at different temperature (55°C) compared to 

the one where the parameter estimation took place (65°C) the FC. It is observed that a 

negligible error exists between the model prediction and the real operation of the system 

both at steady-state and dynamic conditions.  
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Figure 3.10 Steady State Response 
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Figure 3.11 Dynamic Response 

The mean square-root difference at steady-state was 0.018V while at dynamic step 

changes was 0.024V. The above metric was calculated using 600samples over a period of 

600s and 660samples over a period 1320s for the steady-state and the dynamic case 

respectively. This measure is a clear indication that the model has the required accuracy 

to describe the behavior of the system. 
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3.8 Concluding remarks 

In this chapter the basic criteria for selecting the appropriate modeling approach and 

model features are outlined along with an extensive literature review on the available 

PEM fuel cell models. Then a new dynamic model is presented relying on mass balances, 

an energy balance and electrochemical equations. To model mass transport phenomena a 

five volume approach is adopted that considers the mass dynamics in the gas flow 

channels, the gas diffusion layers (GDL) and the membrane. The energy balance includes 

all the necessary terms that describe the energy flow rate at the anode and the cathode, 

the rate of produced energy by the chemical reaction, the heat supplied by the resistance 

along with the various heat losses and the energy which is removed by the cooling 

system. Finally the electrochemical part includes a number of empirical parameters that 

model the voltage losses for the entire operating range of the fuel cell. Based on a formal 

parameter estimation procedure the optimal values for the empirical parameters are 

derived and the predictive power of the resulted model is validated against experimental 

data at different pressure and temperature conditions. 

 Overall the qualitative and quantitative response of the developed model indicated 

that it can capture accurately enough the behavior of the PEM fuel cell unit, a fact that 

guarantees its suitability for the subsequent model-based control studies.  
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Chapter 4 
 

 

 

4 Control Issues and Challenges of PEM Fuel 

Cell Systems 
 

 

 

The performance of a PEM fuel cell (PEMFC) is affected by the operating conditions and 

the subsystem’s interactions as various phenomena are evolving during its operation. 

Therefore, it is necessary to be able to understand qualitatively and predict quantitatively 

the optimal operation of an integrated fuel cell system in order to protect its longevity and 

preserve its long-term performance. To achieve that it is important to apply a control 

scheme able to address the numerous challenges that arise during the operation of the fuel 

cell and to ensure a stable performance. But prior to the selection of an appropriate 

control scheme, it is essential to fully comprehend the nature of the control problem. 

Based on this motivation the scope of this chapter is to: 

 provide an overview of the operating issues that affect the response of the system,  

 determine the desired operating goals,  

 propose an appropriate control configuration (in terms of manipulated and controlled 

variables of the system), 

 formulate a mechanism to improve the operation of the PEMFC unit,  

Furthermore, a literature review with some indicative control studies is provided that set 

the context for the control framework. 
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4.1 Operating issues and management subsystems 

The response of a PEMFC system is affected by a number of design and operating 

factors, such as the properties of the materials that are used, the component of the 

subsystems, the partial pressures of hydrogen and oxygen in the gas channels, humidity 

of the membrane and the fuel cell temperature. Some of these factors are determined by 

the design specifications of the system and cannot be modified during the operation of the 

system while other factors, that influence the environment and the operating conditions, 

can be managed by proper control actions (Yuan et al., 2010). Overall the behavior of a 

PEMFC is highly nonlinear and is governed by the complex interaction of its subsystems. 

Within a PEMFC several processes occur, but those that have the greater influence on the 

performance are related to the:  

(a) the electrochemical reactions in the catalyst layers,  

(b) the proton transfer in the electrolyte membrane layer and  

(c) mass transport within all regions.  

From these processes some management issues arise related to water, heat and gas 

management. To achieve a stable and good performance these issues need to be carefully 

handled. Also, the auxiliary subsystems and their topology are important factors that 

should be carefully considered. For instance an increase at the air flow rate and 

consequently the operating pressure, improves the produced power, but increases the 

auxiliary consumption. Humidification of the reactant gas is essential to keep the 

membrane hydrated, but too much humidification can cause water flooding. So there 

must be a balancing point for the operating conditions (Berg et al., 2004). Furthermore, it 

is necessary to analyze the trade-off between the various parameters of the system in 

order to define the optimum region of operation as this choice leads to different 

characteristics for the unit regarding its performance, effectiveness and safety. However 

this is only feasible by optimizing the corresponding operating parameters such as the 

humidity, the temperature, the gas flow rate and the pressure as these parameters directly 

affect the water, heat and gas management, so that the fuel cell performance is finally 

determined.  
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4.1.1 Water and heat management 

As the fuel cell operates the fuel cell produces, besides the useful power, two by-

products, water and heat. Thus, the integrated system must include the means for their 

removal. A common practice is to direct the water to a drain while the heat can be 

discarded to the environment through the cooling system. The performance of PEM fuel 

cells is affected by the water formation and its removal especially when the operation is 

at high current densities, where the hydration of the membrane plays any important role 

in the overall behavior of the system (Bao et al., 2006). The water transport can be 

determined by three different mechanisms:  

(a) the electro-osmotic drag from the anode to the cathode due to potential difference  

(b) the back diffusion from the cathode to the anode due to concentration gradient  

(c) the pressure difference between the cathode and anode.  

These water transport mechanisms result in a conflict that on the anode side, the 

membrane tends to dry out due to the electro-osmotic transport while on the cathode side, 

flooding caused by excessive liquid water accumulation may block the pores of the 

catalyst layers, the gas diffusion layers or even the gas channel (Baschuk and Li, 2005). 

Also, the excess of water also aggravates other problems such as corrosion and 

contamination of components. On the other hand the flooding phenomenon is dominated 

by the condensation and evaporation process in the cathode (Nguyen et al., 2003), which 

is strongly affected by the temperature distribution. Therefore, a proper balance between 

water formation and water removal is necessary (McKay et al., 2005). 

The heat management in a PEMFC is inherently coupled with the water transport.  

Overall the balance between the produced heat and its removal determines the operating 

temperature of a PEMFC. Subsequently the temperature and water vapor pressure 

profiles within the MEA dictate the phase of water present in various regions and its 

transport from the membrane to the gas channels (Adzakpa et al., 2008). Overall the fuel 

cell temperature is influenced by the inlet flows and the reaction rate. Thus, thermal and 

water transport mechanisms are intimately interlinked and one cannot study the fuel cell 

behavior without considering both of them (Muller and Stefanopoulou, 2006). Improper 
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heat management can cause membrane dehydration or cathode flooding. From the 

electrochemical point of view, an excessive increase of temperature increases the 

membrane resistance to the conduction of the protons and as a result the ohmic losses are 

intensified.  

These stringent thermal requirements present a significant heat management 

challenge that affects the humidity of the gases and the temperature of the fuel cell. The 

water and heat management subsystem include the hydrators heating system, the heated 

lines between the hydrators and the inlet of the anode and the cathode, the air cooling 

fans and the heat-up resistances of the fuel cell. 

 

4.1.2 Gas supply management 

The gas supply management is concerned with the proper supply of the hydrogen and air 

to the fuel cell system. As the fuel cell operates there must be available a specific 

stoichiometric ratio of air and hydrogen as the power demand changes. On one hand the 

air supply should be carefully handled as it allows the electrochemical reaction to take 

place by utilizing the reactant and it determines the quality of the energy conversion rate 

(Djilali and Lu, 2002). On the other hand the hydrogen is the fuel that drives the reaction 

so respective management should take place. An insufficient oxidant supply might lead to 

an undesirable starvation phenomenon that can cause performance deterioration and 

accelerate the fuel cell degradation. 

 In commercial systems the air is supplied to the cathode by an air compressor 

while in small-scale systems, such as the one used in the current thesis, the air is provided 

by a pressurized cylinder due to the low flow rate requirements. On the anode side the 

hydrogen is usually stored in high pressure cylinder and is supplied through a mass flow 

controller. 
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4.1.3 Power management 

An equally important factor, as the heat and water management, is related to the power of 

the fuel cell. In various works the demanded power which is achieved though proper 

current or voltage manipulation (depending on the mode of operation of the converting 

device), is treated as an external disturbance when power management is not considered 

(Vahidi et al., 2006). But when an overall power management scheme is designed and 

developed it is important to be able to determine the current that will be applied to the 

fuel cell for the fulfillment of the requested load. More specifically when a centralized 

approach is used the demanded power is achieved though a multivariable control 

approach that considers the current as a manipulated variable. The appropriate current is 

determined by the control configuration and is set to the DC/DC converter or to the DC 

electronic load when the converter and the load are topologically merged into one 

common device. The later configuration is a common practice where fuel cell stations are 

used for testing purposes or during the initial setup of a stationary system where the load 

in not connected from the beginning.  

 

4.1.4 Temporal behavior and membrane degradation 

Another interesting factor that should be considered during the design of a control system 

is the temporal behavior of the fuel cell. As the fuel cell system operates over time, the 

produced voltage might deviate from its nominal. There are two main reasons that justify 

this deviation, hydration issues related to temperature and water management and 

material issues related to membrane degradation.  

 The voltage deviation which is caused by the lack of hydration is reversible while 

the deviation caused by degradation is not reversible. The main consequence of 

dehydration is drying of the proton-conducting membrane. When the system starts-up a 

temporary deviation may occur by the fact that the membrane might not be fully 

hydrated. This deviation is reduced after a while when the membrane is properly hydrated 

and afterwards the system’s response is stable when repeated experiments are performed 

at the same conditions.  
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 On the other hand, for longer periods of time, (e.g. few months) a deviation from 

the expected behavior is observed due to the degradation in the membrane and this is a 

permanent deviation. The voltage degradation rate is normally an indication of the fuel 

cell state of health and it ranges between 1 and 10 μV/hr (Schmittinger and Vahidi, 2008) 

which can be increased at extreme operating conditions. The performance of the fuel cell 

deteriorates through time and this is one of the main issues that affect the durability of 

fuel cell systems.   

 Such behavior is also encountered by the system that was used during this thesis. 

Driven by these practical issues it is important to rely on a control scheme able to 

compensate such an offset in the system’s behavior and simultaneously can handle the 

management of the interacting subsystems.  

 

 According to the aforementioned issues the performance of an integrated fuel cell 

system is highly affected by the proper water, heat and gas supply management which are 

governed by a respective set of operating parameters and variables. Based on that, the 

optimum operation can be defined by the use of a control approach, able to provide 

information regarding the state of the water, the evolution of the humidity level and the 

gas flow. Fig. 4.1 illustrates the conceptual boundaries of the management subsystems of 

the PEM fuel cell unit which was described in Chapter 2. 

 

Figure 4.1 Management subsystems of the PEM fuel cell unit 
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4.2 Literature review on control of PEM fuel cell systems 

Based on the aforementioned analysis a fuel cell system typically consists of various 

subsystems for power conditioning, air, fuel and heat management. Although there is a 

coupling among these subsystems, the control strategies proposed in the literature deal 

with the respective control issues in a decentralized or centralized manner. Some 

strategies focus in a particular objective aiming at the regulation of a specific subsystem 

while others on the overall integrated system. Also, besides the control objective which is 

related to the respective subsystem of the fuel cell, a multitude of different type of 

controllers have been proposed in the literature and different control configurations can 

be employed for achieving the same objective. Over the past few years significant 

developments have been made in the area of fuel cell control. An indicative only review 

of the various control approaches using different type of controllers follows. 

4.2.1 Feedforward and feedback control strategies 

A feed-forward/feedback scheme for power tracking based on manipulations of cathode 

flow as well as fuel cell current output was proposed in Pukrushpan et al. (2004) where 

the feedback scheme also employs a state observer driven by a system model and 

measurements of compressor flow rate, manifold pressure and stack voltage. The issue of 

air starvation in PEMFCs has also been extensively studied in Pukrushpan et al. (2004b) 

while another approach includes the use of a reference governor formulation that imposes 

an oxygen concentration constraint (Sun and Kolmanovsky, 2005). A feedback control 

structure can address several PEMFC control objectives, including power, temperature, 

humidity and oxygen control. For example the cell power was controlled by a cascade 

control structure in Lauzze and Chmielewski (2006). Another approach for the air feed 

control problem of a fuel cell is the use of single input single output sliding mode 

controller making that utilizes a low-order linear model (Garcia-Gabin, 2009). The 

regulation of the output power is addressed in Woo and Benziger (2007) by employing a 

feedback control strategy using dry feeds at exact stoichiometry with complete utilization 

of the hydrogen and the oxygen. In Zenith and  Skogestad (2007) a control system based 

on switching rules in order to control the converter’s output voltage using a simplified 
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dynamic model, while in Zenith and Skogestad (2009)  the study deals with the relatively 

slow transients associated with the mass and energy balances resulting a control scheme 

with the control loops for power (or voltage), hydrogen pressure, temperature and oxygen 

concentration. An optimal control strategy that minimizes the hydrogen consumption in a 

hybrid fuel cell system is proposed in Rodatz et al.(2005). 

4.2.2 Adaptive control strategies 

A number of adaptive control strategies have also been proposed in the literature. An 

adaptive control algorithm (ARMAX model based) that dynamically stabilizes the 

oxygen excess ratio around an optimal level is presented in Zhang et al. (2008). In 

Zumoffen and Basualdo (2010) an adaptive predictive control with robust filter is 

analyzed using a nonlinear dynamic control oriented model and the feedforward actions 

are improved by an adaptive feedback structure while in Jiang et al. (2007) an adaptive 

strategy that adjusts the output current set-point of the fuel cell is presented. A linear and 

a nonlinear adaptive controller are synthesized in Bao et al. (2006) that aim to the control 

independently the air stoichiometric ratio, gas pressures and power output by 

manipulating the air compressor and the output valves. Α simulation study is performed 

in Kolavennu et al. (2011) using a SISO adaptive controller in conjunction with a linear 

reference model for tracking the power profile in a fuel cell system. In Methekar et al 

(2010) the power density is controlled by the voltage and air flow manipulation targeting 

the power peek of the fuel cell incorporating a nonlinear black box time series model in 

conjunction with a parameter estimation scheme using recursive least squares. 

4.2.3 Advanced control strategies 

Some other approaches proposed advanced control strategies for the PEMFC. For 

instance in Wu et al. (2009) a multivariable predictive control with constraints using a 

reduced order model is presented that guarantees a safe operation as well as long lifetime 

of the fuel cell in a hybrid system. On the other hand, a single variable model-based 

predictive control is presented in Gruber et al. (2009) to control the oxygen excess ratio 

using the compressor motor voltage to manipulate the air flow rate which is also tested 

experimentally. In Danzer et al. (2008) a model-based multivariable controller is 
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developed that aims at the control of the cathode pressure and the oxygen excess ratio of 

a PEMFC using the oxygen mass flow controller and the outlet throttle as actuators. A 

tracking observer was employed to estimate the partial pressure using the measurement of 

the air pressure at the outlet throttle of the fuel cell system. A nonlinear model predictive 

controller was designed in Golber and Lewin (2004) to cope with the static gain reversal 

and control the power using current as manipulated input. The issue of power control is 

addressed by the use of unconstrained linear MPC and linear quadratic Gaussian (LQG) 

controllers that incorporate state space models in Methekar et al. (2010b), where the 

behavior of the unconstrained LMPC and the LQG is experimentally explored using a single fuel 

cell.  Overall the dynamics of the PEM fuel cell are highly nonlinear and they are affected 

by the operating conditions, which include the effects of the output current, the 

temperature and the humidity (Cho  et al., 2008; Benziger et al., 2006). 

 In the context of advanced control strategies an approach that utilizes explicitly a 

MPC formulation has been also proposed. Puig et al. (2007) proposed a fault tolerant 

explicit formulation that uses as manipulated variables the air feed through the 

compressor voltage and includes the detection of faults in the actuator that affect the 

compressor range of operation. Arce et al. (2010) developed an explicit predictive control 

strategy in conjunction with a load governor and a PI controller that aims at the 

avoidance of oxygen starvation criterion and the maximum efficiency of the system.  

4.2.4 Experimentally validated control studies  

Besides the numerous works that perform simulation-based design and analysis of the 

behavior of the fuel cell system, there is a need for experimental verification through 

online deployment of the various proposed control schemes Varigonda and Kamat, 

(2006). A number of experimental studies can be found in the literature that exemplify 

the use of various control configurations focusing on one objective at a time. The safety 

of the system which is maintained by avoiding air starvation has been experimentally 

achieved by an adaptive controller (Yang et al., 2007), a sliding mode controller (Gabin 

et al., 2010), (Talj et al., 2010), a super twisting algorithm (Kunusch et al.,2012), a 

combined mpMPC with a PI control scheme (Arce et al., 2010) and an NMPC approach 

based on a Volterra series model (Gruber et al., 2012).  
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 On the other hand, the temperature management can be achieved by a PI loop 

(More et al., 2010) or an explicit MPC controller (Arce et al., 2011) while the pressure is 

controlled using an adaptive state feedback scheme (Tong et al., 2009). Another 

interesting work addresses the issue of maximum efficiency as a function of 

stoichiometry, temperature and humidity using an adaptive control scheme (Kelouwani et 

al., 20012).  

4.3 Control objectives for the PEM fuel cell unit 

As stated earlier the durability and performance of a PEM fuel cell are influenced by the 

operating conditions. Therefore, it is of vital importance to control the various 

subsystems responsible for maintaining a stable operating environment while ensuring an 

economically attractive operation. Overall the objectives for the control system are to 

effectively address the issue of power generation in an optimum manner. In this context 

the optimality is defined by the three constituents: 

 Operation at a safe region regardless of the load fluctuations. 

 Minimization of the fuel consumption and air supply. 

 Maintenance of stable temperature conditions ensuring proper gas humidification. 

 One of the most important considerations for the control of the fuel cell is to 

guarantee that the operation is within a safe region which is expressed by avoiding fuel 

and oxidant starvation. It is important to prevent such phenomenon as it affects the 

longevity of the fuel cell and can cause irreversible damage to the membrane 

(Schmittinger and Vahidi, 2008). Moreover this is very critical when abrupt changes on 

the load occur. Such case can cause a sudden increase for gas supply demand since the 

oxygen and hydrogen react instantaneously and the level of the gases are reduced 

drastically.  

 From the fuel point of view, it is desirable to supply the amount of hydrogen close 

to the required one. A recycling line is not yet present at the fuel cell unit which means 

that the unreacted hydrogen will be released to the vent. Therefore, one of the control 

objectives is to minimize the supplied hydrogen in conjunction with the previous 

objective for safe operation.  
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 Another significant factor that should be considered is the proper handling of the 

operating temperature, as it affects the long-term performance of the fuel cell. The 

operation at an elevated temperature accelerates the degradation phenomena and can 

influence the durability of the fuel cell. Furthermore, the temperature directly affects the 

rate of chemical reactions and transport of vapor and reactants (Ahn and Choe, 2008). As 

the hydrators, used for the humidification of the gases, operate at a stable temperature 

point, it is important to maintain the fuel cell operating temperature, in order to keep the 

water content of the gases at a desired level.  

4.3.1 Variables and control configuration 

In the considered system there are four distinct control objectives, one direct external and 

three indirect internal objectives. The main control objective is to fulfill the varying 

power demand at acceptable response time, avoiding oxygen starvation while minimizing 

the hydrogen consumption at stable temperature conditions. Once the environment of fuel 

cells has been clearly determined, it is necessary to identify the controlled and 

corresponding manipulated variables which will be used to device the appropriate control 

scheme that make the system to respond as requested. 

 More specifically the desired power ( spP ) is delivered by properly manipulating 

the current (I) which is applied to the fuel cell by the converter (DC electronic load) 

connected to the system. In our case the mode of operation for the electronic load is set to 

constant current (CC) since the boundaries of the system were identified by the 

experimental study performed during the activation of the fuel cell.  

 The safe operation is maintained by controlling the reactants at a certain excess 

ratio level in order to avoid starvation caused by sub-stoichiometric reaction conditions at 

the cathode and the anode. The safe operating region for the cathode and the anode is 

defined by two unmeasured variables, the oxygen and hydrogen excess ratios ( 2 , 2H ), 

expressed as the ratios of the input flow of each gas to the consumed quantities per unit 

time due to the reaction (Pukrushpan et al., 2004):  

2, ,
2

2,

O cach in

O caGDL

m

m
 




          (4.1) 
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where 2, , 2, ,,O cach in H anch inm m  are the oxygen and hydrogen input flows at the channels while 

2, 2,,O caGDL H anGDLm m  are the respective reacted quantities. In order to reach the required excess 

ratio set-point the air and hydrogen flows ( 2,air Hm m  ) are used as manipulated variables. 

The safety of the operation is ensured by maintaining the excess ratios above one 

( 2, 2,1, 1SP H SP    ). 

 The power generation and the starvation avoidance objective can be achieved by 

control actions that aim at an accurate set-point tracking of 2, 2,, ,SP SP H SPP   . On the other 

hand the temperature control ( ,fc SPT ) involves two mutually exclusive subsystems, one for 

the heat-up and another for the cooling; therefore a number of requirements are 

considered besides the set-point tracking ability of the controller: 

 Maintain the temperature at the desired level having an allowable deviation of +/- 1C 

 Avoid concurrent operation of the heat-up and cooling  

 Exhibit stable operation 

 Avoid large overshoot after step changes  

The fuel cell temperature is controlled by manipulating the operating percentage of the 

heating resistance ( htx ) and of the cooling fans ( clx ) of the system, respectively. Based 

on these variables the resulted conceptual control configuration is shown by Fig. 4.2. 

