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Abstract 

One of the biggest problems of modern society is considered the air pollution, 

which has led to the discovery of alternative energy sources in combination with other 

factors, such as the reduction of natural resources due to their unbridled and uncontrolled 

exploitation. The interim solution of using catalysts to reduce pollution proved insuffi-

cient, because it simply limited the problem without leading to its final solution. The 

electric vehicle ensures zero emissions and frees users from dependence on liquid fuels, 

the sharp rise in prices and all kinds of shortages due to crises. 

The various vehicles, on a case-by-case basis, are equipped with the correspond-

ing fuels to power their engines from each of the refueling stations. Therefore, to charge 

electric vehicles, charging point stations are needed to supply electricity. Their supply, as 

mentioned, requires their connection to some kind of electricity network infrastructure. 

The large area of the electricity grid offers many options for potential charging facilities. 

This thesis examines threats and cyber-attacks in the charging process and the tar-

geting Battery Management System (BMS) and other parts of the car‘s electronics‘ sys-

tem. More specifically, this thesis will examine whether the charging station hardware 

can be hacked in order to send these erroneous signals (either locally or remotely) and 

how the charging stations can be made tamper-proof and how cyber-attacks can be de-

tected. 

Charging Point Stations have many functions, such as, providing and controlling 

the energy to the Electric Vehicle (EV) using the Electric Vehicle Supply Equipment 

(EVSE) component, collecting the measurements from the meter for each charge of an 

Electric Vehicle, identifying and authorizing EV users via user authentication component, 

enabling remote capabilities (e.g., adjustment of the maximum current allowed by the 

Charge Point) to the Charge Point via the local Controller component over the Wide Area 

Network (WAN). 
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The protection of the European electric grid should become a priority for all the 

organization/entities that are getting engaged in the EV ecosystem. The output of this the-

sis is aiming at increasing the cyber security of a standard EV charging enterprise‘s plat-

form through the integration of Machine Learning (ML) techniques for identifying anom-

alies in the charging patterns, and therefore minimize the exposure both enterprises‘ da-

tabase and the stability of the electric grid. The thesis covers both the Information and 

Communications Technology (ICT) and the electric engineering domain on an effort to-

wards increasing the cyber security on what is called Energy Internet.  

In the implementation part of this thesis, we will use dataset in CSV format ob-

tained from a standard EV charging enterprise‘s database to apply anomaly based algo-

rithm, in order to discover if any abnormal functions of charging happens. For the smart 

charging abuse scenario, different evaluation methods will be applied in order to ensure 

high quality to the findings of the ML techniques. The applied evaluation methods will 

contain qualitative (visual inspection, manual investigation) metrics offering a validation 

framework wide enough to cover different aspects of cyber security in the area of EV 

smart charging. 

Keywords:  

 electric vehicles,  

 electric vehicles smart charging,  

 electric vehicle supply equipment,  

 anomaly detection,  

 machine learning 
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Chapter 1 - Introduction 
 

1.1. Research Problem 

 

The evolution of car and battery technology has now made electric propulsion a 

tangible reality, which is radically changing car data. Addressing the major environmen-

tal and economic challenges associated with climate change and dependence on fossil 

fuels creates new conditions for the automotive industry and for our daily lives. Electrici-

ty, like other alternative fuels, is constantly gaining ground [1]. 

The more electric vehicles expand and evolve, the more their refueling becomes a 

point of concern for drivers, a point of superiority over cars with internal combustion en-

gines. The electricity grid ensures the widest possible availability of supply sources, 

while the technology makes charging electric vehicles in addition to being affordable and 

an extremely simple and easy process. 

Main object of thesis is to examine threats and cyber-attacks in the charging pro-

cess and the targeting BMS and other parts of the car‘s electrics‘ system. More specifical-

ly, a Plug-in Electric Vehicle communicates with and is controlled by a charging station. 

This means that if an attacker could intrude the software of the charging station, it might 

be possible to influence the charging behavior of the vehicle. Therefore, some threats and 

challenges arise in the security of smart charging of EVs: 

• Disrupting the charging process by meddling with the Pulse Width Modulation -

communication (PWM-communication) as prescribed by to the IEC61851-1:2017, which 

is supported by all charging stations. 

• Disrupting the charging process and possibly gaining access to the BMS of the vehicle 

using the ISO/IEC15118 standard, this is to be expected as the future standard for electric 

vehicle communication. 
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Consequently, this thesis will investigate how tamper-safe Plug-in Electric Vehi-

cles are when receiving erroneous signals: 

• Whether the charging station hardware can be hacked in order to send these erroneous 

signals (either locally or remotely). 

• How the charging stations can be made tamper-proof and how cyber-attacks can be de-

tected. 

 

 

1.2. Contribution of Thesis 

 

The main contribution of this thesis is the new knowledge of examining possible 

threats and abuse of smart charging in Electrical Vehicles. In other words, applying spe-

cific algorithms in real collected database of a standard EV charging enterprise, to test the 

possible abnormal activity on the Charging Station can trigger designers and program-

mers of the networks of those smart Charging Stations, to reconsider the possible security 

issues that can arise, by third malevolent parties like industrial saboteurs. 

Moreover, if algorithms can be applied in real time, then detection of such ab-

normalities during the process of smart charging could trigger an alarm that some abnor-

mal activity is taking place, which then subsequently can give an insight to the develop-

ers, as to how can the cyber-attack be prevented adequately. This is more important than 

trying to solve the problem in later time, because the damage may very well be already 

done to the Charging Points and even worse to the Charging Stations and worst case sce-

nario to the whole grid of the EV charging enterprise. Problems like these are easier to 

occur with the rapid increase of the Electrical Vehicles (EVs) distribution globally, so 

addressing this sooner is of great importance to all parties involved in their creation and 

usage. 
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1.3. Structure of Thesis 

 

This thesis is divided into five main chapters. First chapter (current chapter) pre-

sents the main research problem and the main objectives. Second chapter, examines the 

concepts and main functions of EVs. In more detail, second chapter presents principles of 

operation of EVs, positive impacts of the introduction of the use of electric cars, smart 

Charging ways in Electrical Vehicles. Third chapter focuses on issues, vulnerabilities, 

threats and challenges of Smart Charging. More specifically, this chapter presents vulner-

abilities in vehicle communication, possible attacks intervention in smart charging, and 

protocols that participate on smart charging function. Next, fourth chapter, presents an 

abuse scenario in smart charging station, and the implementation of anomaly based algo-

rithm and data manipulation in order, such as ―Isolation Forest‖ and ―Standard Scaler‖ 

algorithm on data collected of charging cases, in order to conclude whether is possible to 

detect of abnormalities in smart charging function. Finally, conclusion chapter summariz-

es the most important findings of this research.  
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Chapter 2 - Electrical Vehicles 
 

One of the biggest problems of modern society, air pollution, in combination with 

other factors such as the reduction of natural resources due to their unbridled and uncon-

trolled exploitation, has led to the discovery of alternative energy sources. In the spirit of 

the new data, vehicle manufacturers have been led to design and build electric vehicles. 

The intermediate solution of using catalysts to reduce pollution proved to be insufficient, 

because it simply limited the problem without leading to its final solution. The electric 

vehicle ensures zero emissions and frees users from dependence on liquid fuels, the verti-

cal increase in their prices and any kind of shortages due to crises (e.g., Gulf War). Thus, 

ecological sensitivity, the realization that conventional vehicle pollutants are a major fac-

tor in air pollution and the knowledge that a clean environment is equivalent to quality of 

life have led the automotive industry to "listen" to new needs and adapt accordingly [2].  

 

2.1. Principle of operation of an electric car 

 

Electric cars simply depend on batteries. In this form, the mechanical parts of an 

electric car are very different from the parts of a car with an internal combustion engine. 

Electric battery cars usually have three main components, namely: the controller, the bat-

tery, and the electric motor. In an electric battery car, the accelerator pedal is connected 

to a potentiometer that measures the power the driver has applied to the pedal. The poten-

tiometer then sends a signal to a controller telling him how much power the battery 

should give to the electric motor. The batteries used in electric cars are rechargeable and 

usually come in these forms or variants [3]:  

 Nickel-Cadmium (NiCd)  

 Lead-Acid (and adjustable lead acid valve or otherwise) 

 Nickel Metal (NiMH)  

 Metal Hydride  
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 (LiON) Lithium-ion polymers  

The battery's energy output is measured in kilowatts per hours (KWh), which 

shows how much energy a battery is able to store or produce. 

 

2.2. Electric vehicles 

 

Vehicles belonging to this category operate exclusively using an electric motor, 

controlled by an electronic power converter. Electricity is provided by batteries, photo-

voltaic batteries or fuel cells. The electric car has zero carbon dioxide emissions as it 

moves. But if the electricity for charging the batteries comes from the conventional pow-

er grid, then carbon dioxide emissions are not significantly reduced. However, pollutants 

are concentrated and can be reduced by using filters in production stations. The biggest 

environmental benefit, however, is if electricity comes from alternative sources [4]. The 

autonomy of electric cars is generally lower than that of petrol cars. Typically with one 

charge an electric vehicle can cover a distance of 200-320 kilometers. Charging is a pro-

cess that typically takes around 3-4 hours, which makes it difficult to cover long distanc-

es. A quick 80% charge can take half an hour. In an electric vehicle, the electric motor is 

the sole source of movement. In the electric vehicle industry, two types of engines have 

prevailed: the permanent brushless motor and the three-phase induction motor.  

