S
TN

University of Western Macedonia

Department of Electrical & Computer Engineering

Analysis and comparison of data structures for

database indexing

Sotirios Salakos
(AM: 1385)

Supervisor: Nikolaos Ploskas, Assistant Professor

Intelligent Systems & Optimization Laboratory

Monday, October 24, 2022

https://www.uowm.gr/
http://ece.uowm.gr/

[TepiAndy

H Stadoyixy) eEENEN evig TeptfdAlovtog texvoloyttdv vépoug (cloud), amopoxpuopé-
VOV PNOLOXGY ETULXOLYOILKY XL TEYVOAOYLOY TTOPOYNG %Ol SLooOVIEDYS JEDOUEVWY %Ol
UTTNPEDLWY OTIOLTEL TNV OVATTTUEY] XOL XATOOXEVY] ATTOGOTIXWY CGLOTNUATWY SLOXELPLONG
Baoswy dedopévwy (EABA) mov vAoToLobY TNy amobixevoy, T dtavopy xow T SLoyei-
OLOM LEYGAWY OGLVOAWY GeSOUEVWY. AUTA Tl CLOTHRLOTO. dLaYELPLONG PAoewy BeSoUEVLY
OTTOTEAOVYTOL OO TTOAAXTIAG LTTOCLGTAUOTH OLoryeipLtong aPyeiwy xot ETLTESWY douL-
KWV TUNUETWY CUCTNULKTOS TTOV DAOTIOLOVY TNV ATTOTEAECULOTIXY] XOL YOYOEY] Storxeiptom
TV amodnxeLUEVWY GLUVOAWY JEDOUEVWY UETL GUYOAWY AELTOLEYLWOY CLUVOAAXYWY. To
ovoThpato. evpetnpLomtoinong (indexing) éyovv avamtuydel oto TAaioo TwY TABA Yo
TNY LAOTIOINGYN VTG TNG AELTOLPYLXYG ATTOSOTLXOTNTOC, AELTOVPYWYTOS WS VTTOCLOTY-
LOTO. CUOTNUATWY XEYELWY TTOU GLYGEOVTOL GOULXA KOl ASLTOVOYLXA UE EVOL LEYGAO %O
TTOAOTTAOXO GUVOAO GAAWY VTTOCLOTNULATWY PACEWY FESOUEVWLWY. Ta CLOTNUATA XVTA ATTO-
TEAOVYTOL ETTLONG AT TTOAATTAOVS UNYAVLOUOVG TTOL TTEPLAAUPBEYOLY GOVOAL douky Oc-
JouEVWY eVPETNPELOTTOINONG XL aAyoplOuwy. H mopodoa SimAwpatixnn epyocio cuvbétet
uLtoe VAoTToino” Twy Sopwy svpetnplov B-tree, B*-tree, B-Hash Map xow B*-Hash Map
%o pLoe TANEN BewENTinn xoL LTTOAOYLOTIXY] AVAALGY] TWY GOUWY AVTWY GE AELTOLEYLXO
xow doutxd emimedo. H vmohoyiotixn avaAvoy, aELoAdynoyn xor cOYxELoN TNG AELTOVOYL-
%NS OTOSOTIXOTYTOG XOL TYG XQEOVIXYG ATTAOS007G Twy SoUwyY evpetnplov B-tree, B*-tree,
B-Hash Map xow B*-Hash Map mouv avamtoyxnxoy mpoypotomotnbnxe néow evog ouvo-
AOUL VTTOAOYLOTLXWY OLOOLXACLKY O TTROYUOTLXA XOL XUTOOXEVOOULEVO GOVOAD GESOUEVWV.
Kotd ovvéneia,) Topoboo LEAETY TTOPEYEL ULOL PXETE TTANOT], TIEPLEXTLYY] XOL AETTTOUEQY
DewpnTinn xol LITOAOYLOTLXY] AVAAVGY] AVTWY TWY VAOTIOLNUEVWY - OVATTTUYUEVWY GOWUWY
%O ASLTOVPEYLWY EVPETNELWY OCOV APOPA TNV ATTOSOTLXOTNTU KOL TN YEOVLXY] ATTOS00Y] TNG

OLOYELPLOTG XPOVIXWY TTOPWY KoL TTOPWY UVUTG.

A€Egig xAetdia: Baoelg dedopévwy, Evpetnprtomoinoy, B-d¢évdpo, B+-6¢vdpo, Hash Map.

Abstract

The consecutive evolution of a digital communication, remote data and services provision
and interconnection and cloud technologies environment requires the development and
construction of efficient database management systems (DBMSs) that implement storage,
distribution and management of large datasets. These DBMSs are composed of multiple
file sub-systems and system structural components layers that implement the efficient and
fast management of the stored datasets through transnational operations sets. Indexing
systems have been developed in the context of DBMSs in order to implement this functional
efficiency, operating as file sub-systems that are structurally and functionally connected to
a large and complex set of other database sub-systems. These systems are also composed
of multiple mechanisms comprising indexing data structures sets and algorithms. This
thesis composes an implementation of the B-tree, B*-tree, B-Hash Map and B*-Hash Map
index structures and a complete theoretical and computational analysis of those structures
functional and structural levels. The computational analysis, evaluation and comparison of
the developed B-tree, B*-tree, B-Hash Map and B*-Hash Map index structures functional
efficiency and time performance was carried out through a set of computational processes
on real and synthetic datasets. Consequently, this study provides a quite complete, comprehensive
and detailed theoretical and computational analysis of these implemented - developed
indexes structure and functions performance in terms of time and memory resources

management efficiency and time performance.

Keywords: Databases, Indexing, B-tree, B+tree, Hash Map.

Copyright

Copyright Statement

I explicitly declare that, according to the article 8 of the law 1599/1986 and the articles
2, 4, 6 par. 3 of the law 1256/1982, this thesis entitled Analysis and comparison of
data structures for database indexing, as well as the files and source codes developed or
modified in the context of this thesis and explicitly mentioned in the associated text and
which has been conducted, implemented and developed at the Department of Electrical &
Computer Engineering of the University of Western Macedonia, under the supervision
of the Assistant Professor Nikolaos Ploskas is exclusively a product of personal work and
does not violate any form of copyright of third parties and is not a product of partial
or total copying and the sources used are limited to bibliographical references only. The
parts where i have used ideas, text, files and/or sources of other authors are clearly and
completely indicated in the text with appropriate citations and the relevant references are

included in the bibliographical references section with complete and detailed description.

Copy, storage and distribution of this study, completely or partially, for commercial
purposes is prohibited. Reproduction, storage and distribution for non-profit, educational
or research purposes is permitted, provided the source is acknowledged and this message
is retained. Questions regarding the usage of the study for profit should be directed to the
author. The viewpoints and inferences contained in this study are exclusively those of the

author.

Copyright (C) Sotirios Salakos & Nikolaos Ploskas, 2022, Kozani, Greece

Student Signature

http://ece.uowm.gr/
http://ece.uowm.gr/
https://www.uowm.gr/

Contents

1 Introduction 19
1.1 Thesis subject and content 19
1.2 Content StruCtUre o v vt ittt e e 20

2 Theoretical analysis and implementation of the B-tree data structure 21
2.1 B-tree index structural properties and characteristics 21

2.1.1 B-tree index structure implementation and development theoretical

base e 21

2.1.2 B-tree index structure oo 22
2.1.3 B-tree index node structure Lo 23
2.1.4 B-tree nodes number and height approximation 25

2.2 B-tree index structure basic functional levels 30
2.2.1 B-tree index structure functions00 30
2.2.2 Records selection by primary key fields 31
2.2.3 Records selection by multiple fields (constraints) 35
2.2.4 Records insertion based on primary key fields 38
2.2.5 Records deletion based on primary key fields 49

3 Theoretical analysis and implementation of the B*-tree data structure 68
3.1 Bf-tree index structural properties and characteristics 68
3.1.1 B*-tree index structure implementation and development base 68
3.1.2 Bf-treeindex structure. e 69
3.1.3 Bf-tree index node structure 70
3.1.4 BT-tree nodes number and height approximation. 73

3.2 BT-tree index structure basic functional levels 74
3.2.1 Bf-tree index structure functions 000 74
3.2.2 Records selection by primary key fields 75
3.2.3 Records selection by multiple fields. 76
3.2.4 Records insertion based on primary key fields 77
3.2.5 Records deletion based on primary key fields 89

4 B-Hash and B*-Hash Map index structures 106

4.1 B-Hash and B*-Hash Map indexes structural properties and characteristics . 106

4.2 B-Hash and B*-Hash Map index structures basic functional levels 109
4.2.1 Records insertion based on primary key fields 110

4.2.2 Records deletion based on primary key fields 113

4.2.3 Records selection by the records primary key fields 116

4.2.4 Records selection by multiple records fields (selection conditions) . . 119

5 Computational study 124
5.1 Development environment oo 124
5.2 Computational process L 124
5.2.1 Computational process on syntheticdata 125

5.2.2 Computational process onreal data 171

5.3 Analysis and evaluation of the computations results 197
5.3.1 Theoretical analysis L. 197

5.3.2 Computational processes results on constructed and real data 202

6 Summary and inferences 203

List of figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

2.9

B-tree data structure oL e 22
B-tree node structure Lo L e 23
B-tree node structure and system architecture 25
Records selection by record primary key field 31
Selection of the record reference with record primary key field R, 34
Records selection by multiple record fields. 35

Record reference insertion process in a leaf node with available record semi-
dynamic array structure capacity - part1 39
Record reference insertion process in a leat node with available record semi-
dynamic array structure capacity - part 2o 39
Record reference insertion process in a leaf node without available record

semi-dynamic array structure capacity and node split - part 1 40

2.10 Record reference insertion process in a leaf node without available record

semi-dynamic array structure capacity and node split - part 2 40

2.11 Record reference insertion process in a leaf node without available record

semi-dynamic array structure capacity and node split - part 3 41

2.12 Record reference insertion process in a leaf node without available record

semi-dynamic array structure capacity and node split - part 4 41

2.13 Record reference 19 insertion process in a leaf node with available record

semi-dynamic array structure capacityo 42

2.14 Record reference 20 insertion process in a leaf node without available record

semi-dynamic array structure capacity and node split. The upper level linked
node (parent node) record references semi-dynamic array structure has

available capacity -part1 o oo 43

2.15 Record reference 20 insertion process in a leaf node without available record

semi-dynamic array structure capacity and node split. The upper level linked
node (parent node) record references semi-dynamic array structure has

available capacity -part 2 L oo o 43

2.16 Record reference 22 insertion process in a leaf node without available record
semi-dynamic array structure capacity and node split. The upper level linked
node (parent node) record references semi-dynamic array structure has not
available capacity (parent node node split process) - part 1 b4
2.17 Record reference 22 insertion process in a leaf node without available record
semi-dynamic array structure capacity and node split. The upper level linked
node (parent node) record references semi-dynamic array structure has not
available capacity (parent node node split process) - part 2 b4
2.18 Record reference 22 insertion process in a leaf node without available record
semi-dynamic array structure capacity and node split. The upper level linked
node (parent node) record references semi-dynamic array structure has not
available capacity (parent node node split process) - part 3 45
2.19 Record reference 22 insertion process in a leaf node without available record
semi-dynamic array structure capacity and node split. The upper level linked
node (parent node) record references semi-dynamic array structure has not
available capacity (parent node node split process) - part 4 45
2.20 Record reference 10 insertion process in a leaf node without available record
semi-dynamic array structure capacity. The parent root node has also not
available capacity (parent node split) - part1 45
2.21 Record reference 10 insertion process in a leaf node without available record
semi-dynamic array structure capacity. The parent root node has also not
available capacity (parent node split) -part2 46
2.22 Record reference 10 insertion process in a leaf node without available record
semi-dynamic array structure capacity. The parent root node has also not
available capacity (parent node split) -part3 46
2.23 Record reference 10 insertion process in a leaf node without available record
semi-dynamic array structure capacity. The parent root node has also not
available capacity (parent node split) -part4 46
2.24 Deletion of the record 16 in a leaf node that contains multiple record references
—part b .o e 50
2.25 Deletion of the record 16 in a leaf node that contains multiple record references
Spart 2 . e e e 51
2.26 Deletion of the record 16 in a leaf root node that contains multiple record

references L e e e e e e e e 51

2.27 Deletion of the record 16 in a leaf node that contains a single record reference,
the upper level linked node (parent node) contains a single record reference
and the left - right side node contains multiple record references - part 1 . .
2.28 Deletion of the record 16 in a leaf node that contains a single record reference,
the upper level linked node (parent node) contains a single record reference
and the left - right side node contains multiple record references - part 2 . .
2.29 Deletion of the record 15 in a leaf node that contains a single record reference,
the upper level linked node (parent node) contains multiple record references
and the left - right side node contains a single record reference - part 1 . . .
2.30 Deletion of the record 15 in a leaf node that contains a single record reference,
the upper level linked node (parent node) contains multiple record references
and the left - right side node contains a single record reference - part 2 . . .
2.31 Deletion of the record 15 in a leaf node that contains a single record reference
and the upper level linked node (parent node) and the left - right side node
contain multiple record references -part1
2.32 Deletion of the record 15 in a leaf node that contains a single record reference
and the upper level linked node (parent node) and the left - right side node
contain multiple record references - part2
2.33 Deletion of the record 15 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node contain
a single record reference -part1 0oL,
2.34 Deletion of the record 15 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node contain
a single record reference - part 2 L. L oo
2.35 Deletion of the record 17 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node contain
a single record reference. Implementation of the B-tree nodes re-balancing
- reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has a
single record reference and the left - right side node contains multiple record

references L e e e e e

52

52

53

53

2.36 Deletion of the record 17 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node
contain a single record reference. Implementation of the B-tree nodes re-
balancing - reconstruction on an internal nodes level in the case that the
upper level linked (parent node) of the previous level reconstructed nodes
set has multiple record references and the left - right side node contains a
single record reference - part 1 oL

2.37 Deletion of the record 17 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node
contain a single record reference. Implementation of the B-tree nodes re-
balancing - reconstruction on an internal nodes level in the case that the
upper level linked (parent node) of the previous level reconstructed nodes
set has multiple record references and the left - right side node contains a
single record reference - part 2 oL o Lo

2.38 Deletion of the record 17 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node
contain a single record reference. Implementation of the B-tree nodes re-
balancing - reconstruction on an internal nodes level in the case that the
upper level linked (parent node) of the previous level reconstructed nodes
set has multiple record references and the left - right side node contains a
single record reference -part3 Lo Lo

2.39 Deletion of the record 17 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node
contains a single record reference. Implementation of the B-tree nodes re-
balancing - reconstruction on an internal nodes level in the case that the
upper level linked (parent node) of the previous level reconstructed nodes
set has multiple record references and the left - right side node contains
multiple record references -part 1 00,

2.40 Deletion of the record 17 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node
contains a single record reference. Implementation of the B-tree nodes re-
balancing - reconstruction on an internal nodes level in the case that the
upper level linked (parent node) of the previous level reconstructed nodes
set has multiple record references and the left - right side node contains

multiple record references -part2 oo oL

2.41 Deletion of the record 17 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node
contains a single record reference. Implementation of the B-tree nodes re-
balancing - reconstruction on an internal nodes level in the case that the
upper level linked (parent node) of the previous level reconstructed nodes

set has multiple record references and the left - right side node contains

multiple record references -part3 oL 61
2.42 Deletion on an internal node - part1 61
2.43 Deletion on an internal node - part 2 62
2.44 Deletion on an internal node -part3 62
2.45 Deletion on an internal node - part 4 62
3.1 Bf-tree data structure Lo 69
3.2 Bf-treenode structure Lo 70
3.3 BT-tree node structure and system architecture 72
3.4 Records selection by record primary key field 75
3.5 Records selection by multiple record fields 76

3.6 Record reference insertion process in a leaf node with available record semi-
dynamic array structure capacity - part1, 79
3.7 Record reference insertion process in a leaf node with available record semi-
dynamic array structure capacity - part 2 L 0oL 79
3.8 Record reference insertion process in a leaf node without available record
semi-dynamic array structure capacity and node split - part 1 80
3.9 Record reference insertion process in a leaf node without available record
semi-dynamic array structure capacity and node split - part 2 80
3.10 Record reference insertion process in a leaf node without available record
semi-dynamic array structure capacity and node split - part 3 81
3.11 Record reference insertion process in a leaf node without available record
semi-dynamic array structure capacity and node split - part 4 81
3.12 Record reference 11 insertion process in a leaf node with available record
semi-dynamic array structure capacityo 82
3.13 Record reference 12 insertion process in a leaf node without available record
semi-dynamic array structure capacity and node split. The upper level linked
node (parent node) record references semi-dynamic array structure has

available capacity Lo 82

10

3.14 Record reference 14 insertion process in a leaf node without available record
semi-dynamic array structure capacity and node split. The upper level linked
node (parent node) record references semi-dynamic array structure has not
available capacity (parent node node split process)

3.15 Record reference 7 insertion process in a leaf node without available record
semi-dynamic array structure capacity. The parent node has also not available
capacity (parent node split). In case that all of the upper levels linked
nodes has not available storage capacity - memory the split process is being
implemented up to therootnode

3.16 Record reference 7 insertion process in the leaf root node without available
record semi-dynamic array structure capacity

3.17 Deletion of the record 6 in a leaf node that contains multiple record references
—case b L e e

3.18 Deletion of the record 7 in a leaf node that contains multiple record references
SCASE 2 L. e e

3.19 Deletion of the record 9 in a leaf node that contains multiple record references
SCASE 3 L i i e e e e e e e e e e e

3.20 Deletion of the record 5 in a leaf node that contains a single record reference,
the upper level linked node (parent node) contains a single record reference
and the left - right side node contains multiple record references - case 1 . .

3.21 Deletion of the record 7 in a leaf node that contains a single record reference,
the upper level linked node (parent node) contains a single record reference
and the left - right side node contains multiple record references - case 2 . .

3.22 Deletion of the record 6 in a leaf node that contains a single record reference,
the upper level linked node (parent node) contains multiple record references
and the left - right side node contains a single record reference - case 1 . . .

3.23 Deletion of the record 8 in a leaf node that contains a single record reference,
the upper level linked node (parent node) contains multiple record references
and the left - right side node contains a single record reference - case 2 . . .

3.24 Deletion of the record 8 in a leaf node that contains a single record reference,
the upper level linked node (parent node) contains multiple record references
and the left - right side node contains multiple record references - case 1 . .

3.25 Deletion of the record 9 in a leaf node that contains a single record reference,
the upper level linked node (parent node) contains multiple record references

and the left - right side node contains multiple record references - case 2 . .

91

92

93

93

94

94

11

3.26 Deletion of the record 5 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node
contain a single record reference -case 1,

3.27 Deletion of the record 6 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node
contain a single record reference -case 2 0.