 

Figure 4.2 Control configuration 
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Fig. 4.2 illustrates the entities of the system and the flow of information related to the 

controller and the fuel cell including the measured variables from the unit: 

 the power, current and voltage ( , ,fc fc fcI V P ), 

 the ambient and fuel cell temperature ( fcT , abmT ) 

 the mass flow rates ( , 2,,air in h inm m  ). 

The type of the controller and the number of the controllers per objective are the subject 

of the subsequent sections. 

 

4.4 Experimental analysis of O2 and H2 excess ratios  

The control of the air supply is critical for the safety of the system while the control of 

hydrogen supply can set the inlet hydrogen flow rate to the required one which results to 

fuel savings. To achieve these objectives it is important to be able to adjust the set-point 

of the respective excess ratios to achieve a safe and economic operation. But the 

appropriate set-point selection is accomplished only if the relationship between the 

produced power and the excess ratio levels of oxygen and hydrogen is known for the 

specific fuel cell unit. Therefore, an experimental analysis under a wide range of flow 

rates and input current is performed that reveals this correlation.  

 Moreover, an additional design constraint is imposed at the earlier described 

control configuration related to a physical limitation of the hydrogen mass flow controller 

used in the unit. According to the calibration sheet of the mass flow controller (MFC) the 

accuracy of the measurement or the control of the flow rate is questionable below 

180cc/min. Thus, this is the lower bound that the controller of the unit must consider. 

The set of experiments were performed at constant current level (1A – 9A). During each 

experiment the flow rate was modified from 180cc/min to 800c/min with a step increase 

every 30 seconds by 50cc/min until the upper point was reached. As 2 and 2H  are 

unmeasured variables they are calculated online by the nonlinear model of the fuel cell. 

Figs 4.3 and 4.4 show the relationship between the produced power, the flow rate and the 

excess ratio of oxygen and hydrogen respectively. 
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Figure 4.3 Produced power at various air flow rates and oxygen excess ratio 
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Figure 4.4 Produced power at various hydrogen flow rates and hydrogen excess 

ratio 
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It is observed that at low current levels the influence of air and hydrogen excess ratios is 

limited while at high current levels the excess ratios affect the stability and performance 

of the system. For certain current levels the increase of excess ratio causes an increase of 

the power but after a point the power decreases as the electrical resistance rises due to the 

increase of water removal rate which probably causes dehydration. To overcome the 

combined effects of such complex phenomena, the nominal values of 2 and 2H which 

are used as set-points of the respective control objectives of the control scheme, are 

determined from these experiments. Table 4.1 shows the minimum and the maximum 

achievable excess ratio levels of each experiment for the different current. 

 

Table 4.1 Minimum and maximum achievable excess ratios (current 1A – 9A) 

Current O2 Excess ratio H2 Excess ratio 

 minimum  maximum minimum maximum

1A 4.20 21.04 3.66 18.43 

2A 3.36 16.83 2.92 14.75 

3A 2.80 14.02 2.44 12.29 

4A 2.10 10.52 1.83 9.21 

5A 1.68 8.41 1.46 7.37 

6A 1.40 7.01 1.22 6.14 

7A 1.20 6.01 1.04 5.26 

8A 1.168 5.26 1.02 4.60 

9A 1.142 4.67 1.005 4.09 

 

It is interesting to note that at low current levels the minimum feasible set-point 

increases. This is caused by the fact that the MFC cannot accurately operate below 

180cc/min. On the other hand, as the power increases the minimum excess ratio is 

reduced accordingly until the constraint of safety is reached ( 2, 2,1, 1SP H SP    ). As a 

result a feasible excess ratio set-point that could cover the full operating range (1..5W) 

for the anode is 4.2 and for the cathode is 3.66. These experimental results indicate that 
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an adjusted set-point for the excess ratios would be beneficial for the overall operation 

without compromising the safety of the system. 

 

4.5 Systematic determination of λo2,SP and λH2,SP  

In addition to the safety of the system, the overall performance can be further improved 

by properly selecting the set-point for the excess ratios. Based on this new goal the 

control configuration (Fig. 4.2) can be expanded to include a feedforward mechanism that 

will determine the set-points for 2 and 2H  based on the minimum gas criteria. This 

expansion employs an adaptive set-point determination which is applied in a feedforward 

manner to the controller ( 2 2( ), [ , ]SP
k k spf P k     ). The aim of the adaptive set-point 

determination is to reduce the amount of hydrogen which will not be consumed by the 

reaction, for the given operating conditions, based on the requested power drawn from 

the fuel cell.  

 In order to define a feedforward set point derivation mechanism the results from 

the open loop experimental analysis that was previously analyzed are used. For each 

power-excess ratio curve (Fig. 4.5a,b) a minimum feasible point of the excess ratio is 

determined.  
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Figure 4.5 Power vs. oxygen and hydrogen excess ratio at various current levels 

Fig. 4.5b illustrates the minimum allowable hydrogen excess ratio points at each current 

level. The set of all these points forms a steady-state path that could be approximated by 

a polynomial. Thus, a curve fitting process was performed in order to determine the 
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polynomial that could express the curve formed by these points and the order of the 

polynomial. The results from the curve fitting process of the excess ratio of hydrogen are 

presented at Fig. 4.6 and 4.7. 
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Figure 4.6 Experimental data and fitted curve 
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Figure 4.7 Distribution of the residuals 

Fig. 4.6 shows the 95% confidence interval along with the fitted curve and the data. The 

residuals (Fig. 4.7) appear randomly scattered around zero which is a clear indication that 

the method and the model that was used for the fit can describe the experimental data 

well. From the above process a 4th degree polynomial is derived that can be used to 

define the set-point for the excess ratio of hydrogen as a function of power 

( 2 2 ( )SP
H H spf P  ). A similar analysis was performed using a linear, a 2nd degree and a 3rd 

degree polynomial.  

Table 4.2 presents some statistics about the goodness of the fit for each polynomial. 
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Table 4.2 Statistics for various degrees polynomials 

 linear quadratic 

Polynomial 

cubic 

Polynomial 

4th deg. 

Polynomial 

Sum of squares due to error (SSE) 
0.7748 0.05508 0.01215 0.00161 

R-square 0.8953 0.9926 0.9984 0.9998 

Adjusted R-square 0.8804 0.9901 0.9974 0.9996 

Root mean squared error (RMSE) 
0.3327 0.09581 0.0493 0.02006 

Except from the linear polynomial all the others could also be used but the 4th degree 

polynomial provides more accurate results. Moreover, the computational burden caused 

by the use of the 2nd, 3rd or the 4th degree polynomial is negligible. Therefore, the 4th 

degree polynomial was selected to be applied to the unit 

( 4 3 2
2 1 2 3 4 5( )H sp SP SP SP SPf P a P a P a P a P a      ). The values of the coefficients with their 

95% confidence bounds are presented at Table 4.2 

Table 4.3 Value of the coefficients and 95% conf. bounds for λH2,sp feadforward 

function 

Coefficient Value 95% Conf. bounds 

       α1  0.04542 0.02078, 0.07006 

       α2  -0.6616 -0.9775, -0.3456 

       α3  3.721 2.264, 5.178 

       α4  -10.02 -12.87, -7.174 

       α5  12.43 10.44, 14.41 

A similar analysis was performed for the determination of the coefficient for the oxygen 

excess ratio curve polynomial: 

4 3 2
2 ( ) 0.065 0.896 4.88 12.29 14.6O sp SP SP SP SPf P P P P P          (4.3) 

These polynomials are applied online in a feedforward manner to the controller 

( 2, 2 ( )H sp H spf P  , 2, 2 ( )O sp O spf P  ). Once 2, 2,,sp H sp   are determined by the 
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feedforward mechanism, the set-point can be reached by properly manipulating the air 

and hydrogen flows ( 2,air Hm m  ). 

 

4.6 Concluding remarks 

This chapter presents a detailed analysis of the fuel cell subsystems that should be 

optimally managed in order to provide a stable environment and to protect its longevity 

and durability. An indicative literature review has been performed to explore the various 

ways that the control challenges can be addressed. Furthermore, the control objectives 

were defined along with the corresponding manipulated and controlled variables. 

Additionally an experimental analysis involving the oxygen and hydrogen excess ratios 

per requested power was performed and its results were used to extract a feedforward 

mechanism for the determination of the respective set-points for the whole operating 

range of the fuel cell.  

 Once the scope and boundaries of the overall control framework are defined, the 

next chapters considers the development of new control algorithms and their application 

for the online control of the PEM fuel cell system. 
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Chapter 5 
 

 

 

5 An Advanced Model Predictive Control 

Framework 
 

 

 

This chapter presents two advanced model-based control methodologies for the efficient 

real-time control of PEM fuel cell. The first methodology is an online Nonlinear Model 

Predictive control (NMPC) strategy, which is very appealing due to its ability to handle 

dynamic nonlinearities of the process into consideration, whereas the second 

methodology is an explicit or multi-parametric Model Predictive Control (mpMPC) 

strategy, that defines the optimal solution in real-time using low complexity online 

implementation algorithms. At the core of both methods (NMPC, mpMPC) there is an 

optimal control problem which is solved online for the NMPC case and offline for the 

mpMPC.  

 Then a novel unified control framework is presented which is derived by the 

combination of these two MPC-based strategies. This framework exploits the 

advantageous features of the multi-parametric offline formulation and enhances the 

performance of the optimization problem which is solved online by the NMPC controller.  
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5.1 Model Predictive Control (MPC) 

Model predictive control (MPC) or receding horizon control (RHC) is part of a family of 

optimization-based control methods, which solves online an open loop finite horizon 

optimal control problem for the determination of the future control moves (Chen and 

Allgower, 1998). MPC is based on the fact that past and present control actions affect the 

future response of the system (Qin and Badwell,2003). The main objective is to obtain a 

control action by minimizing a quadratic cost function related to selected objectives or 

performance indices of the system. As the system’s conditions and dynamics change and 

evolve through time, the optimization problem has to be solved online at consecutive 

sampling intervals. Thus at each sampling time a finite horizon optimal control problem 

is solved over a prediction horizon ( pT ), using the current state of the process as the 

initial state. The optimization yields an optimal control sequence ( ..k k Ncu u  ) over a 

control horizon ( cT ) and only the first control action ( ku ) for the current time is applied 

to the system while the rest of the calculated sequence is discarded. At the next time 

instant the horizon is shifted by one sampling interval and the optimization problem is 

resolved using the information of the new measurements acquired from the system 

(Mayne et al., 2000). The concept of receding horizon adds a feedback to the whole 

approach that enables the compensation of disturbances affecting the system or modeling 

inaccuracies. Fig. 5.1 illustrates the concept of RHC. 

2kt 

u

y

SPy

1kt  kt 1kt  2kt  k Pt 

2ku  1ku  ku 1ku  2ku  k Cu 
 

Figure 5.1 Receding Horizon concept 
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This methodology makes explicit use of a process model to optimize the predicted future 

behavior of the system. Thus, the first step in designing an MPC system is the 

development or selection of a suitable for control purposes mathematical model. 

Depending on the nature of the model, linear or nonlinear, we refer to MPC or Nonlinear 

MPC (NMPC) formulation. For the rest of this thesis we will use the NMPC approach as 

we are interested on nonlinear processes. A process model always includes some 

assumptions or simplifications with respect to the system which is represented, that may 

lead to minor inaccuracies. Also, the effect of disturbances to the process may add some 

extra uncertainty compared to the response of the developed model.  

 Deviations of the model predictions from the actual process response are 

calculated at each sampling instance and considered as the error of the process model. 

This error defines a bias term which is used to correct future predictions and it is 

considered constant for the entire prediction horizon step. The mathematical 

representation of the MPC algorithm is as follows (Allgöwer et al., 2004; Mayne et al., 

2000): 

   
1

, ,
1 0

ˆ ˆmin
Np NcT T

k j sp k j k j sp k j k l k l
j l

y y Q y y u R uJ


     
 

           (5.1a) 

s.t.:           , ,      ,dx f x u y g x u        (5.1b) 

   meas pred
k k

e y y         (5.1c) 

  ˆ pred
k j k j ky y e           (5.1d) 

  ( ) /c c k cN T T t   , ( ) /p p k pN T T t        (5.1e) 

  L Uu u u   , L uy y y        (5.1f) 

The minimization of functional J (eq. 5.1a) is subject to constraints on the manipulated 

(u ) and controlled ( y ) variables (eq. 5.1f). SP
ky denotes the desired reference trajectory, 

while df  are the differential equations and g  denote the equations of the output 

variables. The difference ke between the measured variable measy  and the corresponding 

predicted value predy at time instance k is assumed to be constant for the entire number of 

time intervals ( pN ) of the prediction horizon pT , cT  denotes the control horizon reached 
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through cN  time intervals. Tuning parameters of the algorithm are the weight factors in 

the objective function ( ,Q R ) and the length of the prediction and control horizon.  

 

5.1.1 Scope of the optimization problem 

In both cases of MPC, linear and nonlinear at the core of the control problem lies an 

optimization problem. The solution of this optimal control problem involves an 

optimization procedure that aims at the determination of the best solution for a given 

system considering physical and operating constraints. For this purpose various elements 

are necessary to formulate an optimization problem: 

 A model that represents the behavior of the process and it is formulated by a set of 

equations and constraints. 

 An objective function or performance index that defines a quantitative measure that 

need to be minimized, usually the tracking of a desired trajectory for the MPC case. 

 A set of decision variables that are appropriately adjusted to satisfy the constraints and 

achieve the minimization of the predetermined objective function. These variables are 

the degrees of freedom of the system 

In order to systematically determine the optimal solution of the problem using these 

elements various methods and algorithms are available. Thus, the selection of the 

appropriate method is based on criteria derived by the nature of the system: 

 Type of variables involved: discrete or continuous. 

 Type of problem: differentiable or nondifferentiable. 

 Type of objective function and feasible region: convex or nonconvex. 

After the appropriate formulation of the optimization problem the rest of the MPC 

elements (e.g., control and prediction horizon, weights of terms in the objective etc., error 

calculation) are assembled and the integrated framework is ready to be used, initially for 

parameter tuning and subsequently for implementation at the process or for simulation 

purposes. In many cases and more specifically when a nonlinear formulation is involved, 

the solution of the optimization problem in each sampling instance is computationally 

demanding. To avoid computational delays and deterioration of the control performance, 
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the optimization problem must be solved in a time period smaller than the sampling time 

interval of the system (Würth et al., 2011). Therefore, it is important to use a 

methodology that takes into consideration all the operating constraints which are imposed 

by the nature of the process into consideration. 

 

5.2 Nonlinear Model Predictive control 

MPC is a well established advanced control methodology which employs the use of a 

process model and it is widely used in the industry mainly because of its ability to handle 

multivariable systems and constraints systematically. Motivated by the impact of MPC 

and urged by the need for near boundary operation and highly nonlinear behavior of 

many processes Nonlinear MPC (NMPC) has gained significant attention over the past 

decade (Findeisen et al., 2007; Magni et al., 2009). Moreover recent advances in 

optimization enable the move towards direct online optimizing control (Engell, 2007). 

Various theoretical and practical aspects (e.g. stability, reliability, robustness, 

computational burden) have been recently explored and on-going research is progressing 

in the area of NMPC towards the industrial implementation of the methodology 

(Rawlings and Mayne, 2009).  

5.2.1 Recent literature review of NMPC developments   

Although NMPC formulation is not as developed as the linear MPC, important progress 

has been made the recent years regarding theoretical and practical considerations 

(Findeisen at al., 2003; Allgöwer et al., 1999; Lee et al., 2002; Mayne et al., 2000; 

Magni and Scattolini 2004). The NMPC formulation requires the online solution at each 

time step of an optimization problem to determine the manipulated inputs. As 

computational power increases and solution algorithms are evolving the application of 

NMPC is a viable option for the control of complex processes which are described by 

nonlinear differential and algebraic equations. The optimization problem derived by the 

control formulation generally is nonconvex and consequently, the major practical 

challenge associated with NMPC is the online solution of the nonlinear program (NLP). 
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Therefore, it is of paramount important the utilization of efficient and reliable NLP 

solution to make NMPC a viable control technique.  

 The closed-loop performance is improved when the nonlinear model is used 

directly in the NMPC calculations. However, standard NLP codes are not designed to 

handle ODE constraints (Henson, 1998). This limitation can be overcome using a two-

stage solution procedure in which a standard NLP solver is used to compute the 

manipulated inputs and an ODE solver is used to integrate the nonlinear model equations, 

known as sequential solution or partially parameterized method, since only the 

manipulated variables are discretized (Manenti, 2011). An alternative to the sequential 

solution approach is to solve the optimization problem and the model equations 

simultaneously (Biegler et al., 2002). The dynamic model is fully discretized as per the 

manipulated variables and it is directly integrated in the optimization problem. In this 

approach the numerical integration and the optimization simultaneously converge. The 

most well-known simultaneous method is based on collocation on finite elements (CFE) 

(Biegler, 1984) and multiple shooting (Diehl et al., 2002). In addition, it is necessary to 

explore alternative formulations of the NMPC problem with improved computational 

properties such as the combination of multiple shooting and collocation method presented 

in Tamimi and Li (2010). The need for NMPC has stimulated intensive research and fast 

algorithms for NMPC are now available (Cannon, 2004; Diehl et al., 2002; Martinsen et 

al., 2004; Schäfer et al., 2007; Zavala et al., 2008).  

 NMPC is a nonlinear open-loop optimal control technique where feedback is 

incorporated via the receding horizon formulation. From a theoretical perspective, the 

minimum requirement of a model-based feedback controller is that it yields a stable 

closed-loop system if an accurate model of the plant is available, which is referred as 

nominal closed-loop stability. Important issues regarding stability of NMPC and the 

efficient solution of the open-loop optimal problem has been extensively studied by 

various groups (Limon et al., 2006; Magni et al. 2001a, De Nicolao et al., 2000, Mayne 

and Michalska, 1990). Furthermore, nominal stability can be guaranteed by making use 

of the inherent robustness properties of NMPC as shown in (Diehl et al., 2005).  

 Similar formulations take into consideration the issue of computational burden, 

delay and stability (Findeisen et al., 2004; Chen et al. 2000). From a practical point of 
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view, there are some cases where the NMPC has a non negligible computational delay. 

An interesting approach that takes into consideration the sampling intervals is sampled 

data NMPC, which refers to the repeated application of input trajectories that are 

obtained at discrete sampling instants (Findeisen et al., 2003). This approach has and its 

associated proof of stability was explored in a real-time framework by (DeHaan and 

Guay, 2007). 

 Besides the stability at nominal conditions it is important to consider the case of 

robust stability. The primary reason for including feedback in NMPC is to account for 

model mismatch against the actual plant. Simulation and experimental studies 

demonstrate that NMPC has some degree of robustness to modeling errors. Nevertheless, 

it is important to incorporate a rigorous theory which allows the robustness of different 

NMPC formulations to be analyzed and facilitates the derivation of new formulations 

with improved robustness properties. Some interesting robustness results are presented by 

(Limon et al., 2009; Cannon et al., 2011; Lazar et al., 2008; Imsland et al., 2003). 

 Finally another interesting approach which applies in the nominal case of NMPC, 

exploits the interval between consecutive updates and thus reduce the computational 

delay (Zavala and Biegler, 2009). In conclusion, some open issues and unexploited 

application domains exist for the theoretic basis and the real-time implementation aspects 

of NMPC. But beyond these issues the potential and benefits of NMPC are progressively 

penetrating to complex processes and furthermore research is encouraged. It is clear from 

the above brief analysis that significant progress has been made in the control of various 

aspects of fuel cell systems and the application of model based control techniques can 

improve the understanding of these control issues and lead towards the design of better 

control systems. 

 

5.3 Dynamic Constrained Optimization 

As stated earlier the NMPC formulation includes the solution of an optimization problem 

at each sampling instance. But the online application of the NMPC framework faces a 

challenging dilemma (Diehl et al., 2002), either the nonlinear iteration procedure is 

performed until a pre-specified convergence criterion is met, which might introduce 
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considerable feedback delays, or the procedure is stopped prematurely with only an 

approximate solution, so that a pre-specified computation time limit can be met. The 

feedback delays can lead to loss of performance and stability, caused by the online 

computational burden. Fortunately, considerable progress has been achieved in the last 

decade that allows both the decrease of computational delays and the minimization of the 

approximation errors. Recently NMPC controllers are based on nonlinear programming 

(NLP) sensitivity with reduced online computational costs and can lead to significantly 

improved performance (Zavala and Biegler, 2009). Overall the application of dynamic 

optimization in conjunction with fast optimization solvers allows the use of first-

principles models for NMPC (Diehl et al., 2009). In general, a DAE constrained 

optimization problem is considered which includes the continuous-time counterpart of the 

NMPC problem: 

    
( )

min ( ), ( ), ( )
u t

J x t z t u t        (5.2) 

  s.t.  ( )
( ), ( ), ( )d

dx t
f u t x t z t

dt
      (5.2a) 

                    0= ( ), ( ), ( )af u t x t z t       (5.2b) 

              0(0)x x        (5.2c) 

             ( )  , ( )  , ( )L U L U L Ux x t x z z t z u u t u        (5.2d) 

where t  is the scalar independent dimension defined in the fixed domain [0, ft ], x  is the 

vector of differential (state) variables, z  is a vector of algebraic variables, u is the vector 

of  manipulated variables and 0x  are the initial conditions of the state variables, df  and 

af  are the differential and the algebraic equations. Finally eq. (5.2d) denotes the bounds. 