In ―Prius‖ and ―Civic‖ hybrid vehicles, the brushless motor solution has been 

chosen, while in purely electric vehicles, such as the high-performance Tesla Roadster, 

the inductor is used. Less common, and in lower power applications, is the use of DC, 

foreign or parallel excitation motors, while in the past such motors have been used in 

electric public transport. 
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2.3. Effect of the introduction of the use of electric cars  

 

2.3.1. Energy consumption 

 

It is common known, that electric cars have the advantage of thermal use in the 

city because they do not consume energy as long as they are stopped at the red signal. But 

how important is this advantage in mixed use? In most comparative studies, the kilome-

ter-by-energy energy consumed by an electric car is about half that of a thermal car. 

However, these comparisons do not take into account the fact that the speed and all other 

conditions related to the comfort of the passengers are not the same in the two compared 

types of cars. In practice, the user of the electric car will be forced to drive at lower 

speeds and may not enjoy the comforts offered by the thermal car (e.g., air conditioning 

system and other electrical subsystems). Lower speeds have the effect of saving energy, 

reducing the number of accidents and reducing damage if they occur. Thus the effect of 

the application of electric cars on energy consumption will be positive on a short-term 

basis, although this advantage may long cease to have significant value in electricity con-

sumption [4]. 

Preliminary studies show that the use of small-scale electric cars does not cause 

serious problems in the balance of electricity supply, provided that their batteries will be 

charged during the night. However, this will not be the case if electric car users will be 

able to charge their batteries quickly during the day. The impact of this possibility should 

not be overlooked.  

Each fast charging station can represent an installed capacity of 10 to 300 KW. 

Uncontrolled use of a large number of such stations can cause energy demand at unpre-

dictably high levels and therefore require more power plants, perhaps even nuclear power 

plants that are not very popular today. In the case of a total replacement of thermal cars 

with electric ones, all the energy currently consumed for transport should be available in 

the form of electricity. In some cases, this energy accounts for 20 to 40% of the total en-
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ergy consumed throughout the country. This will cause a desperately high need to build 

new power plants and may lead countries that have so far pursued a negative policy on 

the construction of nuclear power plants to revise their policy. One way to control the sit-

uation is to supply electric cars with special type of charging terminals and special charg-

ing systems (perhaps even inductive type, which are safer), so that it is not possible to 

connect to the usual type of household or industrial power receivers (sockets), but only 

with power receivers of a power supply system made exclusively for this use [5]. 

This network may provide electricity with a different and variable tariff depend-

ing on the availability of electricity. High charging voltages for relatively short periods of 

time will cost more. Low intensities during the night will cost a bit. We can thus avoid 

unwanted demand peaks. Citizens' mobility is increasing daily. In 10 to 30 years when 

the radius of electric cars will be similar to that of thermal cars, a million tourists who 

visit a neighboring country with their electric cars will easily be able to cause the collapse 

of their country's electricity distribution network hosts, unless, of course, all distribution 

networks are interconnected and supported [5]. 

 

2.3.2. Pollution and the greenhouse effect 

 

The electric car is a "zero" pollution vehicle only locally in the area where it oper-

ates. If its batteries are charged with electricity generated by thermal power plants, then 

the problem of pollution is transferred elsewhere outside the city. But even so, it is tech-

nologically easier to tackle this problem worldwide. In addition, hydroelectric or geo-

thermal power plants are not directly polluting. The same goes for solar power and under 

certain conditions nuclear power [3]. The total pollution from power plants depends on 

the percentage of the various energy sources used in each system and it varies from coun-

try to country. On a global scale, it is estimated that the widespread use of electric cars 

will reduce t Pollution both in the cities and as a whole will also reduce the greenhouse 

effect. Another cause of pollution is useless industrial products. Old cars belong to this 
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category. The numbers of cars sold annually show the magnitude of the problem. It is 

now necessary for cars to be recyclable. This must apply to electric cars as well, although 

a non-recyclable car made of non-recyclable synthetic materials may be lighter, more du-

rable and more autonomous [4].  

In traffic conditions and traffic accidents: 

Traffic accidents are caused by three main causes:  

1. The limited width of roads. 

 2. The need to impose speed limits to reduce the likelihood and severity of traffic 

accidents. 

 The irregular way in which drivers drive their cars (overtaking, etc.), due to the 

heterogeneity of the performance of these cars. The flow of traffic on our roads is compa-

rable to the irregular flow of fluid mechanics. Mixing, in the same flow of traffic, vehi-

cles with different performance (as in the case of thermal and electric cars) will not re-

duce traffic problems. It already exists, since thermal cars also differ significantly in per-

formance [6]. 

 Electric cars will be a new future product being designed. We now have the op-

portunity to impose standard performance data (e.g., all cars have the same top speed and 

the same acceleration). It is technically possible to extend this measure to thermal cars as 

well, using the electronic engine management system with which most of them are 

equipped. In this way, of course, the freedoms of car users are restricted, but the result 

will be favorable for them. Traffic will be smoother and traffic accidents will be reduced 

because overtaking and speeding will be reduced. Cars will drive on the roads almost like 

the wagons of the train trains. The measure is, of course, radical but justified by the many 

thousands of victims of road accidents each year. It is predicted that manufacturers will 

not support such a measure since the differences in the performance of cars are the domi-

nant element of promotion and competition of their products. But there are many other 
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harmless properties at their disposal for the promotion of their products, such as e.g., the 

energy consumed per kilometer.  

Many consumers will also oppose such measures. However, they must be con-

vinced that improper use of the car is a danger to everyone's lives. Acceptance of general 

mandatory specifications that regulate the maximum speed of cars, as long as they are 

extended to thermal cars, will significantly reduce the differences in the performance of 

electric cars with those of thermal cars. It will also greatly facilitate the spread of electric 

cars. 

 

2.4. Plug-in Electrical Vehicle 

 

A Plug-in hybrid Electrical Vehicle (PHEV) is a hybrid vehicle with rechargeable 

batteries connecting the vehicle to a socket at an electrical source. The main components 

of an EV that are responsible for its operation are depicted below in Figure 1. Namely: 

 Battery: In an electric drive vehicle, the auxiliary battery provides electricity to start 

the car before the traction battery is engaged and also powers vehicle accessories. 

 

 Charger: Takes the incoming AC electricity supplied via the charge port and con-

verts it to DC power for charging the traction battery. It monitors battery characteris-

tics such as voltage, current, temperature, and state of charge while charging the pack. 

 

 

 Charge port: The charge port allows the vehicle to connect to an external power 

supply in order to charge the traction battery pack. 

 Fuel storage (gasoline): This tank stores gasoline on board the vehicle until it's 

needed by the engine. 
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 Lightweighting materials: Lightweighting usually refers to reduction of vehicle 

weight by substituting materials with a higher strength per weight than traditional ma-

terials. For example, when we replace heavier iron or steel parts with High Strength 

Steel (HSS), aluminum, magnesium or composite materials such as glass and carbon-

fiber-reinforced polymers. 

 

 Power electronics controller: This unit manages the flow of electrical energy deliv-

ered by the traction battery, controlling the speed of the electric traction motor and 

the torque it produces. 

 

 

 Electric traction motor: Using power from the traction battery pack, this motor 

drives the vehicle's wheels. Some vehicles use motor generators that perform both the 

drive and regeneration functions. 

 

 

 Radiator: This system maintains a proper operating temperature range of the engine, 

electric motor, power electronics, and other components. 

 

 Internal combustion engine: In this configuration, fuel is injected into either the in-

take manifold or the combustion chamber, where it is combined with air, and the 

air/fuel mixture is ignited by the spark from a spark plug. 
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Figure 1- Parts of a plug-in Electrical Vehicle [7] 

 

Hybrid plug-ins have the features of both conventional hybrid electric and purely 

electric vehicles. While PHEVs are expected in the form of passenger vehicles, they can 

also be commercially light trucks, business trucks, school buses, scooters and military 

vehicles. PHEVs are also referred to as ―network-connected vehicles‖ or GO ‐ HEVs in 

their conventional form. Compared to conventional cars, PHEVs can help reduce pollu-

tion and dependence on oil and reduce greenhouse gas emissions that lead to global 

warming. Plug-in hybrids do not use any natural fuel during their electrical operation, 

unless their batteries are recharged from Renewable Energy Sources. PHEVs have not yet 

entered mass production, but Toyota, General Motors and Ford have announced their in-

tention to produce such vehicles. 

 Plug-in hybrids are the evolution of today's "fully" hybrid vehicles. A fully hy-

brid car has the ability to start and accelerate at low speeds without the use of the engine, 

with the battery being charged, however, exclusively by the engine and the power recov-

ery system during braking. A plug-in hybrid works the same way but has a larger battery 

and gives the driver the option to charge it at home using a power source so he can only 

move his vehicle using electricity. Usually, the car will be charged at night, which will be 
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stationary for a long time. So PHEVs and HEVs use batteries powered by batteries and 

M.E.K., to save fuel, but PHEVs can further delay the use of fuel by charging the vehicle 

from home [6].  

Moreover, plug-in hybrids have an advantage over purely electric vehicles in that 

their drivers do not have to worry about the possibility of "discharging" their vehicle. 