3.28 Deletion of the record 5 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node
contain a single record reference. Implementation of the B*-tree nodes re-
balancing - reconstruction on an internal nodes level in the case that the
upper level linked (parent node) of the previous level reconstructed nodes
set has a single record reference and the left - right side node contains
multiple record references -case 100,

3.29 Deletion of the record 6 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node
contain a single record reference. Implementation of the B*-tree nodes re-
balancing - reconstruction on an internal nodes level in the case that the
upper level linked (parent node) of the previous level reconstructed nodes
set has a single record reference and the left - right side node contains
multiple record references -case 2 oo

3.30 Deletion of the record 5 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node
contain a single record reference. Implementation of the B-tree nodes re-
balancing - reconstruction on an internal nodes level in the case that the
upper level linked (parent node) of the previous level reconstructed nodes
set has multiple record references and the left - right side node contains a
single record reference -case 1 oL

3.31 Deletion of the record 6 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node
contain a single record reference. Implementation of the B-tree nodes re-
balancing - reconstruction on an internal nodes level in the case that the
upper level linked (parent node) of the previous level reconstructed nodes
set has multiple record references and the left - right side node contains a

single record reference -case 2 oL o oL

3.32 Deletion of the record 5 in a leaf node that contains a single record reference
and the upper level linked (parent node) and the left - right side node
contain a single record reference. Implementation of the B*-tree nodes re-
balancing - reconstruction on an internal nodes level in the case that the
upper level linked (parent node) of the previous level reconstructed nodes

set has multiple record references and the left - right side node contains

multiple record references -case 1 100
3.33 Deletion of the record 6 in a leaf node that contains a single record reference

and the upper level linked (parent node) and the left - right side node

contain a single record reference. Implementation of the B*-tree nodes re-

balancing - reconstruction on an internal nodes level in the case that the

upper level linked (parent node) of the previous level reconstructed nodes

set has multiple record references and the left - right side node contains

multiple record references -case 2 0o 100
4.1 B-Hash Map index structure architecture 107
4.2 Bf-Hash Map index structure architecture 108
4.3 B-Hash Map index structure record insertion function 110
4.4 B*-Hash Map index structure record insertion function 111
4.5 B-Hash Map index structure record deletion function 113
4.6 B*-Hash Map index structure record deletion function 114
4.7 B-Hash Map index structure record selection function by primary key 116
4.8 B*-Hash Map index structure record selection function by primary key 117

4.9 B-Hash Map index structure records selection function by a selection constraints

5.1 Functional process of B-tree index structure insertion and deletion average

time performance Lo L L o 127

5.2 Functional process of B-tree index structure insertion and deletion average

time performance L. L L e 128

5.3 Functional process of B*-tree index structure insertion and deletion average

time performance Lo L Lo e 129

5.4 Functional process of B*-tree index structure insertion and deletion average

time performance L L e 130

13

5.5 Functional process of B-Hash Map index structure insertion and deletion
average time performance L oL Lo
5.6 Functional process of B-Hash Map index structure insertion and deletion
average time performance Lo oL
5.7 Functional process of B*-Hash Map index structure insertion and deletion
average time performance L L oo
5.8 Functional process of B*-Hash Map index structure insertion and deletion
average time performance oL oL
5.9 Functional processes of the B-tree, B*-tree, B-Hash Map and B*-Hash Map
index structures insertion average time performance
5.10 Functional processes of the B-tree, B*-tree, B-Hash Map and B*-Hash Map
index structures deletion average time performance
5.11 Functional process of B-tree index structure selection by primary key field
and full scan - selection average time performance
5.12 Functional process of B-tree index structure selection by primary key field
and full scan - selection average time performance
5.13 Functional process of B*-tree index structure selection by primary key field
and full scan - selection average time performance
5.14 Functional process of B*-tree index structure selection by primary key field
and full scan - selection average time performance
5.15 Functional process of B-Hash Map index structure selection by primary key
field and full scan - selection average time performance
5.16 Functional process of B-Hash Map index structure selection by primary key
field and full scan - selection average time performance
5.17 Functional process of B*-Hash Map index structure selection by primary key
field and full scan - selection average time performance
5.18 Functional process of B*-Hash Map index structure selection by primary key
field and full scan - selection average time performance
5.19 Functional processes of B-tree, B*-tree, B-Hash Map and B*-Hash Map index
structures selection by primary key field average time performance
5.20 Functional processes of B-tree, B*-tree, B-Hash Map and B*-Hash Map index
structures full records scan and selection by multiple record fields average
time performance L L
5.21 Average structural distribution of the B-tree index structure nodes in internal

and leaf nodes e e

14

5.22 Average structural distribution of the B-tree index structure nodes in internal
and leafnodes o 148
5.23 Average structural distribution of the B*-tree index structure nodes in internal
and leafnodes 149
5.24 Average structural distribution of the B*-tree index structure nodes in internal
and leafnodes o o 150
5.25 Average structural distribution of the B-Hash Map index structure B-tree
nodes in internal and leafnodes o000, 151
5.26 Average structural distribution of the B-Hash Map index structure B-tree
nodes in internal and leafnodes o000, 152
5.27 Average structural distribution of the B*-Hash Map index structure B*-tree
nodes in internal and leafnodeso 0oL, 153
5.28 Average structural distribution of the B*-Hash Map index structure B*-tree
nodes in internal and leafnodes o000 154
5.29 Average structural distribution of the B-tree index structure nodes stored
records in internal and leafnodes o000, 155
5.30 Average structural distribution of the B-tree index structure nodes stored
records in internal and leafnodes o000, 156
5.31 Average structural distribution of the B*-tree index structure nodes stored
records in internal and leaf nodes o 0oL 157
5.32 Average structural distribution of the B*-tree index structure nodes stored
records in internal and leafnodes o0 oL 158
5.33 Average structural distribution of the B-Hash Map index structure B-tree
nodes stored records in internal and leaf nodes 159
5.34 Average structural distribution of the B-Hash Map index structure B-tree
nodes stored records in internal and leaf nodes 160
5.35 Average structural distribution of the B*-Hash Map index structure B*-tree
nodes stored records in internal and leaf nodes 0. 161

5.36 Average structural distribution of the B*-Hash Map index structure B*-tree

nodes stored records in internal and leaf nodes 162
5.37 Average B-tree index structure height 163
5.38 Average B-tree index structure height 164
5.39 Average B*-tree index structure height 165
5.40 Average B*-tree index structure height 166
5.41 Average B-Hash Map index structure B-tree height 167
5.42 Average B-Hash Map index structure B-tree height 168

15

5.43 Average B*-Hash Map index structure B*-tree height 169
5.44 Average B*-Hash Map index structure B*-tree height 170
5.45 Functional process of B-tree index structure insertion and deletion average

time performance L. L e 173
5.46 Functional process of B*-tree index structure insertion and deletion average

time performance Lo L L e 174
5.47 Functional process of B-Hash Map index structure insertion and deletion

average time performance L L oo 175
5.48 Functional process of B*-Hash Map index structure insertion and deletion

average time performance L L L Lo 176
5.49 Functional processes of the B-tree, B*-tree, B-Hash Map and B*-Hash Map

index structures insertion average time performance 177
5.50 Functional processes of the B-tree, B*-tree, B-Hash Map and B*-Hash Map

index structures deletion average time performance 178
5.51 Functional process of B-tree index structure selection by primary key field

and full scan - selection average time performance 179
5.52 Functional process of B*-tree index structure selection by primary key field

and full scan - selection average time performance 180
5.53 Functional process of B-Hash Map index structure selection by primary key

field and full scan - selection average time performance 181
5.54 Functional process of B*-Hash Map index structure selection by primary key

field and full scan - selection average time performance 182
5.55 Functional processes of B-tree, B*-tree, B-Hash Map and B*-Hash Map index

structures selection by primary key field average time performance 183
5.56 Functional processes of B-tree, B*-tree, B-Hash Map and B*-Hash Map index

structures full records scan and selection by multiple record fields average

time performance L e 184
5.57 Average structural distribution of the B-tree index structure nodes in internal

and leafnodes o 185
5.58 Average structural distribution of the B*-tree index structure nodes in internal

and leafnodes o oo 186
5.59 Average structural distribution of the B-Hash Map index structure B-tree

nodes in internal and leafnodes o000 187
5.60 Average structural distribution of the B*-Hash Map index structure B*-tree

nodes in internal and leafnodes 188

16

5.61 Average structural distribution of the B-tree index structure nodes stored
records in internal and leaf nodeso 00000,
5.62 Average structural distribution of the B*-tree index structure nodes stored
records in internal and leafnodes o000,
5.63 Average structural distribution of the B-Hash Map index structure B-tree
nodes stored records in internal and leaf nodes 0.
5.64 Average structural distribution of the B*-Hash Map index structure B*-tree
nodes stored records in internal and leaf nodes 0.
5.65 Average B-tree index structure height
5.66 Average B*-tree index structure height
5.67 Average B-Hash Map index structure B-tree height
5.68 Average B*-Hash Map index structure B*-tree height

17

List of algorithms

© 0 N O Ot B~ W DN

_ S =
N = O

13
14
15
16
17
18
19

20
21
22
23
24
25
26
27

BTreeFastSearchData_ByPrimaryKey function 32
BTreeFastSearch_Tool function o v v v v v v i i i e . 33
SearchBTreeNode_Record_ByPrimaryKey function. 33
BTreeSelectRecordData_ASC function 36
BTreeSelectRecordData_ASC_Tool function 37
BTreelnsertData function 47
BTreelnsertNode_RootBreakTool function. 47
BTreelnsertNode_Tool function 48
BTreeDeleteData function L L., 63
BTreeDeleteNode function 64
BTreeDelete_LeafNode function 65
BTreeDelete_ NonLeafNode function 66
BplusTreelnsertData function, 86
BplusTreelnsertNode_RootBreakTool function 86
BplusTreelnsertNode_Tool function 87
BplusTreeDeleteData function 101
BplusTreeDeleteNode function 102
BplusTreeDelete_LeafNode function 103
BplusTreeDelete_NonLeafNode function. 104
BHashMaplInsertData function 112
BplusHashMaplnsertData function 112
BHashMapDeleteData function 115
BplusHashMapDeleteData function 115
BHashMapSelectData_ByPrimaryKey function 118
BplusHashMapSelectData_ByPrimaryKey function 118
BHashMapSelectData function 121
BplusHashMapSelectData function 122

18

Chapter 1

Introduction

1.1 Thesis subject and content

Observing that there are not sufficient dynamic, efficient, refactorable, maintainable and
general-purpose implementations in C of in-memory B-tree, B*-tree, B-Hash Map and B*-
Hash Map index structures combined with a complete, qualitative and concurrently simple
theoretical and computational analysis, the conducted study aims to fill partially this gap.
In particular, this study aims to provide a complete and solid theoretical analysis of the B-
tree, B™-tree, B-Hash Map and B*-Hash Map indexes structure, functions and performance
in terms of time and memory resources management efficiency in conjunction with a set
of computational processes and computational analysis, providing functional metric data

on real and synthetic data.

The main incentives and objectives of conducting this study are the implementation and
development in C of open-source software packages that provide a set of dynamic, efficient,
fast and qualitative B-tree, B*-tree, B-Hash Map and B*-Hash Map index data structures
that are specially designed to operate as structural and functional parts of a RDBMS in-
memory file system indexing sub-system (system structures simulation). This packages also
includes sets of unit testing function tools and integration tests in order to be provided
qualitative, dynamic, refactorable and maintainable software packages (software quality
assurance). Furthermore, another important and basic reason for the conduction of this
study is the theoretical and computational analysis of the B-tree, B*-tree, B-Hash Map and
B*-Hash Map index structures structural properties and functional efficiency in terms of
time and memory resources management (time performance). Moreover the efficiency and
time performance of the B-tree, B*-tree, B-Hash Map and B*-Hash Map index structures
is analyzed through a set of computational experiments on real and synthetic data in

order to provide metric data for meta-analysis, comparison and evaluation. Finally, this

19

thesis aims to offer a set of open-source and free packages that could be utilized for the
implementation and development of software products and services parts and for research

and educational purposes.

1.2 Content structure

The thesis structure is as follows. In Chapter 2, the structural and functional theoretical
analysis of the B-tree index data structure is performed. In Chapter 3, we analyze the
structural and functional theoretical analysis of the B*-tree index data structure, while in
Chapter 4, we analyze the structural and functional theoretical analysis of the B-Hash Map
and B*-Hash Map index data structures. In Chapter 5 we present the theoretical analysis of
the conducted computational processes and the analysis, evaluation and comparison of the
B-tree, B*-tree, B-Hash Map and B*-Hash Map index structures functional performance
metric data (results) on real and synthetic data. Finally, the summary, inferences and

conclusions of this study are outlined in Chapter 6.

20

Chapter 2

Theoretical analysis and implementation of the B-

tree data structure

2.1 B-tree index structural properties and characteristics

2.1.1 B-tree index structure implementation and development theoretical base

The development of the implemented B-tree data structure is based on the theoretical
definition, formulation and analysis of the B-tree index structure and functionality of
the works in [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]. This study is based
on the aforementioned works and applies modifications at some basic structural and
functional B-tree structure levels. Furthermore, it is important to clarify that this B-tree
index structure implementation composes a structural and functional approximation of
these studies utilizing them as a theoretical base in order to develop and implement an
efficient and fast B-tree index data structure. This data structure will be analyzed and

evaluated in terms of performance.

Moreover, this implementation is based on the development of the B-tree index structure
and the conduction of a computational study in order to analyze and evaluate the approximate
average execution time performance of the basic B-tree data structure insertion, deletion

and selection operations in the context of our previous work in [14].

21

2.1.2 B-tree index structure

Figure 2.1: B-tree data structure

/ B-tree

Data Structure
EDRL T
[[nnOOD

TRl [1]
Internal Node m n-nunn
Record | DTN [Record [T [Recora [N O RRE
[arvone] (A plslslele] e [OOIDO0 e [OOIDO0 (e OO0
] L
v 1 0 !
[|Ra| 1 q[m 1 q[w 1 q[IRgl 1 |][|Ri1 1 I][Emlkkl 1 I][Emhni 1 |][IM|R0| 1 |][I:m|m| 1 \’[ﬁmw 1 \][lzmm 1 |]-

2

Last Level

The B-tree index data structure consists of nodes which are basic and initial structural
parts - blocks of the tree. The structural parts, characteristics and properties of each
individual tree node are based on the node type. There are two separate node types,
the intermediate - internal nodes and the leaf nodes. The B-tree structure shown in Fig.
2.1 is formed and structurally organized in levels that are composed of node sets. The
levels set of the structure that are at a height - depth higher than the last level is composed
of internal B-tree nodes. The last level of the structure consists exclusively and completely
of leaf nodes which are all located at the same last tree level. Each path from the root
node to any leaf node has the same length - height. The node that is at the first level
of the tree is defined as the root node and is a potential internal node in case that the
first level of the tree is not identical to the last tree level, in which case the root node is
a leaf node. The basic property and characteristic of each node and level is the height -
depth, which is defined as the path - set of nodes or levels from the root node (first -
top level) to the associated node (B-tree node height). Approaching the height property
from a different perspective, we can define it as the total number of transitions to be made
between connected nodes of different levels of the B-tree in order to move from the root
node to some leaf node of the last - bottom structure level (B-tree height). Another B-tree
characteristic is the branching factor, which is basically the maximum number of node

references (next level linked nodes) that each node can contain - store.

22

This structural organization and formation of the B-tree nodes defines the property
of the structural tree balance. The structural balance is implemented through a set of
algorithmic techniques of nodes and stored record references rearrangement and reorganization,
which are incorporated in all of the basic insertion, deletion, search - selection and modification
— update functions. Consequently, the B-tree is structurally self-balanced as it transforms

and modifies its structure depending on its functionality.
2.1.3 B-tree index node structure

Figure 2.2: B-tree node structure

Internal Node Leaf Node
Record Ry Ry Rak \ Record Ry Ry Ry \

X XX | XX

N4 Nk | Nks4 Rak |Raks1
eece

-]
-]
(]
(-]
-]
(-]
L]
L]
[]

(-]
-]
(]

Node Type Identifier Node Type Identifier

Node Record References Node Record References

Node Record References Capacity Node Record References Capacity

/

J

The B-tree node structure shown in Fig. 2.2 consists of the following structural parts —

blocks and is governed by the listed characteristics and properties:

e B-tree is a multi-valued tree data structure since each node can store multiple data
items - records. The parameter k constitutes the sets of records that can be stored in

a B-tree node.
¢ Each internal node can contain multiple ordered record and node references.
e Each leaf node can contain exclusively multiple ordered record references.

e Each internal node can store at most 2k record and 2k + 1 node references, where

k> 1.
¢ Each leaf node can store at most 2k record references.

23

Each node can theoretically store between 1 and 2k record references. Furthermore,

each internal node can store between 1 and 2k 4+ 1 node references.

Each node contains between k and 2k record references except the root node, which

contains between 1 and 2k record references.

In this implementation, each internal node is composed of two semi-dynamic array
data structures that store record and node references. Each node semi-dynamic array
can modify (increase and decrease) its capacity in order to reduce the memory

allocation and usage.

Each internal node contains three variables that specify the node type, the number
of stored array structure references and the maximum capacity of the reference array

structure.

In this implementation, each internal node (except the root node) can store approximately

between k£ and 2k record and between k + 1 and 2k + 1 node references.

In this implementation, each leaf node is composed of two semi-dynamic array data
structures that store record and node references and modify (increase and decrease)
its capacity in order to reduce the memory allocation and usage. The array of node

references is completely empty and has not available allocated memory.

Each leaf node contains three variables that specify the node type, the number of
stored array structure references and the maximum capacity of the reference array

structure.

In this implementation, each leaf node (except the root leaf node) can approximately

store between k and 2k record references.

The default record array capacity of a new internal node is approximately at most k

and the node array capacity is k + 1.

The default record array capacity of a new leaf node is approximately at most k£ and

the node array capacity is 0.

The record array capacity is approximately at most k£ and the node array capacity is

at most k + 1 depending on the size (1 to k) of the stored record references.

The record array capacity is approximately at most 2k and the node array capacity

is at most 2k + 1 depending on the size (k + 1 to 2k) of the stored record references.

24

Figure 2.3: B-tree node structure and system architecture

ERatd.ad RoBS TABLE

- y)
~

memal Node Primary Key
Record Data References Field
Record l I l eee
° °ee S <

Node References 4 N\

Lo/ e[e[e]e[e[e[e]e]e][e]e],, [o][e][e]e] Recoripa

RO, oo
= B .
A /

e % -

ey
Primary Key
Field oo
J/

-
]
Record Data References)
]

e D00
(T [[(X X X]), . (X T[] [

/eaf Node \

L

_ Record

_ Node

Rooo. oo

= - =
=
oo
& J

In this implementation, each record block is composed of a data field set. This set
consists of fields - attributes of different data types. Each record has a unique identifier,
the primary key field that separates them from the other records in the RDBMS table to
which each record element belongs. The B-tree is a clustered - primary key index structure
as it stores the records references based on the records primary key fields. The available
valid records primary key fields data types of the developed B-tree structure can be either
integer or string. The structure, design and architecture of the B-tree system is represented
in Fig. 2.3. The implemented B-tree index structure system is based on a main memory
(RAM) system and each record and node data reference constitutes a link to one or more

virtual memory blocks - frames (set of memory elements) that store the data.

2.1.4 B-tree nodes number and height approximation

According to the theoretical analysis of the B-tree index structural and functional
parameters in [1] [2] [6] [7] [8], the parameter n (n > 0) is defined as the total number of
the B-tree stored record references and can be approximately approached and calculated

by the relations:

25

N, = 2(k + 1)1 =1 (2.1)

Nomaz = (2k + 1)" — 1 (2.2)

2+ 1) —1<n< (2k+ 1) —1 (2.3)

The parameter h (h > 0) is defined as the B-tree structure height - total B-tree nodes

levels and can be approximately calculated by the relations:

+1
Rpar = 1 + lOg(k+1)(n 9) (25)
n+1
log(ars1y(n +1) < h <1+ logas1)(5) (2.6)

According to [8], each B-tree node, except the root, contains on average 2kuy, record and
2kuy, + 1 node references. Based on this work, the total average B-tree structure height can

be approximately calculated by the relation:

Ravg = l0goku+y(n), 2k<n and h=1, 2k>n (2.7)

Furthermore, if the root node contains £k record references then a more theoretically
ideal B-tree structure height approximation (approach of the optimal height reduction)

can be calculated by the relation:

n

i) 2ksnoand h=1 2k>n (2.8)

h(wg =1+ log(Zkuk+1)(

26

The uy parameter (uy, = Iny = 0.69315, 0.66666 < uy, < 0.69315) is constant and is defined
as the storage utilization, i.e., the ratio of the record references to the record references

allocated memory slots in the B-tree nodes set [7] [8].

Based on the theoretical analysis of the aforementioned studies, we can approximately

calculate the total B-tree nodes d (d > 0) by the relations:

i = 1+ %((k + 1) 1) (2.9)
_ 1 h_
Amaz = 2k((% + 1) —1) (2.10)
2 - 1
1+E(<k+1) —1)<d< —k((2k+1) —1) (2.11)

Based on [8], the average bottom level leaf nodes set of the B-tree structure d;,, can be

approximately approached more accurate using a tighter relation:

n+1
(2k +2)(H(2k +2) — H(k+ 1))’

&
3
I

2k<n and d,=1 2k>n (2.12)

Z % (2.13)

According to the same work, the parameter p is defined as the average number or the
possibility of leat and internal nodes splits per insertion process in the B-tree structure

and can be calculated by the following relation:

1 1
= =~ <
P ome)k ~ 1.3%63k =

(2.14)

e

27

Equation 2.14 is not theoretically identical to the deletion operation. As already mentioned,
the deletion operation is not the same function with the insertion function from a functional
(algorithmic perspective). The deletion function implements a set of rearrangement and
reconstruction algorithmic methods in order to keep the B-tree nodes and stored record
references set structure stable and balanced as opposed to the insertion function that
implements split algorithmic processes in order to keep the structural balance. However,
the deletion operation tends to keep the existing and prior structure and arrangement of

the tree nodes.