Since the implemented NMPC algorithm involves inequality constraints, direct 

optimization methods are used for the optimization problem which is transformed into a 

NLP problem.  
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5.3.1 Dynamic optimization methods 

In principle two main numerical approaches exist for the solution of the open-loop 

optimal control problem, the indirect and the direct methods (Biegler and Grossman, 

2004). The first relies on Pontryagin’s Maximum Principle, it is suitable for problems 

that have only equality constraints and it is on calculus of variations. The second 

approach, the direct approach, transforms the optimization problem into an NLP problem. 

Direct methods are more general and computationally efficient comparing to the indirect 

methods. Furthermore, they can handle inequality constraints and find suitable initial 

guesses for state variables. In direct methods the original infinite dimensional problem is 

transformed into finite dimensional by parameterizing the input, and in some cases the 

states, by a finite number of parameters and by solving or approximating the differential 

equations during the optimization.  

 

 

Figure 5.2 Classification of DAE optimization methods 

Mainly two direct strategies for the solution of the NMPC optimal control problem using 

mathematical programming can be distinguished, the sequential and the simultaneous 

(Fig 5.2). The main difference among the direct approaches is the handling of the 

continuous-time DAE model.  

Sequential approach 

In the sequential or single-shooting approach the control trajectory of the manipulated 

variables is finitely parameterized or discretized, the optimization steps are performed 

and afterwards the NLP problem is solved. In each evaluation of the performance index 
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at the solution of the NLP, the process model is integrated with a DAE solver that 

integrates the model over the entire horizon in a single call. The NLP solver obtains a 

new value for the controls profile and computes the search step using either an exact 

Newton’s method, which requires both the first and the second gradient information, a 

computational expensive procedure, or a Quasi-Newton’s approximation, which may lead 

to weaker convergence properties. This approach can handle stiff dynamic systems and 

off-the self NLP solvers and DAE solvers can be used. The main disadvantage is that the 

integration step is usually computationally expensive (Biegler et al., 2002).   

Simultaneous approach 

In the direct simultaneous approach the solution of the differential equations and the 

optimization is obtained concurrently. For this purpose the differential equations are 

discretized and enter the optimization problem as additional constraints. Typical 

simultaneous approaches use multiple shooting or direct transcription to 

parameterize/discretized the equations. The direct multiple shooting approach discretizes 

the optimization horizon (prediction horizon) into a number of elements (time intervals) 

with discretization of the manipulated variables. The differential equations on these 

intervals are integrated separately in each element. The guesses of the values of the 

parameterized inputs and the initial conditions are made at each element and similarly the 

evaluation of gradient information is performed separately at each element. Multiple 

shooting allows parallel computation since each interval is computationally decoupled. 

The main drawback is that the overall complexity increases when the model contains 

many dynamic states (Diehl et al.,2002).  

 Another simultaneous approach is the direct transcription method that explicitly 

discretizes all the variables (differential, algebraic, input and output) and generates a 

large scale but sparse NLP problem. This discretization based on orthogonal collocation 

on finite elements (OCFE), which can be treated as a special calls of implicit Runge-

Kutta type method (Betts, 2011). Initial values for the whole state trajectory are required 

which may be an advantage if such knowledge is available. The direct transcription 

method is usually selected due to its accuracy and numerical stability properties (Diehl et 

al., 2002; Kameswaram and Biegler, 2008). In addition, this approach does not require a 
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DAE integrator, as the discretized model is solved once at the optimal point and as a 

consequence computational intermediate solutions are avoided. Moreover, the sparsity 

and the structure can be exploited by modern NLP solvers.  

5.3.2 Direct transcription method 

In the direct transcription method the dynamic optimization problem is transformed into a 

large NLP formulation without an embedded DEA solver. Furthermore, the manipulated 

(input) and state variables profiles and consequently the output (controlled) variable 

profile are approximated with a family of polynomials on finite elements. The time 

horizon is divided in finite elements ( NE ) and each equally spaced finite element is 

partitioned in collocation points ( copN ). Although the resulted mesh of finite elements is 

fixed, this does not limit the interesting features of this method. By this formulation the 

differential equations are transformed into an algebraic system of equations (Fig. 5.3).  

 

Figure 5.3 Finite elements and collocation points 

The residuals of state and algebraic equations are assumed to be exactly satisfied only at 

the collocation points. The position of the collocation points is determined as the shifted 

roots of orthogonal polynomials, usually Legendre or Radau orthogonal polynomials, of 

order equal to the number of collocation points within each finite element. The solution is 

approximated with Lagrange polynomials at each finite element (Finlayson, 1992;  

Biegler et al., 2002; Kiparissides et al., 2002): 

,
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where Νcop is the total number of the internal collocation points of each element, ΝΕ is 

the number of the finite elements, ,i jx  is the value of the state vector at collocation point j 

of the ith  finite element. Respectively the algebraic variables ( ,i jz ) and input 

(manipulated variables) variables ( iu ) are approximated. The length of each element 

is 1i i ih t t   . The basis function (Ω ) is normalized over each element having time 

[0,1]   and 1i it t h    . Ω j  is calculated using the shifted roots of the Legendre 

polynomials. After the discretization of the DAE model, the constrained optimization 

problem (5.2) is expressed as an NLP problem in the form (Biegler et al., 2002):  

 
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, ,
,

, , 1 1
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To enforce zero-order continuity of the state variables at the element boundaries the 

connecting equations are used (5.5e).  

 The use of OCFE discretization scheme allows the NLP solvers to exploit the 

sparsity of the system and as the discretized model is solved once at the optimal point, 

integration at intermediate points is avoided. On the other hand, efficient large-scale NLP 

solvers are necessary and careful formulation of the NLP is a prerequisite for an accurate 

state and profile result. Overall this method exhibits fast convergence rates and can deal 

with unstable systems in a straightforward manner since it allows direct enforcement of 

state and control variable constraints (Biegler et al., 2002).  
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In this work the simultaneous direct transcription method is selected for the NMPC 

framework. The overall procedure for the development of an NMPC controller based on 

direct transcription method and the various conceptual stages for from the design to the 

online deployment are presented in Fig. 5.4. 
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Figure 5.4 Development procedure of NMPC framework 

As this is a modular design the place of the direct transcription method could take any 

other optimization method (single shooting or multiple shooting). 

 

5.3.3 Numerical Algorithms for the solution of an NLP problem  

Besides the selection of an appropriate optimization method, it is equally important to 

select a suitable NLP numerical algorithm that could handle the complexity of the DAE 

model and provide satisfactory response according to the problem’s requirements. 

Therefore, specific emphasis is given to the use of an efficient solver. A number of 

numerical algorithms exist which are implemented by software packages for nonlinear 

programming (Biegler and Grossman, 2004). The available numerical algorithmic 

methods for constrained optimization using an NLP formulation are: 



An Advanced Model Predictive Control Framework  

 

 

140

 Sequential quadratic programming (SQP) method 

 Interior point (IP) method 

 Generalized reduced gradient-based (GRG)  or nested projection method 

The main difference between these methods is the way that the variables are treated with 

respect to the solution of the Karush-Kuhn-Tacker (KKT) optimality conditions. More 

specifically the SQP and the IP methods solve simultaneously the optimality conditions 

whereas the GRG consider a decomposition that leads to different nested subproblems. 

Subsequently these subproblems can be solved using Newton-type methods. Each 

method has its pros and cons and all of them can be used to solve NLP problems with 

equality and inequality constraints. Thus, the selection is problem-depended and oriented 

towards application specific requirements and implementation issues. An indicative only 

list includes software packages like: 

 SQP method: NPSOL, SNOPT, fmincon 

 IP method: KNITRO, LOQO, IPOPT 

 Reduced gradient: CONOPT, LANCELOT, MINOS 

In case that a direct transcription method is selected the DAE model and consequently the 

formulated NLP problem, is represented by a large-scale set of algebraic equations. For 

this reason the selected algorithm should be able to handle large-scale problems where 

the constraints and the variables are several hundreds or several thousands.  

 

Reduced gradient-based method 

The reduced gradient-based (GRG) method is especially useful for large-scale NLPs with 

nonlinear objectives and constraints and problems where it is important for the solver to 

remain feasible over the course of successive iterations (Biegler and Grossman, 2004). 

There are two variants of the GRG-type method, the gradient projection and the linearly 

constrained augmented Lagrangian. In the first variant the nonlinear equations are solved 

repeatedly which introduces a significant computational expense and requires an extra 

step for feasibility check at every iteration. An alternative to this approach is to construct 

a subproblem with constraints linearized at the current point (Murtagh and Saunders, 
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1998). The use of successive linearizations and consecutive subproblems leads to the 

approach of the nonlinearly constrained problem solution.  

 In this method the variables (n) are first partitioned in order to deal with 

constrained portion of the NLP problem into three categories (Murtagh and Saunders, 

1978):   

 the superbasics (s): the set of superbasics is regarded as the set of the independent 

variables (decision variables) that are allowed to move in any desirable direction to 

reduce the value of the objective function 

 the basics (m): the basic variables (dependent on the design variables) have a value 

between their bounds and when the superbasics change then the basics are obliged to 

change in a definite way to maintain feasibility with respect to the constraints 

 the nonbasics (n-m-s): the nonbasic variables are set to their bounds at the optimal 

solution  

This partitioning changes over the course of the optimization iterations. After the variable 

partitioning the GRG algorithm executes a sequence of major and minor iterations until 

the optimum solution is found. At every major iteration the solution of a linearly 

constrained NLP subproblem is performed, while in the minor iterations the reduced 

gradient method is applied. The subproblem in the minor iteration uses an augmented 

Lagrangian function (eq. 5.6) which includes a quadratic penalty function to penalize the 

movement from the feasible region (Murtagh and Saunders, 1998):  
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u t z t
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where λ and ν are the multipliers of equalities and inequalities, ρ is the penalty parameter 

and s are the slack variables. Each subproblem contains original linear constraint and 

bounds on variables, as well as linearized versions of the nonlinear constraints. At every 

minor iteration an active set of bounds and constraints is selected. After the reduced 

space decomposition is applied to the subproblem, a quasi-Newton method is employed 
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to approximate the reduced Hessian (second-order information). Once the search 

direction is determined for all variables a line search is performed. At the solution of this 

subproblem using the simplex method, the constraints are relinearized and the cycle 

repeats until the KKT conditions of the initial NLP are satisfied. Given that the system 

has few degrees of freedom, the use of a reduced gradient method is extremely efficient, 

even if the NLP is a large-scale one. The major iterations converge at a quadratic rate 

(Murtagh and Saunders, 1978) since the internal feasibility step is missing due to the 

linearized subproblem.  

 

The optimization software package which is selected for this thesis is the reduced 

gradient-based solver MINOS (Modular Incore Nonlinear Optimization System) of 

Murtagh and Saunders (Murtagh and Saunders, 1978), which has been implemented very 

efficiently to a number of problems. MINOS requires the analytical form of the Jabobian 

but approximates numerically the Hessian of the problem. It takes advantage of the 

sparsity in the Jacobian which is present when a direct transcription method is selected 

and one of its merits is that it tends to be very efficient with time critical problems.   

 

5.4 Multi-parametric MPC  

The computation of an MPC law is derived by the solution of an optimization problem at 

each sampling instant. However this inserts a computational issue which must be 

carefully handled in order to avoid loss of performance due to delays. An alternative 

approach to classic MPC is the explicit or multi-parametric MPC (mpMPC) method that 

avoids the need for repetitive online optimization (Pistikopoulos, 2012). This method is 

suitable for linear constrained state space system with low complexity (Bemporad et al., 

2002;  Pistikopoulos et al., 2002). The development of an mpMPC controller is realized 

into two main steps: 

 Off-line optimization: Derivation of the critical regions which are explored by an 

optimal look-up function. 

 Online implementation: Based on the system measurements the critical regions are 

traversed and the corresponding optimal control action is determined.  
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The overall procedure of development an mpMPC controller, from design to online 

deployment (Pistikopoulos et al., 2007; Pistikopoulos, 2012), is presented in Fig. 5.5. 
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Figure 5.5 Development procedure of mpMPC framework  

In mpMPC the online optimization problem is solved off-line with multi-parametric 

quadratic programming (mpQP) techniques to obtain the objective function and the 

control actions as functions of the measured state/outputs (parameters of the process) and 

the regions in the state/output space where these parameters are valid i.e. as a complete 

map of the parameters. Online control is then applied as a result of simple function 

evaluations since the computational burden is shifted offline. The following section 

presents a brief overview of the main ideas, necessary for the formulation and 

implementation of the mpMPC.  

 

5.4.1 Parametric programming  

Parametric programming is a generic mathematical technique that for a given objective 

function to optimize, a vector of optimization variables and a vector of parameters, 

provides the optimization variables as a set of functions of the parameters and the 
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corresponding regions in the space of parameters, called critical regions (CR). Consider 

the following general parametric programming problem: 

( ) min ( , )

. .       ( , ) 0
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where x is the vector of continuous variables and  is the vector of parameters bounded 

between certain upper and lower bounds. The substitution of x() into f(x,θ) result to z() 

which is the parametric profile of the objective function. When the parameter is a vector 

instead of a scalar we refer to multi-parametric programming. The solution of (5.1) is 

given by Dua et al., (2002): 

























NN

ii

CRx

CRx

CRx

CRx

x










if)(

if)(

if)(

if)(

)(

22

11




 

such that ji CRCR  , i  j, i, j = 1,…,N and CRi denotes a critical region. In order 

to obtain the critical regions and xi() a number of algorithms have been proposed in the 

literature. The selection of the appropriate one depends on the nature of the problem, if f 

and g are convex, differentiable, linear, quadratic or nonlinear. For the formulation of the 

mpMPC f is convex and quadratic and g is linear. Thus, the resulting parametric approach 

is a multi-parametric quadratic program (mpQP). An algorithm for the solution of the 

mpQP has been proposed by Dua et al. (2002) where there is an iterative determination of 

a set of unique active constraints and the corresponding critical regions by writing the 

KKT optimality conditions of the mpQP. 

 

5.4.2 From MPC to mpQP  

The use of mpQP enables the derivation of the objective and optimization variable as 

functions of the varying parameters and the regions in the space of parameters where 
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these functions are valid. Thus, the solution of the optimal control problem (MPC 

problem) with mpQP is a multi-parametric problem. A brief outline of the standard MPC 

formulation is presented along with its transformation to the mpQP problem. Consider 

the following constrained discrete-time linear time invariant model of the system: 

1   

 
t t t

t t

x Ax Bu

y Cx
  


              (5.8) 

s.t.   
min max

min max

min max

t

t

t

x x x

u u u

y y y

 
 
 

  

where n
tx   is the state vector, m

tu   is the vector of input variables, p
ty  is the 

vector of the output variables, n nA  , 
n mB   and

p nC   are the system matrices, t 

is the current time interval and the subscripts min and max denote the lower and upper 

bounds respectively.  

 The receding horizon open-loop optimal control problem regulating (5.8) to the 

origin has the following formulation and it is used to derive the explicit control law 

(Mayne et al., 2000) for tx  : 
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where |t k tx   is the prediction of t kx   at time t, Q and R, are the tuning parameters which 

are constant, symmetric and positive definite matrices, Ny, Nu and cN are the prediction, 

control and constraint horizons respectively with Nu ≤ Ny  and K is some feedback gain. 

The weight R penalizes the use of control action u. The sequence 

U 1,....,
u

TT T
t t Nu u     contains the future control inputs that yield the best predicted 
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output with respect to the performance index for the prediction horizon. Once this is 

determined, the first control input tu  is applied to the system. Considering the linear 

model (5.8), the MPC problem (5.9) can be recast as a mpQP which can be solved with 

standard multi-parametric programming techniques and involves a systematic exploration 

of the parameter space. From (5.9) the following can be derived (Pistikopoulos et al., 

2002): 
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The optimization problem (5.9) with the aid of (5.10) can be rewritten in a QP problem. 
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where U is the vector of optimization variables and H, F, Y, G, W and E are obtained 

from Q and R. If the weighting matrices in (5.9) satisfy P  0, R ≻ 0 and Q  0, then H≻ 

0 and the problem is strictly convex and therefore V is continuous. The KKT conditions 

are then sufficient conditions for optimality and the solution is unique. Then the QP 

problem (5.11) is transformed into multi-parametric QP by this linear transformation by 

defining:  

    z 1 ( )TU H F x t      (5.12) 

In particular the equivalent mp-QP formulation that corresponds to the MPC problem is 

defined: 
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s.t.      )(tSxWGz    

which is an mpQP in z parameterized by ( )x t  and TFGHES 1 .  

 In order to start solving the mp-QP problem, an initial vector 0x  inside the 

polyhedral set X of parameters is necessary, such that the QP problem (5.13) is feasible 

for 0x x . Such a vector can be found for instance by solving a linear program (LP) 

(Bemporad et al., 2002; Johansen and Grancharova, 2003). 
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5.4.3 Critical regions and feedback control law  

The mpQP problem can be solved with any available QP solver or by the use of software 

packages like POP (POP, 2007) or MPT (Kvasnica et al., 2004) and the solution is a set 

of convex non-overlapping polyhedra on the parameter space, each corresponding to a 

unique set of active constraints. The solution of the mpQP problem consists of several 

steps (Pistikopoulos et al. 2007): 

 Find a local optimum z(x) by solving the QP problem for x=x0 and identifying the 

active constraints. 

 Find the set in the space of x(t) (critical regions) where z(x) is valid. 

 Proceed iteratively until the x(t)-space is covered. 

The mpQP (5.11) is solved by treating z as the vector of optimization variables and xt as 

the vector of parameters to obtain z as a set of explicit functions of xt. The optimizer z(x) 

is continuous and piecewise affine so will be U. Subsequently only the first element of U 

is applied and the control action u(t) is also piecewise affine and continuous and it is 

expressed as an explicit function of the state variable x(t) for the different critical regions, 

obtained though an affine mapping:  

   
1 1 1 1

:

Ncr Ncr Ncr Ncr

K x c if D x b

u t f t

K x c if D x b

 
  
        

(5.14)

 

 

where NCR is the number of critical regions, , , ,K c D b  are constants defining each region 

,CR i  and the derived optimal control action within. The online effort is thus reduced to 

the evaluation of (5.14) of the current state and the determination of the region (point 

location problem) in which the current state x belongs.  

 Although the above MPC (5.9) regulates the system to the origin or to a specific 

steady state, in practice MPC is used for trajectory tracking where it is required to 

asymptotically converge to a constant value (set-point) or to follow a reference profile 

that may vary in time. In order to achieve tracking the (5.9) problem is modified to 

include the reference profile. Thus, the objective is to minimize the error between the 
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system output ty  and the reference signal ,
p

SP ty   which is given by the problem 

specifications. Fig. 5.6 illustrates a conceptual representation of the entities that comprise 

the mpMPC approach (Pistikopoulos et al., 2007). 

 

 

Figure 5.6 Multi-parametric control strategy 

 

The offline preprocessing of the optimal solution allows the implementation of mpMPC 

with high sampling requirements whereas the look-up function offers an easy and 

computationally cheap implementation. But as the problem size grows (number of states 

and inputs, length of prediction horizon), so does the complexity of the partitioning for 

the critical regions due to the combinatorial nature of the mpQP problem (Tøndel et al., 

2003). As a consequence the mpMPC can be used to relatively small problems. An 

alternative approach is to employ an approximate mpMPC formulation that deals with 

some of these issues (Alessio and Bemporad, 2009). Nevertheless, mpMPC is the 

advantages of mpMPC are widely recognized and the on-going research efforts are 

constantly enhancing its features and characteristics. 
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5.5 Synergy of NMPC with mpQP 

The presented advanced model-based control methodologies have many advantages and 

some limitations that affect their applicability. As previously stated in NMPC which is 

very appealing due to its ability to handle dynamic nonlinearities of the process under 

consideration, whereas mpMPC is based on a reduced order linear model that provides 

the optimal solution in real-time via a simple look-up function, as the optimization 

problem is computed offline. However these approaches have also some limitations. The 

mpMPC approach can be used to linear and relatively low dimensional systems as the 

complexity of the solution grows with the problem size, along with the fact that the 

response of the controller depends heavily on the accuracy of the derived reduced order 

model. In the case of NMPC the main barrier for its wider applicability arises by the 

requirements imposed by the online solution of the optimization problem at every 

iteration.  

 During the last decade significant effort is devoted by the research community to 

develop algorithms and methods that could overcome the aforementioned limitations 

(Pistikopoulos et al., 2012). There are several very promising works that approach these 

issues in a systematic way and each one focus on a specific issue of the MPC-based 

method. In order to address the issues related to MPC, NMPC or mpMPC various 

approaches are developed such as: 

 Reduction of the complexity of mpMPC solutions through approximate solutions or 

proper merging of resulted critical regions. 