This is because when the battery is discharged, the plug-in vehicles operate like conven-

tional ones and use their engine and power recovery system when braking to charge the 

battery and promote the vehicle. Because they use both an engine and an electric motor, 

PHEVs have smaller and cheaper battery packs than their purely electric vehicles. To-

day's hybrid commercial vehicles use, as mentioned, NiMH batteries, which can offer 

short distances with the exclusive use of electricity in the respective plug-in hybrids. For 

PHEVs, then, greater power storage and greater demands will be achieved with Lithium ‐ 

ion (Li ion) battery technology, as expected. 

 

 

2.5. Smart Charging in Electrical Vehicles 

 

The electricity grid is in the middle of a mutation, a radical change, to harmonize 

with the needs of the sustainable economy. The 2020 European targets and the 2030 ones 

designed to reduce emissions increase the penetration of Renewable Energy Sources 

(RES) and improve the efficiency that enhances decentralized production, the use of stor-

age systems and EVs. For the smooth operation of the new production and demand ele-

ments that arise, the electricity grid should become smarter. 

Similarly, EU traffic is changing, bringing significant changes to meet the de-

mand for environmentally friendly traffic. Electric traffic is constantly gaining ground as 

it has zero emissions, is quiet and 3 times more efficient than the corresponding petrol 

engines. 
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As the use of EV increases, the Electricity Distribution Networks will face local 

problems. Even at low levels of penetration, EV can easily overload the local network 

and alter the mains voltage, with negative effects on local consumers. Faced with this 

problem, the classic approach is through the construction of new lines and transformers, 

to meet the new demand. However, this approach is not the best financial solution and 

will burden network costs, creating a serious barrier to the penetration of electricity [8].  

But there is another solution. What we call "smart charging". Smart charging in-

cludes the wise charge of EV batteries: charging them in a way that avoids overloading 

the network and in the future by offering support to the network in times of need and in a 

way that the EV battery will support the maximum intrusion of RES into the local net-

work. Smart charging can offer multiple benefits to users, the grid and society as a whole: 

1. Customer participation in smart charging is only possible if there are financial benefits 

to attracting them. Studies have shown that 90% of EV charging is done at the user's 

home or at work. With smart charging, users will be able to charge their car at home 

without differentiating the needs of their electrical installation. With this approach, users 

will be able to take advantage of low prices in the morning with low demand. 

2. Smart charging gives EV the ability to be flexible loads scattered across the network, 

which can be used by the Network Operator in a way that meets the needs of the network 

and thus avoid costly network enhancements. Studies have shown that the electricity 

needs that arise if all traffic were electric (i.e., all cars moving today were electric) will 

be only 25% of the total energy consumed today by a country like Cyprus, to satisfy all 

needs of society / economy. With this finding, it is easy to conclude that the electric in-

frastructure, as it is today, could satisfy the entire additional load that will result in 100% 

of the traffic being electric, without the need for any amplification. This presupposes that 

the charging of EV will be done with smart management for the benefit of all [9].  

3. Smart charging can offer sustainable electric propulsion with great benefits to society. 

The low cost of charging achieved through smart charging along with the efficiency of 
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electric cars will drastically reduce the use of primary energy, which will lead to a drastic 

reduction in emissions. With the flexibility offered by smart charging, the utilization of 

scattered RES systems is facilitated and allows for increased penetration with multiple 

benefits for all users. 

All of the above can be done in the environment of developed operation of smart net-

works, which under the conditions of their development is imposed as soon as possible, 

with proper regulation and with a vision on the part of the Transmission and Distribution 

Network Administrators [9]. 

 

2.6. Ways of charging Electrical Vehicles 

 

2.6.1. Method 1 - Slow charging from a common electrical outlet (single-phase, three-phase) 

 

The vehicle is connected to the mains using common power receivers (usually 10 

A) located in homes. In order to be able to use this charging method, the electrical instal-

lation of the house must meet all the safety requirements and there must be a grounding 

system as well as insurance devices, in order to protect against overload and protection 

against current leakage, which can still be caused inside the vehicle. This way of charging 

is the most common, thanks to the simplicity and cheap cost it requires, however it car-

ries risks in case it is used incorrectly, and it is distinguished by many imitations. As for 

its misuse, it is important to note that although in most countries the existence of an es-

cape relay is mandatory, several homes have older electrical installations without an es-

cape relay, and it is usually difficult for the electric vehicle user to be aware of this. On 

the subject of the constraints encountered in this way of charging, these are: 
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 -The available energy. In order to avoid overheating of the socket and cables, in 

case of using more hours than the allowable limit, and to avoid fire, the electric shock in 

case the electrical installation is outdated or the appropriate protection measures have not 

been taken. 

 

 -Energy management. If the socket that supplies the vehicle is not in a separate 

circuit or the total consumption exceeds the safety limit (usually 16 A), it will interrupt 

the circuit, interrupting the charging. The usual charging time is 10-15 hours and a 10 A 

circuit is usually used. Power receivers do not exceed 16 A-250 VAC although this is dif-

ferent in some countries (Figure 2). 

 

Figure 2- Charging according to Method 1: Slow charging from a common electrical outlet [10] 
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2.6.2. Method 2 - Slow charging from a common electrical outlet (single-phase, three-phase) 

with internal cable protection 

 

The vehicle is connected to the mains using common power receivers as in the above 

case, the charging is done via single-phase or three-phase supply and ground pipe instal-

lation. However, this method provides additional protection by adding a control system 

inside the cable, which allows communication between the electric vehicle and the cou-

ple. Charging 2 was originally intended mainly for the US, but recently gained a lot of 

interest in Europe, with the aim of replacing Method 1. Nevertheless, in addition to the 

obvious disadvantage of having a control device inside the cable, the main disadvantage 

is the lack of protection of the coupler, one of the most likely fault points, by the control 

system. The charging time ranges from 3 to 8 hours (Figure 3). 

 

 

Figure 3- Charging according to method 2: Slow charging from a common electrical outlet (single-phase, 

three-phase) with internal cable protection [10] 
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2.6.3. Method3- Slow charging using a specific current receiver with an installed control 

and protection system.  

 

The vehicle is connected directly to the mains via a socket of specific specifications and a 

separate circuit. This is the only way to charge the standard electrical installations. Ac-

cording to the international standard IEC 61851-1, the device / control system, between 

the supply equipment (i.e., the supply) and the electric vehicle, instructs the following 

functions [11]: 

 Confirmation that the vehicle is properly connected 

 Continuous control in case of power leakage 

 Activate and deactivate the system 

 Charging rate selection 

 The control system is usually installed as an additional duct in the wiring of the 

charging cable, together with the phase, neutral, and ground. It therefore requires 

the use of special components.  

It also allows the distribution of loads, so that the electrical appliances of the house oper-

ate during the charging of the vehicle or otherwise improve the charging time. Finally, 

pairs for this type of charging according to international standards require a range of con-

trol and signal nozzles at both ends of the cable, as seen below in detail in Figure 4.  
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Figure 4- Charging according to method 3: Slow charging using a specific current receiver with an in-

stalled control and protection system. [10] 

 

 

2.6.4. Method 4 - Fast charging using an external charger 

 

 This charging mode is related to the connection of the electric vehicle to the 

mains using an external charger that has a control and protection system installed. The 

alternating current of the network is converted to a continuous charging station and the 

plug type ensures that only if the vehicle fits, the connection can be made possible. Using 

fast charging with direct current, an intensity of up to 400 A is achieved [12]. 
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2.6.5. Charging Levels 

 

While in Europe the IEC 62196 standard is used, which separates charging modes 

to categorize charging equipment, in the United States charging modes are classified as 

Charging levels (Table 1). 

 

Table 1- Charging times and the relevant requirements of the various charging levels 

 Requirements Voltage (V) 

/Amber (A) 

Time of charging 

LEVEL 1 ------ 120 / 13 7-8 hours 

LEVEL 2 Special connection 240/32 3-4 hours 

LEVEL 3 Special wiring and 

external charger 

500/200 < 45 minutes 

 

 

Level 1 

 The transfer of alternating current to the internal charger of the 120 Volt electric vehicle, 

either 15 A (using 12 A) or 20 A (using 16 A), through a common power socket, located 

either in homes or in commercial buildings in USA. However, because the power provid-

ed (maximum 1.44 kW) is insufficient, this results in prolonged charging times. So obvi-

ously, and it is an inefficient, but accessible and cheap option. At level 1, a new separate 

circuit is recommended as necessary to avoid overcharging. The charging equipment is 

installed inside the electric vehicle. While on the connection cable, a switch has been in-

stalled in case of power leakage.  
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Level 2  

The transfer of alternating current to the internal charger of the electric vehicle, 208 to 

240 Volts, single-phase or three-phase. The maximum current is set at 40 A. At this level, 

the equipment is divided into inductive and wired, to which reference has been made 

above. Regardless of the equipment, a separate circuit is required to charge the vehicle. 

Usually the charge ranges from 15 A, thus providing a maximum charging power of 3.3 

kW.  