Consequently, this relation cannot be used to calculate the average number of nodes and
record references rearrangement and reconstruction per deletion as well as the number of

insertion splits is calculated.

An average approach of the parameter d based on relations 2.11 — 2.14 can be approximately

calculated by the following relation:

d=p-n+h, 2k<n and d=1, 2k>n (2.15)

Equation 2.15 is based on the node (leaf - internal node) split, rearrangement, reconstruction

and structural re-organization algorithms of the insertion and deletion functions in order
to structurally re-balance the B-tree index structure. The insertion function implements the
node split and the records - nodes references semi-dynamic array structures rearrangement
- reconstruction algorithmic sub-functions. Each individual discrete split sub-function
creates a new B-tree node. Consequently, each B-tree node except the first - leaf root node
is created by the insertion node split and rearrangement - reconstruction sub-functions.
Furthermore, each internal root node split algorithmic sub-function creates two nodes, the
right sub-node and the new root node. The internal node split process is quite rare since
it is implemented when the insertion path from the root to the leaf level is composed of a
different linked nodes set that each node contains 2k record references. Each root node split
increases the B-tree height by one. Consequently, the total root node split processes are
h —1 because the first leaf root node is not created by a node split. Equation 2.15 provides
a theoretical approximation of the total B-tree structure nodes as the B-tree nodes set is

created based on the nodes splits set that is related to the parameters p and n.

28

The relation 2.17 provides a more complete, optimal and accurate average approach
of the parameter d. The total average bottom level leat nodes of the structure can be
approximately calculated by Equation 2.12. Based on the previous relation the total stored
record references in the upper internal B-tree levels (internal nodes set) can be approached
as dj,, — 1 for n stored record references in the structure. From a theoretical perspective, the
upper internal nodes levels of the structure constitute a sub-tree if the bottom leaf nodes
level extracted - detached from the overall tree structure. Equation 2.12 can be applied to
this extracted sub-tree (tree that is composed of all the internal levels nodes) that contains
d;, — 1 stored record references in order to calculate the total average bottom level leaf
nodes of this individual subset of nodes (tree). This process is implemented recursively for
each individual sub-tree up to the root node in order to calculate the total average bottom
levels leaf nodes of each sub-tree. These leaf nodes sets constitute the total average B-tree

nodes.

(T(b+1)—1), 1<b<h (2.16)

Consequently, based on relation 2.16, the total average nodes d of the B-tree can be

approached as the sum of all sub-trees leaf levels nodes by the equation:

d=> (T(b—i)+T(1), h>2

= (2.17)
d=dl(n)+1, h=2
d=1, h=1

According to Equations 2.12 — 2.17, the parameter d;, is defined as the total average
number of internal B-tree nodes and can be approximately calculated by the following 2.18

relation:

din = d — dyy (2.18)

29

As already defined, the total number of B-tree nodes d is the sum of the B-tree internal

and leaf levels nodes.

The total average record references that are stored in the internal B-tree nodes r; 2.19

can be approximately approached by the relation:

r S dy, — 1 (2.19)

The total average record references that are stored in the leaf B-tree nodes r; 2.20 can

be approximately approached by the relation:

" (2.20)

2.2 B-tree index structure basic functional levels

2.2.1 B-tree index structure functions

Indexing systems are composed of multiple special designed structural components,
data structures and mechanisms [15] [16] [17] [18] [19] [20] [21]. The indexing systems
implement a set of functions and transactions through a set of index structures for the
efficient, fast, accurate and secure management of the RDBMs in-memory and on-disk
file systems relational tables stored records sets. The B-tree data structure is a basic
and fundamental index tree structure that is used extensively in the RDBMs indexing
sub-systems and composes the structural and functional base for the development and
implementation of multiple efficient tree index structures set and their variants [2] [3] [22] [23].
These structures are used in multiple modern storage management - file system engines,
such as RDBMs (MySQL [24] [25] [26] [27] [28] [29], PostgreSQL [30] [31] [32], Oracle
Database [33], SQLite [34] [35] etc), software applications, operating systems (BTRFS
Linux file system [36] [37]), indexing - caching systems (Redis etc) and in other scientific

and technological fields with specially designed implementations.

30

The B-tree index structure functions that are analyzed and implemented in this work

are the record references sets insertion, deletion and selection functions:

* Records selection by record primary key field.
* Records selection by multiple record fields.

* Records insertion and deletion based on the record primary key field.

The B-tree visualization tool in [38] can be used in order to theoretically simulate the

insertion, deletion and selection - search B-tree functions with high precision and accuracy.

2.2.2 Records selection by primary key fields

Figure 2.4: Records selection by record primary key field

/R’ecord Selection By \
Primary Key
B ooo Node Search
¥
P m |:| : i: Node Search
[MD...EW. . .[MD...DMMD...DJ ‘MD...D 0 .‘MD...D][MD...D]

The selection function listed in Alg. 1 and schematically represented in Fig. 2.4 recursively
implements a set of node selection - search algorithmic sub-functions. Each individual
sub-function in Alg. 3 is applied to a B-tree index structure node in order to locate
(based on a primary key field) the node in the B-tree structure and the position of
the stored record reference in the B-tree node semi-dynamic array structures or the
location of the next level linked node that the record reference could be stored. In this
implementation, the sub-function in Alg. 3 implements the record reference location and

selection in the node semi-dynamic array structure using optionally both the specially

31

designed binary - BTree_Binary_Search() and interpolation - BTree_Interpolation_Search()
search algorithms. The sub-function in Alg. 2 implements the node selection - search sub-
function to locate and select the node and stored record reference in the B-tree index
structure levels nodes sets applying this process on a nodes path from the root node to

the bottom leaf nodes level.

The binary and interpolation search algorithms are quite efficient and fast to the location
and selection in the B-tree nodes semi-dynamic array structures of the record references
and next level linked nodes that the record references could be stored. The binary search
algorithm has an average theoretical time complexity - performance O(logz(n)) and the
interpolation search has O(loga(logz(n)) average time complexity [39]. Consequently, these
algorithms are used extensively as the node-level location and selection functions of the

B-tree index structure and its variants.

Algorithm 1: BTreeFastSearchData_ByPrimaryKey function

Returned item: Selected record
BTreeFastSearchData ByPrimaryKey(
B-tree structure item,

Primary key field of the record to be selected
)
if B-tree data structure is empty then
Return null item.
end

Return BTreeFastSearch Tool() item.

32

Algorithm 2: BTreeFastSearch_Tool function

Returned item: Selected record
BTreeFastSearch Tool(
B-tree node item,
Primary key field of the record to be selected
)

SearchBTreeNode Record ByPrimaryKey()

if record with the specific primary key field is located in the current node then
‘ Return record item.
end

if Current node is internal then
Return BTreeFastSearch Tool() item.
end

Return null item.

Algorithm 3: SearchBTreeNode_Record_ByPrimaryKey function

Returned item: Node or semi-dynamic node array position that can be located the
record to be selected

SearchBTreeNode Record ByPrimaryKey(

Stored records in the node Semi-dynamic array structure,

Node Semi-dynamic array structure item,

Primary key field of the record to be selected

)

Return BTree Binary Search() or BTree Interpolation_Search() item.

Furthermore, the linear search method can be implemented and applied to the node
search sub-function even though it is not an efficient search method due to its average and
worst theoretical time complexity, which is O(n). For this reason, we opted not to implement

this method in our code but we just present its implementation for completeness.

33

The record references location - selection in the B-tree index structure nodes semi-
dynamic array structures based on a primary key field shown in Fig. 2.5 utilizes the linear
search algorithm in order to provide a more complete, accurate and simple description of
the selection process. The Figure shows the selection function of the record reference with

record primary key field R,.

Figure 2.5: Selection of the record reference with record primary key field R,

Rootore

EHEN
m [e]9[e]o]e] Move to the next level
- linked node

n [m J [] El;-ml

[+ [iNO0D [[ANO0D
! -

) i s i i W Wi

L

Recora [T
L InAO00
Recora [T
[voce [IIOIOIEY

B] (e THEE
= [ntooo [INNODD ===

R T | RLLL]

[Nece || IIIIEY =3 e]¢[o]e]e] Move o the next evel | | [¢ T¢ 9g[e]
| 1 linked node]

[Recora [Hm¢ 1 |J[|Rg| [T |J[|m| [T |J[|Rk| [T IJ[M [T J[il [“[\R{\Rq [|Hm¢u| [ﬂ

{iﬂ 1)

34

The total average linked nodes set - path from the root node to the leaf nodes level
composes the total average B-tree structure height [8]. The selection sub-function in Alg.
3 applied to that nodes set semi-dynamic array structures that the record references
are stored in order to implement the record reference location and selection using the
binary and interpolation search algorithms. The average time complexity of the binary

and interpolation search algorithms is O(logz(n)) and O(loga(logs(n)) [39].
Consequently, the theoretical average time complexity of the selection function in Alg. 1

and Alg. 2 can be calculated by the relations 2.21 and 2.22, respectively:

O(log(2)(2k) - logoku,+1) ()), using binary search (2.21)

O(log(ay(log(ay(2k)) - log(akue+1)(n)), using interpolation search (2.22)

2.2.3 Records selection by multiple fields (constraints)

Figure 2.6: Records selection by multiple record fields

@ords Selection \

[5...D] [D...D][é..ﬂ] [D...D]

\ J

e .[D...D][D...D] [D...D]. . .[D...D][D...D]

The selection function in Alg. 4, shown in Fig. 2.6, of multiple non primary and primary
record references based on a set of individual discrete conditions (constraints) compose
a complete and full scan - selection function of the B-tree index structure nodes and
stores record references set in order to locate and collect these data to gather and store

them in a data structure. In this implementation, Alg. 5 implements the search procedure.

35

Furthermore, we use a specially designed Double Linked List data structure which stores
and contains the selected record references set in both ascending or descending order of
the selection process. The selection function uses the node transition sub-function in Alg.
5 as a basic functional part of the overall selection process that implements the recursive
ascending transition from a B-tree node to an other level linked B-tree node scanning
and selecting the record references that are stored in the semi-dynamic array of this node
based on a selection constraints set. The selection function has also been implemented to
store the selected data in descending order - layout using a Double Linked List function

that stores the selected record references to the position of the List structure head node.

In general, the overall selection process can be implemented recursively based on some
full scan search - traversal algorithmic technique as the inorder, preorder, postorder and
other full (complete) tree traversal techniques. In the context of this implementation the

inorder tree traversal algorithmic technique is used.

Algorithm 4: BTreeSelectRecordData_ASC function

Returned item: Selection process status
BTreeSelectRecordData_ASC(
B-tree structure item,
Double Linked List item that the selected records set will be stored,
Record field attribute that compose the selection condition

)

if B-tree data structure is empty then

‘ Return unsuccessful selection status.
end

BTreeSelectRecordData ASC Tool()
if Double Linked List data structure is empty then

‘ Return unsuccessful selection status.
end

Return successful selection status.

36

Algorithm 5: BTreeSelectRecordData_ASC_Tool function
Returned item: Void item
BTreeSelectRecordData_ ASC_Tool(
B-tree node item,
Double Linked List item that the selected records set will be stored,
Record field attribute that composes the selection condition

)

if Current node is leaf then

Node semi-dynamic array structure traversal to locate and select the record
based on the specified condition.

Each selected record stored ascending (to the end of the List)
using the InsertBListNode Last() function in the selection Double Linked List.

Return void item.

end
while Node Semi-dynamic array structure traversal is not completed do

BTreeSelectRecordData_ ASC_Tool()

Record location and selection in the semi-dynamic array structure
based on the specified condition.

Each selected record stored ascending (to the end of the List)
using the InsertBListNode Last() function in the selection Double Linked List.

end
BTreeSelectRecordData_ ASC_Tool()

As already analyzed, the selection function is implemented as a continuously recursive
scan process of the n record references that are stored in the B-tree structure nodes set in
order to locate and select a subset of the stored record references set based on the selection
conditions. Consequently, the theoretical average time complexity of the selection function
is O(n).

37

2.2.4 Records insertion based on primary key fields

The insertion function in Alg. 6 is composed of multiple recursively linked sub-functions
in Alg. 7 and Alg. 8. Each individual sub-function implements a discrete functional part
of the overall insertion process. The insertion sub-functions use the split node algorithm

as a basic B-tree index structure balancing technique.

The sub-function in Alg. 7 implements the root node split process and the reconstruction
and rearrangement of the record and node references semi-dynamic array structures. The
node (root node) splits (Fig. 2.9— 2.12) into two distinct structural parts - sub-nodes and
the right half stored record and node references of the node semi-dynamic array structures
transferred to the new node. The middle record reference that is stored in the initial node
(root node) array structure transferred and stored in the record reference semi-dynamic
array structure of the upper level linked node (parent node). In this case that the splitting
node is the root node a new root node is created in order to be transferred the middle
record reference. The insertion sub-functions in Alg. 7 and Alg. 8 use the split node
algorithm to reconstruct, rearrange and organize the B-tree nodes set structure in order to

restore the structural balance.

Alg. 8 implements the insertion - storage of a record reference in a leaf node. The
record reference is stored to the leaf node if the leaf node record semi-dynamic array
structure has available allocated memory - capacity to store the inserted record (Fig. 2.7
and Fig. 2.8). If the record semi-dynamic array structure of the leaf node has not available
memory - capacity to store the record reference the leaf node splits and a reconstruction
and rearrangement process is caused (Fig. 2.9— 2.12. This process is repeated recursively
up to the root node in order to structurally re-balance and stabilize the B-tree index

structure.

38

Fig. 2.7 and 2.8 analyze and describe the record reference insertion in a leaf node record

semi-dynamic array structure with available allocated storage memory - capacity:

Figure 2.7: Record reference insertion process in a leat node with available record semi-dynamic array
structure capacity - part 1

/ Internal Parent Node \

Rok

Rak2 [Rak1

Ny | N2 | N3 N N
“ oo o 21 2K

Empty Node Space

v

Record

Leaf Node Leaf Node Leaf Node

K Rok.1 Record Insertion /

Ry

Rz

R3

Rak2|Ra1 | Rak

— b

Ry

Ry

Rs

Raiz|Rak1| Rak Rz [Rs Rak2 |Rak-1| Rak

Figure 2.8: Record reference insertion process in a leaf node with available record semi-dynamic array
structure capacity - part 2

/ Internal Parent Node \

oo o
Ny [N2 [N3 N. N
“ 000 21 it

Ri | Rz | Rs Rok.2 [Rak-1| Rak

Ry

Ry

Ry

Raok2 |Rak1| Rak

Ry

Ry

Rs

ml R1

Ry

Ry

Rak2 |Rak1| Rak Rak.2 |Rak-1| Rak

0o
L

39

Fig. 2.9— 2.12 analyze and describe the record reference insertion in a leaf node record

semi-dynamic array structure without available allocated storage memory - capacity and

the leaf node split process:

Figure 2.9: Record reference insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split - part 1

-

Internal Parent Node

Ry

Ry

Ry

Rak.2 [Rak-1| Rak

Ny | N2 | N3 N N
“ 000 21 el

Empty Node Space

~

| R

Rz

Rs

Rak2 |Rak1| Rak

Leaf Node

k2

Ry

Ry

Ry

Ry

Rs Rokz|Rai1| Rak
0o

Rs

Rak

Rakz [Rak1

—] o000

Leaf Node

N

Rok Record Insertion

/

Figure 2.10: Record reference insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split - part 2

-

Internal Parent Node

=

Ry

Rs

Rk

Rak2 [Rak1

Ne | Np | N N N
“ 0o o 21 2

~

=

Ry

Rs

Rok2[Rak1| Rak

Leaf Node

Ry

Ry | Rs Rak-2|Rak-1| Rak

Ry

Ry

R3

Rok2|Rak1| Rak

Leaf Node

N

Leaf Node /

40

Figure 2.11: Record reference insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split - part 3

Internal Parent Node

—
Ry | Rs
=

Ry Rok1 | Rak

m o
Nq | Nzd | Nop N. N.
“ Xy 21 i

@

Kk

Rak2
o

Ri | Rz [Rs Rak2|Raw [Rax Raz | Ra3 Razk-2[Razk-1| Razk Ry | Ry Rok2|Raw1 [Rax

m| R1

Record

Ret

Leaf Node Leaf Node Leaf Node

Node Split l

Rat

Raz

Ras

Rak-3 | Rake2 | Rak-1 Rok2 | Rak-1| Rak Raks1 | Rakez | Rakss Ra2k-2|Razk-1| Razk Rak2 [Rak1 [Rak

New Left Leaf Node New Right Leaf Node

Figure 2.12: Record reference insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split - part 4

/ Internal Parent Node \

Record Ri | Rak | Rz Rak2|Rak1| Rax
oo
Ny | N
1| N2 | Ns N: Noks
“ eoo mm il

| e ‘ R I b B b R Favz| a1 | Rax
eoo

Rax-2|Rak1 | Rak Rok2 | Rake1| Rok Rake1 | Rakez | Rakea Ra2k-2|Razk-1| Razk Rak-2 | Rak-1 | Rak

| R

RZIRJ

!
eoo eoo

K Leaf Node New Left Leaf Node New Right Leaf Node Leaf Node /

41

The insertion functions in Alg. 7 and 8 of the implemented B-tree index structure
are based on the node and node semi-dynamic array structures split, reconstruction and

rearrangement algorithmic method patterns:

* Case 1 - record reference insertion in a leaf node record semi-dynamic array structure

with available allocated storage memory - capacity (Fig. 2.13):

Figure 2.13: Record reference 19 insertion process in a leaf node with available record semi-dynamic array
structure capacity

Recors [OMMN \
(e [ODOOD

OEEE
e IOIOIDIOO
[rats] T |
'vode IICICICICY
|
S

i G S i S G S S S—

e =),

42

* Case 2 - record reference insertion in a leaf node record semi-dynamic array structure
without available allocated storage memory - capacity (leaf node split process) and

the linked upper level node (parent node) has available capacity (Fig. 2.14 and 2.15):

Figure 2.14: Record reference 20 insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split. The upper level linked node (parent node) record references semi-dynamic
array structure has available capacity - part 1

[e] T 1]
=3 [nooo

[a] T 1]

OEEE
"we [ONOOD
[|

o T T]
[we [NNODOD
[|

[][m]['” e e W[][m][]

o

=4

Figure 2.15: Record reference 20 insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split. The upper level linked node (parent node) record references semi-dynamic
array structure has available capacity - part 2

OREN
| Node | [nooo

Medium Record
L] [Record [T [Record [N | Record | DTN
[Node | I'I-I'Iﬂﬂﬂ | Node | n_nnnu | Node | n_nnnn [ENode_ |EY n_nn

Y

i e) i i i il == 1

Left Node]

q[IwIZOI]

Right Node |

2

43

J

¢ Case 3 - record reference insertion in a leaf node record semi-dynamic array structure
without available allocated storage memory - capacity (leaf node split process) and
the linked upper level node (parent node) has not available capacity (linked upper
level node split) (Fig. 2.16— 2.19):

Figure 2.16: Record reference 22 insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split. The upper level linked node (parent node) record references semi-dynamic
array structure has not available capacity (parent node node split process) - part 1

[e] T]
[Node | nnooo

(o] [1]

[I1I

i a—

=E ST

Figure 2.17: Record reference 22 insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split. The upper level linked node (parent node) record references semi-dynamic
array structure has not available capacity (parent node node split process) - part 2

| Record | (F1N I
nnoon

Medium Record

[elralifes
[ose |03

[mhl 1]

i i i i i i = i ==

N

44

Figure 2.18: Record reference 22 insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split. The upper level linked node (parent node) record references semi-dynamic
array structure has not available capacity (parent node node split process) - part 3

/

Insertion

[Recora [T
T [T¢e[o[]

[Record | IGER]

[n:mm I

i i i i i i i i ==

Left Node]

q[ﬁm I£I22I 1

N

Figure 2.19: Record reference 22 insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split. The upper level linked node (parent node) record references semi-dynamic
array structure has not available capacity (parent node node split process) - part 4

[Recora | I
= [nnODD

ONEN
[[nooD

o[TT]
[[INO00

ST A
Left Node
[[NOODO

(Recora | KRNI |(Recore JEVIN M) rocore [EXMANN) ecoro [51NN ecoro [N ecora [N)| mcore [MN)| (oo [N) ecoro [N | ecora [N N[mecore [ENEZIN]
Left Node Right Node

e Case 4 - root node split process (root is internal - leaf node) (Fig. 2.20- 2.23):

Figure 2.20: Record reference 10 insertion process in a leaf node without available record semi-dynamic
array structure capacity. The parent root node has also not available capacity (parent node split) - part 1

Root Node

[Record | I
m ALK ®

v
[m]

EE g

S

"/

45

Figure 2.21: Record reference 10 insertion process in a leaf node without available record semi-dynamic
array structure capacity. The parent root node has also not available capacity (parent node split) - part 2

| Root Node I

Medium Record

\

v

|

EEE T E e

Right Node

N

J

Figure 2.22: Record reference 10 insertion process in a leaf node without available record semi-dynamic
array structure capacity. The parent root node has also not available capacity (parent node split) - part 3

\

ecos [IOOE A
nnnnnjEa
3 :
[}] }
(Recod [ONEE (Resors [T (eecos [EAMMR [e [V
\

2

/

Figure 2.23: Record reference 10 insertion process in a leaf node without available record semi-dynamic
array structure capacity. The parent root node has also not available capacity (parent node split) - part 4

Root Node Medium Record

New Root Node

2
EH
]
a
B
|
|
[|

\

v ¥
oo [AMMN ecos [N
¢ — g
s [T s JEY) s [[s [n-n

\3

46

Algorithm 6: BTreelnsertData function

Returned item: Insertion process status
BTreelnsertData(
B-tree structure item,
Record reference - data to be inserted

)

if B-tree data structure is empty then

Root node construction - creation.
Record reference insertion - storage in the root node.