 Expansion of the explicit method to nonlinear systems (mpNMPC).  

 Use of real-time variants and suboptimal approaches to improve the optimization time 

of NMPC. 

 Exploit the structure of the problem through proper algorithms implemented.  

However the efforts to improve the performance and limit the drawbacks of the MPC-

based controllers are not limited only to different approaches to the control problem and 

its structure. Recently numerous methods related to algorithmic developments have been 

proposed. An indicative only list includes the following: 

 use of a warm-start homotopy path method (Ferreau et al., 2008), 
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 a PWA approximation for warm-starting (Zeilinger et al., 2011), 

 a partially reduced Sequential QP (SQP) method (Shafer et al., 2007),  

 an accelerated dual gradient-projection algorithm (Patrinos and Bemporad, 2012), 

 new developments in interior-point methods (Wang and Boyd, 2010; Domahidi et al., 

2012),  

 use of advanced preprocessing (Zavala and Biegler, 2009; Yand and Biegler, 2012), 

 a combination of multiple shooting and direct transcription method (Tamimi and Li, 

2010), 

 an event-driven triggering method (Eqtami et al., 2011), 

 exploiting a list with frequently used active sets (Pannocchia et al., 2007), 

 a set-theoretic method based on an adaptive interpolation (Raimondo et al., 2012), 

All these approaches and methods indicate that MPC is a method of interest which is 

gradually evolving as its advantages are widely recognized since it has a strong potential 

to numerous applications from small-scale low complexity to large-scale highly nonlinear 

systems and processes. 

 

5.5.1 Synergetic framework structure 

 Based on the above considerations this section presents a novel combination of 

these two well established method, NMPC and mpMPC, that cooperate in a control 

framework which exploits their individual characteristics. The scope of the proposed 

integrated framework is to combine the benefits that each control methodology has, 

namely the accuracy and full coverage of the system’s operation for the NMPC approach 

and the fast execution time of the mpMPC approach. Furthermore, as the basis of the 

NMPC is the solution of an NLP problem it is important to reduce the computational 

effort (Diehl et al., 2002) between successive iterations, which constitutes the primary 

objective of the proposed synergy.  

 The objective of the proposed framework is mainly the reduction of the 

computational effort for the solution of the NLP problem between successive iterations. 



Chapter 5                                          151 

 

 

This is achieved by using a newly proposed preprocessing bound related technique and 

an existing technique related to the optimization problem: 

 a Search Space Reduction (SSR) technique of the feasible space,  

 a warm-start initialization procedure of the NLP solver.  

Warm-start technique 

The term warmstart signifies that information from the previously solved optimization 

problem is used in order to formulate the subsequent problem. More specifically the 

optimal solution of a problem is provided as the initial solution of a subsequent one. This 

technique can significantly reduce the number of iteration towards the optimum point 

(Benson and Shano, 2008). Therefore, it is of great importance to define a good starting 

point using the information gained from the previous iteration. Nevertheless, the use of a 

warm-start method is mainly applicable to active set solver in contrast to interior point 

solver where the warm-start is difficult. Furthermore, warmstarting can be applied only in 

situations where the successive problems are of the same size which is exactly the case 

for a NMPC controller. In the proposed framework a active set method is used and thus 

the use of warm-start is enabled to achieve better performance.  

 

Search space exploration and region reduction/elimination 

In global optimization there are two directions that the respective algorithms can follow 

in order to improve their performance and decrease to necessary time for the 

determination of the optimum solution: 

 Reduce the number of variables and screen out the unimportant ones 

 Reduce the search space by eliminating unpromising regions 

Although both of them have interesting features and are useful for global optimization 

problems, in the case of control problems only the second one can be used, since all 

variables of the problems are important. Overall the decomposition of the search space 

into favorable and non-favorable areas has been previously studied for the improvement 

of global optimization problems using: 
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 domain optimization algorithms (Melo et al., 2007),  

 agent-based systems (Ullah et al., 2008), 

 metamodel based design space exploration (Booker et al., 1999), 

 evolutionary methods (Rowhanimanesh and Efati, 2008), 

 a dividing rectangles algorithm (Jones et al., 2008), 

 input clustering combining with mutual information trees (Baluja and Davies, 1997), 

 space exploration and unimodal region elimination (Younis and Dong, 2010). 

 In these algorithms, the feasible space or design space in the case of global 

optimization is modified by two approaches aiming to reach global solutions with the 

resources available and with less computation cost: 

 Division into many subspaces and the search focuses on the most promising regions.  

 Start of search eliminating the unpromising regions from the design space.  

 The benefit of using space exploration optimization algorithms is that good and 

acceptable solutions can be reached with fewer resources, less computation time and 

better accuracy. Motivated by this idea, that the feasible space can be partitioned and only 

part of is may be of interest, a novel method for its reduction is designed and developed 

in this thesis. The novel element of the newly proposed framework is the development of 

a search space reduction method. In the case of a tracking problem, where step changes 

exist, the previous computed solution, although feasible and optimal, may be away from 

the new set point. Therefore, after a step change the search for a new optimum solution is 

expanded throughout the variable’s feasible space.  

 The main concept of the proposed framework is to define the region in a 

variable’s feasible space that includes the optimum solution for a given objective 

function, by applying an SSR technique. One way to divide the feasible space into many 

subspaces and carrying out search in each one of these subspaces is the use of a PWA 

function which has been widely used on the mpMPC control method. Thus, in our case 

we use an mpQP formulation to define at every iteration a properly adjusted search space 

for the NLP solver to explore. 
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5.5.2 Formulation of the combined algorithm 

The proposed synergy reduces the search space to a smaller subset around a suggested 

solution provided by a PWA approximation of the system’s feasible space. Thus, the 

NLP solver has a reduced variable space to explore in order to locate feasible points with 

acceptable solution quality. Based on the fact that the special treatment of the bounds can 

lead to substantial computational savings (Gill et al., 1984) the proposed synergy aims at 

the adjustment of the search space through the modification of the upper and lower 

bounds at every iteration. The structure of the proposed synergetic framework is 

illustrated in Fig. 5.7. 

Unit
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predy e
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Figure 5.7 exNMPC Framework 

In this context an mpMPC controller is used prior to the solution of the NLP problem in 

order to provide a suggested solution ( mpu ) which is transformed into upper and lower 

bounds ( , ,,act low act upbu bu ) augmented by a deviation term ( bue ): 

, ,
,max

, ,

f up f low
bu y

f up f low

bu bu
e e

by by





            (5.15) 

where , ,,f up f lowbu bu  are the feasible upper and lower bounds of variable u , and 

, ,,f up f lowby by are the respective bounds for variable y . The term ,maxye  is the maximum 

model mismatch between the linearized and the nonlinear model and it is determined by 

an offline simulation study that involves the whole operating range of y .  

 The space reduction methods starts by determining the upper and lower bounds 

utilizing information acquired by a PWA function which explores the entire feasible 

space. This PWA formulation yields the necessary information to be subsequently used to 
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update the active bounds for the selected variables. The bounds are modified at every 

iteration and as a consequence the search space of u  is reduced to a smaller subset based 

on: 

,

,
, ,

,

,
, ,

    , ( )

       , ( )

    , ( )
 

        , ( )

mp bu mp bu f low

act low
f low mp bu f low

mp bu mp bu f up

act up
f up mp bu f up

u e u e bu
bu

bu u e bu

u e u e bu
bu

bu u e bu

     
     

           (5.16) 

where , ,,act low act upbu bu  are the active bounds for u . Therefore, the optimizer has a set of 

updated bounds for the respective manipulated variable u .  

 Apart from the bounds modification the rest of the NLP problem formulation 

remains the same. The proposed strategy at sampling interval k  is summarized in 

Algorithm 1. 

Table 5.1 Algorithm for search space reduction technique 

Algorithm 1 SSR based on PWA and NLP problem 

Input: Warm-start solution ( , ,k k kx u y , Hessian H ), measured 

variables ( meas
ky ), parameters ( kp ), set-points ( ,sp ky ) 

Output: Vector of manipulated variables 1ku   

1: Calculate error ke  and ˆky   

2: Locate iCR for parameter vector k and obtain mpu   

3: Calculate , ,,act low act upbu bu    

4: Modify bounds , ,,l act low u act upu bu u bu    

5: Solve NLP problem  (5.5) 

6: Obtain 1
1ku   from 1

1 1 1[ ,..., ]NE
k k ku u u    

 

Based on the above algorithm the explicit solution can direct the warm-start procedure 

for the solution of the NLP problem and thus improve its performance. One can see that 

the bound is constructed around the mpQP solution by considering the ratio in feasible 
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magnitudes of the input and output variables and the model approximation error. The 

bound reduction is thus ensured by considering the deviation term. 

 

The proposed method will be further analyzed through a set of motivating simulation and 

experimental case studies involving the control of the PEM fuel cell unit that was 

analyzed in the current thesis. 

 

5.6 Concluding remarks 

The research effort in this chapter was motivated by the fact that model predictive control  

(MPC) is a promising control approach which is evolving and proves its agility by the 

results gained from its application to complex processes and multivariable systems. Thus, 

the formulation and basic features of two model-based predictive methodologies, NMPC 

and mpMPC, are analyzed along with an overview of the dynamic optimization 

techniques that are available for the solution of NLP problems.  

 Then a novel method is presented where the combination of implicit (NMPC) and 

explicit (exNMPC) model-based control features is exploited along with the efficient 

utilization of feasible space exploration and an efficient initialization technique to 

provide a fast control solution for complex nonlinear systems. The proposed synergetic 

scheme relies on an NMPC formulation that uses a simultaneous direct transcription 

dynamic optimization method that recasts the multivariable control problem into an NLP 

using a warm-start initialization method. The bounds of selected optimization variables 

are redefined by a search space reduction technique which is based on a PWA 

approximation of the variable’s feasible space, computed offline by an mpQP method. 

 The next chapter illustrates the applicability and effectiveness of each method 

using simulation and real-time experimental studies of the previously described PEM fuel 

cell system. 
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Chapter 6 
 

 

 

6 Application of Advanced MPC in PEMFC 

Systems  
 

 

 

The aim of this chapter is to implement the results from previous chapters to the online 

control of the PEM fuel cell described in Chapter 2. More specifically, the dynamic 

model presented in Chapter 3 in conjunction with the control objectives for the PEM fuel 

cell introduced in Chapter 4 are used to develop various controllers based on MPC 

methods (Chapter 5). These methods are eventually deployed to the PEM fuel cell unit 

described in Chapter 2 and their efficinecy is online monitored by the automation system. 

The outcome of this integration is an integrated control framework which is used to 

evaluate the behavior of the process using different controllers under varying operating 

conditions, at both nominal operation and in the presence of disturbances and during 

system startup. Thus, the scope of this chapter is to: 

 provide a thorough analysis of the design and implementation of each MPC method,  

 discuss the effect of each controller to the system’s behavior, 

 asses the performance of each strategy with respect to the operational objectives. 

Driven by this scope the chapter is divided into three parts, one for each control strategy. 

Extra emphasis is given to the newly developed method (exNMPC) as this is a novel 
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algorithmic development in the open literature. The salient features of this approach are 

illustrated using both simulation and real-time experimental case studies.  

  

6.1 Design context and preparatory actions  

Prior to the development of the various controllers it is important to set the context of the 

problem under consideration which is complimented by some necessary preparatory 

actions.  The results from these actions constitute the basis for the development of model-

based controllers in the rest of the chapter. The operation of the PEM fuel cell is strongly 

affected by the operating conditions (Benziger et al., 2006), the interactions of the 

different subsystems of the fuel cell unit and the conflicting operating objectives 

( 2, 2, ,, , ,SP SP H SP fc SPP T  ). All these can be handled by an advanced control framework, which 

enables the adjustment of the manipulated variables according to changes in the 

underlying process and simultaneously ensures fast response and precise tracking of the 

required set-points.  

6.1.1 Control problem considerations  

Several important issues need to be considered during the problem formulation to 

improve the convergence rate and the performance of the resulting controller. These 

aspects are related to the proper boundaries of the variables, the initial starting point and 

the initial conditions. Furthermore, the path towards the solution of the optimization 

problem can be improved by proper scaling and the use of the previously described 

warm-start strategy (Chapter 5).  

Operation constraints of the PEMFC unit  

The upper and lower bounds of the variables resulting from the operating constraints of 

the process guide the algorithm to avoid inappropriate and/or unsafe areas. These bounds 

were determined by the PEMFC system ( , ,I V P ) in conjunction with the operating range 

of the mass flow controllers (MFC) ( , 2,,air in H inm m  ). Imposing minimum and maximum 
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values to the aforementioned variables, the bounds of all states were determined. The 

upper and lower bounds of the system operating variables are summarized in Table 6.1. 

Table 6.1 Operating constraints of the PEMFC’s variables 

Power: 0..5.3W 

Current: 2..10A 

Voltage: 0.3..0.9V 

Air Flow: 180..900cc/min 

Hydrogen Flow: 180..900cc/min 

 

Apart form the specification of the region of the optimization, it was necessary to provide 

a well scaled model during the initial problem formulation therefore all variables and 

parameters were properly normalized. 

Model accuracy 

The fuel cell model is at the heart of the optimizer, therefore its accuracy affects the 

prediction capability of the controller. In order to enhance the accuracy and minimize the 

error between the model and the fuel cell unit the results from the parameter estimation 

were employed as described in Chapter 3. As a result the experimentally validated model 

has a negligible offset from the unit’s response. More specifically the mean and the 

maximum voltage error is 0.023V and 0.042V respectively, while the power mean and 

maximum error is 0.05W and 0.12W.  

Initial conditions and warm-start 

The initial conditions of the system and the initial starting point, as well as the proper 

bounds of the variables have significant influence. Therefore, the overall efficiency was 

improved by a proper scaling and the use of a warm-start strategy. A realistic starting 

point enables the first optimization step of the NMPC algorithm to result in a feasible 

solution for the system. In the PEMFC under consideration the starting point was selected 
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near the typical point of operation (0.45V), provided by the membrane manufacturer 

(Electrochem) that was also experimentally verified.  

 For a PEMFC system with moderate process disturbances, a warm-start strategy, 

which works well with active-set solvers like MINOS (Murtagh and Saunders, 1998), 

reduces significantly the number of iterations (Gill et al., 1984). After the first 

optimization step is performed all subsequent solutions use information from the previous 

optimization step, such as the values of the states, the shadow variables (Lagrange 

multipliers), etc. Finally the Jacobian has been analytically evaluated to eliminate a costly 

computational step of the algorithm and to enhance the overall accuracy. 

MPC related parameters 

The resulting NMPC controllers are designed to be deployed and tested to the fuel cell 

unit. Therefore, an unstable response might cause undesirable issues to the overall fuel 

cell system and affect the durability and longevity of the fuel cell membrane. In order to 

avoid such response the prediction horizon is selected to be sufficiently long (Altmüller 

et al., 2010; Reble and Allgöwer, 2012) with respect to the dynamics of the fuel cell 

( pT =5sec) divided into pN intervals. The control horizon ( cT ) was set to be equal to the 

sampling time of the SCADA system (500ms) and it is divided into cN intervals whereas 

the performance index to be minimized is: 

   
1

, , 1
1 0

ˆ ˆmin
Np NcT T

k j sp k j k j sp k j k l k l
u

j l

J y y Q y y u R u


     
 

          (6.1) 

s.t.:     
   , ,      ,

, ,

d

l u l u l u

x f x u y g x u

x x x u u u y y y

 

     


      (6.1a) 

where Q and R1 are the weighting matrices that will be fine tuned to accomplish the 

desired behavior. Finally the selected optimization method is the direct transcription 

using a reduced gradient NLP solver. The nonlinear fuel cell model is discretized based 

on orthogonal collocation of finite elements (OCFE). More specifically there are 10 finite 

elements ( NE ) with 4 collocation points ( copN ) each. All these parameters and settings 
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are the basis for the development of the controllers and if not otherwise stated they will 

be applied in every case study that follows.                 

 

6.2 Design and development of NMPC controllers for the 

PEMFC unit 

 Initially the NMPC approach as described in Chapter 5 will be used to control the 

PEM fuel cell. The primary objective of the subsequent analysis is the application of 

NMPC to the fuel cell system. To achieve this, a tailor-made optimization strategy and a 

proper control formulation illustrating reduced computational requirements, are proposed. 

A prerequisite for the online application of the controller is to exhibit both fast response 

and minimize the error towards the set-point. Therefore, the analysis of the behavior 

focuses on these two metrics: fast and accurate set-point tracking. The performance of the 

FC under different air and hydrogen stoichiometry was investigated considering a 

variable load demand. Verification and validation of the NMPC framework that deals 

with the control issues of the fuel cell, was performed by deploying the multivariable 

controller online to the unit. From the software point of view, the initial model was 

developed in gPROMS which is transformed into Fortran in order to be applied online to 

the unit. The selection of the specific programming language was based on the solver 

(MINOS). 

 A series of experiments were performed and the response of the controller at 

power demand changes and at variable operating conditions was explored. The behavior 

of the proposed scheme is exemplified here by three case studies. In the first one the 

accuracy of the control actions and the computational delay are shown, while in the 

second case study the effect of model error is explored by operating the unit at different 

temperatures. Finally in the third case the efficiency of the overall system is enhanced by 

the use of the feedforward set-point adjustment scheme that minimizes the hydrogen 

consumption. 
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6.2.1 NMPC problem formulation 

From the control objectives that were analyzed in Chapter 4 we selected three of them 

( 2, 2,[ , , ]SP SP O SP H SPy P   ) to be controlled by the NMPC whereas the heat management 

( , ,SP PID fc SPy T ) is assigned to two PIDs, one for the heat up and one for the cooling. 

Thus, for the NMPC problem there are three manipulated variables, the current, the air 

and the hydrogen flow rates ( 2[ , , ]air Hu I m m   ) and three controlled variables 

2 2[ , , ]SP O Hy P   , one measured, the power  and two unmeasured, the excess ratios of 

oxygen and hydrogen. Fig. 6.1 illustrates the control configuration which is implemented 

during the current case study. 

 

 

Figure 6.1 Control configuration (NMPC) 

The nonlinear fuel cell model is comprised out of eight differential equations and one 

algebraic which are discretized into 10 finite elements (u is piecewise constant) with 4 

collocation points each. At this control configuration the energy balance is not included. 

The resulting discretized system has 381 variables and 342 constraints and the analysis of 

the model discretization based on OCFE is summarized at Table 6.2. 
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Table 6.2 PEM fuel cell model discretization based on OCFE (NMPC) 

Variables 
State variables at col. points: 320  
Algebraic variables at col. points: 30 
Inputs at each finite element: 3 

Constraints  
States: 240 
Algebraic: 30 
Continuity at elem. boundaries: 72 

Jacobian Matrix 
Elements (Total/Non-zero): 130302/2520 
Density: 1.934% 

 

Furthermore, we have one more variable, corresponding to time length ( ft ), which is 

fixed in our problem formulation.  The optimization problem has 30 degrees of freedom 

since the control profiles are discretized into 10 finite elements (u is piecewise constant).  

At the performance index Q and R are output and input weighting matrices, respectively. 

Specifically 2 2[ , , ] ( )P o HQ Q Q diag Q    and IR R , where 2 2, ,P o HQ Q Q   are penalties on 

output power ( 1.3PQ  ), oxygen and hydrogen excess ratio ( 2 20.23, 0.21o HQ Q   ) 

while IR  is the penalty on the change of the input current ( 0.04IR  ).  

6.2.2 Power Profile with constant excess ratios 

Initially the response of the NMPC framework to various power demands was studied at 

specific operating conditions of temperature and pressure (T=338K, Pt=1bar). A number 

of power demand changes were made within a range of 1W to 5W, which covers the 

operational range of the system. Fig. 6.2 illustrates the experimental data showing the 

step changes in the power demand and the respective produced power from the FC unit. 
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Figure 6.2 Power response at constant temperature (NMPC) 

 

 

Figure 6.3 Manipulated variables (NMPC) a) current, b) air and hydrogen flow 

Fig. 6.2 shows the power response to the corresponding control actions of the 

manipulated variables (Fig. 6.3a, Fig. 6.3b) as the power demand changes while the 

oxygen and hydrogen excess ratio remains at a constant set-point (λo2,sp=3.3, λH2,sp=3). 

The profiles of the manipulated variables are derived by the NMPC during the various 

changes of the power demand. It can be observed that the controller is able to steer the 

fuel cell power to any admissible set-point while maintaining the required excess ratio 

level. Also, from a simple error analysis is noticeable that the NMPC can produce a series 

of control actions (Fig. 6.3) resulting to a negligible offset from the desired set-point. 

More specifically, the mean square error (MSE) is 51mW for the power and the average 

oxygen and hydrogen excess ratio error is less than 3*10-3.  
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 Besides the necessary accuracy, the second issue that the NMPC framework 

should address is the computational delay. Fig. 6.4 illustrates the optimization time which 

is required for the solution of the NLP problem at every sampling interval. 