 

 Level 3 

 The transfer of direct current from an external charger to the electric vehicle. The maxi-

mum current intensity is set at 400 A. At this level, also known as Fast Charging, an ex-

ternal charger is used, installed on a three-phase 480 V AC circuit. The purpose of level 3 

is to achieve a charge rate of 50% for a charge time of 10 to 15 minutes. Charging power 

ranges from 60 to 150 kW. 
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2.7. Charging Points/Stations 

 

2.7.1. Charging Points for Electrical Vehicles 

 

Faced with poor energy fossil fuels and the growing negative impact of climate 

change on society, many countries have launched national plans to reduce carbon emis-

sions. In particular, the electrification of transport is considered to be one of the main 

ways to achieve a significant reduction in CO2 emissions. In recent years, electric cars 

have gained ground, and to this date, more than 180.000 of them have been developed 

worldwide. Despite this number corresponding to only 0.02% of all road vehicles, an am-

bitious goal of the countries is to have more than 20 million electric cars on the roads by 

2020.lIn order to ensure the widespread development of electric cars it leads to signifi-

cant reduction of CO2 emissions, it is important to be charged with energy use from re-

newable energy sources (e.g., wind, solar). [12]. 

Basically, in order for a smart network to work, they need to be developed to ensure the 

smooth integration of these sources into our energy systems. Electric cars could possibly 

help with energy storage when there is a surplus and supply power back to the grid when 

there is a demand for it. Indeed, the ability of electric cars to store energy while being 

used for transportation represents enormous potential for the development of energy sys-

tems [13]. 

On the one hand, since vehicles only drive for a small percentage of the day and a per-

centage of vehicles remain unused in parking spaces and given the fact that electric vehi-

cles are equipped with large batteries, they could be used as storage devices when park-

ing (process Vehicle-to-Grid (V2G)) and thus increase the energy storage capacity of the 

network. Indeed, there are studies that have shown that if a quarter of vehicles in the US 

were electric, this would double the current storage capacity of the network. On the other 

hand, since a large number of electric cars will need to be charged daily, if electric cars 

charge when needed, the network load may be overloaded. Grid-to-Vehicle (G2V) - in 
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real time, la taking into account the limitations of distribution networks within which 

electric cars must be charged. 

In addition, electric car navigation systems must consider the ability of vehicles to recov-

er energy when braking and / or when driving downhill and choosing routes that make 

full use of this capability. By doing so, it may be possible for vehicles to charge less fre-

quently, thus maximizing energy efficiency, reducing costs for their owners, and mini-

mizing the stresses they cause on power grids. In this context, a number of techniques 

and mechanisms for the management of electric vehicles, either individually or collec-

tively, have been developed. 

For example, some tissue and mobile-based applications have been developed to 

provide information to electric vehicle drivers about charging sites where charging time 

slots are available. In addition, original systems have been developed for energy-efficient 

routing, while new types of chargers that can fully charge an electric vehicle battery in 

less than an hour. Thus, while a number of developments have taken place in terms of 

physical infrastructure and technologies for electric vehicles, these may not be sufficient 

to manage the overcrowding of electric vehicles. Such problems will require algorithms 

involving a large number of heterogeneous entities (e.g., EV owners, charge point own-

ers, network operators), each with its own goals, needs and motivations (e.g., energy for 

charging, maximize profit), while operating in highly dynamic environments (e.g., varia-

ble number of EVs, variable intent of drivers) and deal with a number of uncertainties 

(e.g., future arrival of vehicles, future energy demand, energy production from renewable 

sources) [13]. 
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2.7.2. Charge point Infrastructure 

The Charge Point has multiple other functions such as: 

 Providing and controlling the energy to the EV using the EVSE component 

 Collecting the measurements from the meter for each charge of an Electric Vehi-

cle. 

 Identifying and authorizing EV users via user authentication component 

 Enabling remote capabilities (e.g., adjustment of the maximum current allowed by 

the Charge Point) to the Charge Point via the local Controller component over 

WAN. 

 

 

Figure 5 illustrates the architecture of the EV Charging Systems that are in scope of this 

project. 

 

Figure 5- Charge Point System Architecture [14] 
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The externally reachable interfaces of the Charge Point are: 

1. the WAN interface, 

2. the Maintenance interface, and 

3. the User Authentication (UA) interface 

 

Note in particular that the internal interfaces in the Charge Point are not covered by secu-

rity requirements. This reflects the current situation in which most of these interfaces use 

serial protocols with no security features. This exclusion of these interfaces implies that 

the inside of the Charge Point is a trusted environment: anyone with physical access to 

the internal systems can compromise the Charge Point. Physical security measures are 

implemented to prevent unauthorized access to the Charge Point internals. 

The Charge Point System Architecture references various items in the Graphic legend: 

 An Entity represents a main part of the EV charging system. 

 A Device identifies the component included in the EV charging system. A device is 

can contain Modules and can have Interfaces to communicate with other devices. 

 A Module identifies the physical part of the Device where important functionalities 

are to be found. 

 An Interface defines the communication link between two Devices 
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Chapter 3 - Threats and Challenges of Smart Charging  
 

3.1. Vulnerabilities in vehicle communication 

 

Vulnerabilities within vehicular communications lead to four vehicular cyber se-

curity challenges, which are described by [15]:  

 Limited connectivity: Though the external connectivity of vehicles is increasing, 

most vehicles do not yet have the capability to update their software through 

Over-the-Air (OTA) updates, which would enable vehicles to always be protected 

against the latest cyber-attacks. Even as OTA updates become more standard, ve-

hicles will also be at risk of malfunctions due to incomplete updates. 

 Limited computational performance: Vehicular computational performance is 

generally limited, as compared to the computational performance of a computer. 

This limitation exists because vehicles have a longer lifetime and must endure 

higher temperatures and vibrations than the average PC or laptop. As a result of 

their computational disadvantage, vehicles are more likely to be hacked than 

computers. The limited computational performance of vehicles will also mean 

that some vehicular cyber security solutions will have too high an overhead to be 

implemented. 

 Unpredictable attack scenarios and threats: A vehicular architecture can be infil-

trated through many different entry-points, including vehicular databases, remote 

communication technologies, and vehicular parts. New attacks are continually be-

ing developed, which means that automakers will find it difficult to predict where 

hackers will strike next. An unsecured product manufactured by Original Equip-

ment Manufacturers (OEMs) can provide hackers with additional entry-points in-

to a vehicle. 

 Critical risk for driver‘s or passenger‘s lives: Even if just a few sensors are misin-

formed or only a small number of illegitimate messages are sent, a vehicle could 
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experience malfunctions that place the lives of drivers, passengers, and pedestri-

ans at risk. 

 

3.2. Threats and Attacks in Charging of electric Vehicles 

 

Many attacks on electric vehicle charging within a smart grid environment have 

been identified [18] and find that EV charging is susceptible to masquerading, tampering, 

eavesdropping, and denial of service attacks, in addition to privacy concerns and charging 

thievery. Fries and Falk [19] discuss EV charging susceptibility to eavesdropping, man-

in-the-middle and tampering attacks on the payment price and the amount of energy that 

the meter believes the EV has received. They also discuss the potential for malicious 

software within the vehicle to affect a charging station, or a compromised charging sta-

tion to affect an EV. 

Threats targeting vehicular communications can be understood through the three 

layer Autonomous Vehicular Sensing Communication Control (AutoVSCC) framework. 

Smart Charging may put into risk the reliability and security of the power network, as 

neither the charging stations have deployed security mechanisms for identifying and pre-

venting security threats and attacks, nor the Distribution System Operator‘s (DSO) have 

implemented security mechanisms for mitigating potential disturbance of the network due 

to a break-down (or a hack) of the smart charging stations [18]. Smart charging is com-

plex system which requires the orchestration of a number of services such as metering 

and payment for energy, communication between the EV battery management system and 

the charge point, followed by a communication mechanism between the CP and a central 

management system, and finally the establishment of a communication channel between 

the CS and energy suppliers (DSO, Transmission System Operators (TSO), smart girds, 

etc.). Having in mind that the services are offered from different entities, this complex 
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communication schemes creates an environment susceptible to a number of security 

threats on different levels [17]. 

The co-existence of an electrical system monitored and controlled from an ICT in-

frastructure is an open challenge due to the heterogeneity of the cyber-physical systems 

that are get engaged that require the standardization of protocols and the implementation 

of two primary interfaces, one for electricity and another for the management of the sys-

tem. In the case of the smart charging scenario, the ICT system is related to the status, 

authorization, metering, and billing of the EV that interact with the system [20].  

A higher level depiction of the entities that are getting engaged in the smart-

charging use case are depicted in Figure 6. The DSO is responsible for the distribution of 

the electric power and ensures the functionality of the electricity network, the CPO takes 

care of the customer-end services (authentication, billing, etc.) alongside with the man-

agement of the charging points, the Εlectro Mobility Service Providers (eMSP) is respon-

sible for setting the billing mechanism, the CP acts as the open gate to the system, and 

eventually the EV which is the end-user to the infrastructure. The roles/entities of the 

smart-charge use case that are described briefly above are presented in the form of a table 

(Table 2), provide a more detailed description about their functionalities. 
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Figure 6- A high level depiction of the entities getting engaged in the smart charge scenario [21] 

 

Table 2- A high level depiction of the entities getting engaged in the smart charge scenario 

Entity Description 

Distribution Sys-

tem Operator - 

DSO 

The distribution system operator (DSO) manages electrical grid. 

The DSO does not produce electric power but does however ensure 

that it is transported from the power station to the place where it is 

needed. The most important task of the DSO is to maintain a stable, 

reliable and well-functioning electricity network. 