Return successful insertion status.
end

BTreelnsertNode RootBreakTool()
if BTreelnsertNode_RootBreakTool () is unsuccessful then

Return unsuccessful insertion status.
end

Return successful insertion status.

Algorithm 7: BTreelnsertNode_RootBreakTool function

Returned item: Insertion process status
BTreelnsertNode RootBreakTool(
B-tree structure item,

Record reference - data to be inserted

)
BTreelnsertNode Tool()

if Record reference has already been stored - inserted in the B-tree structure (duplicate
stored record reference) then

‘ Return unsuccessful insertion status.
end
if Current node is the root node and a node break - split process was performed then

Left sub-node creation.

Reconstruction - rearrangement of the root, left and right nodes set

record and node references semi-dynamic array structures that the split process
was implemented.

end

Return successful insertion status.

47

Algorithm 8: BTreelnsertNode_Tool function

Returned item: Node split process - right sub-node item
BTreelnsertNode Tool(
Current node item,
Record reference - data to be inserted,
Node split process - record references semi-dynamic array structure middle record,
Node record references semi-dynamic array structure capacity - size,
Duplication identifier of the inserted record reference

)
SearchBTreeNode Record ByPrimaryKey()

if Record reference duplication then

Duplication identifier status update - unsuccessful insertion process.
Storage obstruction - deallocation of the duplicate record reference.

Return null node item.
end
if Current node is a leaf node then
Record reference insertion - storage in the current leaf node.
else
BTreelnsertNode Tool()
if Next level linked node split process was implemented then

Storage - insertion of the next level linked node (split node) middle record
reference in the current node.

Reconstruction - rearrangement of the current node references

and record references semi-dynamic array structures.

else

Return null node item.
end

end

if Current node record references semi-dynamic array structure has not available storage
capacity then

Current node split (right sub-node creation) and node semi-dynamic array
structures reconstruction - rearrangement.

Return right sub-node item.
end

Return null node item.

The total average algorithmic operations - steps of the insertion function can be approximately
be approached based on the average B-tree structure height as shown in Equation 2.7.
Consequently, the theoretical average time complexity of the insertion function in Alg. 6—

8 can be approximately calculated by the relation 2.23:

O(1og(stu 41 (1)) (2.23)

2.2.5 Records deletion based on primary key fields

The deletion function is composed of multiple recursively linked sub-functions (functional
levels) that each individual sub-function implements a discrete algorithmic part of the
overall deletion process. Especially the deletion of a record reference and record data by a
primary key field in the B-tree index structure is based on 4 different connected functional

parts.

Alg. 9 implements the record reference location and deletion in the root node in the
case that the root node is leaf and the B-tree index structure is composed of a single node.
Furthermore implements the record reference location, deletion and the reconstruction
and rearrangement (re-balance) of the B-tree nodes and stored record references sets
utilizing Alg. 10 in case that the the B-tree is composed of multiple nodes and stored
record references. Alg. 10 implements the record reference location, deletion and the
reconstruction, rearrangement and re-balancing of the structure nodes and nodes stored
record references sets utilizing Alg. 11 and 12 sub-functions. This sub-function composes
the basic deletion method as it functionally links all the individual functional parts of
the overall deletion process. The deletion process is separated in two functional parts, the
record reference deletion that is stored in a leaf node and in an internal node. In particular,
Alg. 10 implements the record reference location and deletion in the internal nodes set
of the upper B-tree levels using the BTree_LeftSubTree_MaxRecord() sub-function that
replaces the record reference to be deleted which is stored in the internal node with
the maximum record reference of the leftmost leaf node path. Then implements the
record reference deletion in the leaf node. Alg. 10 seeks the internal nodes path from
the root node to the leaf node level using Alg. 3. In the case that the record reference

is located or transferred by the previous internal node deletion process in a leaf node,

49

Alg. 11 sub-function is used to delete the record reference from the leaf node using a
set of sub-function that apply multiple algorithmic methods in order to implement the
deletion and balancing, reconstruction and rearrangement of the structure nodes and nodes
dynamic array structures. Furthermore, Alg. 10 implements recursively the reconstruction
- rearrangement of the B-tree nodes and the nodes stored record references based on
Alg. 12 in order to structural re-balance the B-tree index structure. The algorithmic parts
of the sub-functions in Alg. 11 and 12 are theoretically analyzed bellow. The record
reference deletion on the bottom leaf nodes level is functionally based on the sub-function
in Alg. 11. Alg. 11 implements the record reference location, deletion and the re-balancing,
reconstruction and rearrangement of the B-tree nodes, the stored record and node references
semi-dynamic array structures and the stored references in these structures on the leaf
nodes level. In the case that the structural balance cannot be restored - recovered on the leaf
nodes level, Alg. 12 is used in order to implement the nodes re-balancing, reconstruction
and rearrangement process on the upper internal nodes levels of the B-tree to re-balance
the tree. The sub-function in Alg. 11 and 12 uses a set of algorithmic tools and functions

to reconstruct and re-balance the tree index:

e The sub-function BTree_ReplaceRecord() implements the deletion in a leaf node
that contains multiple record references. The sub-function BTree_ReplaceRecord()

implements the structural re-balancing of the B-tree on the bottom leaf level.

Figure 2.24: Deletion of the record 16 in a leaf node that contains multiple record references - part 1

/ Deletion ONEE \

o NN EE L

2] []| 6] []| ol |] | e]] |
e [INOOO e [NAODD] v [ONOOD e [DOOOO

{] { 1 { 1 { 1
[][m [|][|s| [|][|7| 1 |][|e| [|][|n| 1 q[w 1 |]

\2

50

Figure 2.25: Deletion of the record 16 in a leaf node that contains multiple record references - part 2

/ B \
Deletion

e [DNOOO

[Record (TN

e A
v [0NOOO

S e E e e

e The sub-function BTree_ReplaceRecord() implements the deletion in a leaf root node
that contains multiple record references. The sub-function BTree_ReplaceRecord()
completely implements the structural re-balancing of the B-tree on the bottom leaf

level.

Figure 2.26: Deletion of the record 16 in a leaf root node that contains multiple record references

= A\

Root Node

[m-

I| Deletion I[

- J

(— I
Root Node
[IEII

[Deletion]

IDeIetion[
& /

e The sub-functions BTree_RebalanceLeftNode() and BTree_RebalanceRightNode() implement

the deletion in a leaf node that contains a single record reference, the upper level
linked node (parent node) contains a single record reference and the left - right side
node contains multiple record references. The sub-functions BTree_RebalanceLeftNode()
and BTree_RebalanceRightNode() completely implement the structural re-balancing

of the B-tree on the bottom leaf level.

o1

Figure 2.27: Deletion of the record 16 in a leaf node that contains a single record reference, the upper level
linked node (parent node) contains a single record reference and the left - right side node contains multiple
record references - part 1

ot s NN
eletion
[[AO0O0

ONEN
| Node | anooo

Focora [T
[[INOO0

Fecord [T
[[NNO0O0

Fecord [N
[[AO00

[Focora [N
[[NO00

[][m [] |][|s| [] q[m [] q[m [q[w] qlwlﬂl][Recos [T

.

/

Figure 2.28: Deletion of the record 16 in a leaf node that contains a single record reference, the upper level
linked node (parent node) contains a single record reference and the left - right side node contains multiple
record references - part 2

/Deletion el L] \
Reco [OMMN [Fecod [EMMN

Recos AN Recoa]ORN Recon| DR Recou O

{ 1 { 1 { 1 { l
[1][m [q[m [q[m [q[m [q[m [q[m [q[]

N -~/

e The sub-functions BTree_MergeSingleNodeRight() and BTree_MergeSingleNodeLeft()
implement the deletion in a leaf node that contains a single record reference, the upper

level linked node (parent node) contains multiple record references and the left - right

side node contains a single record reference. The sub-functions BTree_MergeSingleNodeRight()

and BTree_MergeSingleNodeLeft() completely implement the structural re-balancing

of the B-tree on the bottom leaf level.

52

Figure 2.29: Deletion of the record 15 in a leaf node that contains a single record reference, the upper level
linked node (parent node) contains multiple record references and the left - right side node contains a single
record reference - part 1

/Deletion

4T
=3 nnooo

6] []|
=3 nnooo

ol 11|
3¢ o]e]e]e]
| |

Recou | LT
e IO

}

}

N o o o o i i e i i

Figure 2.30: Deletion of the record 15 in a leaf node that contains a single record reference, the upper level
linked node (parent node) contains multiple record references and the left - right side node contains a single
record reference - part 2

/Deletion

[« [T]
| Node | nnooo

(6] []
[Node | noooo

[ro] T 1]
| Node | nnooo

[1afts[] |
[noce [EICIIEEY
| | |

\

[G SN S G G G — ﬂ['i'”')

N\

—~

53

e The sub-functions BTree_SwapLeftNode() and BTree_SwapRightNode() implement
the deletion in a leaf node that contains a single record reference and the upper level
linked node (parent node) and the left - right side node contain multiple record
references. The sub-functions BTree_SwapLeftNode() and BTree_SwapRightNode()
completely implement the structural re-balancing of the B-tree on the bottom leaf

level.

Figure 2.31: Deletion of the record 15 in a leaf node that contains a single record reference and the upper
level linked node (parent node) and the left - right side node contain multiple record references - part 1

/
. (Recors [T \
Deletion
(== [nOOOQO

] l
[Recora [TDM q[lm 1 q

=/

i S S G S W G

K

Figure 2.32: Deletion of the record 15 in a leaf node that contains a single record reference and the upper
level linked node (parent node) and the left - right side node contain multiple record references - part 2

/

_ (Resos | OMEE \
Deletion
(== [nOOOO

ONEN
=3 [g1 9T e]e]
-

(o[1]
3 [gT 9T e]e]
-

G S S G S W G—

S

] !
[IRecora [N ﬂ[lml 1 q

[Recora [N ﬂ

o4

¢ The sub-functions BTree_MergeLeftNode() and BTree_MergeRightNode() implement
the deletion in a leaf node that contains a single record reference and the upper level
linked (parent node) and the left - right side node contain a single record reference.
The sub-functions BTree_MergeLeftNode() and BTree_MergeRightNode() implement
the record reference deletion in the leaf node and the nodes reconstruction on the
bottom leaf nodes level in order to structurally re-balance the B-tree. In this case
that the structural B-tree balance cannot be restored - recovered on the leaf nodes
level a nodes re-balancing and reconstruction recursive process is being implemented
to the upper nodes levels. If this problematic nodes structural balancing case is
caused up to the root node the sub-functions BTree_MergeLeftNodeRecursive() and
the BTree_MergeRightNodeRecursive() are used recursively to fix this problem from
the leaf to the root node level. The structural balance finally restored - recovered on

the root node level.

Figure 2.33: Deletion of the record 15 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference - part 1

== h
= =

B2 B2 B2 =52

ese [OIDDD [ese |OODDD
— —

G (S SR G S S S— [

N\
B)

Record | I I
Recors

[[0OODOD)
—
[] [IEIZIZIZI] [IEIZIZDJ [] [nmm -n

o

Figure 2.34: Deletion of the record 15 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference - part 2

/
_ (Recod [OMEN \
Deletion
e [OICID00

OEEE
fweee [NOODD

[] [][lm] q[lww]]
[
[][m 1 q[m 1 q[]

/ i Record |E1IIIIN
Deletion
I3 [¢¢ e e]e]

OEEE
fweee [NOODD

AN

S GRS G W—

AN

eyl ey e ey

)

e The sub-functions BTree_MergeLeftNode() and BTree_MergeRightNode() implement
the deletion in a leaf node that contains a single record reference and the upper level
linked (parent node) and the left - right side node contain a single record reference.
Furthermore the sub-functions BTree_ReplaceLeftNodeRecursive() and
BTree_ReplaceRightNodeRecursive() implement the B-tree nodes re-balancing - reconstruction
on an internal nodes level in the case that the upper level linked (parent node) of
the previous level reconstructed nodes set has a single record reference and the left

- right side node contains multiple record references.

56

Figure 2.35: Deletion of the record 17 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference. Implementation
of the B-tree nodes re-balancing - reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has a single record reference and the left
- right side node contains multiple record references

Deletion o] | [| X
[ree IOIOIOIOIY

e[[T]
T [oTp[e[e[e]

N

!

3

[

o

=

AN

S i i S G G S W

o

/

57

¢ The sub-functions BTree_MergeLeftNode() and BTree_MergeRightNode() implement
the deletion in a leaf node that contains a single record reference and the upper level
linked (parent node) and the left - right side node contain a single record reference.
Furthermore the sub-functions BTree_ReplaceSingleLeftNodeRecursive() and
BTree_ReplaceSingleRightNodeRecursive() implement the B-tree nodes re-balancing
- reconstruction on an internal nodes level in the case that the upper level linked
(parent node) of the previous level reconstructed nodes set has multiple record

references and the left - right side node contains a single record reference.

Figure 2.36: Deletion of the record 17 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference. Implementation
of the B-tree nodes re-balancing - reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has multiple record references and the
left - right side node contains a single record reference - part 1

/
Deleti Record [T \
eletion
3 [sTe[eTe o]

|Record | NI =3 =3
[Node | [plple[ele] [Noce | nnooo [Node | npooo

[Recora [N q‘mlsl 1 |H|:=m|s| I |Hm|7| I |Hm|e| 1 |’[|:m|n| | IHWIHI 1 |’[lm|w| | |’l:m|w| | |[|:m|w| | ﬂ[mlm 1 ﬂ

2 /

58

Figure 2.37: Deletion of the record 17 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference. Implementation
of the B-tree nodes re-balancing - reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has multiple record references and the
left - right side node contains a single record reference - part 2

_ (Record [OMEME \
Deletion
== [nnoog

|Record | R M|

ED &5

l—l

T

S

Figure 2.38: Deletion of the record 17 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference. Implementation
of the B-tree nodes re-balancing - reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has multiple record references and the
left - right side node contains a single record reference - part 3

/

\
ion

e T]
(wee [DOODD
1 1

[m] q[lsl 1]

NS

i i G SO Y GRS S G

—/

59

¢ The sub-functions BTree_MergeLeftNode() and BTree_MergeRightNode() implement
the deletion in a leaf node that contains a single record reference and the upper level
linked (parent node) and the left - right side node contain a single record reference.
Furthermore the sub-functions BTree_ReplaceMultipleLeftNodeRecursive() and
BTree_ReplaceMultipleRightNodeRecursive() implement the B-tree nodes re-balancing
- reconstruction on an internal nodes level in the case that the upper level linked
(parent node) of the previous level reconstructed nodes set has multiple record

references and the left - right side node contains multiple record references.

Figure 2.39: Deletion of the record 17 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contains a single record reference. Implementation
of the B-tree nodes re-balancing - reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has multiple record references and the
left - right side node contains multiple record references - part 1

Deletion M [s T] \
=3 nnoon

{‘m" i Gl G i VS GBS SO S G- G S W)

Figure 2.40: Deletion of the record 17 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contains a single record reference. Implementation
of the B-tree nodes re-balancing - reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has multiple record references and the
left - right side node contains multiple record references - part 2

/

_ Recoa [OMME N\
Deletion
I [g[¢[e[e[]

OEEN
L [OOD0

S —

\

Figure 2.41: Deletion of the record 17 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contains a single record reference. Implementation
of the B-tree nodes re-balancing - reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has multiple record references and the
left - right side node contains multiple record references - part 3

/

\
letion

= S G S VS S G S

S R S

The record reference deletion on the upper internal nodes levels is functionally based
on the sub-functions in Alg. 11, Alg. 12 and BTree_LeftSubTree_MaxRecord() as already
mentioned and analyzed. The BTree_LeftSubTree_MaxRecord() sub-function is used to
remove the located record reference from the internal node and transfer it to the maximum
record reference of the leftmost leaf node path. The record reference that is already stored in
this leaf node is transferred - stored to the first internal node that that the record reference
to be deleted was located. Then a leaf nodes level deletion process is implemented by the
sub-function in Alg. 11. The B-tree index reconstruction and re-balancing is implemented
by the function in Alg. 12. The basic point is that the internal node deletion is transformed

to a leaf node deletion process using the BTree_LeftSubTree_MaxRecord().

Figure 2.42: Deletion on an internal node - part 1

_ Recos [OMEE \
Deletion
(== [nOODO

[@] Deletion

[2o] [1]

[Record [N
[Node | nnooo

G G G S G GBS G G | I G

S ~/

61

Figure 2.43: Deletion on an internal node - part 2

/
eletion
m

s AR
m [e]eee]e]L Deletion
1

oo [ONE
[[NOODD

o[[T [1] []
| Node | [glle[e[e] = (glele[e]e] | Node | nnoon

G U VN S GBS GBS U | —

=/

Figure 2.44: Deletion on an internal node - part 3

letion
m

[iz[7]]|
e [OONO0

i i i i i i i - i i

Figure 2.45: Deletion on an internal node - part 4

\
eletion

| Record | RN
L [OONO0

R
[[NOODD

E 1L
[[MNOOQ

[1] []
[Node | (glele[e]e] | Node | nnoon

[mEIID][mm] |][m|s|] l][lvl] |”|:=mm | |][|M|n| I I][I:mlwl] |]m|1sl1s|x1] [lwl] |Imlz1|zzl | |]
/
eletion

62

Algorithm 9: BTreeDeleteData function

Returned item: Deletion process status
BTreeDeleteData(
B-tree structure item,
Primary key field of the record to be deleted,
Item to store the removed record reference

)

if B-tree data structure is empty then

Deletion cannot be implemented.

Return unsuccessful deletion status.
end

if Root node is a leaf node then
SearchBTreeNode Record ByPrimaryKey()
if Record reference to be deleted is located in the current root leaf node then

if Root node contains a single record reference then

Remove the stored record reference from the current node.
Deletion of the current root node.

Return successful deletion status.
end

BTree ReplaceRecord()

Return successful deletion status.

end

Return unsuccessful deletion status.

end
BTreeDeleteNode()

if Record reference to be deleted is not stored in the B-tree structure then

Deletion cannot be implemented.

Return unsuccessful deletion status.
end

Return successful deletion status.