 

Figure 6.4 Optimization time at various power step changes (NMPC) 

At every interval the optimization problem is solved and it is observed from Fig. 6.4 that 

the maximum optimization time is 63ms while the average optimization time is 34.7ms. 

This signifies that the sampling time constraint is satisfied and that the controller behaves 

seamlessly throughout the whole experiment regardless of the various changes of the 

power demand. This case study reveals that the controller is able to track the changes of 

the power demand accurately and with sufficient speed, while maintaining the safety of 

the system by keeping the excess ratio of oxygen and hydrogen at the desired level. 

 

6.2.3 Response to disturbances and model uncertainties 

The second case study where the response of the NMPC controller is explored involves 

the appearance of some disturbances at the system. The efficiency of the controller to 

confront disturbed operating conditions and unmodeled phenomena that might appear 

over time, such as membrane/catalyst system degradation, was verified by choosing 

temperature as a metric in the following studies. The case study involves two different 

scenarios. In the first one a variable power profile and constant excess ratios set points 

were required at three different operating temperatures of the FC resulting from process 

disturbances. In the second scenario the demanded power and the excess ratios set points 

are kept constant while the unit temperature decreases. The FC temperature is modified 

by the use of the heat-up subsystem of the unit which is controlled by a PI controller.  
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Controller Response at Different FC Temperatures  

In the first scenario the assumed operating temperature of the FC as described by the 

dynamic model is 65C while the unit operates at 65C, 55C and 45C due to 

disturbances at the inlet temperatures of the reactants. This difference causes a deviation 

between the output power of the model and the actual power of the fuel cell. In the 

following analysis three step changes in the load demand were imposed for each different 

temperature. The oxygen and hydrogen excess ratios were kept by the controller at the 

same level (λo2sp=3, λH2sp=2.6).  Fig. 6.5 shows the power tracking capability of the 

controller despite the disturbances effect. We observe that the power set-point is reached 

in all three cases.  

40 45 50 55 60 65 70 75 80

3

3.5

4

4.5

P
ow

er
 (

W
)

Time (sec)  

Figure 6.5 Power response at different temperatures (NMPC) 

The experimental data show the demanded power profile and the respective produced 

power when the FC unit operates at different temperature points (45C, 55C and 65C). 

Fig. 6.6 illustrates the effect of the operating temperature at the voltage and more 

specifically it shows a comparison between voltage profiles that are derived at different 

temperatures for tracking the same power profile and excess ratio levels. Fig. 6.7 shows 

the resulting control actions (current, air and hydrogen flows) for the three different 

operating temperatures.  
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Figure 6.6 Voltage response at different temperatures (NMPC) 
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Figure 6.7 Manipulated variables profiles at different temperatures (NMPC) 

Fig. 6.7 shows a comparison between the manipulated variables profiles that are applied 

to the FC unit in order to follow the desired power profile and excess ratio levels at 

different temperatures (45C, 55C and 65C). From Fig. 6.7a we observe that as the 

temperature decreases the current is accordingly increased in order to reach the power 

demand. The air and hydrogen flows are adjusted (Fig. 6.7b, Fig. 6.7c) in order to reach 

the desired excess ratio levels.  

Fig. 6.8 illustrates the required time for the solution of the NLP problem for the various 

temperature profiles (45C, 55C and 65C) showing that the optimization time is at the 

same levels for each experiment. 
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Figure 6.8 Optimization time at various temperatures (NMPC) 

Fig. 6.8 shows that the optimization time is not affected when the controller has to deal 

with process disturbances affecting the operating temperature. Overall the controller 

behaves seamlessly regardless of the temperature difference. 

Controller Response to Temperature decrease 

In the second scenario the response of the NMPC controller in the presence of a 

continuous decrease of the operating temperature is explored. Initially the operating FC 

temperature was at 53C, while the required set-points of power, oxygen and hydrogen 

excess ratios were kept constant at 3.5W, 3.5 and 3.2 respectively by the NMPC 

controller. As the heat-up subsystem was turned off and the cooling subsystem was 

enabled, the operating temperature decreases. In Fig. 6.9 the temperature drop (10C) is 

shown and its effect to voltage is illustrated in Fig. 6.10. As the voltage changes the 

controller adjusts the inputs properly in order to maintain the desired set-points. 
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Figure 6.9 Temperature decrease as the heat-up is turned off (NMPC) 
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Figure 6.10 Voltage response to temperature decrease at constant power (NMPC) 

Fig. 6.11 shows experimental data of the demanded and the respective produced power 

during the decrease of the operating temperature, while Fig. 6.12 shows the respective 

control actions for the current and the gas flows that are adjusted during the temperature 

decrease in order to maintain the produced power at the desired level. 
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Figure 6.11 Produced power while temperature decreases (NMPC) 



Application of Advanced MPC in PEMFC Systems 

 

 

170

16 18 20 22 24 26
320

340

360

380

F
lo

w
s 

(c
c/

m
in

)

Time (sec)
16 18 20 22 24 26

5.1

5.2

5.3

Time (min)

C
ur

re
nt

 (
A

)

 

Figure 6.12 Manipulated variables at temperature decrease (NMPC) 

Although the error between the actual voltage and the predicted by the dynamic model 

voltage increases due to the temperature difference, the execution time for the solution of 

the optimization problem remains at low levels (20ms-60ms) similar to the nominal case, 

with an average value of 36ms. Finally the average error between power, oxygen and 

hydrogen excess ratios and their set-points are 17mW, 2.1*10-3, 1.9*10-3 respectively.  

 

The results from the above scenarios reveal that the multivariable NMPC controller is 

able to handle relatively large deviations of the temperature between the process and the 

model and consequently of the predicted power and although the error increases, the 

respective time for the solution of the optimization problem remains the same while the 

demanded power and excess ratio levels are reached efficiently. Furthermore, the NLP 

problem converges to an optimum solution at each time interval. From the above analysis 

we conclude that the controller can tolerate a large level of model error without any 

performance deterioration. 

 

6.2.4 Minimum hydrogen supply 

In the third case study where the NMPC method is used, the application of the 

feedforward scheme for the minimization of the hydrogen consumption to the system is 

explored and the control configuration presented at Fig. 6.1 is slightly modified resulting 

to the one of Fig. 6.13. During this case study the operating FC temperature is kept at 

65C.   
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Figure 6.13 Expanded control configuration for adjusting the λH2,SP (NMPC) 

In order to determine the appropriate set-point that concurrently satisfies the 

manufacturers constraint (flow rate > 180cc/min) and the operating constraint (λH2>1) the 

4th degree polynomial is used based on the analysis presented in Chapter 2. The effect of 

this control configuration is shown in the following scenario which involves a few step 

changes in the power demand and it is compared to the case where the hydrogen excess 

ratio is kept at a constant level (λH2=2.8).  
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Figure 6.14 Power tracking with and without the adjustment of λH2,SP  (NMPC) 

Fig. 6.14 presents a comparison of the power tracking ability of the fuel cell as the excess 

ratio of hydrogen is kept at constant level and as it is adjusted to the minimum allowable 

hydrogen flow. It is observed that the power set-point is reached in both cases. Fig. 6.15 

illustrates the hydrogen excess ratio profiles based on a constant set-point and an 

adjustable set-point utilizing the feedforward scheme based on the power demand. 
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Figure 6.15 Profile tracking of λH2,SP  with and without the adjustment (NMPC) 

As illustrated by Fig. 6.15 the hydrogen excess ratio ranges from 1.3 to 2.4 and the 

controller is able to adjust the hydrogen flow rate in order to reach the set-point which is 

modified in a feedforward manner. The respective flow rate for both cases, constant or 

adjusted set-point, is shown in Fig. 6.16.  
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Figure 6.16 Hydrogen flows with and without the adjustment of λH2,SP  (NMPC) 

Fig. 6.16 shows the modification of the hydrogen flow rates where the λH2,sp is kept 

constant and when λH2,sp  is adjusted utilizing the feedforward scheme based on the power 

demand. It is noted that the hydrogen flow rate is significantly reduced in the second 

case, while the set-point is reached with the same accuracy. Therefore, the feedforward 

scheme can be used in order to reduce the hydrogen usage, while at the same time the 

safety of the system is ensured and the power is delivered as requested.  
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6.2.5 Overall assessment of the NMPC controller  

The NMPC controller that was derived for the online control of a PEMFC system can 

efficiently address the issues of power generation in a safe and controlled way. From the 

results of the experimental case studies it is observed that the controller is able to track 

efficiently a variable power demand while compensating process disturbances as well as 

the effects of unmodeled phenomena such as degradation or variations of operating 

conditions. Overall, it has been clearly illustrated that the NMPC framework is able to 

deal with uncertainties and achieve trajectory tracking in a satisfactory manner. Also, in 

all three case studies the NMPC controller exhibits low optimization solution 

requirements without convergence failures while satisfying realistic constraints imposed 

by the nature of the PEM fuel cell system. 
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6.3 Design and development of mpMPC controllers for the 

PEMFC unit 

The second MPC method that was developed is mpMPC. The primary objective of the 

subsequent analysis is to derive a number of decentralized mpMPC controllers one for 

each control objective and evaluate the response of the system in simulation mode. Some 

of these controllers will be used for the formulation of the exNMPC algorithm that will 

be examined in the subsequent section 6.4. Based on that, the analysis will be brief as the 

focus of this thesis was not on the mpMPC method. The decentralized control 

configuration which is developed and used is illustrated at Fig. 6.17 including the 

input/output variables of each controller and the interactions between them. 

 

 

Figure 6.17 Distributed control configuration (mpMPC) 

The four mpMPC controllers are designed based on an equal number of linear models 

that are derived using a model identification technique. From the software point of view, 

the initial model was developed in gPROMS which is transformed into Matlab code with 

Simulink for the solution of the mpQP problem and the derivation of the PWA function 

for the variables into consideration. The selection of the specific software package was 

dictated by the multi-parametric software that was used (POP) (ParOS Ltd, 2007). 

 A series of simulation experiments were performed and the response of the 

controllers at power demand and excess ratio changes was explored. The behavior of the 
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proposed scheme is exemplified here by a simulation case study, whereas the 

experimental deployment of the controller and its effect at the response of the PEM fuel 

cell unit is explored in the comparative case studies that will be presented in the 

subsequent section 6.4.  

6.3.1 Linear model approximation 

Prior to the control framework the nonlinear model needs to be simplified in order to be 

used for the MPC controller design. Therefore, a discrete reduced order state space (SS) 

model for each control objective is obtained using a model identification technique that 

reconstructs adequately the dynamic behavior of the system. The input-output data are 

obtained from simulations of the nonlinear model for various operating conditions and 

the parameters of the SS models are determined from the Identification Toolbox of 

Matlab. The sampling time for the data is 100ms for the power, the current and the mass 

flow rates, and 1s for the temperature, since temperature presents slower dynamic 

behavior. The mathematical representation of the SS model with additive disturbances is 

as follows: 

     

min max min max min max

1 ( )

( ) ( )

( ) , ( ) , ( )

x t Ax t Bu t Cv t

y t Dx t

y y t y u u t u v v t v

  


     

            (6.2) 

The first SS model ( Pfcss ) approximates the behavior of the power and has one 

manipulated variable (I), one control (output) variable (P) and two states. 

 

0.99904     0.045486

0.003633      0.82713
A

 
  
 

,
-0.0051039 

0.019406
B

 
  
 

,  -17.482    0.0036194C   

The second ( 2oss ) and the third ( 2Hss ) reduced order models approximate the behavior 

of the oxygen and hydrogen excess ratio. Both SS models have one state, one disturbance 

(I), one manipulated variable which is the mass flow rate of air ( airm ) and hydrogen ( 2Hm ) 

and one output variable each, the excess ratio of oxygen (λO2) and hydrogen (λH2), 

respectively. The system matrices are: 
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2 2 2 2[-0.014276], [0.060283], [-0.0088574], [233.68]A B C D       

3 3 3 3[ - 0.055887],  [0.0086835], [-0.0055123],  [ 238.05]A B C D     

The fourth SS model ( Tfcss ) represents the behavior of the temperature which is 

maintained at the desired set point through a heatup resistance and a set of cooling fans. 

The system matrices are presented bellow: 

4 4 4 41,  [0.0052417 -0.0004687], [3.3348e-009], 1A B C D     

This model has one state, one output /control variable (Tfc), one known disturbance the 

ambient temperature (Tamb) and two inputs, the power to the resistance for the heatup 

(Wht) and the power of the fans (Wcl), which both are transformed into operation 

percentage (xht ,xcl). A measure of the fitness between the aforementioned models in 

question and the provided data for the identification is the mean square-root difference 

(Table 6.3).  

Table 6.3 Fit results for the identified ss models 

Controlled 
Variable 

Sampling time Samples MSE Fit % 

Power 100ms 1200 29mW 82.9 

λO2 100ms 6000 0.041 83.2 

λH2 100ms 6000 0.037 84.1 

Tfc 1sec 58000 0.004K 91.4 

 

From the results of Table 6.3 it is apparent that the response of the approximated models 

would be close to the nonlinear model and that the SS models have the required accuracy 

to describe the behavior of the simulated system. Fig. 6.18 present the results of the 

fitness for the power and Fig. 6.19 for the temperature which also verifies the metrics 

presented at Table 6.3. 
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Figure 6.18 Comparison of linear vs nonlinear model (variable: power) 
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Figure 6.19 Comparison of linear vs nonlinear model (variable: temperature) 

 

6.3.2 Design of the mpMPC controllers 

The next step involves the design of mpMPC controllers for the PEM fuel cell system 

based on the derived SS models. Overall there are four MPC problems which are subject 

to constraints and they are formulated based on problem (6.1). Thus, for each control 

variable (represented by an SS model) an MPC problem is formulated. Subsequently, 

each MPC problem is transformed into an mpQP problem which involves a systematic 

exploration of the parameter ( ) space and results in a set of convex non-overlapping 
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polyhedra (critical regions) of this space, each corresponding to a unique set of active 

constraints (Chapter 5, section 5.4). The parameters for each mpQP problem are 

presented  at Table 6.4. 

Table 6.4 mpQP problem parameters 

Objective Optimization Var. (u) Parameters (θ) 

Power Current 1 [ 1 2   ]spx x I P P   

O2 Excess ratio Air flow 2 2 2,[ 1   ]spx I     

H2 Excess ratio Hydrogen flow 3 2 2,[ 1   ]H H spx I    

Temperature  Resistance %, Fans % 4 ,[ 1   ]amb fc fc spx T T T   

 

The aforementioned mpQP problem and can be solved with standard multi-parametric 

techniques (mpQP) (Pistikopoulos et al., 2007). In our study the explicit parametric 

controller was derived with the Parametric Optimization (POP) software (ParOS Ltd, 

2007). The control horizon in each problem is 2, therefore there are two optimization 

variables (ut+0, ut+1).  The corresponding parameters of each problem are shown in Table 

6.5 along with the respective number each mpMPC controller’s critical regions. 

Table 6.5 mpMPC settings and resulting regions  

Objective Optimization 
variables (u) 

Pred.Hor. 
(Np) 

Weight 
(Q) 

Weight 
(R) 

CR

P I(t+0), I(t+1) 10 3 0.01 57 

λO2 mO2(t+0),mO2(t+1) 20 1 0.1 13 

λH2 mH2(t+0), mH2(t+1) 40 100 0.1 13 

Tfc WR (t+0), WR (t+1), 
Wcl (t+0), Wcl (t+1,) 

100 1000 0.001 17 

 

A projection of the critical regions for the mpMPC controller of the power is shown in 

Fig. 6.20.  
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Figure 6.20 Critical regions of the mpMPC controller for the power 

The result from the aforementioned actions is four mpMPC controllers and their response 

will be explored by a simulation study.  

 

From the software point of view, during this thesis two main software algorithms were 

developed: 

 An automatic transformation of the critical regions from Matlab code to Fortran 

language (Appendix B) 

 An algorithm that implements a simple look-up function of the critical regions in 

Fortran language (Appendix B) 

Both of them were not available in POP software and since we wanted to use the mpMPC 

controller to the unit and most importantly to the newly developed exNMPC algorithm 

(Chapter 5, Section 5.5) it was necessary to develop respective interfaces between the 

results of POP and Fortran language. 
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6.3.3 Simulation case study using the mpMPC controllers 

The following case study presents the control of the fuel cell system which is simulated 

by the nonlinear dynamic model using the aforementioned mpMPC controllers. Figs 6.21, 

6.22 and 6.23 illustrate the simulation results of the mpMPC implementation for various 

set-points. During the simulation we assumed that the ambient temperature was kept 

constant at 298K. The performance of the temperature controller is presented in Figure 4, 

where simulations performed with three temperature set points changes (333K, 338K, 

343K) while the power controller’s set point is set at constant level (5W), and it is 

observed that the controller follows  rapidly the set point changes on the temperature 

without offset.  Due to the small size of the PEMFC the system needs to be heated during 

steady state operation in order to follow the set point (the resistance is working at 1-4%). 
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Figure 6.21 Temperature control and cooling/heatup (mpMPC) 

Figs 6.22 and 6.23 illustrate the performance of the power and oxygen excess ratio 

controllers. During the simulated experiment the hydrogen excess ratio is kept constant 

through the controller (λH2=1.5) and the temperature controller has a fixed set point at 

338K.  
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Figure 6.22 Control of power (mpMPC) 
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Figure 6.23 Control of  λΟ2 (mpMPC) 

The power controller showed excellent response to load changes and the excess ratio 

controller demonstrated fast settling time (less than 2s) after current disturbances.  The 

current (Fig. 6.24a) and the mass flow rates (Fig. 6.24b) are properly adjusted to fulfill 

the starvation avoidance constraint by keeping the excess ratio at constant level.   
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Figure 6.24 Current and mass flow rates profiles (mpMPC) 

Overall the mpMPC controllers are able to track the desired reference points regardless 

the fluctuations of the interacting variables. Finally the system response was within the 

feasible area of operation since the output of the controllers was bounded by the 

operating constraints and the stability was guaranteed.      

 

6.3.4 Overall evaluation of the mpMPC controllers for the PEMFC 

The development procedure of mpMPC controllers requires less time as they can be 

derived by experimental data as well. This can be very helpful at the early stages of the 

development of a control system or in the case that we want to identify a trend in the 

response of the system. In this section a set of mpMPC controllers were developed and 

validated offline based on simulation data from the nonlinear dynamic model. Four 

controllers have been derived in order to fulfill the power demand, while avoiding 

starvation and maintain the fuel temperature at the desired set point. The results from 

their deployment to the PEM fuel cell unit will be presented in the subsequent section 

where a number of comparative experimental case studies will reveal their effect to the 

behavior of the unit and their response to varying operating controllers. 
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6.4 Design and development of exNMPC controllers for the 

PEMFC unit 

The third MPC method developed and applied in the PEM fuel cell system, is the 

combined exNMPC method where the use of mpQP enhances the performance of a 

typical NMPC formulation through a search space reduction (SSR) algorithm as 

illustrated in Chapter 5. Based on the exNMPC method a number of controllers are 

developed which are used in simulation and experimental case studies, in order to 

exemplify the effectiveness and prove the agility of the newly proposed method 

approach. For this purpose three main case studies will be presented: 

 Analysis of the effects of the SSR to the performance of NMPC and comparison of 

different initialization methods of the optimization problem (in simulation mode). 

 Response of the exNMPC at nominal conditions and in the presence of disturbances, 

including a comparison to mpMPC and NMPC controllers (experimental deployment). 

 Experimental application of exNMPC at different operating conditions and for the 

start-up of the PEM fuel cell system (experimental deployment). 

 During the experiments (simulation and experimental) the feedforward scheme 

for the adjustment of the hydrogen and oxygen excess ratio is also employed ensuring 

that the system operates not only at a safe region but also it utilizes the minimum required 

fuel to operate. The interconnection of the controller to the industrial SCADA system is 

achieved through a custom made OPC-based interface that was designed to establish the 

online communication between the NLP solver and the automation system. 

 The development of an exNMPC method is based on two main set of actions, the 

offline reparatory actions and the online deployment and parameter tuning of the 

controller. The offline actions are responsible for the development of the exNMPC 

controller that would satisfy the control and operation objectives of the system and 

include the following: 

 Formulate the NMPC controller (direct transcription and NLP problem). 

 Select the manipulated variables to be adjusted online. 
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 Approximate nonlinear model with linear state space model. 

 Calculate the linearization error. 

 Determine critical region for each objective by the solution of the mpQP problems. 

 Derive PWA functions for each selected control objective. 

 Define the SSR parameters. 

These actions are implemented for the PEM fuel cell system and the resulting parameters 

and settings will be presented. 

6.4.1 exNMPC Problem Formulation 

The development of the exNMPC controller involves a typical NMPC controller which is 

augmented by a preprocessing algorithm (SSR) which is called prior to the solution of the 

NLP problem. This NMPC controller is based on the direct transcription method and it is 

formulated according to Section 6.2. Besides the NMPC problem formulation, the rest of 

the preparatory actions involve the SSR algorithm. 