Electro Mobility 

Service Providers 

- eMSP 

An eMSP is a market role that offers charging services to EV 

drivers. An eMSP provides value by enabling access to a variety of 

charge points around a geographic area, usually in the form of a 

charge card. This means the EMSP is responsible to set up contracts 

with customers (owners of EV cars) and for managing customer in-

formation and billing. 

Charge Point Op-

erator - CPO 

The CPO is responsible for the management, maintenance and 

operation of the charging stations (both technical and administra-

tive). The role of CPO can be segmented into: 1. Responsibility for 

administrative operation (e.g., access, roaming, billing to eMSP etc.) 

and 2. Responsibility for technical maintenance, which is often done 

by the manufacturer. CPOs play a very important role in the EV 

market as they are responsible for bridging the gap between the enti-
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ties managing and maintaining the physical electrical network – the 

DSOs – and all other entities: the energy providers, the customers 

and the eMSPs. 

Charging Point – 

CP 

Charge Points are devices where EVs get charged. Each CP con-

tains at least one meter per socket (Measuring Instruments Directive 

meter (MID meter)) owned and controlled by the CPO. This CPO 

meter is connected to the energy socket through which the EV gets 

charged and is used to measure the energy consumed by the EV. 

Each CS also includes a Local Controller (LC) with a connection 

(e.g.: General Packet Radio Services (GPRS) or wire connection) to 

the back-office of the CPO. Among other things (e.g.: remote up-

dates), such connection is used to authenticate the customer (EV 

owner) at the CPO. 

Electric Vehicle - 

EV 

Gets charged through a CP. In many cases a vehicle will charge 

to its maximum capacity, but the vehicle can always determine its 

own charging profile within the range available 

 

 

3.3. Protocols that participate on smart charging 

 

3.3.1. IEC 61851-1 

 

Different charging topologies need to be considered for conductive AC- and DC-

based dedicated charging equipment. Such EV charging equipment is defined in the IEC 

61851 standards series (Figure 7). The first part describes general requirements for con-

ductive charging systems. It applies to on-board and off-board AC and DC charging 

equipment and also to any additional services on the vehicle which may require electrical 

power when connected to the supply network. It defines four different charging modes 

starting from slow charging using household-type socket outlets to fast charging using an 

external charger. It also defines characteristics and operating conditions of the supply de-

vice and the connection to the vehicle as well as the operator‘s and third parties electrical 

safety [23]. 
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IEC 61851-1 specifically defines a safety-related low level signaling process 

based on a Pulse Width Modulation (PWM) signal indicating various EV connection 

states, supported charge currents and communication means. The PWM signal provides 

means for handling time critical state changes, some of them even with respect to indi-

vidual safety. Hence, IEC 61851-1 is a cross-cutting standard, in terms of the previously 

mentioned domains, dealing with charging topologies, safety and communication (on a 

signaling level). 

 

3.3.2. IEC 61140 - Safety  

 

In terms of safety requirements for EV charging infrastructures, IEC 61140 de-

fines common aspects for the installation and equipment of electrical assemblies in order 

to ensure protection of persons and animals against electric shocks (Figure 7). It is in-

tended to provide the fundamental principles and requirements which are common to 

electrical installations, systems and equipment or necessary for their co-ordination. 

Closely related to IEC 61140, IEC 60529 defines the degrees of protection which must be 

provided by enclosures of electric equipment. Extending the scope of these rather general 

safety standards, IEC 60364-7-722 particularly defines safety requirements for supply 

equipment of EVs in own voltage electrical installations. It furthermore also covers safety 

requirement for reverse energy flow from the EV back to public grid infrastructures. The 

work on this part of the standard is still in progress [24]. 
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Figure 7- Protocols that participate on smart charging of an Electrical Vehicle [23] 

 

 

Smart Charging Abuse 

  

A cloud-based back office of a Charge Point Operator (CPO) communicates with 

a charge point via the Open Charge Point Protocol (OCPP). This standard is supported by 

more than 97% of the connected charging stations worldwide. The charge capacity of a 

charging station can be set from the cloud by means of OCPP requests. Version 1.6 and 

2.0 of this protocol support smart charging. This means that one platform can connect to 

a wide range of charging stations and still be able to provide smart charging services to 

all of them. 
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The charging station then in turn communicates with the charging station via the 

IEC 61851 protocol (for high speed DC charging other standards are used, but these are 

usually not used for smart charging). 

There are a few important observations to be made here: 

 Via OCPP, the maximum charge rate for a charge point/socket can 

be set for a specific period. 

 The charge point imposes this maximum on the EV. 

 The EV can choose its own charge rate, as long as it is below the 

maximum. 

It is therefore not possible to set a specific charge rate for an electric vehicle, only the 

maximum charge rate can be set. 

There are currently around 20.000 charging stations connected to a standard EV 

charging enterprise. On average, a charging station can charge at around 11 kW. This 

means that someone with access has control over charging stations with a combined ca-

pacity of around 220 MW, equal to the power output of a medium-sized power plant. It is 

expected that around 200,000 charging stations will be connected in 5 years, which corre-

sponds to a potential capacity of around 2 GW. Simultaneous switching on or off of all 

these charging stations can lead to a pan-European blackout. 

The protection of the European electric grid should become a priority for all the 

organization/entities that are getting engaged in the EV ecosystem. The output of this 

scenario is aiming at increasing the cyber-security of a standard EV charging enterprise‘s 

platform through the integration of ML techniques for identifying anomalies in the charg-

ing patterns, and therefore minimize the exposure both enterprises‘ database and the sta-

bility of the electric grid. The scenario covers both the ICT and the electric engineering 

domain on an effort towards increasing the cyber security on what is called Energy Inter-

net [22].  
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Chapter 4 - Smart Charging Scenario: Algorithms  
 

4.1. Algorithms  

 

4.1.1. Isolation Forest  

 

Isolation Forest utilizes the concept of isolation to detect anomalies in the dataset. 

It takes advantage of two quantitative properties that anomalies have: 

 Anomalies are the minority, consisting of fewer instances, and 

 They have feature values which are very different from those of normal instances.  

These two characteristics make anomalies susceptible to isolation, meaning that 

they are more likely to be isolated from other instances when the dataset is randomly par-

titioned. This algorithm works by recursively randomly partitioning the dataset until it 

reaches a particular depth or isolates a point. To represent the partitions, it uses a special 

kind of Binary Search Tree (BST), called iTree.  

The idea is that anomalies, since they lay further from the rest observations, will 

require a lower number of random dataset partitions to become isolated, whereas normal 

observations will need a higher number, as they are close to other normal points. This 

translates to respectively shorter and longer path lengths (or distances from the root node) 

in each iTree. The anomaly score that is inferred for an example during the evaluation 

stage is based on this path length value. For example, in Figure 8, we can see that point 

xo requires on average fewer ―cuts‖ to be isolated, than point xi . The model of Isolation 

Forest is composed of an ensemble of iTrees. Each iTree is built on a subsample of the 

original dataset. The use of subsamples has some very useful properties. Each subsample 

is formed by randomly picking instances from the whole dataset without replacement.  
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Figure 8- Isolation Forest anomaly score 

 

The anomaly score for a data point is the average value of the path lengths ac-

quired by ―passing‖ the data point from each iTree this approach often causes a high 

computational complexity for data of higher dimensionality, and, because the model is 

optimized to profile normal points, and not to detect anomalies, it often ends up with too 

many false positives, or few true positives (not to mention that most of the times a la-

beled dataset is mandatory for the training phase). Isolation Forest is different from such 

algorithms because its model isolates anomalous instances instead of profiling the normal 

ones, requires no labeled dataset (it is an unsupervised algorithm) and is also robust when 

applied at data with high dimensionality.  

Moreover, most distance-based and density-based methods do not handle the ef-

fects of swamping and masking well, having poor performance in such cases. Swamping 

is the when normal instances are too close to anomalies, causing them to get incorrectly 

flagged, and masking is the situation in which too many similar anomalies form a small 

cluster, concealing their presence. Isolation Forest alleviates the effects of these two situ-

ations by operating on random subsamples of the original dataset. 
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4.1.2. Anomaly Detection 

 

Anomaly detection refers to the problem of finding patterns in a set of data that do 

not agree with the expected behavior. Extreme pricing detection has a variety of applica-

tions such as credit card fraud detection, security fraud detection, security and medical 

care systems, and even military systems for detecting hostile activities. The importance of 

extreme price detection stems from the fact that extreme data values translate into im-

portant information in a wide range of application areas. 

The first attempts to detect extreme values date back to 1970, when researchers tried to 

elicit erroneous measurements from their data to ensure that the data matched best with 

the proposed models [23]. Detection of anomalies or extreme prices has been researched 

in the field of statistics since the beginning of the 19th century. Over the years, a wide 

variety of techniques have been developed in various fields of research. Many of them 

have been created for more specific applications while others are more general. There are 

also cases where, although a technique has been developed for a specific problem, it is 

then applied to areas that were not originally intended. 

 

Types of extreme anomalies  

Point anomalies 

  We encounter these extreme values if an object in the data (a point) shows a dif-

ferent behavior from the rest of the data. Although it is the most easily detectable type of 

extreme value, an important problem is the appropriate measure of the deviation of one 

point from the rest. In Figure 9, we see an example of extreme point values, where it is 

clear that the two points that are in a circle and have been named V1 are much further 

away from the set of points V2 and are characterized as extreme values [24]. As an ex-

ample from real life let's talk about credit cards. We assume that all the data refers to the 

transactions of an individual and more specifically to the amounts spent per transaction. 
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A transaction in which the amount allocated is much larger than the average normal spent 

by that particular individual is characterized as a point extreme value. 