63

Algorithm 10: BTreeDeleteNode function

Returned item: B-tree node item
BTreeDeleteNode(
Next level node item,
Primary key field of the record to be deleted,
Item to store the removed record reference,
Maximum record - node semi-dynamic array structures capacity of each node,
Flag to specity if the balancing process has been activated to an internal node,
Flag to specify if the internal node record deletion procedure has been activated,
Flag to specity if the record to be deleted exists in the structure

)
SearchBTreeNode Record ByPrimaryKey()
if The record reference to be deleted is located at the current internal node then
BTree LeftSubTree MaxRecord()

Replacement - swap of the record reference to be deleted with the
maximum leaf node record reference of the left sub-tree path.

Activation of the internal node deletion process - deletion of the transferred
record reference (to be deleted) in this leaf node.

end
if Next level node is an internal node then

BTreeDeleteNode()

if The structural balance recovery - restoration cannot be implemented on the previous
level. The upper level node re-balancing and reconstruction process has been activated
then

BTreeDelete NonLeafNode()
end

Return Current node item.

end
BTreeDelete L.eafNode()

Return Current node item.

64

Algorithm 11: BTreeDelete_LeafNode function

Returned item: Void item
BTreeDelete LeafNode(
Upper level - parent node item,
Primary key field of the record to be deleted,
Item to store the removed record reference,
Position of the stored record reference to be deleted in the next level leaf node,
Maximum record - node semi-dynamic array structures capacity of each node,
Flags to specity the internal node balancing and record deletion processes and the
record to be deleted existence in the structure

)
SearchBTreeNode Record ByPrimaryKey()
if The record reference to be deleted is located at the current leaf node then

if The current leaf node contains multiple record references then
BTree ReplaceRecord()
Return void item.
end
if The current upper level - parent node and each of the leaf and left - right side nodes
contain a single record reference then

BTree MergeRightNode() or BTree MergeLeftNode()
Activation of the structural nodes re-balancing process to the upper level.
Return void item.

end
if The current upper level - parent node and the leaf node contain a single record
reference and the left - right side node contains multiple record references then
BTree RebalanceRightNode() or BTree RebalanceLeftNode()
Return void item.
end

if The current upper level - parent node contains multiple record references, the leaf
node contains a single record reference and the left - right side node contains multiple
record references then

BTree SwapRightNode() or BTree SwapLeftNode()

Return void item.
end

if The current upper level - parent node contains multiple record references, the leaf
node contains a single record reference and the left - right side node contains a single
record reference then

BTree MergeSingleNodeRight() or BTree MergeSingleNodeLeft()

Return void item.
end

end

Return void item.

65

Algorithm 12: BTreeDelete_NonLeafNode function

Returned item: Void item
BTreeDelete NonLeafNode(
Current upper level node item,
Position of the next level linked node in the node references semi-dynamic array
structure that the nodes reconstruction - re-balancing process was implemented,
Maximum record - node semi-dynamic array structures capacity of each node,
Flag to specify the internal node balancing process

)

if The current upper level - parent node contains a single record reference and the next
level left - right side node of the previous reconstructed node contains a single record
reference then
BTree MergeLeftNodeRecursive() or BTree_MergeRightNodeRecursive()
Activation of the structural nodes re-balancing process to the upper level.
Return void item.
end

if The current upper level - parent node contains a single record reference and the next
level left - right side node of the previous reconstructed node contains multiple record
references then
BTree ReplaceLeftNodeRecursive() or BTree ReplaceRightNodeRecursive()
Return void item.
end

if The current upper level - parent node contains multiple record references and the next
level left - right side node of the previous reconstructed node contains a single record
reference then
BTree ReplaceSingleLeftNodeRecursive() or
BTree ReplaceSingleRightNodeRecursive()
Return void item.
end

if The current upper level - parent node contains multiple record references and the next
level left - right side node of the previous reconstructed node contains multiple record
references then

BTree ReplaceMultipleLeftNodeRecursive() or
BTree ReplaceMultipleRightNodeRecursive()
Return void item.

end

66

The total average algorithmic operations - steps of the deletion function can be approximately
calculated based on the average B-tree structure height shown in Equation 2.7. Consequently,
the theoretical average time complexity of the deletion function in Alg. 9— 12 can be

approximately calculated by the relation 2.24:

O(10902k, +1)(n)) (2.24)

67

Chapter 3

Theoretical analysis and implementation of the

B*-tree data structure

3.1 B7-tree index structural properties and characteristics

3.1.1 BT-tree index structure implementation and development base

Similar to the basis of the general fundamental B-tree data structure, the development
and implementation of the B*-tree data structure is based on the structural and functional
analysis and definition of the works in [6] [2] [3] [40] [20] [41] [42] [17] [18] [19] [43] [13]
[39] [44] [45] [46] [47]. This study is based on the aforementioned works and applies
modifications at some basic structural and functional B*-tree structure levels. This B*-
tree index structure implementation composes a structural and functional approximation
of these studies utilizing them as a theoretical base in order to develop, construct and

implement an efficient and fast B*-tree index data structure.

Furthermore, the structural and functional characteristics and properties of the B*-
tree are based on the B-tree data structure as the B*-tree constitutes an advanced and
specialized structural and functional tree variant of the B-tree. Consequently, the B*-tree has
been developed and constructed in the context of the previous B-tree index implementation.
The B*-tree data structure will be analyzed, evaluated and compared with the B-tree in

terms of efficiency and time performance.

68

3.1.2 Bt-tree index structure

Figure 3.1: B*-tree data structure

B*-tree
Data Structure

(Recora [(Recora [(Recora [RRTRT |
.m nnn .m n_nnnn .m n_nnnn ece IOIOICINIEY
!] ! l !
[Recora [y PR [Recora [BN [Recor [) R [ecore [z)N ecora [z) BN o) N oz o [[ecove [[v [ST mn-

K

The B*-tree index data structure consists of nodes which are basic and initial structural
parts - blocks of the tree. The structural parts, characteristics and properties of each
individual tree node are based on the node type. There are two separate node types,

the intermediate - internal nodes and the leaf nodes.

The B*-tree structure, shown in Fig. 3.1, is formed and structurally organized in levels
that are composed of node sets. The levels set of the structure that are at a height - depth
higher than the last bottom level consists of internal B*-tree nodes. The last level of the
structure consists exclusively and completely of leaf nodes which are all located at the
same last tree level and the leaf nodes set is linked in the form of a Double Linked List
structure. Each path from the root node to any leaf node has the same length - height.
The node that is at the first level of the tree is defined as the root node and is a potential
internal node in case that the first level of the tree is not identical to the last tree level,
in which case the root node is a leaf node. The basic property and characteristic of each
node and level is the height or depth which is defined as the path - set of nodes or levels
from the root node (first - top level) to the bottom last leaf nodes level (B*-tree node
height). Approaching the height property from a different perspective, we can define it as
the total number of transitions to be made between connected nodes of different levels of
the B*-tree in order to move from the root node to some leaf node of the last structure level
(B*-tree height). Another B*-tree characteristic is the branching factor which is basically
the maximum number of the node references (next level linked child nodes) that each node
can contain - store. This structural organization and formation of the B*-tree nodes defines
the property of the structural tree balance. Each leaf node is contained in the last bottom

leaf level of the tree structure. The structural balance is implemented through a set of

69

algorithmic techniques of nodes and nodes semi-dynamic array structures reconstruction,
rearrangement and reorganization which are incorporated in all of the basic insertion,
deletion and search - selection functions. Furthermore an algorithmic subset of the basic
B*-tree structure operations is functionally identical to that of the B-tree. Consequently, the
B*-tree is structurally self-balanced as it transforms and modifies its structure depending

on its functionality.

3.1.3 Bt*-tree index node structure

Figure 3.2: B*-tree node structure

Internal Node Leaf Node I
NN X N eoe XX
N N | Nis1 Rok [Rake1 m)4 X X | X
NN eeoo eoe XX
Left Linked Right Linked Double Linked List Structure
Leaf Node Leaf Node Part
Node Type Identifier

/ Node Record References

Node Record References Capacity

Node Type Identifier

)

Node Record References

Node Record References Capacity

/III
€ IIl

/

The B*-tree node structure shown in Fig. 3.2 consists of the following structural parts

— blocks and is governed by the listed characteristics and properties:

B*-tree is a multi-valued tree data structure since each node can store multiple data
items - records. The k parameter constitutes the multiple different sets of records that

can be stored in a B*-tree node.

e In this implementation and theoretically each internal node can contain - store

multiple ordered record and node references.
¢ Each leaf node can contain exclusively multiple ordered record references.

e Fach internal node can store at most 2k record and 2k + 1 node references, where
k> 1.

70

Each leaf node can store at most 2k record references.

Each node can theoretically store between 1 and 2k record references. Furthermore,

each internal node can store between 1 and 2k 4+ 1 node references.

Each node contains between k and 2k record references except the root node, which

contains between 1 and 2k record references.

In this implementation, each internal node is composed of two semi-dynamic array
data structures that store record and node references. Each node semi-dynamic array
can modify (increase and decrease) its capacity in order to reduce the memory

allocation and usage.

Each internal node contains three variables that specify the node type, the number
of stored array structure references and the maximum capacity of the reference array

structure.

In this implementation, each internal node (except the root node) can store approximately

between k£ and 2k record and between k 4 1 and 2k + 1 node references.

In this implementation, each leat node consists of two semi-dynamic array data
structures that store record and node references and modify (increase and decrease)
its capacity in order to reduce the memory allocation and usage. The array of node

references is completely empty and has not available allocated memory.

Each leaf node contains three variables that specify the node type, the number of
stored array structure references and the maximum capacity of the reference array

structure.

In this implementation, each leaf node contains references of the left and right linked

leaf nodes of this node in the form of a Double Linked List structure.

In this implementation, each leaf node (except the root leaf node) can approximately

store between k and 2k record references.

The default record array capacity of a new internal node is approximately at most k

and the node array capacity is k + 1.

The default record array capacity of a new leaf node is approximately at most k£ and

the node array capacity is 0.

The record array capacity is approximately at most k£ and the node array capacity is

at most k + 1 depending on the size (1 to k) of the stored record references.

71

* The record array capacity is approximately at most 2k and the node array capacity

is at most 2k + 1 depending on the size (k + 1 to 2k) of the stored record references.

Figure 3.3: B*-tree node structure and system architecture

Data Structure

BRI (Recora [MMM]
[—] e [NOODD [[NOODD
Doub:jsl_‘mked ¢
(Recora [M| (Recors |IMM]
=8
{ 1 I l] 1
=k EaF) (EaErI1L) (EER L) (EERCL HmHmWHmWHmWHmWHmJ

-
Primary Key g0y RDBMS TABLE
Field eoo
AN

[-

memal Node L —

Lot oce Primary Koy

Record Data References Field) Iy Field
Record

... anannacassaaWana I

Node References

EEETT o[ele[e[e[e]e[e[e[e]e[e)...[e[e[e]e] ==
J \@@@...@@/

~

Node Record References 7
Record Data

Node Record References Capacity
[Primary Key Field Field
Fiold coo
J

Leaf Node °
Record Data References ®
Re:
EEEE (((LI[TTITD..00 (| o
0o

Node References

cord
xxxxxxxxxxxx. X[x]x]x
Primary Key
EReea. . ad

[Double Linked List Structure]
Leaf Node Leaf Node Part
)

72

In this implementation, each record block consists of a data field set. This set is composed
of fields - attributes of different data types. Each record has a unique identifier, the primary
key field that separates them from the other records in the RDBMS table to which each
record is stored and belongs. The B*-tree is a clustered - primary index structure as it
stores a record references set based on the records primary key fields. The available valid
primary key field data types of the developed B*-tree structure can be either integer or

string.

The structure, design and architecture of the B*-tree index system is represented in Fig.
3.3. The implemented B*-tree index structure system is based on a main memory (RAM)
system and each record and node data reference is a link to a set of memory components

- blocks that store the data.

3.1.4 BT'-tree nodes number and height approximation

According to the related cited works the parameter A (h > 0) is defined as the theoretical
B*-tree structure height (total B*-tree nodes levels) and can be approximately calculated

by the relations:

n
hmin = lOg(2k+1)(E> (31)

n
h =1+1 — .2
max + Og(k+1)(2k) (3)
n mn
109(2k+1>(g) <h<1+ lOQ(kH)(ﬁ) (3.3)

Based on relation 3.3, the total theoretical average B*-tree structure height can be

approximately calculated by the relation:

~ (hm'm + hmax)

oy = 21 (3.4)

73

Based on the theoretical property that each B*-tree leaf node (except the root leaf node)
can store and contain approximately at least £ and at most 2k record references, the total
theoretical average bottom level leaf nodes set number of the B*-tree structure d;,, can be

approximately approached via the relation:

(3.5)

The parameter s (s > 0) is the increment step - rate of the ¢ parameter.

Each leaf node of the Double Linked List structure except the last list tail leaf node
stores - contains exactly one record reference a copy of which is also stored in an internal
B*-tree node. The record references set that is stored in the internal nodes is also stored
in the leaf nodes set of the B*-tree and it is equal to d;,, — 1 (Equation 3.5). The B*-tree
structure can be theoretically transformed to a B-tree if the bottom last leaf nodes level of
the B*-tree is removed - extracted. That created B-tree structure contains - stores d;, — 1
record references and has theoretical average height that can be approximately calculated
by the relations 3.3 and 3.4. Based on these data and utilizing the B-tree theory the total
and internal B*-tree structure nodes can be calculated via this new created B-tree. In
this way the B*-tree average height, internal - leaf nodes and record references storage

distribution in internal and leaf nodes can be calculated.

3.2 B*-tree index structure basic functional levels

3.2.1 Bt*-tree index structure functions

The structural and functional parts of the B*-tree index were implemented as a base of
the B-tree index structure in the development environment of the B-tree structure using
the same tools. The basic implemented B*-tree algorithmic functions that are analyzed in

the context of this work, are:

74

* Records selection by record primary key field.
* Records selection by multiple record fields.

* Records insertion and deletion based on the record primary key field.

The B*-tree visualization tool in [48] can be used in order to theoretically simulate the

insertion, deletion and selection - search B*-tree functions with sufficient accuracy.

3.2.2 Records selection by primary key fields

Figure 3.4: Records selection by record primary key field

ﬂecord Selection By \
Primary Key
| Record | PSS Node Search
e [rP99TI0Y
| |
¥

| Record |IIPYYY M| 00O | Record |IIPYY Node Search
T [¢looo[sls] [[Node_ | 1 P9 Al [s]ooolels]

¥ 1 1
[EMD...D]...[Emm...DMWD...DHMD...D ...[mD...DH@D...DME@D...D]... mm...mumm...my
\ Node Search /

The overall selection function BplusTreeFastSearchData_ByPrimaryKey() shown in Fig.
3.4 that implements the location and selection of a record in some B*-tree node by the
primary key field of the record is composed of a sub-functions algorithmic set. This sub-
functions set that implements the node and tree scope selection - search is the same as

that of the B-tree index structure.

The node selection sub-function SearchBplusTreeNode_Record_ByPrimaryKey() implements
the location and selection of a record in the B*-tree index structure node or the location
of the next level linked node that the record could be stored based on the primary key
field of the record. The tree scope selection BplusTreeFastSearchData_ByPrimaryKey() and
BplusTreeFastSearch_Tool() utilizes the node search sub-function in order to scan the B*-

tree structure nodes paths from the root node to the leaf nodes level in order to locate

75

and select the record with the specific primary key field identifier. Furthermore as the

B-tree, the B*-tree structure SearchBplusTreeNode_Record_ByPrimaryKey() function use

the binary and interpolation search algorithms in order to implement the record location

and selection in the node record references semi-dynamic array structure.

The theoretical average time complexity of the record selection function based on a

primary key field can be calculated by the relations 3.6 and 3.7:

O(log)(logez) (2k)) - (1 + log@ru,+1) (dim — 1))),

O(log(2)(2k) - (1 + log(aku,+1) (din — 1))),

using binary search

using interpolation search

3.2.3 Records selection by multiple fields

Figure 3.5: Records selection by multiple record fields

(3.6)

(3.7

/ Record Selection

Focors [ISON

m...

[1
Fecors [ISON o oo vooL] Fecors SO
[[0 [[N [[0

~

v 1 | S i
[D...D.‘.D...DHD...D D...D...D...D D...D]H‘D...D...D...D D...D’

[—

we Search

—

Node Seary

The overall selection function shown in Fig. 3.5 of multiple record references composes

a complete and full scan function of all the B*-tree leaf nodes stored record references

in order to locate and collect - select these records based on the selection conditions set

to gather and store them in a data structure. This selection process is implemented via
the functions BplusTreeSelectRecordData_ASC() and BplusTreeSelectRecordData_ DESC()

by applying a complete iterative scan and selection of the records set that is stored

76

and contained in the bottom leaf nodes level set in the form of a Double Linked List
structure. In order to store the selected records set an auxiliary specially designed Double
Linked List data structure is used. This list stores the selected record references in both
ascending or descending order based on the primary key field of each record. Furthermore
to implement the bottom leaf nodes level scan the BplusTreeLocateLeftLeafNode() and
BplusTreeLocateRightLeafNode() sub-functions are used for the transition from the B*-
tree root node to the head or tail node of the list structure that the iterative selection

process is applied.

The selection process can also be implemented as a recursive scan - selection of all the
B*-tree nodes and nodes semi-dynamic array structures stored records (B-tree selection).
Nevertheless this recursive selection is not generally efficient in terms of time and memory
consumption in compare with the iterative scan of the leaf level Double Linked List nodes
as must be scanned more nodes and records and there is an additional time and memory

consummation of the recursion stack.

In both selection methods the theoretical average time complexity of the selection function

can be approached as O(n).

3.2.4 Records insertion based on primary key fields

The insertion function in Alg. 13 consists of multiple recursively linked sub-functions
listed in Alg. 14 and 15. Each individual sub-function implements a discrete functional part
of the overall insertion process. The insertion sub-functions use the split node algorithm

as a basic B*-tree index structure balancing technique.

The record insertion - storage function implementation is based on the node split
algorithmic method. This algorithm is used to store the record in a B*-tree leat node
and re-balance - reconstruct the tree nodes that the insertion process affected in order to
recover the structural balance. The node split algorithm is applied on the internal and
leaf nodes sets of the tree in order to implement the reconstruction, rearrangement and
re-balancing of the B*-tree index on a macroscopic level. There are two different node split
algorithms which are applied on the tree nodes depending on the node type (internal or

leaf node). The internal node-block splitting and the node semi-dynamic array structures

77

reconstruction and rearrangement of the stored record - node references sets is completely
identical to the B-tree node split algorithm. The leaf node-block splitting algorithm (shown
in Fig. 3.8 — 3.11) is based on the property - technique of storing and maintaining all the
records at the last - bottom leaf nodes level of the B*-tree structure and differs from the
basic internal node B*-tree node splitting technique. The main difference of the leaf node
split related to the internal node split is that the middle stored record of the record semi-
dynamic array structure of the splitting node is kept stored in the left node part (sub-node)
after the node split and the right half records set transferred from the initial node to the

new right node part (sub-node).

The sub-function in Alg. 14 implements the root node split process and the reconstruction
and rearrangement of the record and node references semi-dynamic array structures. The
node (root node) splits (shown in Fig. 3.16and 3.15) into two distinct structural parts -
sub-nodes and the right half stored record and node references of the node semi-dynamic
array structures transferred to the new node. The middle record reference that is stored in
the initial node (root node) array structure transferred and stored in the record reference
semi-dynamic array structure of the upper level linked node (parent node). In this case
that the splitting node is the root a new root node is created in order to be transferred the
middle record reference. The insertion sub-functions in Alg. 14 and 15 use the split node
algorithm to reconstruct, rearrange and organize the B*-tree nodes set structure in order

to restore the structural balance.

The sub-function in Alg. 15 implements the insertion and storage of a record reference
in a leaf node. The record reference is stored to the leaf node if the leaf node record
references semi-dynamic array structure has available allocated memory - capacity to store
the inserted record (shown in Fig. 3.6 — 3.12). If the record semi-dynamic array structure
of the leaf node has not available memory - capacity to store the record reference the leaf
node splits and a reconstruction and rearrangement process is caused (shown in Fig. 3.8
— Fig. 3.14). This process is repeated recursively up to the root node (Fig. 3.15) in order

to structurally re-balance and stabilize the B*-tree structure.