NMPC problem formulation based on direct transcription 

According to the control objectives ( , 2, 2,[ , , , ]SP SP fc SP O SP H SPy P T   ) defined in Chapter 4, 

there are five manipulated variables ( , 2,[ , , , , ]air in H in ht clu I m m x x   ) and four controlled 

variables ( 2 2[ , , , ]fc fc O Hy P T   ). Two of the manipulated variables ( ,ht clx x ) are mutually 

exclusive and they mainly affect one of the controlled variables ( fcT ). Fig. 6.25 illustrates 

the control configuration which is implemented during the current case study. 
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Figure 6.25 Control configuration (exNMPC) 
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Regarding the NMPC formulation (eq. 6.1) the weight matrix Q  defines the weights for 

the output power, oxygen and hydrogen excess ratio and temperature 

( 2 2[ , , , ] ( )P o H TfcQR QR QR QR diag QR   ) while 1R  are the penalties on the change of the 

current, the percentage of operation of the heat-up resistance and the cooling fans 

([ 1 , 1 , 1 ] ( 1)I xht xclR R R diag R ). The nonlinear dynamic model of the PEMFC, presented in 

Chapter 3, is comprised of nine differential equations and one algebraic, discretized at 10 

finite elements ( NE ) having 4 collocation points ( copN ) each, resulting to 441 variables 

and 381 equations and the analysis of the model discretization based on OCFE is 

summarized at Table 6.6. 

Table 6.6 PEM fuel cell model discretization based on OCFE (NMPC) 

Variables 
State variables at col. points: 360  
Algebraic variables at col. points: 30 
Inputs at each finite element: 5 

Constraints  
States: 270 
Algebraic: 30 
Continuity at elem. boundaries: 81 

Jacobian Matrix 
Elements (Total/Non-zero): 168021/3375 
Density: 2.009% 

 

SSR and PWA functions 

Three of the manipulated variables ( , ,ht clI x x ) are selected to have varying bounds during 

the operation of the system, that mainly affect two of the controlled variables ( ,fc fcP T ). 

The development of the SSR technique as analyzed in Section 5.4, requires a PWA 

function to approximate the power and the temperature behavior of the fuel cell system 

using the aforementioned mpMPC approach. Prior to the solution of the mpQP problem 

two linear discrete state space (ss) models are derived, one for each control objective. The 

first one ( Pss ) approximates the behavior of power and has one input variable (I) and two 
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states ( ,1 ,2,P Px x ) whereas the second ss ( Tfcss ) approximates the temperature behavior and 

has two input variables ( ,ht clx x ), one disturbance ( ambT ) and two states ( ,1 ,2,Tfc Tfcx x ).  

For each linear model ( ,P Tfcss ss ) an mpQP problem is formulated. The first mpQP 

problem involves five parameters ,1 ,2[     ]P P P spx x I P P   and the resulting optimal map 

consists of , 57CR PN   critical regions. The second mpQP problem involves six 

parameters ,1 ,2 ,[     ]Tfc Tfc Tfc amb fc fc spx x T T T   while the resulting feasible space, defined by 

Tfc , is partitioned into , 23CR TfcN    critical regions. Based on a simulation analysis the 

linearization error ( ,maxye ) and the change of bounds are determined ( bue ) that will by 

used for the online adjustment ( , ,,act low act upbu bu ) of the active boundaries for each 

variable. The values of the parameters for the SSR are outlined at Table 6.7.  

Table 6.7 Parameters for the SSR algorithm of exNMPC 

Manipulated 
variable 

Linearization 
Error ( ,maxye ) 

Max 
deviations 

Max Change of 
Bounds ( bue ) 

,ht clx x  8.60% 4.3C ±8% 
I  17.10% 0.684W ±2A 

 

These parameters are used so that the bounds of , ,ht clI x x  are adjusted while the bounds 

of the other two variables ( 2,air Hm m  ) are fixed at their feasible bounds. 

 

6.4.2 Explore the SSR effect – Different initialization methods (simulation) 

In the first case study the performance of the proposed exNMPC scheme is illustrated 

through two simulation scenarios. In first one (S1) the analysis focuses on the 

temperature objective whereas in the second scenario (S2) the analysis focuses on the 

effect that the SSR has on the power objective. Their scope is to explore the overall 

behavior of the fuel cell system and concurrently evaluate four different methods 

regarding the initialization of the optimization problem:  
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 C1: A cold start initialization is performed at each iteration using a predefined set of 

initial values. 

 C2: The cold start initialization of C1 is complemented by the SSR algorithm.  

 W1: A warm start initialization method is performed at each iteration utilizing 

information from the previously solved NLP problem. 

 W2: The cold start initialization of C1 is complemented by the SSR algorithm. 

The method (W1) is the typical NMPC formulation while the (W2) is the newly 

developed exNMPC approach. In cases (C2) and  (W2) the SSR algorithm is applied 

concurrently for the power and the temperature objective which means that three 

manipulated variables ( , ,ht clI x x ) have adjusted bounds between successive iterations. At 

these scenarios the analysis of the results focuses on the execution time, the set-point 

tracking accuracy and a number of metrics which are related to the optimization problem 

(e.g., total iteration, maximum function calls, etc.).  

Scenario S1 - SSR for the temperature objective 

The scope of the first scenario (S1) is to present the effect of the proposed SSR approach 

to the performance of the system.  Also, the importance of the warm-start initialization of 

the NLP problem is illustrated and finally a comparison between the various initialization 

procedures is shown. Initially the analysis focuses on the accuracy regarding the control 

objectives and subsequently the focus is shifted towards the computational requirements. 

The following simulation case study involves a scenario with few step changes at the 

power demand and at the fuel cell temperature. As stated earlier the scope of the study is 

to show the effect of the SSR technique (exNMPC) compared to the typical NMPC 

formulation. Therefore, the response of an NMPC controller (method W1) is compared to 

the proposed exNMPC controller (method W2). Both use the same nonlinear dynamic 

model and the same optimization method and the simulation horizon is 10min.  
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Figure 6.26 a) Power profile, b) Fuel cell temperature (exNMPC, NMPC) 

Figure 6.26 illustrates that the power demand is delivered upon request by using both 

initialization methods (warm-start with (W2) and without the SSR (W1)) in terms of 

accuracy and the temperature is maintained at the desired set-point with a negligible error 

(±0.4°C). Figure 6.27 illustrates the corresponding oxygen and hydrogen excess ratio 

profiles that are adjusted according to the power demand based on the minimum air and 

hydrogen considerations as described earlier. The fuel cell operates at a safe region since 

the excess ratio of the air and the hydrogen are kept above the minimum ( 2 2, 1O H   ). 
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Figure 6.27 Oxygen and hydrogen excess ratio profiles (exNMPC, NMPC) 

Figs. 6.26 and 6.27 show that both controllers (NMPC and exNMPC) have similar 

behavior in terms of accuracy which is verified by the mean squared error (MSE) for 

each objective as presented in Table 6.8.  
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Table 6.8 MSE of each control objective (methods W1 and W2) 

 NMPC (W1) exNMPC (W2) 

Power 14mW 16mW 

Temperature 0.3°C 0.2°C 

λO2 32.7 10  31.9 10  

λΗ2 48.8 10  47.6 10  

 

The subsequent analysis shows the importance of the proposed SSR technique and its 

effect to the solution of the NLP problem regarding the computational requirements. The 

aforementioned simulation scenario is tested with four different methods (C1, C2, W1, 

W2) regarding the initialization of the optimization problem. Figs 6.26 and 6.27 present 

the results from W1 and W2, namely the NMPC and the exNMPC controllers. The 

performance of each method regarding the optimization time, the iterations and the calls 

to the objective function over the 10min is reported in Table 6.9. 

 

Table 6.9 Scenario S1 - Results from various initializations (C1, C2, W1, W2) 

 C1:Cold C2:Cold+ SSR W1:Warm W2:Warm+SSR 

Max opt time (ms) 3164 1026 493 382 

Avg time (ms) 356 304 86 66 

Total Iters 25187 21209 19329 10329 

Max Iters. 845 539 541 373 

Avg Iters. 206 203 17 8 

Max Fun. Calls 2100 1589 1857 884 

Avg Func. Calls 234 189 46 28 

 

From Table 6.9 it is observed that the maximum and the average optimization time are 

decreased when the search space is adjusted both in cold start and warm start 

optimization. But when the optimization is performed using the cold start method, the 

maximum optimization time is beyond the system sampling time specifications. 
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Therefore, it is not practical to use a cold start initialization, method C1 or C2. On the 

other hand, the warm start initialization (W1, W2) of the optimizer shows superior 

performance compared to the cold start. Furthermore, a significant improvement is 

observed at the maximum and average optimization time in method W2 compared to 

method W1. This improvement is caused by the reduced number of iterations that the 

optimizer performs in order to find the optimum values for the decision variables of the 

NLP problem compared to the W1 method. When method W2 is applied the search space 

is adjusted around the suggested solution which is derived by the PWA approximation of 

the system and therefore the optimizer has a reduced space to explore. Moreover, an 

interesting observation is that the total number of iterations is decreased by 47% when the 

search space is adjusted (W2). Figs 6.28 and 6.29 illustrate the optimization time and the 

required iterations of methods W1 and W2. 
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Figure 6.28 Optimization time per interval (exNMPC, NMPC) 
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Figure 6.29 Iterations per interval for methods (exNMPC, NMPC) 

In steady state both methods (W1, W2) have similar behavior with optimization time 

~50ms and ~100ms respectively. But when a step change occurs or a disturbance affects 

the temperature of the system, W2 method requires less iterations to minimize the 

objective function as it searches in a reduced space for the optimum value. On the other 

hand, W1 requires more iterations and performs much more function calls in order to 
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determine the optimum value. In summary this example illustrated clearly the effect of 

the SSR. 

From the above analysis and the performance metrics it is obvious that the proposed 

exNMPC framework (W2 method) that uses warm start initialization in conjunction with 

the SSR technique outperforms the others, for the given problem. The results indicate that 

the proposed controller (exNMPC) can be applied online to the fuel cell unit. Thus the 

next two case studies explore the online behavior of the system using the selected 

exNMPC controller. 

Scenario S2 - SSR for the temperature and the power objectives 

The second scenario (S2) involves few step changes of the power demand while the fuel 

cell temperature is maintained at a specific level (65°C). The response of the proposed 

exNMPC (W2 initialization method) is compared to an NMPC controller (W1 

initialization method) using the same nonlinear dynamic model and the same 

optimization method. The difference from the previous scenario (S2) is that the analysis 

focuses on the power objective based on a simulation scenario with 40s duration. Figs 

6.30 and 6.31 illustrate the behavior of the system with respect to the temperature and 

power profile.  

0 5 10 15 20 25 30 35 40
2

2.5

3

3.5

4

Time (s)

P
o

w
e

r 
(W

)

 

Figure 6.30 Power demand profile and produced power (exNMPC, NMPC) 
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Figure 6.31 Fuel cell temperature (exNMPC, NMPC) 
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Fig. 6.30 illustrates that the power demand is delivered upon request by both controllers 

(NMPC, exNMPC) in terms of accuracy. Furthermore, the temperature is controlled at 

the desired set-point with a negligible error (±0.3°C). Fig. 6.31 illustrates the respective 

oxygen and hydrogen excess ratio profiles that are adjusted according to the power 

demand based on the minimum air and hydrogen considerations as described earlier. The 

fuel cell operates at a safe region since the excess ratios of the gases are kept above the 

minimum ( 2 2, 1O H   ). 
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Figure 6.32 O Oxygen and hydrogen excess ratio profiles (exNMPC, NMPC) 

Figs 6.30, 6.31 and 6.32 show that both controllers (NMPC and exNMPC) have similar 

behavior in terms of accuracy. The subsequent analysis shows the importance of the 

proposed SSR technique and its effect to the solution of the NLP problem regarding the 

computational requirements. The aforementioned simulation scenario is tested with the 

four different initialization methods (C1, C2, W1, W2). Figs 6.30, 6.31 and 6.32 present 

the results from W1, W2, namely the NMPC and the exNMPC controllers. Maximum and 

average optimization time per interval, maximum iterations per interval and total 

iterations over the 40s along with the maximum calls to the objective function are 

reported at Table 6.10. 

Table 6.10 Scenario S2 - Results from various initializations (C1, C2, W1, W2) 

Method Max opt 

time (s) 

Avg time (ms) Total 

Iters 

Max Iters. Max Fun. calls  

C1:Cold  3.93 1086 23594 1639 3443 

C2:Cold+ SSR 2.30 861 20370 1063 2101 

W3:Warm 0.863 413 5038 346 762 

W4:Warm+SSR 0.48 207 1851 124 368 
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The maximum and the average optimization time are decreased when the search space is 

adjusted (C2) even though a cold start initialization is performed. But the maximum 

optimization time is beyond the system sampling time specifications. Therefore, it is not 

practical to use a cold start initialization method C1 or C2. On the other hand, the warm 

start initialization (W1, W2) of the optimizer shows superior performance compared to 

the cold start. We observe a significant improvement of the average optimization time in 

W2 method which is affected by the iterations that the optimizer performs in order to find 

the optimum values for the decision variables of the NLP problem that minimize the 

objective function. An interesting observation is that the total number of iterations is 

decreased by 64% when the search space is adjusted (W2).  
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Figure 6.33 a) Optimization time and b) Iterations per interval (NMPC, exNMPC) 

Fig. 6.33 shows that in steady state both methods (W1,W2) have similar behavior with 

optimization time 40ms to 60ms. After a step change W2 method requires less iterations 

to minimize the objective function as it searches in a reduced space for the optimum 

value. On the other hand, W1 requires more iterations and performs much more function 

calls.  
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Figure 6.34 Function evaluations after a power step change 

Fig. 6.34 depicts the exploration of the search space for the optimum value of I  during 

one sampling interval after a power step change ( 19sec, 3.9spt P W  ). In W1 method, 

I  changes between 0.3A and 9.9A and the optimizer performs 685 function calls, while 

in W2, I deviates between 6.2A and 9.1A and only 132 function calls are performed. Both 

methods results to the same optimum value (M3: 8.689A, M4: 8.683A) but W1 requires 

811ms while W2 requires only 201ms at this specific interval. By this illustrative 

example the effect of the SSR is clearly shown. 
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Figure 6.35 Feasible and active bounds and optimum values for I (exNMPC) 

Fig. 6.35 presents the upper and lower bounds of I , along with the optimum I  profile for 

method W2. A comparison between methods W1 and W2 regarding the optimum values 

of I is presented in Fig. 6.36.  
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Figure 6.36 Optimum value difference as selected by NMPC and exNMPC 
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Both methods result to the selection of the same optimum current value since the 

maximum difference between them is 11mA. From the aforementioned analysis and the 

performance metrics it is obvious that the proposed exNMPC framework (W2 method) 

that uses warm start initialization in conjunction with the SSR technique outperforms the 

others, for the given problem.  

6.4.3 Single variable SSR and comparison to NMPC, mpMPC (experimental) 

The proposed exNMPC scheme, relying on the NMPC augmented by the SSR algorithm, 

is deployed to the industrial SCADA system and its behavior is explored through 

experimental scenarios. Also, the NMPC controller and the various mpMPC that were 

previously developed are also deployed to SCADA in order to perform a comparative 

case study. The performance of the underlying controllers is assessed on the basis of fast 

response and minimum error comparing to the set-point. Two experimental scenarios are 

presented. In the first one (E1) the accuracy of the control actions and the computational 

delay are shown, while in the second scenario (E2) the controller’s response in the 

presence of modeling error is explored.  

 Their scope is to explore the overall behavior of the fuel cell system, controlled 

by the proposed various controllers, at nominal conditions and when disturbances appear. 

In order to insert the element of disturbance the control configuration was slightly 

modified. The exNMPC and NMPC controllers do not include the energy balance of the 

model. Instead they consider the temperature as a measured parameter. As a consequence 

the SSR algorithm is applied for the power objective only. Finally the temperature control 

is accomplished by the two PID controllers that where used at Section 6.2 as well. The 

analysis of the results focuses on the execution time and the set-point tracking accuracy. 

Scenario E1 - Nominal case (comparison with NMPC) 

The first scenario involves various step changes at the power demand in order to explore 

the behavior of NMPC and exNMPC with respect to the optimization time. It is assumed 

that both the model and the unit operate at the same temperature (T=338K) and pressure 

conditions (Pt=1bar). Fig. 6.37 illustrates the power response to the corresponding 

control actions of the manipulated variables as the power demand changes.  
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Figure 6.37  Power demand and excess ratios set-points (NMPC, exNMPC) 

Also, the profiles of oxygen and hydrogen excess ratios are shown (Fig. 6.37b, Fig. 

6.37c). From the power delivery point of view both controllers (NMPC, exNMPC) 

illustrate a very good performance and the demanded power in all cases is available on 

request. 
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Figure 6.38 Manipulated variables (NMPC, exNMPC) 

The gas flows (Fig. 6.38b) are adjusted accordingly in order to achieve the desired excess 

ratio levels. Both controllers are able to fulfill the power demand and guarantee a safe 

operation while minimizing the fuel consumption. It is observed (Table 6.11) that the 

exNMPC and the NMPC controllers have mean square error (MSE) of the same order of 

magnitude. 
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Table 6.11 Deviation from the set-point and optimization time (NMPC, exNMPC) 

 Power 

MSE (mW) 

O2 Excess 

Ratio (-) 

H2 Excess 

Ratio (-) 

Max. opt. 

time (ms) 

Avg opt. time 

(ms) 

NMPC 15.2 32.2 10  46.7 10  47 34.8 

exNMPC 9.1 32.3 10  43.2 10  29 17.1 

 

Besides the necessary accuracy, the second issue that the advanced control framework 

should address is the computational delay which is a significant challenge for the online 

applicability of the resulting controller. As illustrated in Fig. 6.39 and Table 6.11, the 

proposed exNMPC scheme can efficiently and faster provide the necessary control 

actions comparing to the NMPC in order to follow the power demand and the excess 

ratios set-point changes. The exNMPC controller shows a significant improvement in the 

optimization time at every instance while both controllers behave seamlessly in case of 

steady state or step changes. 
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Figure 6.39 Optimization time (NMPC, exNMPC) 

Scenario E2 – Temperature disturbance (comparison with mpMPC) 

In the second experimental scenario the effect of a mismatch between the operating 

conditions predicted by the model and the actual ones of the process is explored. The 

temperature of the system changes while the controllers (mpMPC, exNMPC) have 

constant power and excess ratios set-points ( 3.5SPP W , 2, 3.1SP  , 2, 1.7H SP  ). This 

difference in temperature causes a deviation at the output power of the model comparing 

to the actual power of the fuel cell. The operating temperature that the model is aware of 
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is 65C while the unit operates successively at 60C, 52C, 65C and 58C due to 

disturbances as shown in Fig. 6.40.  

0 10 20 30 40 50 60 70 80 90
50

55

60

65

T
em

pe
ra

tu
re

 (
de

gC
)

Time (min)  

Figure 6.40 Modification of the temperature profile of the FC unit 

Fig. 6.41 illustrates the response of the mpMPC controller. We notice that there exists an 

error between the delivered power and the power set-point that increases or decreases 

according to the temperature.  
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Figure 6.41 Power response during temperature changes (mpMPC) 

When the system operates close to the nominal temperature (65C), the deviation 

decreases while it increases as the FC’s temperature deviates from the nominal. This 

offset is caused mainly by the difference in the temperature. 
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Figure 6.42 Power response during temperature changes (exNMPC) 
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In Fig. 6.42 the response of the exNMPC controller is shown. The average error of the 

exNMPC scheme is the same throughout the whole experiment regardless of the 

temperature differences. But this is not the case for the mpMPC controller which exhibits 

a deviation that varies depending on the temperature difference (Fig. 6.43).   
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Figure 6.43 Absolute power error during temperature changes (mpMPC, exNMPC) 
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Figure 6.44 Execution/optimization time and power error  (mpMPC, exNMPC) 

In Fig. 6.44 the optimization time and the absolute error are shown. The exNMPC 

controller has the same behavior as in the nominal case. The mpMPC does not involve 

online optimization; therefore the solution is retrieved within 1-2ms. However the 

exNMPC controller behaves more accurately as the mean square error (MSE) of the 

power is less than 8mW regardless of the temperature change and the maximum error is 

72% lower than the mpMPC error.  

 Overall the mpMPC can achieve trajectory tracking, but it cannot compensate for 

the error caused by the temperature variation (model mismatch). In contrast, the use of 

NMPC controller has a negligible error, but it has side-effects like increased optimization 

time compared to exNMPC. Obviously, the exNMPC scheme illustrates an improved 

behavior comparing to the other two control strategies, for the underlying control 
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problem in delivering accurate power tracking even in the case of a difference in the 

operating conditions. 

6.4.4 Online deployment of exNMPC at varying operating conditions 

(experimental) 

In the third case study the experimental behavior of the PEM fuel cell system is explored 

and controlled by the exNMPC approach at varying operating condition and during start-

up from the environmental temperature. The response of the proposed exNMPC 

controller is illustrated through three scenarios. In both cases the performance is 

evaluated in terms of computational requirements and accuracy with respect to the 

control objectives analyzed at Chapter 4. 