 

 

Figure 9- Extreme point values (anomalies) [25] 

 

Environmental values related to contextual anomalies 

 This type, we find it if one point of the data deviates significantly from the rest in 

a particular environment, and only in that. The concept of environment arises from the 

structure of data and is part of the wording of the problem. Each fact is defined on the 

basis of two characteristics. 

 A) The environmental characteristics, e.g., those that determine the environment and  

B) The behavioral characteristics, e.g., those that determine the points that are outside the 

specific environment. [26] 
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Collective extreme anomalies: This type of extreme value refers to a set of data, which 

as a group, show a different behavior from the general set of data, while as independent 

units may not be extreme values. In Figure 10, we see an example of a collective extreme 

value. In the cardiogram, while the values that are in red alone are not an extreme value, 

as a set of values they differ from the usual and are characterized as abnormal. [26] 

 

 

Figure 10- Collective anomaly corresponding to an Atrial [27] 

 

4.2. Ways to operate extreme price detection techniques  

 

 Supervised problems  

Supervised problems are those that the computer does not solve on its own. That 

is, the computer is given a set of data, and there is the human factor, which tells the com-

puter how to sort this data. The behavior of the data, whether normal or not, should be 

predetermined. This can be done in two ways, either by saying what is normal and any-

thing that does not go with it is considered an extreme value, or by determining what is 
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abnormal and anything that is contrary to it is considered normal. This technique requires 

the human factor to know all possible extreme values or that it can be considered normal 

in the data, something that is not so feasible since the goal is for the computer to be able 

to detect extreme values on its own. Theoretically, this type of methodology provides a 

better detection of extreme values as there is access to more information, but keeping ac-

curate data labels is a major challenge that rejects this theory. [28] 

 

Unsupervised 

In unattended techniques, there is no pre-classification by the human factor, and 

the computer must detect for itself that there are extreme values, if of course they exist. In 

these methods, it is assumed that data that behaves normally often follow a pattern, while 

extreme values do not behave in this way. However, this assumption is not always correct 

as there are cases where the similarity is not enough to determine the regularity or not of 

some data as in the case of collectively extreme values. That is why this technique is of-

ten ineffective and leads to wrong extreme values. 

 

Semi-supervised 

 This kind of approach is something between the two previous ones. It is used 

when from all the data, there are a few that have been pre-characterized as normal. Based 

on this, we try to characterize what is left. This approach essentially sets a limit to nor-

malcy, where a given value is called an extreme value if it is outside it and normal if it is 

within it. 
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Chapter 5 - Methodology - Data Analysis 
 

This chapter presents the methodology process that will be applied in dataset that 

contain real recorded charging processes, which took place during 2018 and 2019. Main 

concept of the implementation is to examine possible threats and cyber-attacks on smart 

charging network that used by charging point stations, where electrical vehicles are con-

nected in other to be charged.  

 

5.1. Research Questions 

 

As mentioned before, in charging process, an attacker could exploit vulnerabilities 

of the network of a charging station and affect the behavior of the charging process in 

plug-in electrical vehicles that are connected. Therefore, the main object of thesis is to 

examine threats and detect cyber-attacks in the charging process. In this scenario, a Plug-

in Electric Plug-in Electric Vehicle communicates with and is controlled by a charging 

station. Consequently, the specific research questions arise: 

a) Whether the charging station hardware can be hacked in order to send these erro-

neous signals (either locally or remotely) 

b) How the charging stations can be made tamper-proof and how cyber-attacks can 

be detected 

In order to answer the above research questions, it is necessary to run specific 

anomaly detection test, using isolation forest algorithm and other data manipulation. 

Consequently, if a charging process behaves abnormally, in other words, if a connected 

Electrical Vehicle requests high voltage, could. Therefore, it is crucial for the charging 

station owner to monitor, manage, and restrict the use of their devices remotely to opti-

mize energy consumption. Otherwise, the smart network of the charging station might 

break down.  
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5.2. Data for the scenario 

 

In the context of this thesis, we used a dataset in CSV format. This dataset con-

tains Charge Detail Records with the following columns (Table 3). For better view and 

accuracy in the anomalies that will show in the results, the EV charging dataset will be 

comprised of millions of charge sessions hosted on a cloud platform dating back to 2012. 

The database consists of different tables, each one of them representing a unique entity in 

the EV scenario, namely: the Charge Points, the Charge Detail Records (CDRs), the 

Connections and the Meter Values (MVs). 

 

Table 3 - Charge Detail Records (CDRs), 

Column Data type Description 

ID PK, int ID for CDR 

Duration Nvarchar (50) Duration of session 

Volume Nvarchar (50) Volume in kWh 

AuthenticationId Nvarchar (50) Unique charge card ID 

ChargePoint_ID FK, int Unique Charge Point ID 

ConnectorId Nvarchar(255) ChargePoint Connector 

Identifier 

dStart datetime Session start time 

dEnd datetime Session end time 
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Table ―Charge Detail Records (CDRs)‖ (Table 3) ,describes the necessary details of 

each charging attempt such as the duration and the volume, but it also includes features 

from other tables as foreign key in order to express the correlation with the other entities 

of the grid. Therefore, every record to the database includes the unique ID of the charge 

card used by the EV driver, and the unique ID of the charging station. The features of du-

ration, volume and session start/end time have the highest value for the Artificial Intelli-

gence (AI) algorithms, as they can offer a useful insight for the pattern of a charging ses-

sion. 

Artificial Intelligence and Machine Learning are nowadays two very interchangeable 

words. They are not quite the same thing, but the perception that they are can sometimes 

lead to some confusion.  

 Artificial Intelligence is the broader concept of machines being able to carry out 

tasks in a way that we would consider ―smart‖.  

 

 Machine Learning is a current application of AI based around the idea that we 

should really just be able to give machines access to data and let them learn for 

themselves. 

Our purpose in this implementation is to run some algorithms, in order to see if smart 

charging system can secure the enterprise‘s grid, and to prevent potential blackouts in the 

EU‘s electrical grid. In the scenario of the smart charging abuse, different users are syn-

chronized (either on purpose either unintentionally) and proceed timely in connec-

tion/disconnection actions, causing an unexpected load to the electrical grid. Such actions 

can be prevented if AI/ML techniques are integrated into the EV charging enterprise‘s 

software. 

The dataset in CSV format, which has been collected from an EV charging enterprise 

since 2012, can be used as a starting point for getting an insight of the charging stations‘ 

behaviour, extracting the attributes of a ―normal‖ charging action and identifying suspi-

cious actions as outliers.  

https://www.bernardmarr.com/default.asp?contentID=963
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An outlier is an observation that lies an abnormal distance from other values in a ran-

dom sample from a population. In a sense, this definition leaves it up to the analyst (or a 

consensus process) to decide what will be considered abnormal. Before abnormal obser-

vations can be singled out, it is necessary to characterize normal observations. In very 

large samplings of data, some data points will be further away from the sample mean than 

what is deemed reasonable. This can be due to incidental systematic error or flaws in 

the theory that generated an assumed family of probability distributions, or it may be that 

some observations are far from the center of the data. Outlier points can therefore indi-

cate faulty data, erroneous procedures, or areas where a certain theory might not be valid. 

However, in large samples, a small number of outliers is to be expected (and not due to 

any anomalous condition). Outliers should be investigated carefully. Often they contain 

valuable information about the process under investigation or the data gathering and re-

cording process. 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Systematic_error
https://en.wikipedia.org/wiki/Theory
https://en.wikipedia.org/wiki/Probability_distribution


53 
 

5.3. Finding abnormal charging processes 
 

Isolation Forest 

Returns the anomaly score of each sample using the Isolation Forest algorithm 

The Isolation Forest ‗isolates‘ observations by randomly selecting a feature and then ran-

domly selecting a split value between the maximum and minimum values of the selected 

feature Since recursive partitioning can be represented by a tree structure, the number of 

splitting required to isolate a sample is equivalent to the path length from the root node to 

the terminating node This path length, averaged over a forest of such random trees, is a 

measure of normality and our decision function. 

In order to discover abnormal charging processes, isolation Forest algorithm will be 

applied on dataset (described previously). Isolation forest gives us the opportunity to de-

tect possibly abnormal requests of high voltage power for a plugged-in Electrical Vehi-

cle.  

Using isolation forest algorithm, we can group charging processes into two main cate-

gories: 

a) Charging processes that behave normally (expected behaviour) 

b) Charging processes that shows unusual behaviour and should be investigated fur-

ther. For example, we can detect a charging process, where an Electrical Vehicle 

EV requests a greater amount of power, or a specific car(s) is/are charged on a dif-

ferent station(s) from the usual ones.  

Therefore, in this implementation, we have to discover possible ―Anomalies‖. Anoma-

lies are data patterns that have different data characteristics from normal instances. The 

detection of anomalies has significant relevance and often provides critical actionable 

information in various application domains. For example, anomalies in credit card trans-
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actions could signify fraudulent use of credit cards. An anomalous spot in an astronomy 

image could indicate the discovery of a new star. An unusual computer network traffic 

pattern could stand for an unauthorized access. These applications demand anomaly de-

tection algorithms with high detection performance and fast execution. 