78

Fig. 3.6 and 3.7 analyze and describe the record reference insertion in a leaf node record

semi-dynamic array structure with available allocated storage memory - capacity:

Figure 3.6: Record reference insertion process in a leaf node with available record semi-dynamic array
structure capacity - part 1

Internal Parent Node

Ry

R3 Raok2|Rak1| Rak

| Ri
000
Ny | N2 | N3 N N
“ XX 24 2K

Empty Node Space

| Ri | Rz | Rs Rok2|Rak1| Rak | Ri | Rz | Rs Rok2|Rak1| Rak | Ri | Rz | Rs Raok-2|Rak1| Rak
oo . oo eo o
Leaf Node Leaf Node Leaf Node

Rok-1 Record Insertion

Figure 3.7: Record reference insertion process in a leaf node with available record semi-dynamic array
structure capacity - part 2

/ Internal Parent Node \

| Ri
eoo
Ny | N2 | N3 N N
“ 0o o 2k 2k

| Ri | Rz | Rg Rok2 [Rok1| Rak | Ri | Rz | Rg Rok2 [Rok1| Rak | Ri | Rz | Rg Rok2 [Rok1| Rak
eoo eoo eoo
K Leaf Node Leaf Node Leaf Node /

79

Rz | Rs Raok2|Rak1| Rak

Fig. 3.8 — 3.11 analyze and describe the record reference insertion in a leaf node record
semi-dynamic array structure without available allocated storage memory - capacity and

the leaf node split process:

Figure 3.8: Record reference insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split - part 1

Internal Parent Node

Ry

R3

Rk

Rok2|Rak1

| Ri
000
Ny | N2 | N3 N N
“ XX 24 2K

Empty Node Space

| Ri

v

Ry

R3

| Ri

Ry

R3

| Ri

Ry

R3

Rok Raok-2|Rak1| Rak

Leaf Node

Rok2|Rak1| Rak Rok2|Rak1

Leaf Node

Leaf Node

Rok Record Insertion

Figure 3.9: Record reference insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split - part 2

-

~

Internal Parent Node

Ry

R3 Raok2|Rak1| Rak

| Ri
000
Ny | N2 | N3 N N
“ XX 24 2K

| Ri

Ry

R3

| Ri

Ry

R3

Ry

R3

Raok2|Rak1| Rak Raok-2|Rak1| Rak

Leaf Node

Rok2|Rak1| Rak

Leaf Node

NS

Leaf Node /

80

Figure 3.10: Record reference insertion proce
structure capacity and node split - part 3

ss in a leaf node without available record semi-dynamic array

Internal Parent Node

Ry

Ry

R3

Rok2|Rak1| Rak

“ N1 Nz

N2, N N
500 m 2k-1 2k+1

ak

Ri | Rz | Rs Rok2|Rak1| Rak Rat | Raz [Raz Razk-2[Razk-1| Razk | Ri | Rz | Rs Raok-2|Rak1| Rak
oo oo oo
Leaf Node Leaf Node Leaf Node
Node Spllt
Rat | Raz | Ras Rak2 | Rak1 | Rak Rok-2 | Rak-1| Rak Raks1 | Raks2 | Rakss Ra2k-2|Ra2k-1| Ra2k Rok2 | Rak-1 | Rak
oo oo oo o eoo

New Left Leaf Node New Right Leaf Node

Figure 3.11: Record reference insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split - part 4

~

Internal Parent Node

Rak

Ry Rak2|Rak1| Rak

Ni [Nz | Ny N. N
m oo *? 2

=]

m m|k1
eoo eoe

XX
New Right Leaf Node

oo o oo
New Left Leaf Node

Ry

Rs

Rak2|Rak1| Rak Rokz|Rak1| Rk

Lde

Leaf Node /

The implemented B*-tree insertion functions in Alg. 13 — 15 are based on the node and
node semi-dynamic array structures split, reconstruction and rearrangement algorithmic

methods:

81

¢ Case 1 - record reference insertion in a leaf node record semi-dynamic array structure

with available allocated storage memory - capacity (Fig. 3.12):

Figure 3.12: Record reference 11 insertion process in a leaf node with available record semi-dynamic array
structure capacity

[[nnooQ

[l]
[Node |1

G (S SR G S S S—

2

[Recora [T q[lglwlﬂl ﬂ

_/

e Case 2 - record reference insertion in a leaf node record array without available
allocated storage memory - capacity (leaf node split process) and the linked upper

level node (parent node) has available capacity (Fig. 3.13):

Figure 3.13: Record reference 12 insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split. The upper level linked node (parent node) record references semi-dynamic
array structure has available capacity

I3 (¢ ploT e o]

|Record | EY I [Record [T

[Node | anoon [Node | nnooon
|Record | KNI |Record | NN |Record | I M| =3
[Node | n_nnun [Node | n_nuuu [Node | n_nnnu [Noce" [0

G S G S S G S G -

Kf * Gy i i +J

>

| Record | KNI

FrOE e E e e

Left Node Right Node |
\))))) T) % T /

>

82

¢ Case 3 - record reference insertion in a leaf node record semi-dynamic array structure
without available allocated storage memory - capacity (leaf node split process) and
the linked upper level node (parent node) has not available capacity (linked upper
level node split) (Fig. 3.14):

Figure 3.14: Record reference 14 insertion process in a leaf node without available record semi-dynamic array
structure capacity and node split. The upper level linked node (parent node) record references semi-dynamic
array structure has not available capacity (parent node node split process)

/
Inserti Record [I \
nsertion
3 [el¢ e e[o]

[7]81o]]
[elelelele]

i i i i i i i i i

(son]
KT i T i i i T T i T/

| Resord | I

(= [NA00D
| Record | KNI
I [¢ g e e e]

{] !
[m 1 |]|21 1 1] [Recora [T ﬂ[m 1 |][m 1 1]|e|w| | ﬂ[wm | q[lwlwl i q

T T

,
Insertion --- \
[|onoog

[Recora [T ﬂ[m [|][|51 1 1]

L]
[|onOOQ

GODE
= [onnnn o]

o i el i w0 =i

[(ceftNode) (Right Node]

\ T i i i i i i i i T T/
= = B
e [AOODD

[Record | AN
I3 [p]g]eTo o] Lm0

R d
Aanoo

i i i i i i i =

((ceftNode) (Right Node]

kf T))))))) T 'r/

83

e Case 4 - root node split process (root is internal node) (Fig. 3.15):

Figure 3.15: Record reference 7 insertion process in a leaf node without available record semi-dynamic array
structure capacity. The parent node has also not available capacity (parent node split). In case that all of the
upper levels linked nodes has not available storage capacity - memory the split process is being implemented

up to the root node

v

o
p=

Root Node

T[] |
m o|9|® (0@

¥ v v
*/

1 1

| Root Node I \

Record H H

=l

Insertion

A48 Ak

did

T I

N
p=

e

Left Node Right Node
4 4

AN

Insertion

Root Node

Record nﬂ -
hwee [OOOOR

}

——

Right Node

|

Record n..

\ 1 1 1 1 i) /
)
Fecora [AMMN
e e
¥ ¥
* - * * L 2 *
[Focord [N ocord [EYI N [ecors [EXMIN] | ecoro [ENEN AR [ecors [OLAMN
1 A

K T

/

e Case 5 - root node split process (root is leaf node) (Fig. 3.16):

Figure 3.16: Record reference 7 insertion process in the leaf root node without available record semi-dynamic
array structure capacity

A

L[]

ecou | DM
m|o|o|o|o|o|

y)
DERN) 67 [

\J ’ /

85

Algorithm 13: BplusTreelnsertData function

Returned item: Insertion process status
BplusTreelnsertData(
B*-tree structure item,
Record reference - data to be inserted

)

if B*-tree data structure is empty then

Root node construction - creation.
Record reference insertion - storage in the root node.

Return successful insertion status.
end

BplusTreelnsertNode RootBreakTool()
if BTreelnsertNode_RootBreakTool () is unsuccessful then

Return unsuccessful insertion status.
end

Return successful insertion status.

Algorithm 14: BplusTreelnsertNode_RootBreakTool function

Returned item: Insertion process status
BplusTreelnsertNode RootBreakTool(
B*-tree structure item,
Record reference - data to be inserted,
Node record references semi-dynamic array structure capacity - size

)
BplusTreelnsertNode Tool()

if Record reference has already been stored - inserted in the B*-tree structure (duplicate
stored record reference) then

‘ Return unsuccessful insertion status.
end
if Current node is the root node and a node break - split process was performed then

Left sub-node creation.

Reconstruction - rearrangement of the root, left and right nodes set

record and node references semi-dynamic array structures that the split process
was implemented depending on the node type (leaf - internal node split).

end

Return successful insertion status.

86

Algorithm 15: BplusTreelnsertNode_Tool function

Returned item: Node split process - right sub-node item
BplusTreelnsertNode Tool(
Current node item,
Record reference - data to be inserted,
Node split process - record references semi-dynamic array structure middle record,
Node record references semi-dynamic array structure capacity - size,
Duplication identifier of the inserted record reference

)
SearchBplusTreeNode Record ByPrimaryKey()

if Record reference duplication then

Duplication identifier status update - unsuccessful insertion process.
Storage obstruction - deallocation of the duplicate record reference.

Return null node item.
end

if Current node is a leaf node then
Record reference insertion - storage in the current leaf node

if Current leaf node record references semi-dynamic array structure has not available
storage capacity then

Current leaf node split (right sub-node creation) and node semi-dynamic
array structures reconstruction - rearrangement.

Return right sub-node item.
end

Return null node item.
end

BplusTreelnsertNode Tool()
if Next level linked node split process was implemented then

Storage - insertion of the next level linked node (split node) middle record
reference in the current node.

Reconstruction - rearrangement of the current node references

and record references semi-dynamic array structures.

else
Return null node item.
end

if Current internal node record references semi-dynamic array structure has not available
storage capacity then

Current internal node split (right sub-node creation) and node semi-dynamic
array structures reconstruction - rearrangement.

Return right sub-node item.
end

Return null node item.

87

The total average algorithmic operations - steps of the insertion function can be approximately
be approached based on the average B*-tree structure height. Consequently, the theoretical
average time complexity of the insertion function in Alg. 13 — 15 can be approximately

calculated by the relation 3.8:

O(1+ log(gkuk+1)(dln — 1)) (38)

88

3.2.5 Records deletion based on primary key fields

The B*-tree index structure record reference deletion function and the deletion of the
record that is stored in the RDBMS relational table to which the B*-tree index structure is
linked consists of multiple sub-functions (functional levels). These recursively functionally

connected sub-function (functional levels) implement a part of the overall deletion process.

Alg. 16 implements the record reference location and deletion in the root node in the
case that the root node is leaf and the leaf root node has not lower level linked child
nodes. Furthermore implements the record reference location and deletion and the nodes
- nodes semi-dynamic array structures reconstruction and rearrangement (re-balancing)
utilizing Alg. 17 in case that the the B*-tree is composed of multiple leaf and internal node
structural parts. Alg. 17 implements the location and removal of the record reference to be
deleted that is stored in the B*-tree index structure and the physical record data deletion
of the table that the B*-tree index structure is linked. Furthermore implements the B*-tree
nodes and nodes internal semi-dynamic array structures reconstruction - rearrangement in
order to re-balance the tree index. This reconstruction can be achieved using Alg. 18 and
19. Alg. 17 constitutes the basic deletion method as it functionally links all the individual
functional parts of the overall deletion process. The deletion process is separated in multiple
functional parts. The leaf node record reference deletion and the reconstruction of the leaf
and internal nodes set that were affected by the deletion, to re-balance the index. Alg. 18
deletes - removes the record reference that is stored in a leaf node and implements the
leaf and upper level linked nodes set reconstruction that are structurally affected from the
deletion process. It therefore restores the structural balance of the B*-tree index structure
at the bottom leaf nodes level in the case that the tree can be directly re-balanced at the leaf
level. In the case that the B*-tree index structure can not be re-balanced at the bottom leaf
nodes level, Alg. 19 is used to reconstruct the internal nodes set on some upper internal
nodes level in order to structurally reconstruct and re-balance the tree. These functions
in Alg. 18 and 19 use a sub-functions set to implement the B*-tree nodes reconstruction

and re-balancing:

89

e The sub-function BplusTree_ReplaceRecord() implements the deletion in a leaf node
that contains multiple record references. The sub-function BplusTree_ReplaceRecord()

implements the structural re-balancing of the B*-tree on the bottom leaf nodes level.

Figure 3.17: Deletion of the record 6 in a leaf node that contains multiple record references - case 1

[T L]

G S G S G-

G G —

i i i i i i i i

Figure 3.18: Deletion of the record 7 in a leaf node that contains multiple record references - case 2

OEEE
e [OIOIOO0D

(IRecora [ENINIMN) | [Recora TEX MMM |{Recor TER M) | (iRecora [EXMMNN) {[(Recora [BN |{Recor TENEY M) [(iRecora [N | (Recora [N]
[oror
f
|Record |1
n_nnnn
111
nnoon
||
[Recora | NI
n_nnnn

i i s il

[I8I9I | mlzmlwlm | q[ﬁmlﬂlwl | q

90

Figure 3.19: Deletion of the record 9 in a leaf node that contains multiple record references - case 3

n_nuuu
[[ONODD 3 sslele]e]
-
IRecora | NN Izmlzl:\:\j (Recora [ENRINI | (IRecora [N | [Recora [N [{1Recora [NN Wml1vl11l)| Recoral | 1 EEY
*
n_nuuu
[Recora | 1 NI
= [plsle[e]e] 3 sls[ele]e]
[Record | N
[eTeTele]e]

G U S S SO GRS S G

e The sub-functions BplusTree_RebalanceLeftNode() and BplusTree_RebalanceRightNode()
implement the deletion in a leaf node that contains a single record reference, the upper
level linked node (parent node) contains a single record reference and the left - right
side node contains multiple record references. These sub-functions implement the

structural re-balancing of the B*-tree on the bottom leaf nodes level.

Figure 3.20: Deletion of the record 5 in a leaf node that contains a single record reference, the upper level
linked node (parent node) contains a single record reference and the left - right side node contains multiple
record references - case 1

Fecos | ANME
[[ORDOO

|Record | Y IIMN
XX [9]¢ e e]e]

[m][m]['” i U W= G W S—

[Recora [T

L [ONOO0
[Recora | AN
e [ONOO0

FTIT]
[[AOOOD

T
[[ONOOD

S G

===

sETE

91

Figure 3.21: Deletion of the record 7 in a leaf node that contains a single record reference, the upper level
linked node (parent node) contains a single record reference and the left - right side node contains multiple
record references - case 2

OEEE
[[NOOD

EETETE = e
EE e E T E e

e The BplusTree_ReplaceRecord_Right_to_Left() and BplusTree_ReplaceRecord_Left_to_Right()
implement the deletion in a leaf node that contains a single record reference, the
upper level linked node (parent node) contains multiple record references and the
left - right side node contains multiple record references or a single record reference.
These sub-functions implement the structural re-balancing of the B*-tree on the

bottom leaf nodes level.

92

Figure 3.22: Deletion of the record 6 in a leaf node that contains a single record reference, the upper level

linked node (parent node) contains multiple record references and the left - right side node contains a single
record reference - case 1

mwm“@ﬂ@“@WWﬁ@W@M@ﬂ@M
i i e i i s

Figure 3.23: Deletion of the record 8 in a leaf node that contains a single record reference, the upper level

linked node (parent node) contains multiple record references and the left - right side node contains a single
record reference - case 2

G i i i i i i = i i
i] i i] i i ok i

93

Figure 3.24: Deletion of the record 8 in a leaf node that contains a single record reference, the upper level
linked node (parent node) contains multiple record references and the left - right side node contains multiple
record references - case 1

AT
[[nNOOD

o i i i i i i s i
i i i i el i i i i

Figure 3.25: Deletion of the record 9 in a leaf node that contains a single record reference, the upper level

linked node (parent node) contains multiple record references and the left - right side node contains multiple
record references - case 2

Record |EN NI

[[AOOO0
B
[[ORDOD

Recors [AN Recora [DMMN
e [NOOOD e [NNOOD
1 1 |

! 1
[m 1 ﬂ[lzl 1 I]‘IE@ISI 1 q[ﬁmlﬂ 1 |[|s| 1 ﬂ[lﬁ] 1 l][mlvm | ﬂ[@lel 1 q[lwl 1 MI"] 1 1]

*

| Record I

(% IONDO0
IZIZIZD [Record (I
[Node | n_nunn (v [ONOOO

¥ y
|1| 1 | Izmm | | ‘mISI 1] I';zmm 1 | =G ﬂ[l:mm]][Emhlsl |][r;zmlm 1 }[J
£ T 5

94

e The sub-functions BplusTree_MergeLeftNode() and BplusTree_MergeRightNode()
implement the deletion in a leat node that contains a single record reference and
the upper level linked (parent node) and the left - right side node contain a single
record reference. These sub-functions implement the record reference deletion in the
leaf node and the nodes reconstruction on the bottom leaf nodes level in order to
structurally re-balance the B*-tree. In this case that the structural B*-tree balance
cannot be restored - recovered on the leaf nodes level a nodes re-balancing and
reconstruction recursive process is being implemented to the upper nodes levels.

If this problematic nodes structural balancing case is caused up to the root node the
sub-functions BplusTree_MergeLeftNodeRecursive() and the

BplusTree_MergeRightNodeRecursive() are used recursively to fix this problem from
the leaf to the root node level. The structural balance finally restored - recovered on
the root node level. These functions implement the same reconstruction process with

those functions of the B-tree structure.

Figure 3.26: Deletion of the record 5 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference - case 1

Fo[=]
[]
]

lo][]

ONEN
[[NOODD

|Record | EJ I 1]

T b k) k) £ £ £ k)

[T []
= [¢]¢ e e]e]

recors [T Prosee
[[NOODD
oo [N Fecors [ARE
[Z [e]ee]e]e] ece IIOIDO0

=

i S S GBS G- S S —

i i s i

J

95

Figure 3.27: Deletion of the record 6 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference - case 2

oo [OMM
(= [NNOOD
ONEN
(= [NNOOD

FLTT]

i i S GBS SN G = WS W

L 1 £

(Record [T

e [OOIOOID
4 [Recora [IMMN] Process

e [OOOO0
| Recora) | E1 NI
[EE [e]e e eTe]
\ v
[m] ﬂ[m] ﬂ[lsl] q[lzm [m T |][|s| I |]
T T

¢ The sub-functions BplusTree_MergeLeftNode() and BplusTree_MergeRightNode() implement

the deletion in a leaf node that contains a single record reference and the upper level

linked (parent node) and the left - right side node contain a single record reference.
Furthermore the sub-functions BplusTree_ReplaceLeftNodeRecursive()

and BplusTree_ReplaceRightNodeRecursive() implement the B*-tree nodes re-balancing

- reconstruction on an internal nodes level in the case that the upper level linked
(parent node) of the previous level reconstructed nodes set has a single record
reference and the left - right side node contains multiple record references. These
functions implement the same reconstruction process with those functions of the

B-tree structure.

96

Figure 3.28: Deletion of the record 5 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference. Implementation
of the B*-tree nodes re-balancing - reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has a single record reference and the left
- right side node contains multiple record references - case 1

B
[[ORDOD

[T T[]

n_nunn
1
[Recora | KN MBI | Recora [EXRN N | (1Recora | EX MBI [Recora JRA MMM)| {Recora [EXMN NN |(Recora [RUMNMN) | Recora: [EARNMNN) | Recora |EX MMM (Recora [AMIMIN]
T)) 1 £)) L 5
| Record | EX I
n_nnun
Record n... @
I
[Recora KNI Recom OREN J lnl-
e [OODDD s [OODDD mmﬂ
> 2
2
(m] mmlzl | q[lsl I nlll [I 11 necom OEE 1 | 11]
L %)

Figure 3.29: Deletion of the record 6 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference. Implementation
of the B*-tree nodes re-balancing - reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has a single record reference and the left
- right side node contains multiple record references - case 2

EZM [s[¢[e[e[e]
[Record | XN Record |1 I
[Node | nnoon [Node | plelele]e]
|Record | EN NI |Record | EN NI
[Node | n_nnnn [Node | n_nnnn

i i i i i e i i i

[y

[m;'"W[W;""r[m;”mm] {m';""[m;""nf”w

97

¢ The sub-functions BplusTree_MergeLeftNode() and BplusTree_MergeRightNode() implement

the deletion in a leaf node that contain a single record reference and the upper level

linked (parent node) and the left - right side node contains a single record reference.
Furthermore the sub-functions BplusTree_ReplaceSingleLeftNodeRecursive() and
BplusTree_ReplaceSingleRightNodeRecursive() implement the B*-tree nodes re-balancing

- reconstruction on an internal nodes level in the case that the upper level linked
(parent node) of the previous level reconstructed nodes set has multiple record
references and the left - right side node contains a single record reference. These
functions implement the same reconstruction process with those functions of the

B-tree structure.