Scenario E3 -  Online behavior of the PEMFC at power demand changes 

The purpose of this experimental scenario is to explore the response of the proposed 

exNMPC controller with respect to the four control objectives. During this scenario the 

power and temperature profiles are externally determined while the oxygen and hydrogen 

profiles are derived and supplied to the exNMPC scheme based on the minimum air and 

hydrogen consumption functions. More specifically, a random power profile is typically 

demanded by the fuel cell system while the temperature is maintained at a certain level 

(55C). The power demand varies between 1W and 4.2W and the duration of the 

experiment is 5 minutes. Fig. 6.45a illustrates the demanded and the produced power by 

the fuel cell while Fig. 6.45b illustrates the temperature of the fuel cell. 
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Figure 6.45 Power generation and temperature profile 

A negligible error between the demanded and the delivered power is observed with a 

mean square error (MSE) of 12mW. Also, the temperature deviates from the desired set-

point between -0.4C to +0.1C, which is within the initial objectives (±1C). The 

oxygen and hydrogen excess ratio profiles are calculated based on the desired power 

profile and Fig. 6.46 illustrates that the system follows those trajectories. The oxygen 

excess ratio varies between 2.4 and 3.7 while the hydrogen excess ratio varies from 1.05 

to 3.9.  
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Figure 6.46 Oxygen and hydrogen profiles 
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As the demanded power decreases an increase to the minimum excess ratio appears. This 

is caused by the fact that the mass flow controllers of the unit are unable to operate below 

180cc/min which is a physical design constraint imposed by the manufacturer. From Figs 

6.45 and 6.46 it is obvious that the control objectives are achieved and the system 

operates in an optimum manner. The corresponding control actions are shown in Figs 

6.47 and 6.48.  
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Figure 6.47 Control actions: current, air and hydrogen flows 

As the power demand varies the controller calculates the optimal current (Fig. 6.49a) 

which is set to the DC load that subsequently applied to the fuel cell. At the same time 

the air and hydrogen flows (Fig. 6.47b, 6.47c) are adjusted based on the excess ratio 

profiles.  
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Figure 6.48 Percentage of operation of the heat-up resistance 
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For the given temperature the cooling fans do not operate and the temperature is 

maintained at 55C by properly adjusting the percentage of operation of the heat-up 

resistance. As the demanded power increases so does the produced heat. Therefore, the 

resistance supplies less heat, as seen by the percentage of operation that decreases (Fig. 

6.48). This can be clearly seen during the 1st and the 2nd minute of the experiment where 

the heat-up percentage is close to 2% as the required heat is produced by the fuel cell. 

 The computational delay caused by the optimization problem constitutes an 

important challenge for the online applicability of any nonlinear MPC controller. Based 

on that the performance of the exNMPC in terms of time response is evaluated. As stated 

earlier a sampling time of 500ms is chosen for the data acquisition by the SCADA system 

therefore the solution of the optimization problem at every time interval should be less 

than the sampling interval. Fig. 6.49 shows the optimization time at every iteration for the 

aforementioned experiment. 
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Figure 6.49 Optimization time for each sampling interval 

The assessment of the performance of the controller is summarized in Table 6.12. 

Table 6.12 Scenario E3 - Performance of the exNMPC controller 

Performance metrics 

Max. opt. time 149ms 

Average opt. time 63ms 

Max. Iterations 341 

Max. func. calls 712 

 



Application of Advanced MPC in PEMFC Systems 

 

 

204

The maximum optimization and the average time indicate that the sampling constraint is 

satisfied.  From the above analysis it is concluded that the fuel cell system is able to 

provide the power demand using the minimum fuel and oxidant consumption.  

Furthermore, the exNMPC controller exhibits a stable behavior while achieving the 

predetermined objectives within the required sampling time. 

 

Scenario E4 - Online behavior of the PEMFC at power, temperature changes 

The fourth experimental scenario (E4) involves two step changes in temperature and 

various changes in power demand. The duration of the scenario is 19min and the 

sampling time is 500ms. The scope of the controller is to concurrently fulfill the four 

objectives ( , 2, 2,[ , , , ]SP SP fc SP O SP H SPy P T   ) within the predefined time constraints of the 

system. The difference from the previous scenario (E3) is that besides the power, the 

temperature is modified as well. Fig. 6.50 illustrates the temperature set-point profile and 

the fuel cell temperature. The temperature drops from 55°C to 48°C and then it rises to 

61°C.  
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Figure 6.50 Step changes at the temperature and zoom in at steady state 

When the set-point is reached the system settles to the desired value with a negligible 

deviation of ±0.1°C after a few oscillations. The maximum overshoot and undershoot is 

0.6°C and -0.9°C, respectively. A number of power demand changes were also applied to 

the system during the 19min of the experiment. These step changes are randomly 

generated and cover the full operating range of the fuel cell (Fig. 6.51). 
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Figure 6.51 Power response a) whole scenario, b) few step changes, c) steady state 

From the power delivery point of view the exNMPC framework exhibits a very good 

performance as it can respond to frequent and abrupt changes of the power demand. 

Finally the mean squared error (MSE) for each objective and some performance metrics 

are presented in Table 6.13. 

Table 6.13 Performance of the Online exNMPC framework 

MSE from set-point Performance metrics 

Power 12mW Max. opt. time 307ms 

Temperature 0.1°C Average opt. time 197ms 

λO2 31.4 10  Max. Iterations 162 

λΗ2 47.2 10  Max. func. calls 425 

The MSE shows that the exNMPC can accurately fulfill the objective for power delivery 

( SPP ) in a safe operating region while minimizing the gas consumption ( 2, 2,,O SP H SP  ) and 

concurrently provide a stable environment with respect to the temperature ( ,fc SPT ) 

condition. From the performance metrics of Table 6.13 it is evident that the 

computational constraints are satisfied and the results from the simulation study are 

verified by the online application of the controller to the fuel cell unit.  Hence, the 

optimum operation of the fuel cell is achieved at varying operating conditions and rapid 

power changes.  
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Scenario E5 - System start up from the environmental temperature 

In the fifth experimental scenario (E5) the use of the proposed exNMPC scheme for the 

start-up of the system is presented. The objective is to heat-up the system in a controlled 

way while delivering a stable power demand. Concurrently we want to control the inlet 

flows in order to avoid starvation and minimize fuel consumption. At the beginning of its 

operation the temperature is the same with the environmental one (~27°C) while the goal 

is to reach 60°C. As soon as the control scheme is enabled the power and subsequently 

the excess ratio profiles are set to a predefined point. The demanded power is 3.2W and 

the resulting oxygen and hydrogen excess ratio profiles are set to 3.2 and 1.55 

respectively. Fig. 6.52 illustrates the power generation profile.  
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Figure 6.52 Produced power during temperature increase from 27°C to 60°C 

As in the previous case study, the controller is able to deliver the demanded power even 

at low temperature conditions and during the temperature rise. The MSE for the power is 

15.3mW while the values for λO2 and λH2 is 44.69 10  and 42.52 10 , respectively.  Fig. 

6.53 illustrates the temperature trajectory towards the set-point. 
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Figure 6.53 Temperature increase from 27°C to 60°C 
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From Fig. 6.53 it is clear that the desired temperature is accurately reached, with the use 

of the exNMPC controller, despite the existence of a large difference in the beginning of 

the operation between the set-point and the temperature of the system. The rise time of 

the temperature is 13.4min with an average steady-state error of 0.2°C. The percentage of 

operation for the heat-up resistance is shown is Fig. 6.54. 
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Figure 6.54 Heat-up % during temperature increase from 27°C to 60°C 

At steady state the resistance operates at ~19.2% in order to maintain the temperature at 

the desired level (60°C). Finally from the computational point of view the maximum and 

the average optimization time is 181ms and 48ms respectively as shown in Fig. 6.55. 
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Figure 6.55 Optimization time during temperature increase from 27°C to 60°C 

It is observed that the optimization time increases when the temperature approaches the 

set-point and decreases after the temperature settles to the desired value. Based on the 

results of the above analysis it clear that the exNMPC scheme can be used for the start-up 

of the system as it is able to compensate the difference between the measured and the 

desired temperature without increasing the computational requirements. 
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6.4.5 Overall assessment of the exNMPC controller  

In this Section (6.4) the behavior of the newly proposed synergetic exNMPC controller is 

presented. A warm-start method is complemented by an SSR technique, relying on a 

PWA function that sets the basis for the improved behavior of the optimizer. By this 

cooperation the computational requirements for the solution of an NLP problem are 

reduced. The importance of this synergy is illustrated by a challenging multivariable 

nonlinear control problem with measured and unmeasured variables that involves 

concurrently four operation objectives for the PEM fuel cell system. The response of the 

proposed framework is initially demonstrated through a simulation case study that 

focuses on the influence of the SSR to the solution of the NLP problem under different 

initialization methods for the optimizer. Afterwards the exNMPC is deployed to the 

experimental fuel cell and a comparative analysis is resented between the exNMPC and 

the NMPC, mpMPC methods. Finally the exNMPC approach is validated online at 

various operating conditions and during system start-up.  
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6.5 Comparative experimental analysis between MPC 

controllers 

The aim of this section is to explore the behavior of the exNMPC scheme compared to 

other control configurations. To this end an experimental scenario is formulated and  

applied to the PEM fuel cell unit under different control configurations (Fig. 6.56).  

 

 

Figure 6.56 Control configurations deployed at the fuel cell system 

As illustrated in Fig. 6.56 the power, oxygen and hydrogen excess ratio objectives are 

controlled by a nonlinear MPC approach based on the dynamic model presented at 

Chapter 3. Also, the same optimization problem (NLP problem with direct transcription 

of the model) is used at the exNMPC and NMPC approaches introduced in the previous 

sections of Chapter 6. The difference between the various control configurations (a-d) is 

the way that the temperature objective is handled. In configurations (a) and (b) the 

temperature is included in the objective function of the optimization problem while this is 

not the case in (c) and (d). More specifically in configuration (a) the temperature 

objective is achieved using the SSR algorithm whereas in (b) a typical NMPC approach is 

implemented with fixed bounds for the manipulated variables of the heat-up and cooling. 

In configuration (c) an mpMPC approach is applied for the temperature control and 

finally in (d) two independent PI controllers are utilized.  
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6.5.1 Desired power and temperature profile and derived excess ratios 

During this case study a few steps changes at the power demand (2.8W, 3.4W, 2.4W, 

3W) and at the operating temperature (60°C, 52°C, 63°C) are performed while the 

oxygen and hydrogen excess ratio set-points are determined by the feedforward scheme.  

Fig. 6.57 illustrates the power and temperature set-point profiles. 

 

Figure 6.57 Power and temperature profiles 

The adjustment of the excess ratio profiles (Fig. 6.58) are based on the desired power, 

therefore a respective step change concurrently with the change in the power demand is 

observed, while the excess ratio profiles remain constant when the temperature set-point 

changes. The derived excess ratio profiles are based on the polynomial functions that 

described at Chapter 4. In order to have an overview of the demanded profiles the profiles 

for the excess ratios are presented at Fig. 6.58. 

 

Figure 6.58 Oxygen and hydrogen excess ratio profiles 
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During the experiments these profiles are dynamically generated by the respective 

feedforward scheme at every time interval and the respective set-point is provided at the 

NMPC or exNMPC controller. 

 The results from the four experiments are presented in the following sections, 

beginning from the last configuration (d) to the first one (a). The performance of the 

underlying controllers is assessed based on: 

 fast response and minimum error comparing to the set-point  

 qualitative response characteristics: settling time, rise time, overshoot and undershoot 

 required energy for the heat-up and the cooling during each experiment 

 computational requirements of each configuration 

Although there are four control objectives the emphasis is towards the temperature 

objective. 

 

6.5.2 Power demand objective and excess ratios profiles 

Based on the predefined power profile (Fig. 6.57) an experiment for each controller is 

performed. Fig. 6.59 illustrates the tracking of the power profile for all control 

configurations. It is observed that the fuel cell exhibits similar behavior regardless of the 

control configuration. For example for the exNMPC the maximum power error at steady 

state is 9.5mW with an average error of 4mW and for the NMPC the maximum power 

error at steady state is 12.0mW with an average error of 3mW. A snapshot of the steady 

state behavior is shown in Fig. 6.60a while Fig. 6.60b focuses on a step change at the 

power.  
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Figure 6.59 Demanded and produced power (all control configurations) 
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Figure 6.60 Steady state and transient power behavior (all control configurations) 

The system is able to deliver the demanded power with very good response 

characteristics. In the case of the oxygen and hydrogen excess ratio profiles, a similar 

accurate behavior regarding the profile tracking is observed. A similar behavior is 

observed for the tracking of the oxygen and hydrogen excess ratios profiles. Table 6.14 

presents the mean square error (MSE) for both of them. 

 

Table 6.14 Mean Square Error of  O2 and H2 excess ratio profiles 

 O2 Excess Ratio (-) H2 Excess Ratio (-) 

exNMPC 44.21 10  42.42 10  

NMPC 44.38 10  43.81 10  

NMPC+mpMPC 43.52 10  42.91 10  

NMPC+PI 43.82 10  43.12 10  

 

A negligible difference exists between the various configurations. It is evident that the 

fuel cell operates at a safe region regardless of the power demand while avoiding oxygen 

starvation in all cases and minimizing the fuel supply to the required one.  

Overall the four controllers can efficiently provide the necessary control actions in order 

to follow the power set-point changes and adjust the air and hydrogen flow rate according 

to the requirements for oxygen and hydrogen excess ratios and thus avoid oxygen 

starvation and minimize the supplied hydrogen to the required one. 
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6.5.3 Temperature objective 

As stated earlier the difference between the various configurations is the way that the 

temperature objective is achieved. A brief analysis is provided for each controller’s 

response in order to evaluate the behavior of the system in terms of accuracy, time 

response and overall energy consumption with respect to the temperature.  

Temperature control using two independent PIs 

Initially the control configuration with the two PI controllers (d), one for the heat-up and 

the other for the cooling of the fuel cell is presented. These controllers operate 

independently and they are properly tuned in order to achieve an adequate behavior as 

illustrated at Fig. 6.61.  
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Figure 6.61 Temperature profile and heat-up/cooling actions (PI controllers) 

Fig. 6.61 illustrates that the system is able to reach the desired temperature without any 

oscillations with an accuracy of -0.2°C/+0.7°C. When there is an increase in the set-point 

the rise time is 9min while at a set-point decrease it is 5.8min. Also, we observe that the 

heat-up resistance and the cooling fans operate concurrently for a long period. This 

behavior could be improved if another structure was used, but this is beyond the scope of 

the current study, where we want to show the response of simple PI loops compared to 

advanced model based controllers. 
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Temperature control using mpMPC 

The next control scheme uses the mpMPC controller developed at Section 6.3 based on a 

linear state space model with two states. The temperature objective and the resulting 

behavior of the fuel cell are shown in Fig. 6.62.  
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Figure 6.62 Temperature profile and heat-up/cooling actions (mpMPC) 

By the use of the mpMPC undamped oscillations appear at the temperature which are 

caused by the fact that the heat-up and the cooling are enabled alternatively. Also, as the 

development of the mpMPC is based on a state space system derived at 65°C, the steady 

state error is decreased when the operating temperature gets closer to 65°C. At 52°C the 

average error from the set-point is 0.7°C, at 60°C is 0.5°C and at 63°C is 0.3°C. This 

behavior could be improved if a more sophisticated reduced order technique is used to 

derive the controller or a filter is used to avoid the oscillations, but this is out of the scope 

of the current study. 
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Temperature control using NMPC 

The third configuration which is examined is the NMPC approach where the temperature 

objectives is fulfilled by the centralized controller along with the rest of the operation 

objectives. The fuel cell temperature and the control actions applied by the NMPC 

scheme is illustrated at Fig. 6.63. 
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Figure 6.63 Temperature profile and heat-up/cooling actions (NMPC) 

It is clearly illustrated that the temperature settles to its desired value after a few 

oscillations. The use of the NMPC controller results to an accurate profile tracking as at 

steady state the deviation from the set-point is ±0.3°C. Furthermore, the cooling fans are 

not used for the maintenance of the temperature after the set-point is reached (step change 

from 60°C to 52°C).   
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Temperature control using exNMPC 

Finally Fig. 6.64 shows the fuel cell temperature controlled by the exNMPC scheme.  
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Figure 6.64 Temperature profile and heat-up/cooling actions (exNMPC) 

The exNMPC scheme is able to control the fuel cell temperature and has the desired 

performance as described in Chapter 4. The heat-up resistance and the cooling fans do 

not operate concurrently and the temperature settles to its desired set-point with a 

negligible error (±0.2°C) after a few oscillations. Also, the maximum overshoot and 

undershoot is 0.6°C and 0.9°C respectively which are within the operating objectives. At 

steady state the temperature is maintained by proper manipulation of the operating 

percentage of the heat-up resistance while the cooling fans are used only to reach the 

decreased set-point (step change from 60°C to 52°C).   

 Although the response of the exNMPC seems like the NMPC’s response there are 

some qualitative differences. More specifically they differ at the maximum undershoot, 

the rise time and the settling time which are described in Table 6.15. 
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Table 6.15 Overshoot, undershoot, rise and settling time (exNMPC, NMPC) 

 exNMPC NMPC  

Max Overshoot 0.6°C 0.6°C 

Max Undershoot 0.9°C 1.6°C 

Rise time (SP increase) 3.26min 3.25min 

Rise time (SP decrease) 5.6min 6.5min 

Settling time (SP increase) 4min 5.5min 

Settling time (SP decrease) 2.8min 4min 

 

Compared to the configuration where the PI’s are used, the use of exNMPC results in a 

40% decrease of the time required to reach the set-point.  

Energy consumption  

A critical analysis of the energy which is consumed to heat-up or cool down the system is 

provided for each controller (Fig. 6.65). The maximum power that the heat-up resistance 

can provide to the fuel cell is 25W while the maximum operation of the two cooling fans 

requires 55.8W. Based on the operating percentage, the consumed energy can be derived 

for the duration of the experiment into consideration. 
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Figure 6.65 Energy consumed for the heat-up and the cooling of the system 
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The exNMPC scheme consumes the lowest energy for the heat-up (2.31Wh) compared to 

the other configurations while the NMPC is the one that requires the lowest energy for 

the cooling of the system (1.37Wh). Overall the exNMPC and the NMPC have similar 

energy requirements (exNMPC:4Wh, NMPC:4.1Wh). The two PI controllers require 

23% more energy to achieve the same objective, while the energy demand of the mpMPC 

controller is increased by 47% compared to the exNMPC. 

 

The primary objective regarding the heat management subsystem is to exhibit a smooth 

behavior throughout the whole operating range (45°C to 70°C). From the above analysis 

we can conclude that each approach has some benefits and some limitations. The PI 

scheme is easily developed and does not require any model of the system but it cannot 

handle efficiently conflicting objectives in terms of energy consumption. The mpMPC 

controller can be developed from input/output data of the fuel cell system or simplified 

linear models and it works adequately regarding the temperature objective but there is 

always the issue that its response is depended on the accuracy of the linear approximation 

of the system. Finally the NMPC and the exNMPC approach have similar behavior 

regarding the temperature control and are able to operate seamlessly independently of the 

operating range since a nonlinear model is in the core of their structure.  

 

6.5.4 Computational requirements  

One important challenge that arises from the online deployment of an advanced model-

based controller, is the computational time required for the solution of the optimization 

problem which is repeated at every interval. Although a controller might achieve its 

objectives, the necessary time for the computation of the optimal values of the 

manipulated variables should also be considered in the development and implementation 

process. From the previous analysis we concluded that the exNMPC and NMPC 

approaches exhibit similar requirements in terms of profile tracking and energy 

consumption. However a significant difference exists between those two schemes related 

to the computational requirements. In fact this is the main contribution of the exNMPC 
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scheme, the reduction of the optimization time compare to the NMPC scheme, as 

illustrated in Fig. 6.66.  
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Figure 6.66 Optimization time for all control configurations 

It is clear from Fig. 6.66a that the exNMPC can efficiently and faster compute the 

optimal values for the fuel cell system compared to the NMPC scheme (Fig. 6.66b). Even 

in the case where the NMPC has a reduced objective function (Fig. 6.66c), as the 

temperature is controlled by the mpMPC or the PI scheme, the exNMPC scheme 

outperforms those controllers too. From Figs 6.66b and 6.66c we can also observe the 

effect of the temperature objective on the computational requirements. Finally Fig. 6.67 

shows the maximum and the average time of each controller. 
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Figure 6.67 Maximum and average optimization time for all controllers 

In the case of exNMPC the maximum optimization time is decreased by 70% compared 

to the NMPC scheme and by 47% compared to the reduced NMPC scheme. The above 

experiments clearly illustrate the computational performance of the proposed synergetic 

control scheme. 

 Overall in this section a thorough experimental case study was performed to 

reveal the benefits that arise from the deployment of the newly proposed exNMPC 

method. The results illustrate the salient characteristics of the proposed strategy. 

Apparently the combination of the NMPC with the PWA approximation, for the 

modification of the search space of the variable into consideration, shows interesting 

results for the underlying control problem. Furthermore, the fact that it is based on a 

nonlinear model of the fuel cell ensures that the exNMPC controller has the same 

performance, as with an NMPC controller, regardless of the varying operating conditions.  
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6.6 Concluding Remarks 

This chapter presents the implementation of three advanced control schemes in the online 

operation of a PEMFC. Two well established MPC methods (NMPC, mpMPC) are 

initially developed for the control of the system and the key features of each method are 

outlined. Subsequently, an alternative way of combining the two advanced MPC 

methodologies into one cooperative approach is experimentally explored (exNMPC). 