 

 

 

StandardScaler 

Alongside with the isolation Forest algorithm we will also apply on the dataset the Stand-

ard Scaler algorithm.  

Standard Scaler standardizes features by removing the mean and scaling to unit variance. 

The standard score of a sample x is calculated as: z = (x - u) / s, where u is the mean of 

the training samples or zero if with_mean=False, and s is the standard deviation of the 

training samples or one if with_std=False.  

Centering and scaling happen independently on each feature by computing the relevant 

statistics on the samples in the training set. Mean and standard deviation are then stored 

to be used on later data using transform.  

Standardization of a dataset is a common requirement for many machine learning estima-

tors: they might behave badly if the individual features do not more or less look like 

standard normally distributed data (e.g., Gaussian with 0 mean and unit variance). In 

practice we often ignore the shape of the distribution and just transform the data to center 

it by removing the mean value of each feature, then scale it by dividing non-constant fea-

tures by their standard deviation. 
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Chapter 6 - Results of Implementation 
 

6.1. Tools and Programs Used 

 

In order to run tests in the records of the EV charging enterprise‘s database 2018, 

we used Python language, which is a very powerful tool in data analysis, Anaconda envi-

ronment, where we ran the code and Jupyter Notebook (Figure 11).  

 

Figure 11- Anaconda program 

 

 

6.1.1. Anaconda 

 

Anaconda Enterprise enables developers and data scientists to access cutting-edge 

technology and use their preferred tools and packages without sacrificing security. Ana-

conda is a Python distribution. A Python distribution provides the Python interpreter, to-

gether with a set of Python packages and sometimes other related tools, such as editors. 

The main advantages of Anaconda distribution includes:  
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• NumPy, SciPy, Matplotlib and Biopython  

• Spyder  

• Jupyter Notebook 

 

6.1.2. Jupyter 

 

The Jupyter Notebook is an interactive programming environment, in which you 

can combine Python code and execution results with annotations, equations, figures, inks, 

etc. The Jupyter Notebook will run in the internet browser of our computer and does not 

require internet access, it will access to our local files via the browser interface. Note-

books are similar to Word documents and we can edit them interactively in the internet 

browser. Notebooks are saved in its own format with the ‗.ipynb‘ extension, but can be 

also downloaded as PDFs, HTML pages or Python code. 

 

6.1.3. Necessary Python libraries 

 

For scientific computing and computational modeling, we need additional collec-

tions of Python modules called libraries or packages. They are not part of the Python 

standard distribution. These allow us, for example, to create plots, operate on matrices, 

and use advanced numerical methods: 

 NumPy (NUMeric Python): matrices and linear algebra  

 SciPy (SCIentific Python): many numerical routines  

 Matplotlib (PLOTting Library): creating plots of data 



57 
 

 Pandas: Pandas is built on top of the NumPy package, meaning a 

lot of the structure of NumPy is used or replicated in Pandas. Data in pandas is of-

ten used to feed statistical analysis in SciPy, plotting functions from Matplotlib, 

and machine earning algorithms in Scikit-learn. 

 

 

6.2. Code implementation  

 

Isolation.py contains the necessary code, in order to run isolation method and find 

possible anomalies for the charging processes that have been recorded in the dataset of 

the EV charging enterprise. Anomalies are data patterns that have different data charac-

teristics from normal instances. The detection of anomalies has significant relevance and 

often provides critical actionable information in various application domains. For exam-

ple, anomalies in credit card transactions could signify fraudulent use of credit cards. An 

anomalous spot in an astronomy image could indicate the discovery of a new star. An un-

usual computer network traffic pattern could stand for an unauthorized access. These ap-

plications demand anomaly detection algorithms with high detection performance and 

fast execution. 

The Isolation Forest ‗isolates‘ observations by randomly selecting a feature and 

then randomly selecting a split value between the maximum and minimum values of the 

selected feature. Since recursive partitioning can be represented by a tree structure, the 

number of splitting required to isolate a sample is equivalent to the path length from the 

root node to the terminating node. This path length, averaged over a forest of such ran-

dom trees, is a measure of normality and our decision function. 
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In this implementation, we use Isolation method to isolate normal and abnormal 

charging processes. For this purpose, we selected ―Duration‖ as the characteristic in order 

to test if there is unusual time for the EV to be charged. Time was converted into seconds 

in order to compare and isolate the results. 

 

Explanation of code  

Implemented code is presented above. First of all, it is necessary to ink our project with 

the appropriate libraries: 

import numpy as np # linear algebra 

 

import pandas as pd # data processing, CSV file I/O (e.g., pd.read_csv) 

 

Next, we define a function named ―convert‖. This function was used in order to convert 

time format into seconds. In csv dataset duration a charging process is formatted like 

―10:08:00‖. Consequently, this function take as parameter time duration and returns in 

main program, total seconds.  

 

def time_convert(x): 

    h,m,s = map(int,x.split(':')) 

    return (h*60+m)*60+s 

 

In main program, first of all we read CSV file. The necessary code is: 

df=pd.read_csv("cdr2020h.csv") 

df.head() 
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Next, we define the columns that we want to plot in diagrams. More specifically, we se-

lected: 

 ID (id of charging process) 

 VOLUME (Voltage power for EV) 

 Duration (Duration of time that recorded in the specific charging process) 

The data above is for a use case at a charging process that was recorded in the EV charg-

ing enterprise‘s database. We have to identify first, if there is an anomaly at a use case 

level. Then for better action ability we drill down to individual metrics and identify 

anomalies in them.  

 

Creation of Pivot on the data frame, in order to create a data frame with all metrics at 

a date level. 

metrics_df=pd.pivot_table(df,values='Volume',index='ID',columns='Duration') 

metrics_df.head() 

metrics_df.reset_index(inplace=True) 

 

Level the multi-index pivot data frame and treat na with 0: 

metrics_df.fillna(0,inplace=True) 

metrics_df.head() 

metrics_df.columns 
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Define isolation forest and specify parameters.  

Algorithm parameters used in code: 

1. n_estimatorsint, default=100 

 The number of base estimators in the ensemble. 

 

2. max_samples―auto‖, int or float, default=‖auto‖ 

The number of samples to draw from X to train each base estimator. 

 If int, then draw max_samples samples. 

 If float, then draw max_samples * X.shape[0] samples. 

 If ―auto‖, then max_samples=min(256, n_samples). 

If max_samples is larger than the number of samples provided, all samples will be 

used for all trees (no sampling). 

3. max_features int or float, default=1.0 

 The number of features to draw from X to train each base estimator. 

 If int, then draw max_features features. 

 If float, then draw max_features * X.shape[1] features. 

 

4. bootstrap bool, default=False 

 If True, individual trees are fit on random subsets of the training data sampled 

with replacement. If False, sampling without replacement is performed. 

 

5. n_jobsint, default=None 

The number of jobs to run in parallel for both fit and predict. None means 1 un-

less in a joblib.parallel_backend context. -1 means using all processors. 

See Glossary for more details. 

6. random_state int or RandomState, default=None 

Controls the pseudo-randomness of the selection of the feature and split values for 

each branching step and each tree in the forest. 

Pass an int for reproducible results across multiple function calls. See Glossary. 

7. verboseint, default=0 

Controls the verbosity of the tree building process. 

 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest.fit
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest.predict
https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend
https://scikit-learn.org/stable/glossary.html#term-n-jobs
https://scikit-learn.org/stable/glossary.html#term-random-state
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Isolation forest tries to separate each point in the data. In case of 2D it randomly creates a 

line and tries to single out a point. Here an anomalous point could be separated in few 

steps while normal points which are closer could take significantly more steps to be seg-

regated. Using sklearn's Isolation Forest here as it is a small dataset with few months of 

data, while recently h2o's isolation forest is also available which is more scalable on high 

volume datasets would be worth exploring. 

Next, as long as we have imported isolation forest library, we gave the appropriate pa-

rameters for built-in function Isolation Forest:  

clf=IsolationForest(n_estimators=100, max_samples='auto', \ 

max_features=1.0, bootstrap=False, n_jobs=-1, random_state=42, verbose=0) 

 

A sudden spike or dip in a metric is an anomalous behavior and both the cases needs at-

tention. Detection of anomaly can be solved by supervised earning algorithms if we have 

information on anomalous behavior before modeling, but initially without feedback it‘s 

difficult to identify those points. So we model this as an unsupervised problem using al-

gorithms like Isolation Forest, One class SVM and STM. Here we are identifying anoma-

lies using isolation forest. 

 

Now here we have metrics on which we have classified anomalies based on isolation for-

est algorithm. We will try to visualize the results and check if the classification makes 

sense. Next, we normalize and fit the metrics to a PCA to reduce the number of dimen-

sions and then plot them in 3D highlighting the anomalies. 