Figure 3.30: Deletion of the record 5 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference. Implementation
of the B-tree nodes re-balancing - reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has multiple record references and the
left - right side node contains a single record reference - case 1

| Record|
[Node | n_nnnn
| Record | I
[Node | glplele]e]
| Record | NI [Record | Y | Record|
[Node | I'I-I'IIIDII [Node | n_nnnn =3 n_nnnn

G G i GBS GO WSS S G W W—

EI T
= [¢[¢lelee]
I L
) v

>
>

T [[]

i i i i i

|s||||]

T))) T)))

98

Figure 3.31: Deletion of the record 6 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference. Implementation
of the B-tree nodes re-balancing - reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has multiple record references and the
left - right side node contains a single record reference - case 2

OREN
[[AOODD

[e[e] []

T
[[NDOD

[|1| 1 Mm 1 ﬂ‘mm] H[M] |[|s| 1 ﬂllJ [Recora [EAMM Mm] q[m 1 |”|wl 1 q
£
= e
B St

[Record | KN ME%ED] Remd J m [Record | I

(% IONOO0 [neee [NOODD [veee [OODODO [Node | (v IONOO0
[Recora [N RN |(1Recoa [T |(Fecors [ETMMI)|(iRcow [ETMmE] mmu EaE 1 L|(EaAcl)| E R O
ki i i i i i i woi

¢ The sub-functions BplusTree_MergeLeftNode() and BplusTree_MergeRightNode() implement
the deletion in a leaf node that contains a single record reference and the upper level
linked (parent node) and the left - right side node contain a single record reference.
Furthermore the sub-functions BplusTree_ReplaceMultipleLeftNodeRecursive() and
BplusTree_ReplaceMultipleRightNodeRecursive() implement the B*-tree nodes re-
balancing - reconstruction on an internal nodes level in the case that the upper
level linked (parent node) of the previous level reconstructed nodes set has multiple
record references and the left - right side node contains multiple record references.
These functions implement the same reconstruction process with those functions of

the B-tree structure.

99

Figure 3.32: Deletion of the record 5 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference. Implementation
of the B*-tree nodes re-balancing - reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has multiple record references and the
left - right side node contains multiple record references - case 1

T T 0 0 T 0

B-tree
Process

= ey

SR G S

= =

[Recora [T q

¥

Figure 3.33: Deletion of the record 6 in a leaf node that contains a single record reference and the upper
level linked (parent node) and the left - right side node contain a single record reference. Implementation
of the B*-tree nodes re-balancing - reconstruction on an internal nodes level in the case that the upper level
linked (parent node) of the previous level reconstructed nodes set has multiple record references and the
left - right side node contains multiple record references - case 2

i i i

i s

i i i

= 1] |J[m|u| | |’

¥

B-tree
Process

— —]
i i i i i s i i i

100

The record references set of a B*-tree index structure is stored in the leaf nodes and a
subset of them is stored in both leaf and internal nodes. Therefore the deletion of a stored
record is implemented at the bottom leaf nodes level and at the upper levels in case that
the balance can not be restored at the leaf level using Alg. 18 and 19 as all the record
references are stored in the last tree structure level. In case that the record to be deleted is

stored in both leaf and internal node is also removed from the internal node.

Algorithm 16: BplusTreeDeleteData function

Returned item: Deletion process status
BplusTreeDeleteData(
B*-tree structure item,
Primary key field of the record to be deleted,
Item to store the removed record reference

)

if B*-tree data structure is empty then
Deletion cannot be implemented.

Return unsuccessful deletion status.
end

if Root node is a leaf node then
SearchBplusTreeNode Record ByPrimaryKey()

if Record reference to be deleted is located in the current root leaf node then

if Root node contains a single record reference then

Remove the stored record reference from the current node.
Deletion of the current root node.

Return successful deletion status.
end

BplusTree ReplaceRecord()

Return successful deletion status.
end

Return unsuccessful deletion status.
end

BplusTreeDeleteNode()

if Record reference to be deleted is not stored in the B*-tree structure then
Deletion cannot be implemented.

Return unsuccessful deletion status.
end

Return successful deletion status.

101

Algorithm 17: BplusTreeDeleteNode function

Returned item: B*-tree node item
BplusTreeDeleteNode(
Next level node item,
Primary key field of the record to be deleted,
Item to store the removed record reference,
Internal node storage position of the record to be deleted,
Maximum record - node semi-dynamic array structures capacity of each node,
Flag to specify if the balancing process has been activated to an internal node,
Flag to specity if the internal node record deletion procedure has been activated,
Flag to specity if the record to be deleted exists in the structure

)
SearchBplusTreeNode Record ByPrimaryKey()

if The record reference to be deleted is located at the current internal node then

Storage of the internal node and the semi-dynamic array structure
that the record to be deleted is stored in the B*-tree.

Activation of the internal node deletion process.
end

if Next level node is an internal node then
BplusTreeDeleteNode()

if The structural balance recovery - restoration cannot be implemented on the previous
level. The upper level node re-balancing and reconstruction process has been activated
then

BplusTreeDelete_NonLeafNode()
end

Return Current node item.

end
BplusTreeDelete_LeafNode()

Return Current node item.

102

Algorithm 18: BplusTreeDelete_LeafNode function

Returned item: Void item
BplusTreeDelete LeafNode(
Upper level - parent node item,
Primary key field of the record to be deleted,
Item to store the removed record reference,
Position of the stored record reference to be deleted in the next level leaf node,
Internal node storage position of the record to be deleted,
Maximum record - node semi-dynamic array structures capacity of each node,
Flags to specify the internal node balancing and record deletion processes and the
record to be deleted existence in the structure

)
SearchBplusTreeNode Record ByPrimaryKey()
if The record reference to be deleted is located at the current leaf node then

if The current leaf node contains multiple record references then
BplusTree ReplaceRecord()
Return void item.

end

if The current upper level - parent node and each of the leaf and left - right side nodes
contain a single record reference then

BplusTree_MergeRightNode() or BplusTree MergeLeftNode()

Remove the record reference from the internal node that is stored and
reconstructs the node if the record is also stored in an internal node.
Activation of the structural nodes re-balancing process to the upper level.
Return void item.

end

if The current upper level - parent node and the leaf node contain a single record
reference and the left - right side node contains multiple record references then
BplusTree RebalanceRightNode() or BplusTree RebalanceLeftNode()
Remove the record reference from the internal node that is stored and
reconstructs the node if the record is also stored in an internal node.
Return void item.
end

if The current upper level - parent node contains multiple record references, the leaf
node contains a single record reference and the left - right side node contains multiple
record references or a single record reference then
BplusTree ReplaceRecord Left to Right() or
BplusTree ReplaceRecord Right to Left()
Remove the record reference from the internal node that is stored and
reconstructs the node if the record is also stored in an internal node.
Return void item.
end

end

Return void item.

103

Algorithm 19: BplusTreeDelete_NonLeafNode function

Returned item: Void item
BplusTreeDelete NonLeafNode(
Current upper level node item,
Position of the next level linked node in the node references semi-dynamic array
structure that the nodes reconstruction - re-balancing process was implemented,
Maximum record - node semi-dynamic array structures capacity of each node,
Flag to specify the internal node balancing process

)

if The current upper level - parent node contains a single record reference and the next
level left - right side node of the previous reconstructed node contains a single record
reference then

BplusTree MergelLeftNodeRecursive() or
BplusTree_MergeRightNodeRecursive()
Activation of the structural nodes re-balancing process to the upper level.
Return void item.

end

if The current upper level - parent node contains a single record reference and the next
level left - right side node of the previous reconstructed node contains multiple record
references then

BplusTree ReplaceLeftNodeRecursive() or
BplusTree ReplaceRightNodeRecursive()
Return void item.

end

if The current upper level - parent node contains multiple record references and the next
level left - right side node of the previous reconstructed node contains a single record
reference then
BplusTree ReplaceSingleLeftNodeRecursive() or
BplusTree ReplaceSingleRightNodeRecursive()
Return void item.
end

if The current upper level - parent node contains multiple record references and the next
level left - right side node of the previous reconstructed node contains multiple record
references then
BplusTree ReplaceMultipleLeftNodeRecursive() or
BplusTree ReplaceMultipleRightNodeRecursive()
Return void item.
end

104

The total average algorithmic operations - steps of the deletion function can be approximately
be approached based on the average B*-tree structure height. Consequently, the theoretical
average time complexity of the deletion function in Alg. 16 — 19 can be approximately

calculated by the relation 3.9:

O(1+ log(gkuk+1)(dln — 1)) (39)

105

Chapter 4

B-Hash and B*-Hash Map index structures

4.1 B-Hash and B"-Hash Map indexes structural properties and characteristics

The implemented B-Hash and B*-Hash Map index data structures compose the RDBMS
file system in-memory and on-disk sub-systems tree hash structures simulation that are
designed for indexing of relational database tables. Furthermore the developed B-Hash
and B'-Hash Map index structures are based on the existing RDBMSs on disk and in
memory file systems indexing structures architecture and functionality, the fundamental
hashing theory in [40] [10] [12] [49] [50] [51] [52] [53] [13] and on the implemented

B-tree and B*-tree index structures.

The implemented B-Hash - B*-Hash Map index structure consists of a dynamic array
data structure that each individual array node contains a B-tree - B*-tree index structure
that is linked to a RDBMS table and stores a record references subset of that table. The B-
tree and B*-tree structures set of the B-Hash Map - B*-Hash index stores the total record
references of the relational database table to which the tree hash map index structure
is connected. Consequently the implemented B-Hash - B*-Hash Map index constitutes a
classic hash map index structure of B-tree - B*-tree index structures that store all the record
references of the relational table records . Furthermore the hash index is functionally and
structurally developed, implemented and designed as a RAM - main memory system index

structure and not as a disk (non volatile) based memory system indexing structure.

Fig. 4.1 and 4.2 represent the B-Hash and B*-Hash Map index structures architecture

and structural design.

106

Primary Key

Figure 4.1: B-Hash Map index structure architecture

Hash ff;}

Function

B-Hash Map

Index Structure

<

Dynamic Array
Structure

>M@—>

A4

e [

?1

Record

i)

Structure
_ v

» Record

Record

Record

Record

4 B-tree A
Structure
_

» Record

Record

Record

Record

<
<

v
Structure
_

v
@
@
B-tree
Structure

RDBMS Table \

Y

107

Figure 4.2: B*-Hash Map index structure architecture

Bplus-Hash Map
Index Structure

Dyg?mic; Array 4 B+-tree) RDBMS Table \
ructure Structure fecord
_

i)

» Record

Record Hash ff;}]
Primary Key Function T

Record

Record

(B+-tree 3
Y Structure Record
Record

N y,

Record

4 B+-tree A
Structure
Record
\ j j
@
@
B+-tree
Structure /

A4

?1

<
<

108

4.2 B-Hash and B*-Hash Map index structures basic functional levels

The basic implemented indexing B-Hash - B*-Hash Map structure functions that are
analyzed and developed in this work are the record references insertion, deletion and
selection functions. The algorithmic functions, analyzed and developed in the context of

the implemented B-Hash and B*-Hash Map index structures, are:

* Records selection by record primary key field.
* Records selection by multiple record fields.

¢ Records insertion and deletion based on the record primary key field.

The B-Hash and B*-Hash Map index structures are implemented to store the record
references with primary keys of string and integer type. The functions of the B-Hash and
B*-Hash Map index structures that store record references with records string primary key
fields utilize the Bernstein’s DJB2 string hash function in order to create a hash code for
each record primary key that will be stored in the tree hash indexes. The DJB2 string hash
function is a quite efficient and effective string hash function that decreases and stabilize
the B-Hash and B*-Hash Map index structures functions collision. However, it is possible
to be used any string hash function (which is suitable for this use) instead of the default
DJB2 function for each case that requires special functionality and design. Furthermore
the B-Hash and B*-Hash Map index structures that are structurally and functionally based
on the integer type primary key use the simple hash function that creates a numeric hash
code from the division modulo of the integer record primary key and the hash map array

structures nodes set (set of B-tree - B*-tree index structures).

109

4.2.1 Records insertion based on primary key fields

The functions in Alg. 20 and 21 implement the record insertion - storage in the B-Hash

and B*-Hash Map index structures based on the primary key hash functions and using the

B-tree and B*-tree index structures insertion sub-functions in Alg. 6 and 13. Fig. 4.3 and

4.4 represent the B-Hash and B*-Hash Map index structures insertion functions operation.

Hash@
Function

B-Hash Map@
Insertion Function

B-tree Index%

Figure 4.3: B-Hash Map index structure record insertion function

/

B-Hash Map

Index Structure

Dynamic Array
Structure

Insertion Function

B-tree
Structure

RDEMS Table

Record

fi)

B-tree
Structure

»| Record

Record

Record

0

B-tree
Structure

P Record

Record

Record

Record

\ l\El\ l

B-tree
Structure

~

110

Figure 4.4: B*-Hash Map index structure record insertion function

Bplus-Hash Map

Index Structure

Dyg.:mict array | srmee |\ RDBMS Table \
ructure Structure Record

Record

Record

Record

i)

r

I

Hash
Function

i

>

Record

ry
Ld

Record

Record

Record

Bplus-tree Index%
Insertion Function

11

Algorithm 20: BHashMaplnsertData function

Returned item: Insertion process status
BHashMaplInsertData(
B-Hash Map index structure item,
Record reference - data to be inserted,
Hash code of the record primary key
)

if B-Hash Map index structure is not constructed and is uninitialized then
‘ Return unsuccessful insertion status.

end

BTreelnsertData()

if B-tree insertion was completed successfully then

‘ Return successful insertion status.
end

Return unsuccessful insertion status.

Algorithm 21: BplusHashMaplnsertData function

Returned item: Insertion process status
BplusHashMapInsertData(
B*-Hash Map index structure item,
Record reference - data to be inserted,
Hash code of the record primary key
)

if B*-Hash Map index structure is not constructed and is uninitialized then
‘ Return unsuccessful insertion status.

end

BplusTreelnsertData()

if B*-tree insertion was completed successfully then
‘ Return successful insertion status.

end

Return unsuccessful insertion status.

112

4.2.2 Records deletion based on primary key fields

Alg. 22 and 23 implement the record deletion - removal from the B-Hash and B*-Hash
Map index structures based on the primary key hash functions and using the B-tree and
B*-tree index structures deletion sub-functions in Alg. 9 and 16. Fig. 4.5 and 4.6 represent

the B-Hash and B*-Hash Map index structures deletion functions operation.

Figure 4.5: B-Hash Map index structure record deletion function

B-Hash Map
Index Structure
Dynamic Array 4 B-tree
Structure Structure
_

B-tree
Structure

RDBMS Table \

Record

i)

»| Record

Record

Record

Hash@;
Function

Record

Deletion

Record
B-Hash Map@
Deletion Function

s
B-tree
Structure
Y
B-tree Index%
Deletion Function
B-tree
Structure

Record

Record

rgj:
\ l \l l \ l
X
[
-0
X

113

Hash
Function

Bplus-Hash Map@}
Deletion Function

Bplus-tree Index@

Figure 4.6: B*-Hash Map index structure record deletion function

Bplus-Hash Map

Index Structure

Dynamic Array
Structure

i

\
B+-tree
Structure

Record

)

B+-tree
Structure

Deletion Function

Deletion

\
B+-tree
Structure

fgi:
_

B+-tree
Structure

P Record

Record

Record

Record

Record

Record

Record

- [0

b

RDBMS Table

\

114

Algorithm 22: BHashMapDeleteData function

Returned item: Deletion process status
BHashMapDeleteData(
B-Hash Map index structure item,
Record reference - data primary key to be deleted,
Hash code of the record primary key,
Deleted - removed record)

if B-Hash Map index structure is not constructed and is uninitialized then

‘ Return unsuccessful deletion status.
end
if B-Hash Map is empty or B-Hash Map B-tree index structure that the deletion will be
implemented has not stored records then
‘ Return unsuccessful deletion status.
end
BTreeDeleteDatal()
if B-tree deletion was completed successfully then
Return successful deletion status.
end

Return unsuccessful deletion status.

Algorithm 23: BplusHashMapDeleteData function

Returned item: Deletion process status
BplusHashMapDeleteData(
B*-Hash Map index structure item,
Record reference - data primary key to be deleted,
Hash code of the record primary key,
Deleted - removed record

)

if B*-Hash Map index structure is not constructed and is uninitialized then
‘ Return unsuccessful deletion status.

end

if B*-Hash Map is empty or B*-Hash Map B*-tree index structure that the deletion will
be implemented has not stored records then
‘ Return unsuccessful deletion status.

end

BplusTreeDeleteData()

if B*-tree deletion was completed successfully then

Return successful deletion status.
end

Return unsuccessful deletion status.

115

4.2.3 Records selection by the records primary key fields

Alg. 24 and 25 implement the record location - selection in the B-Hash and B*-Hash
Map index structures based on the primary key hash functions and using the B-tree
and B*-tree index structures record references selection by records primary key fields
sub-functions. Fig. 4.7 and 4.8 represent the B-Hash and B*-Hash Map index structures

selection functions operation.

Figure 4.7: B-Hash Map index structure record selection function by primary key

B-Hash Map
Index Structure

Dynamic Array 4 B-tree
Structure Structure
_

B-tree
Structure

RDBMS Table \

i)

Record

Record

Record

Record

il

»| Record

Selection
By Primary Key

B-Hash Map £ Record

Selection By Primary Key
Function

(
B-tree
B-tree Index v Structure
Selection By Primary Key
Function
\.
B-tree
\ Structure

Record

Record

(o
Ll
(’%\
. _ ‘ ,\1 j] ‘ /\, _ l

116

Figure 4.8: B*-Hash Map index structure record selection function by primary key

Hash%‘s
Function

Bplus-Hash Map%
Selection By Primary Key
Function

J

!

l

Bplus-tree Index g
Selection By Primary Key
Function

Bplus-Hash Map

Index Structure

-

Dynamic Array
Structure

s

B+-tree
Structure

Record

fi)

~

B+-tree
Structure

» Record

Record

Record

i

Selection
By Primary Key

T
-
[l

J

?i
fﬁ
\. —/

B+-tree
Structure

» Record

Record

Record

Record

B+-tree
Structure

....'.

RDBMS Table

\

117

Algorithm 24: BHashMapSelectData_ByPrimaryKey function

Returned item: Selected record
BHashMapSelectData ByPrimaryKey/(
B-Hash Map index structure item,
Record reference - data primary key to be selected,
Hash code of the record primary key
)

if B-Hash Map index structure is not constructed and is uninitialized then

‘ Return null record item.

end

if B-Hash Map is empty or B-Hash Map B-tree index structure that the selection will be
implemented has not stored records then
‘ Return null record item.

end

BTreeFastSearchData ByPrimaryKey()

if B-tree selection was completed successfully then
Return selected record.

end

Return null record item.

Algorithm 25: BplusHashMapSelectData_ByPrimaryKey function

Returned item: Selected record
BplusHashMapSelectData_ ByPrimaryKey/(
B*-Hash Map index structure item,

Record reference - data primary key to be selected,
Hash code of the record primary key
)

if B*-Hash Map index structure is not constructed and is uninitialized then
‘ Return null record item.

end

if B*-Hash Map is empty or B*-Hash Map B*-tree index structure that the selection will
be implemented has not stored records then
‘ Return null record item.

end

BplusTreeFastSearchData ByPrimaryKey()

if B*-tree selection was completed successfully then

Return selected record.
end

Return null record item.

118

4.2.4 Records selection by multiple records fields (selection conditions)

Alg. 26 and 27 implement the record references set location - selection in the B-Hash
and B*-Hash Map index structures based on a selection constraints - conditions set using
the B-tree and B*-tree index structures selection sub-functions. Fig. 4.9 and 4.10 represent

the B-Hash and B*-Hash Map index structures full scan - selection functions operation.