More specifically, to improve the convergence speed without sacrificing the quality of 

the solution, a novel algorithm is proposed to dynamically adjust the search space of 

selected variables, based on a pre-computed augmented low-complexity PWA 

approximation of the feasible space. The applicability and efficiency of the proposed 

synergetic framework is illustrated in the real-time operation of the PEM fuel cell. The 

results illustrate that the response of the NMPC controller can be enhanced when it is 

combined with an SSR technique. A comparative simulation study and experimental 

analysis reveals the capabilities and the potential of the newly developed exNMPC 

algorithm. 

 The salient characteristics of the exNMPC scheme are demonstrated through a set 

of experimental case studies at nominal conditions, in the presence of disturbances and 

during system start-up. It is shown that the computational requirements of the exNMPC 

are within the desired sampling time constraints without compromising the fulfillment of 

the control objectives. The behavior of the resulting closed-loop system is optimal in 

terms of the performance measure considered, while the satisfaction of the various 

constraints imposed on the PEMFC unit operation is guaranteed by the underlying control 

formulation. Overall, the proposed exNMPC framework guarantees that the fuel cell 

system can deliver the demanded power upon request while operating at a safe region 

using the optimal quantities of air and hydrogen and simultaneously maintaining a stable 

temperature environment. The performance of the exNMPC controller also illustrates a 

promising behavior in terms of online computational requirements. 
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Chapter 7 
 

 

 

7 Conclusions  
 

 

 

 

In this chapter a brief summary of the main results of this thesis are presented along with 

an outline of the main contributions. Also, some suggestions for future developments are 

identified that could extend the research findings of this work.  

 

7.1  Conclusions  

This work has been motivated by the need to develop a model-based framework 

for advanced control of an integrated PEM fuel cell system. As the fuel cell system is an 

essential element of a promising, benign and environmental friendly technology that 

could be part of a decarbonized and sustainable future economy, a continuous and 

persistent effort in technological innovation is needed. Driven by this incentive, the 

multidisciplinary research effort of this work was built around a fuel cell system, which 

was supervised by an automation system, complimented by predictive control algorithms 

that act as a catalyst towards the improvement of the response and protection of the fuel 

cell’s operation and safety.  
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 Chapter 1 reviews the role of fuel cell system at the future energy landscape 

along with a brief analysis of the PEM fuel cell technology. Also, the context for the 

advanced process control methodology is presented and the importance of controlling the 

fuel cell behavior is presented. 

A small-scale fully automated PEM fuel cell unit based on a SCADA architecture 

is described in Chapter 2. A custom-made interface was designed enabling the 

supervision and monitoring of the unit’s distinct, yet interacting, subsystems namely the 

power, the temperature, the water and the gas flow supply management. The unit is 

equipped with a single PEM fuel cell that was successfully activated through a systematic 

experimental procedure and its response was stabilized according to the manufacturer’s 

specifications. A number of tests were performed at various operating conditions 

(pressure, temperature, humidity, gas supply) that explored the behavior of the PEM fuel 

cell and the response of the unit.  

A detailed semi-empirical model that relies on mass and energy conservation 

equations combined with equations having experimentally defined parametric 

coefficients is developed and experimentally validated in Chapter 3. The model accounts 

for mass dynamics in the gas flow channels, the gas diffusion layers (GDL) and the 

membrane. For the voltage calculation the activation, ohmic and concentration losses are 

taken into consideration and finally in this scheme the energy balance of the fuel cell was 

also considered. The results from the experimental validation of the model signified that 

it can capture accurately enough the behavior of the small-scale unit, a fact that 

guarantees its suitability for the subsequent model-based control studies. 

Chapter 4 presents the control challenges and objectives in the context of PEMFC 

systems. The performance and longevity of the PEMFC are strongly influenced by the 

operating conditions and it is therefore important to control each subsystem in order to 

ensure a stable and optimum environment. The control objectives were the delivery of the 

demanded power while operating at a safe region and concurrently minimize the fuel 

consumption at stable temperature conditions ensuring proper gas humidification. In 

addition to the safety of the system, the overall performance was further improved by 

properly selecting the set-point for the gases excess ratios using two experimentally 
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determined feedforward functions that will derive the appropriate set-points for 2 and 

2H  based on the minimum gas criteria. 

Chapter 5 presents two advanced model-based control methodologies. The first 

methodology is the online NMPC strategy, which is very appealing due to its ability to 

handle dynamic nonlinearities of the process under consideration. The second 

methodology is an mpMPC strategy, which provides the optimal solution in real-time, as 

the solution is computed offline. From their cooperation a novel approach is proposed 

relying on an NMPC formulation using a search space reduction (SSR) algorithm which 

is based on a PWA of the variable’s feasible space, derived offline by the solution of an 

mpQP optimization problem.  

Overall, three different MPC-based approaches were formulated and subsequently 

implemented and assessed in Chapter 6. More specifically, a modular control framework 

was developed, deployed online and systematically evaluated. A number of experiments 

were performed revealing the potential and the performance of each control method while 

the behavior of the overall framework was assessed. The salient capabilities of the 

proposed synergetic formulation were revealed through the multivariable nonlinear 

control problem involving the optimal operation of the PEM fuel cell system. The results 

illustrated that the computational demands of the NMPC controller were reduced when it 

was combined with an SSR technique as the solution of the NLP problem was 

significantly enhanced. Finally a comparative analysis between the various controllers 

revealed the potential of the combined approach. 
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7.2 Main Contribution of this Work 

The main contributions of this work have been: 

 A control-oriented dynamic nonlinear dynamic semi-empirical PEM fuel cell model is 

developed and its empirical parameters were determined using a systematic formal 

parameter estimation procedure based on a set of experimental data.  

 A novel synergetic framework (exNMPC) between two well established control 

methods (mpMPC and NMPC) is developed, aiming at the reduction of the 

computational time without compromising the accuracy of the obtained solution.  

 An algorithm is derived that bounds the active area of the variables so that the 

exploration of the search space by the NLP solver is reduced at every iteration during 

online control. This SSR algorithm augments the typical NMPC formulation.  

 The online multivariable nonlinear controllers (NMPC, exNMPC) utilize the full 

dynamic nonlinear model of the fuel cell. This is greatly enhanced by the use of the 

direct transcription method that was part of the direct simultaneous optimization 

approach based on the reduced gradient projection NLP solver that was utilized. 

 All the model-based algorithmic developments have been experimentally tested in a 

real-life fuel cell system at nominal conditions, in the presence of disturbances and 

during start-up. The multi-variable control problem is treated in a centralized way. A 

comparative analysis between the mpMPC, NMPC and exNMPC controllers reveals 

the merits and limitations of each approach. 

 The newly proposed unified framework is developed and deployed online to an 

industrial automation system. The response of the multivariable nonlinear controller is 

assessed through a set of experimental studies, illustrating that the control objectives 

are achieved and the fuel cell system operates economically and at a stable 

environment regardless of the varying operating conditions. 
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7.2.1 Automation and Software Engineering Accomplishments 

From the automation and software engineering point of view, the following 

accomplishments have been achieved: 

 The interconnection of the controllers to the industrial SCADA system is achieved 

through state-of-the-art communication industrial protocols (OPC). A custom made 

OPC-based interface has been designed to establish the online communication between 

the NLP solver and the automation system. The selected software architecture ensures 

portability, easy deployment and most importantly universal access to any OPC-based 

system. 

 A set of software routines were developed in Matlab code in order to extend the use of 

mpMPC to Fortran based environment, including an automatic transformation function  

of the critical regions from Matlab code to Fortran language along with an algorithm 

that implements a look-up function of the critical regions. 

 The typical functionality of a SCADA system is extended to include various MPC 

based controllers. For this purpose a modular, supervisory and hierarchical structure 

was embedded at the SCADA system enabling the testing of several control 

configurations.  

 A user-friendly interface is developed to speed-up the deployment of each control and 

enable monitoring of the status of the system leading to significant time savings, since 

everything is presented graphically. Also, via this interface it is possible to select not 

only the type of controller to test but also to isolate the objectives. 
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7.3 Recommendations for Future Directions 

During the course of this thesis several interesting and challenging issues are revealed 

requiring further investigation. In particular: 

 Fuel Cell operation 

 Include efficiency considerations at the control objectives that could online drive the 

operation of the PEMFC towards an economic region of operation. 

 Incorporate a diagnosis and fault-tolerant control mechanism to the automation system. 

 Expand the dynamic model to PEMFC stacks and include the components of the BOP.  

 Modify the dynamic model to high temperature PEMFC that have some advantages 

compared to low temperature PEMFCs, such as increased CO tolerance which mean 

that hydrogen from reforming can be used. HT-PEMs are currently at a research stage. 

 Additions to model-based control structure for the PEM fuel cell system 

 Include online estimation for the time varying parameters and the unmeasured 

variables and states (Moving Horizon Estimation (MHE) problem). 

 Develop a real-time variant of the proposed NMPC and exNMPC controllers with 

convergence guarantees. 

 Deploy the NMPC and the exNMPC methods to embedded systems. 

 Extensions of the SSR algorithm based the PWA approximation (exNMPC) 

 Extend the exNMPC approach to include stability and robustness properties. 

 Incorporate online estimation of the linearization error that defines the active bounds of 

the selected manipulated variables. 

 Derive a systematic methodology for the selection of variables that effect the 

computational requirements of the NLP problem. 

 Explore how a multivariable SSR and a multiple single variable SSR affect the quality 

of the NLP solution. 

 Determine which features of the mpMPC or the NMPC would be beneficial to the 

resulting exNMPC approach (e.g., robust mpQP combined with nominal NMPC vs. the 

nominal mpQP with robust NMPC). 
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Appendix A. Interface of the developed 

software 
 

 

The developed software consists of a number of custom designed user interfaces that 

facilitate the operation of the various controllers including: 

 Communication interface for OPC data transmission 

 Device driver for electronic load (using serial RS232C protocol) 

 HMI interface at SCADA of the Unit 

o Analog, Digital, Alarms, Menu, Control, System, Trending 
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Interface of the I/O driver between the FORTRAN models and optimization solver and 

the SCADA system using OPC protocol 
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Serial I/O driver that enables the communication between the programmable DC 

Electronic Load and the SCADA system. The data communication is based on the OPC 

protocol.   



Appendix A                                         247 

 

 

 

 

Main screen of the HMI/SCADA system. 
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Supervisory screen with the available parameters for each controller. 
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Overview of the status of the PEMFC system 
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Indicative diagrams that present the online behavior of the fuel cell using data from the 

archiving  system. 
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List of the analog signals of the PEMFC system. 
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List of the digital signals of the PEMFC system. 
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Appendix B. Software routines for the 

mpMPC  
 

 

1. Matalab function that was used to automatically translate the Critical Regions from 

Matlab code to Fortran subprograms 

 
% ----- Subroutine for Automatic transformation ton CRs se fortran ----- 
% Jan2012, Dev by C. Ziogou (CPERI/CERTH - PSDI) 
% cziogou@cperi.certh.gr 
% 
function retflag = crinf24transep(zcr, fonoma) 
    retflag = logical(0);  
    global ZERO; 
    [unit, msg] = fopen(fonoma, 'wt'); 
    nCR = length(zcr); % NREGIONS pli8os ton crit regions 
    nrX = size(zcr(1).X, 1); % NCONTROLS gia p , grmmes tou X  
    ncX = size(zcr(1).X, 2) - 1; % NTHETA siles tou X -1  
fprintf(unit, '!3/Jan/2012: when Matlab egine Fortran \n (C.Ziogou CPERI/CERTH) 
cziogou@cperi.certh.gr \n\n'); 
     
fprintf(unit, 'SUBROUTINE CR24TRAN(stat) \n\n \t EXTERNAL stat \n'); 
fprintf(unit, '! critical region information \n'); 
fprintf(unit, '! original X-rows (discretized controls for all time periods) are %d 
\n',nrX); 
fprintf(unit, '! only the following rows have been included for the MPC: */'); 
fprintf(unit, '\n ! /* [ %d]*/ \n ', ZERO); 
fprintf(unit, ' PARAMETER (NCONTROLS=2, NTHETA=6, NREGIONS=67) \n',nrX, ncX, nCR); 
 
fprintf(unit, 'COMMON /CRPARAMS/ oNCONTROLS, oNTHETA, oNREGIONS \n'); 
fprintf(unit, 'INTEGER oNCONTROLS, oNTHETA, oNREGIONS \n'); 
fprintf(unit, '! NCONTROLS %d /* control variables # */\n', nrX); 
fprintf(unit, '! NTHETA    %d /* "parameters" (states etc) # */\n', ncX); 
fprintf(unit, '! NREGIONS  %d /* critical regions # */\n\n', nCR); 
 
% ---- gia ka8e critical region : pinakes Ab declaration 
for i = 1:nCR, 
   fprintf(unit, 'DOUBLE PRECISION crA_raw%04d(26*(NTHETA)) \n\t', i);  
end 
for i = 1:nCR, 
   fprintf(unit, 'DOUBLE PRECISION crb_raw%04d(26) \n\t', i);  
end 
% ---- gia ka8e critical region : X declaration 
fprintf(unit,'\n \n !gia ka8e critical region : X declaration \n \t'); 
for i = 1:nCR, 
   fprintf(unit, 'DOUBLE PRECISION XA_raw%04d(NCONTROLS*(NTHETA)) \n\t', i);  
end 
for i = 1:nCR, 
   fprintf(unit, 'DOUBLE PRECISION Xb_raw%04d(NCONTROLS) \n\t', i);  
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end 
fprintf(unit,'\n \n '); 
% --- struct 
fprintf(unit,'TYPE :: RegionInfo \n\t'); 
fprintf(unit,'    INTEGER     :: nEdges ! inequalities defining this CR \n\t'); 
fprintf(unit,' DOUBLE PRECISION :: crA(26*(NTHETA)) ! combined constraints + RHS 
[nEdges, NTHETA] \n\t'); 
fprintf(unit,' DOUBLE PRECISION :: crb(26) ! combined constraints + RHS [nEdges] 
\n\t'); 
fprintf(unit,' DOUBLE PRECISION :: XA(NCONTROLS*(NTHETA))    ! control law including 
constant term [NCONTROLS, NTHETA]\t'); 
fprintf(unit,' DOUBLE PRECISION :: Xb(NCONTROLS)    ! control law including constant 
term [NCONTROLS]\n\t'); 
 
fprintf(unit,'END TYPE RegionInfo \n\t'); 
fprintf(unit,' TYPE(RegionInfo) :: CRInf(NREGIONS) \n\n'); 
% ----------------------------------------------------------------------------- 
% ---- gia ka8e critical region : pinakes A 
fprintf(unit,'! Raw critical region data: CRi = {t: Ai*t <= bi} ------ */\n'); 
max=26 
for i = 1:nCR, 
   lenb = length(zcr(i).cr.b); % pli8os ton b   
   diplaAb = [zcr(i).cr.A ]; % dipla A b [cols: 6 1] 
   fprintf(unit, 'crA_raw%04d = [ & \n\t', i );  
    for j = 1:max 
        if j<=lenb 
            row = diplaAb(j, :); 
            for k=1:length(row) 
             if abs(row(k)) <= ZERO, row(k) = 0; end 
            end 
            format long 
            fprintf(unit, '%12.7f, ', row); 
        else 
            fprintf(unit, '0.0 ,0.0, 0.0, 0.0 ,0.0, 0.000, '); 
        end 
    %last row or EOL 
      if j==max 
         fseek(unit, -2, 'cof'); 
         fprintf(unit,' &\n ] \n'); 
      else 
         fprintf(unit,' & \n\t '); 
      end 
   end %end of CRs A 
end 
% ---- gia ka8e critical region : pinakas b 
% mono b 
fprintf(unit,'! Raw critical region data: CRi = {t: Ai*t <= bi} ---- */\n'); 
max=26 
for i = 1:nCR 
   lenb = length(zcr(i).cr.b); % pli8os ton b   
   diplaAb = [zcr(i).cr.b]; % dipla A b [cols: 6 1] 
   fprintf(unit, 'crb_raw%04d = [ & \n\t', i );  
    for j = 1:max 
        if j<=lenb 
            row = diplaAb(j); 
            for k=1:length(row) 
             if abs(row(k)) <= ZERO, row(k) = 0; end 
            end 
            format long 
            fprintf(unit, '%12.7f, ', row); 
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        else 
            fprintf(unit, '0.000, '); 
        end 
    %last row or EOL 
      if j==max 
         fseek(unit, -2, 'cof'); 
         fprintf(unit,' &\n ] \n'); 
      else 
         fprintf(unit,' & \n\t '); 
      end 
   end %end of CRs gia b 
end 
% ---- gia ka8e critical region : XA 
fprintf(unit, '\n ! Control laws for each region: U = F*t + c --- \n'); 
colsX=1:nrX 
for i = 1:nCR, 
   fprintf(unit, 'XA_raw%04d= [ & \n\t', i);  
   for j = 1:length(colsX) 
      row = zcr(i).X(colsX(j),1:end-1); 
  for k=1:length(row) 
   if abs(row(k)) <= ZERO, row(k) = 0; end 
        end 
      fprintf(unit, '%12.7f, ', row);  
      if j==length(colsX) 
         fseek(unit, -2, 'cof'); 
         fprintf(unit,' \t & \n] \n'); 
      else 
         fprintf(unit,' & \n\t'); 
      end 
   end 
end 
% ---- gia ka8e critical region : Xb 
fprintf(unit, '\n ! Control laws for each region: U = F*t + c --- \n'); 
colsX=1:nrX 
for i = 1:nCR, 
   fprintf(unit, 'Xb_raw%04d= [ & \n\t', i);  
   for j = 1:length(colsX) 
      row = zcr(i).X(colsX(j), end); 
  for k=1:length(row) 
   if abs(row(k)) <= ZERO, row(k) = 0; end 
  end 
      fprintf(unit, '%12.7f, ', row);  
      if j==length(colsX) 
         fseek(unit, -2, 'cof'); 
         fprintf(unit,' \t & \n] \n'); 
      else 
         fprintf(unit,' & \n\t'); 
      end 
   end 
end 
% ---- structure me nEdges, crAb, Xb 
fprintf(unit,'\n ! Summary information for all regions ------------ \n'); 
 
for i = 1:(nCR), 
   fprintf(unit,'\t CRInf(%d)= RegionInfo(%d, crA_raw%04d,crb_raw%04d, 
XA_raw%04d,Xb_raw%04d) \n', i,length(zcr(i).cr.b), i, i,i,i); 
end 
   fprintf(unit,'\n \n \n END SUBROUTINE CR24TRAN \n'); 
retflag = logical(1); 
fclose(unit); 
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2. Fortran program that implements a look-up function for the selection of the 

corresponding Critical Region to the respective input. 

 
! ----- Subroutine gia na brei to CR gia to dedomeno thita ----- 
! Jan2012, Dev by C. Ziogou (CPERI/CERTH - PSDI) 
! cziogou@cperi.certh.gr 
! epistrefei to status kai to id tou CR,(status ==1 brike, ==0 problima) 
 
SUBROUTINE locateCR(thita)  
 PARAMETER (NCONTROLS=NCO, NTHETA=NTH, NREGIONS=NCR, MAXINEQ=INEQ)  
 DOUBLE PRECISION thita(NTHETA) 
 INTEGER i,j,k,l,indx 
 DOUBLE PRECISION crAtemp(MAXINEQ*(NTHETA)),crbtemp(MAXINEQ),aux 
 DOUBLE PRECISION crA_epi_thita(MAXINEQ), crb_meion_crAt(MAXINEQ) 
 TYPE :: RegionInfo  
   INTEGER          :: nEdges   
   DOUBLE PRECISION :: crA(MAXINEQ*(NTHETA))  
  DOUBLE PRECISION :: crb(MAXINEQ)  
  DOUBLE PRECISION :: XC(NCONTROLS*(NTHETA))     
  DOUBLE PRECISION :: Xd(NCONTROLS)     
 END TYPE RegionInfo  
 COMMON /CRset/ CRInf  
   TYPE(RegionInfo) :: CRInf(NREGIONS)  
 COMMON /CRstatus/ status, CRid 
 INTEGER status, CRid  
 i=1 
 aux=0 
 DO while (i<=NREGIONS)  ! NREGIONS 
      crAtemp=CRInf(i)%crA 
    crbtemp=CRInf(i)%crb 
!        form Ax gia ka8e region , i & soter it in crA_epi_thita[max_ineq] 
    DO j=1, CRInf(i)%nEdges 
   aux=0 
   DO k=1,NTHETA 
      indx=((j-1)*NTHETA)+k 
      aux=aux+(crAtemp(indx)*thita(k)) 
   ENDDO 
   crA_epi_thita(j)=aux 
   crb_meion_crAt(j)=crbtemp(j)-crA_epi_thita(j) 
   if (crb_meion_crAt(j) < 0 )then 
    status=0 
    exit 
   else 
    status=1 
   endif 
    ENDDO 
    if (status==1) then 
!     write(6,*) 'all ineq < 0 !!!!!' 
     CRid=i 
     exit 
    endif 
    i=i+1     
 end do 
 END SUBROUTINE locateCR  