 

import matplotlib.pyplot as plt 

from sklearn.decomposition import PCA 
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from sklearn.preprocessing import StandardScaler 

from mpl_toolkits.mplot3d import Axes3D 

pca = PCA(n_components=3)  # Reduce to k=3 dimensions 

scaler = StandardScaler() 

#normalize the metrics 

X = scaler.fit_transform(metrics_df[to_model_columns]) 

X_reduce = pca.fit_transform(X) 

 

fig = plt.figure() 

ax = fig.add_subplot(111, projection='3d') 

ax.set_zlabel("x_composite_3") 

 

# Plot the compressed data points 

ax.scatter(X_reduce[:, 0], X_reduce[:, 1], zs=X_reduce[:, 2], s=4, w=1, 

abel="inliers",c="green") 

 

# Plot x's for the ground truth outliers 

ax.scatter(X_reduce[outlier_index,0],X_reduce[outlier_index,1], 

X_reduce[outlier_index,2], 

           w=2, s=60, marker="x", c="red", abel="outliers") 

ax.legend( 

 

 

 

Now as we see at the 3D point the anomaly points are mostly wider from the cluster of 

normal points, but the 2D point will help us to judge even better. Let‘s try plotting the 

same fed to a PCA reduced to 2 dimensions. 
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from sklearn.decomposition import PCA 

pca = PCA(2) 

pca.fit(metrics_df[to_model_columns]) 

res=pd.DataFrame(pca.transform(metrics_df[to_model_columns])) 

Z = np.array(res) 

figsize=(12, 7) 

plt.figure(figsize=figsize) 

plt.title("IsolationForest") 

plt.contourf( Z, cmap=plt.cm.Blues_r) 

b1 = plt.scatter(res[0], res[1], c='blue', 

                 s=40,label="normal points") 

 

b1 = plt.scatter(res.iloc[outlier_index,0],res.iloc[outlier_index,1], c='red', 

                 s=40,  edgecolor="red",label="predicted outliers") 

plt.legend(loc="upper right") 

plt.show() 
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6.3. Evaluation 

 

6.3.1. Dataset of 2018 

 

Running the python code on the dataset of the charging records of 2018, we take the fol-

lowing result and plots (Figure 12 and Figure 13): 

 

Figure 12- Isolation Forest Dataset 2018 results in three dimensional view showing charging anomalies 
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Figure 13- Isolation Forest Dataset 2018 results in two dimensional view showing charging anomalies 

 

We can conclude that two of 1999 charging processes behave abnormally. This 

means most probably someone has tempered the system to exploit it for his/her benefit or 

even wanted to damage it. This information could be important for the appropriate func-

tion for a charging station. Consequently, Charging Stations might implement real-time 

anomaly detection programs, in order to monitor and control the power of the smart net-

work, and to detect if an electrical Vehicle‘s smart charging process behaves abnormally. 

Upon such implementations, new ways to prevent the cyber-attacks will arise, further se-

curing the charging grid, which is our ultimate goal. 
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6.3.2. Dataset of 2019 

 

Running the above code on dataset of charging records of 2019 (2614 total charg-

ing processes), we take the following result and plot (Figure 14): 

  

Figure 14- Isolation Forest Dataset 2019 results in three dimensional view showing charging anomalies 

 

Figure 15- Isolation Forest Dataset 2019 results in two dimensional view showing charging anomalies 
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As we can see from the two graphs that were produced by our algorithm in this 

particular set of data no outliers, where detected, which means no abuse was done to our 

charging process. This is the optimal function of a Charging Station in a daily basis, 

where the car can power itself with proper dosage and safety protocols that prevent it 

from damaging its electronics from the charging. Something, like that is also crucial as 

less maintenance is needed and less energy is wasted, which is good for the state of the 

environment. 

 

6.3.3. Dataset of 2020 

 

After running the python program on dataset of charging records (9161 total 

charging processes) that were recorded in 2020, it seems that there is no detected abnor-

mal behavior, as Figure 16 presents.  

 

  

Figure 16- Isolation Forest Dataset 2020 results in three dimensional view showing charging anomalies 
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Figure 17- Isolation Forest Dataset 2020 results in two dimensional view showing charging anomalies 

 

Since both datasets of 2019 and 2020 did not find any anomalies, we conclude that cyber-attacks 

to Charging stations are not very common however from the dataset of 2018, we can see that they 

are not nonexistent either. Probably if the algorithmic anomaly detection code inspected more 

processes, the results would be even more conclusive upon the scale of these attacks. Constant 

surveillance of the Charging Stations is very important in order for the detection of those spikes 

too be more efficient.  

 

 

6.4. Discussion of implementing 

 

The diagrams that were generated from running tests above show the number of 

splits required to isolate a normal point and an anomaly. Splits, represented through blue 

lines, and happen at random on a random attribute and in the process building a decision 
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tree. The number of splits determines the level at which the isolation happened and will 

be used to generate the anomaly score. 

The process is repeated multiple times and we note the isolation level for each 

point/instance. Once the iterations are over, we generate an anomaly score for each 

point/instance, suggesting its likeliness to be an anomaly. The score is a function of the 

average level at which the point was isolated. The red points  on the basis of the score, 

are labeled as anomalies. 

The process of tree construction is repeated multiple times and each time we pick 

a random sub-sample and construct the tree. There are no strict rules to determine the 

number of iterations, but in general, we could say the more the merrier. The sub-sampling 

count is also a parameter and could change depending on the data set. 

Every anomaly detection algorithm has to score its data points/instances and 

quantify the confidence the algorithm has on its potential anomalies. The generated 

anomaly score has to be bounded and comparable. In Isolation Forest, that fact that 

anomalies always stay closer to the root, becomes our guiding and defining insight that 

will help us build a scoring function. 

The isolation forest algorithm thrives on sub-sampled data and does not need to 

build the tree from the entire data set; it works well with sub-sampled data. While con-

structing the tree, we need not build tree taller than a valued defined (very cheap to com-

pute), making it low on memory footprint. Since the algorithm does not depend on com-

putationally expensive operations like distance or density calculation, it executes really 

fast. The training stage has a linear time complexity with a low constant and hence could 

be used in a real-time online system. 

Therefore, extracting and isolating abnormal values, charging processes that be-

have with abnormal power (volume) might easily be detected. 
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Conclusions & Future Work 

 

This Thesis examined threats and cyber-attacks in the charging process and the 

targeting BMS and other parts of the car‘s electronics‘ system. The main advantage of the 

electric vehicles is its contribution to the reduction of air pollution, most of which is due 

to the pollution of conventional vehicles. Electric vehicles have virtually zero pollution, 

causing minimal air pollution and zero pollution of the moving space. In a recent meas-

urement it appears that the electric vehicles are 98% cleaner than the conventional. Other 

advantages are the reduced air pollution, a phenomenon that makes the atmosphere of 

modern cities unbearable. The electric vehicles are essentially silent compared to vehicles 

with internal combustion engines. They are more reliable than conventional vehicles. Al-

so, they are easier to build because the electric motors are very simple in their structure, 

compared to internal combustion engines. Since it is powered by electronic power con-

verters, which are easily controlled electronically, water is usually not required for cool-

ing and does not use filters or oil, so it does not present problems caused by low ambient 

temperature. Finally, an electric car consumes energy only when it is moving. When not 

moving e.g., stops at traffic lights or heavy traffic jams, does not consume energy. 

A Plug-in Electric Plug-in Electric Vehicle communicates with and is controlled 

by a charging station. Charging Stations play an important role and they multiple other 

functions such as providing and controlling the energy to the EV using the Electric Vehi-

cle Supply Equipment (EVSE) component, collecting the measurements from the meter 

for each charge of an Electric Vehicle, identifying and authorizing EV users via user au-

thentication component. Moreover, charging stations enable remote capabilities (e.g., ad-

justment of the maximum current allowed by the Charge Point) to the Charge Point via 

the Local Controller component over WAN. The main contribution of this thesis is to 

give new knowledge of examining possible threats and abuse of smart charging in Elec-

trical Vehicles. In other words, applying specific algorithms in real collected database of 

a standard EV charging enterprise, to test possible abnormal activity on the charging sta-
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tion can trigger designers and programmers of the networks of smart charging Station, to 

reconsider the security issues. Moreover, if algorithms can be applied in real time, then 

detection of abnormalities during smart charging could trigger an alarm that some ab-

normal activity is taking place.  

Many attacks on electric vehicle charging within a smart grid environment have 

been identified. EV charging is susceptible to masquerading, tampering, eavesdropping, 

and denial of service attacks, in addition to privacy concerns and charging. Charging can 

be attacked by methods of eavesdropping, man-in-the-middle and tampering attacks on 

the payment price and the amount of energy that the meter believes the EV has received. 

They also discuss the potential for malicious software within the vehicle to affect a charg-

ing station, or a compromised charging station to affect an EV. 

This means that if an attacker could intrude the software of the charging station, it 

might be possible to influence the charging behavior of the vehicle. This Thesis examined 

whether the charging station hardware can be hacked in order to send these erroneous 

signals (either locally or remotely) and how the charging stations can be made tamper-

proof and how cyber-attacks can be detected. Using Isolation Forest Algorithm and py-

thon language, we presented a fully functioned program, giving as input charging pro-

cesses, obtained by a standard EV charging enterprice‘s database and as output we isolat-

ed, abnormal charging processes. In this case an abnormal charging process is the situa-

tion, where an electric vehicle requests high volume of power. 

Tν conclude, there are some possible ways for charge stations, on order to detect 

abnormal situations in charging processes of Electrical Vehicles. In this thesis, isolation 

forest seems to be useful in order to test the charging processes that requests high voltage 

of power. Therefore, charging stations network could trigger an alarm in order to investi-

gate an abnormal situation, possibly a cyber-attack.  
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