Figure 4.9: B-Hash Map index structure records selection function by a selection constraints set

B-Hash Map
Index Structure

[Dynamic Array 4 B-tree
HETE Structure
’LG
Selection
\

B-tree
Structure

RDBEMS Table \

B-Hash Map
Selection Function

B-tree Index
Selection Function

Selection

B-tree
Structure

L

00000000

Selected Record
List

£
nplp el

® ool
fgj:

B-tree
Structure

0
i

119

Figure 4.10: B*-Hash Map index structure records selection function by a selection constraints set

Bplus-Hash Map

Index Structure

/ RDBMS Table

Dynamic Array | sraree)
Structure Structure
@)
Selection
_

i

Bplus-Hash Map
Selection Function

Bplus-tree Index
Selection Function

Y

(B+-tree)
v Structure
Jal N
L)
Selection
\.

i

Selected Record
List

é B+-tree A

v Structure

NP
Selection
_
B+-tree

Structure
Selection

i

120

Algorithm 26: BHashMapSelectData function

Returned item: Selection process status
BHashMapSelectData(
B-Hash Map index structure item,
Double Linked List structure to store the selected records,
Selection constraint,
Selection method
)

if B-Hash Map index structure is not constructed and is uninitialized then
‘ Return unsuccessful selection status.

end

if B-Hash Map is empty then
‘ Return unsuccessful selection status.

end

Iterative scan - records selection of all B-Hash Map dynamic array structure
B-tree index structures based on the selection constraint.

BTreeSelectRecordData ASC() or BTreeSelectRecordData DESC

based on the selection method for each B-tree index structure selection process.

if Double Linked List structure that stores the selected records is not empty then
Return successful selection status.
end

Return unsuccessful selection status.

121

Algorithm 27: BplusHashMapSelectData function

Returned item: Selection process status
BplusHashMapSelectData(
B*-Hash Map index structure item,
Double Linked List structure to store the selected records,
Selection constraint,
Selection method
)

if B*-Hash Map index structure is not constructed and is uninitialized then
‘ Return unsuccessful selection status.

end

if B*-Hash Map is empty then
‘ Return unsuccessful selection status.

end

Iterative scan - records selection of all B*-Hash Map dynamic array structure
B*-tree index structures based on the selection constraint.

BplusTreeSelectRecordData_ASC() or BplusTreeSelectRecordData DESC
based on the selection method for each B*-tree index structure selection process.

if Double Linked List structure that stores the selected records is not empty then
Return successful selection status.
end

Return unsuccessful selection status.

Each B-tree - B*-tree index structure record reference insertion, deletion and selection
function requires the load - transfer of the index structure nodes, stored record references
and records data from the secondary storage disk system to the main memory system
for processing applying a set of selection, insertion and deletion transactions on the disk.
These read - write and delete disk operations are not efficient and are quite time consuming
especially when a large B-tree - B'-tree index structure part or the whole structure must
be located and transferred from the disk memory system to the main memory in order to
be implemented a set of transactions - table management functions. The B-Hash and B*-
Hash Map hybrid index tree hash structures use the basic hash map structure properties
combined with the B-tree and B*-tree index structures to reduce the disk access operations
and increase the insertion, deletion and selection functions efficiency in terms of time
performance and memory management (usage). This can be implemented through the
records references and data storage - distribution in a set of B-tree - B*-tree index structures
of the hash index based on the records primary key hash codes that are created by the hash
functions for each table record. Consequently each B-Hash and B*-Hash Map insertion,

deletion and selection function requires a quite smaller index structure (nodes and stored

122

references) and data part location and transfer from the disk to main memory structures
of the RDBMS in memory file system in compare with the B-tree - B*-tree indexes. Thus
avoiding the main memory - RAM overload and the memory leak and corruption that
can be destructive for the data storage and maintenance. Therefore the B-Hash and B*-
Hash Map index structures are more functionally efficient on disk-based and in-memory file
systems related to the B-tree - B*-tree index structures due to the more efficient distribution
of the stored record references sets in the B-tree and B*-tree index structures of the B-
Hash and B*-Hash Map indexes. This reduces the real completion time of the B-Hash
and B*-Hash Map index structures insertion, deletion, update and selection operations
even though these structures functions have approximately quite similar (depending on
the set of B-Hash and B*-Hash Map B-tree and B*-tree index structures) theoretical time

complexity related to the B-tree and B*-tree index structures.

Considering that the B-Hash - B*-Hash Map index structure contains n stored records
and the hash map dynamic array structure consists of b individual B-tree - B*-tree index
structure nodes. Then each hash map dynamic array structure node B-tree - B*-tree index
structure contains n, = 7 stored record references. This is the perfect records storage
distribution in the B-tree - B*-tree index structure node of the B-Hash - B*-Hash Map
index dynamic array structure. The records storage distribution is mainly based on the hash
function that creates the hash codes for each record primary key (collision stabilization -
balance) and on the record primary key type that is stored in the hash map structure array
nodes. Therefore the perfect hashing - storage distribution is a structural state that can
be approached in order to have the best possible B-Hash - B*-Hash Map index structure
functionality. There is a large set of hash functions with different properties and functional

effectiveness that are suitable in different problems.

The B-Hash and B*-Hash Map index structures insertion, deletion and selection functions
theoretical best case (record references set perfect storage distribution in the B-Hash - B*-

Hash Map B-tree and B*-tree index structures) average time complexity is approximately:

n

O logru+1(3)) (4.1

123

Chapter 5

Computational study

5.1 Development environment

The B-tree, B*-tree, B-Hash and B*-Hash Map index structures and functions were
developed and implemented in C programming language utilizing the CLion and Visual
Studio IDEs. Furthermore a set of integration and unit tests is provided and applied to
the index structures functions for the structures functionality test coverage and quality
assurance combining them with the Valgrind Memcheck and Massif tools for inefficient
and problematic memory usage - management detection.

The software packages of the developed and implemented B-tree, B*-tree, B-Hash Map
and B*-Hash Map index structures and a set of quality assurance unit, integration tests

and testing tools are provided completely documented on GitHub.

5.2 Computational process

The computational study was performed as an analysis, evaluation and comparison of
the B-tree, B*-tree, B-Hash and B*-Hash Map index structures insertion, deletion and
selection functions time performance through a set of computational experiments. The

computational experiments were applied on constructed and real data.

Furthermore, the computational study has been performed on a 32-core Intel Xeon CPU
E5-2630 v3 2.40GHz with 128 GB of main memory, a clock of 3.2 GHz, an L1 code cache
of 32 KB per core, an L1 data cache of 32 KB per core, an L2 cache of 256 KB per core,
an L3 cache of 20 MB and a memory bandwidth of 41.6 GB/s, running under Ubuntu
16.04.6 LTS.

124

https://github.com/SalakosSot

5.21 Computational process on synthetic data

This computational process was conducted as an average time performance approximation
of the B-tree, B*-tree, B-Hash and B*-Hash Map index structures insertion, deletion and

selection functions execution time in a set of synthetic data.

Each individual synthetic dataset is an RDBMS table stored record that is structurally
composed of a record primary key field and an auxiliary record field of integer type. The
set of these 100,000 records is stored in a dynamic array structure in an ascending sorted
arraignment - order based on the record primary key field. Then a random reordering -
rearrangement process of this input data set was repeatedly performed 100 times. Specifically
each record that is stored in the dynamic array structure switches position with a randomly
selected record that is stored in the array structure. This procedure was repeated 100 times
for the whole stored records set rearrangement in order to randomly be constructed the

set of 100,000 records.

This 100,000 records set references are stored in the B-tree, B*-tree, B-Hash and B*-
Hash Map index structures that are linked to the RDBMS relational table that contains
these records utilizing the record insertion function of each individual index structure.
Then, the record references set insertion process time is measured and stored. In addition,
the B-tree and B*-tree index structures internal and leaf nodes, the record references that
are stored in the leaf and internal nodes of the index structures and the structures height
are measured and stored. The average nodes, nodes stored record references and height of
the B-Hash and B*-Hash Map B-tree and B*-tree index structures are measured. After the
insertion process completion, the record references set is selected from the B-tree, B -tree,
B-Hash and B*-Hash Map index structures based on the primary key field of each record
using the selection function and the total selection process time is measured and stored.
As all the record references are stored in the B-tree, B*-tree, B-Hash and B*-Hash Map
index structures, the complete - full scan and selection process of all the stored record
references of the index structures is preformed based on the auxiliary record field that is
the same for all the records. The full selection process time is also measured and stored.
Finally, a rearrangement - reconstruction process of the dynamic array structure records
set is implemented. Then, the deletion of all record references and records that had been
inserted in the structures was performed and the completion time of the overall deletion

operation was measured and stored.

125

This computational process was repeated 10,000 times for each node capacity of the
B-tree, B*-tree, B-Hash and B*-Hash Map index structures in a capacity range from 11 to
501 stored record references with an increment factor of 10. For each node capacity, the
average of 10,000 measurements taken for each operation was calculated. The B-Hash and
B*-Hash Map index structures are composed of 10 B-tree and B*-tree index structures. In

addition, the total average execution time of each individual function was calculated.

The above set of computational - measurement experiments was implemented separately
for the B-tree, B*-tree, B-Hash and B*-Hash Map index structures in discrete computational
experiments. Each computation was implemented using both the records sets with records
that contain primary key fields of integer and string type. The structures that are functionally
and structurally based on an record integer primary key field use the interpolation search
algorithm for the nodes stored records location. The structures that are based on a record
string primary key field use the binary search algorithm for the nodes stored records

location.

126

average execution time (sec)

Computational study results of insertion and deletion functional processes

average time performance

Fig. 5.1 represents the average time performance of the B-tree index structure insertion

and deletion functional processes. The utilized records set consists of records with primary

key fields of integer type.

Figure 5.1: Functional process of B-tree index structure insertion and deletion average time performance

0.5

B-tree index structure
Insertion and Deletion

0.45
04—
035 —

03

0.2

DiE W

0.1

0.05 —

Insertion functional process
Deletion functional process

50 100 150 200

250 300
node storage capacity

350

400

450

127

500

0.5

0.45

0.4

o
&)
o

e
w

average execution time (sec)
o
b i
%] w

=
o

0.1

0.05

Fig. 5.2 represents the average time performance of the B-tree index structure insertion
and deletion functional processes. The utilized records set is composed of records with

primary key fields of string type.

Figure 5.2: Functional process of B-tree index structure insertion and deletion average time performance

B-tree index structure
Insertion and Deletion

Insertion functional process
Deletion functional process

50 100 150 200 250 300 350 400 450
node storage capacity

128

500

0.5

0.45

0.4

o
w
4]

o
w

average execution time (sec)
(=]
< o
o (&)

o
o

0.1

0.05

Fig. 5.3 represents the average time performance of the B*-tree index structure insertion

and deletion functional processes. The utilized records set is composed of records with

primary key fields of integer type.

Figure 5.3: Functional process of B-tree index structure insertion and deletion average time performance

B+-tree index structure
Insertion and Deletion

Insertion functional process
Deletion functional process

50 100 150 200 250 300 350 400
node storage capacity

450

129

500

average execution time (sec)

0.5

0.45

04

0.35

0.3

0.25

02

0.156

0.1

0.05

Fig. 5.4 represents the average time performance of the B*-tree index structure insertion

key fields of string type.

and deletion functional processes. The utilized records set consists of records with primary

Figure 5.4: Functional process of B*-tree index structure insertion and deletion average time performance

B+-tree index structure
Insertion and Deletion

Insertion functional process
Deletion functional process

50

100

150

200

250 300
node storage capacity

350

400

450

130

500

average execution time (sec)

Fig. 5.5 represents the average time performance of the B-Hash Map index structure
insertion and deletion functional processes. The utilized records set is composed of records

with primary key fields of integer type.

Figure 5.5: Functional process of B-Hash Map index structure insertion and deletion average time
performance

BHash Map index structure
Insertion and Deletion

0.5 T T I I
Insertion functional process
Deletion functional process
0.45 — 2
04 —
0.35 —

0.25 — &

0.2 [
0.15 M —
0.1 — i
0.05 —
0 | | | | | | | | | |
50 100 150 200 250 300 350 400 450 500

node storage capacity

131

average execution time (sec)

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.16

0.1

0.05

Fig. 5.6 represents the average time performance of the B-Hash Map index structure

with primary key fields of string type.

BHash Map index structure
Insertion and Deletion

insertion and deletion functional processes. The utilized records set is composed of records

Figure 5.6: Functional process of B-Hash Map index structure insertion and deletion average time
performance

Insertion functional process
Deletion functional process

50

100

150

200

250 300
node storage capacity

350

400

450

132

500

Fig. 5.7 represents the average time performance of the B*-Hash Map index structure
insertion and deletion functional processes. The utilized records set consists of records

with primary key fields of integer type.

Figure 5.7: Functional process of B*-Hash Map index structure insertion and deletion average time
performance

BplusHash Map index structure
Insertion and Deletion

0:5 | T T |
Insertion functional process
Deletion functional process
0.45 — 4
04— Wi
0.35 — =

e
w
I

|

average execution time (sec)
o
e i
S o
T T
| |

|

0.1 |

0.05 — =

| | | | | | | | | |
0
50 100 150 200 250 300 350 400 450 500
node storage capacity

133

average execution time (sec)

insertion and deletion functional processes. The utilized records set is composed of records

with primary key fields of string type.

Figure 5.8: Functional process of B*-Hash Map index structure insertion and deletion average time
performance

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Fig. 5.8 represents the average time performance of the B*-Hash Map index structure

BplusHash Map index structure

Insertion and Deletion

Insertion functional process
Deletion functional process

50

100

160

200

250
node storage capacity

300

350

400

450

134

500

0.3

0.28

0.26

0.24

o o
= o o
[+-] nN nN

average execution time (sec)

o
=

0.14

0.12

0.1

Fig. 5.9 represents the average time performance of the B-tree, B*-tree, B-Hash Map
and B*-Hash Map index structures insertion functional processes. The utilized records sets

are composed of records with primary key fields of integer and string type.

Figure 5.9: Functional processes of the B-tree, B*-tree, B-Hash Map and B*-Hash Map index structures
insertion average time performance

Insertion functional process

I I I I I

B-tree index structure - structural arraignment by integer primary key field
B-tree index structure - structural arraignment by string primary key field
B+-free index structure - structural arraignment by integer primary key field
B+-tree index structure - structural arraignment by string primary key field
B-Hash Map index structure - structural arraignment by integer primary key field
B-Hash Map index structure - structural arraignment by string primary key field
B+-Hash Map index structure - structural arraignment by integer primary key field —
B+-Hash Map index structure - structural arraignment by string primary key field

50 100 150 200 250 300 350 400 450 500
node storage capacity

135

0.3

0.28

0.26

0.24

o o
= o o
[+-] nN nN

average execution time (sec)

o
=

0.14

0.12

0.1

Fig. 5.10 represents the average time performance of the B-tree, B*-tree, B-Hash Map

and B*-Hash Map index structures deletion functional processes. The utilized records sets

are composed of records with primary key fields of integer and string type.

Figure 5.10: Functional processes of the B-tree, B*-tree, B-Hash Map and B*-Hash Map index structures

deletion average time performance

Deletion functional process

B-tree index structure - structural arraignment by integer primary key field
B-tree index structure - structural arraignment by string primary key field
B+-free index structure - structural arraignment by integer primary key field
B+-tree index structure - structural arraignment by string primary key field
B-Hash Map index structure - structural arraignment by integer primary key field
B-Hash Map index structure - structural arraignment by string primary key field
B+-Hash Map index structure - structural arraignment by integer primary key field —
B+-Hash Map index structure - structural arraignment by string primary key field

50

100

150

200

250
node storage capacity

300

350 400 450 500

136

Computational study results of selection by primary key field and full scan - selection

functional processes average time performance

Fig. 5.11 represents the average time performance of the B-tree index structure selection
by primary key field and full scan - selection functional processes. The utilized records set

consists of records with primary key fields of integer type.

Figure 5.11: Functional process of B-tree index structure selection by primary key field and full scan -
selection average time performance

B-tree index structure
Selection

I [[|
Selection by primary key field functional process
Selection by multiple fields functional process

average execution time (sec)

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

| | | | | | | | | |
50 100 160 200 250 300 350 400 450 500
node storage capacity

137

Fig. 5.12 represents the average time performance of the B-tree index structure selection
by primary key field and full scan - selection functional processes. The utilized records set

is composed of records with primary key fields of string type.

Figure 5.12: Functional process of B-tree index structure selection by primary key field and full scan -
selection average time performance

B-tree index structure

Selection
05 T I I]

Selection by primary key field functional process
Selection by multiple fields functional process

0.45 — e

04— i

o
o w
w &
[I
| |

average execution time (sec)
o
»n
(4]
I
|

é

o
o
I

01— =3

0.05 — =

| | | | | | | | | I
0
50 100 150 200 250 300 350 400 450 500
node storage capacity

138

0.45

0.4

0.35

0.3

0.25

average execution time (sec)

Fig. 5.13 represents the average time performance of the B*-tree index structure selection
by primary key field and full scan - selection functional processes. The utilized records set

consists of records with primary key fields of integer type.

Figure 5.13: Functional process of B*-tree index structure selection by primary key field and full scan -
selection average time performance

B+-tree index structure

Selection
0.5 T T I I I
Selection by primary key field functional process
Selection by multiple fields functional process
| | | | | | | | | |
50 100 150 200 250 300 350 400 450 500

node storage capacity

139

average execution time (sec)

0.5

0.2

0.1

0.05

Fig. 5.14 represents the average time performance of the B*-tree index structure selection
by primary key field and full scan - selection functional processes. The utilized records set

is composed of records with primary key fields of string type.

Figure 5.14: Functional process of B*-tree index structure selection by primary key field and full scan -
selection average time performance

B+-tree index structure
Selection

Selection by primary key field functional process
Selection by multiple fields functional process

50

100

150

200

250 300
node storage capacity

350

400

450

140

500

average execution time (sec)

0.5

0.45

0.4

0.35

0.3

0.25

02

0.156

0.1

0.05

Fig. 5.16 represents the average time performance of the B-Hash Map index structure
selection by primary key field and full scan - selection functional processes. The utilized

records set consists of records with primary key fields of integer type.

Figure 5.15: Functional process of B-Hash Map index structure selection by primary key field and full scan
- selection average time performance

BHash Map index structure

Selection
I I [[I
Selection by primary key field functional process
Selection by multiple fields functional process
| | | | | | | | | |
50 100 150 200 250 300 350 400 450 500

node storage capacity

141

average execution time (sec)

Fig. 5.53 represents the average time performance of the B-Hash Map index structure
selection by primary key field and full scan - selection functional processes. The utilized

records set consists of records with primary key fields of string type.

Figure 5.16: Functional process of B-Hash Map index structure selection by primary key field and full scan
- selection average time performance

BHash Map index structure

Selection
033 I T T I T

Selection by primary key field functional process
Selection by multiple fields functional process

0.45 — 2

04 — ¥

0.35 — 3t

0.25 — &

0.16 — =

0.1 — 1

| | | | | | | | | |
0
50 100 150 200 250 300 350 400 450 500
node storage capacity

142

average execution time (sec)

Fig. 5.17 represents the average time performance of the B*-Hash Map index structure
selection by primary key field and full scan - selection functional processes. The utilized

records set is composed of records with primary key fields of integer type.

Figure 5.17: Functional process of B*-Hash Map index structure selection by primary key field and full scan
- selection average time performance

BplusHash Map index structure

Selection
0.5 T T T T T T

Selection by primary key field functional process
Selection by multiple fields functional process

0.4 — 2l

0.35 — =

03— 2]

0.25 &

0.15 = ol

0.05 [~ =

| | | | | | | | | |
0
50 100 150 200 250 300 350 400 450 500
node storage capacity

143

average execution time (sec)

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Fig. 5.18 represents the average time performance of the B*-Hash Map index structure
selection by primary key field and full scan - selection functional processes. The utilized

records set is composed of records with primary key fields of string type.

Figure 5.18: Functional process of B*-Hash Map index structure selection by primary key field and full scan
- selection average time performance

BplusHash Map index structure

Selection
I T T I I |
Selection by primary key field functional process
Selection by multiple fields functional process
| | | | | | | | | |
50 100 160 200 250 300 350 400 450 500

node storage capacity

144

average execution time (sec)

0.25

0.15

0.1~

0.05

Fig. 5.19 represents the average time performance of the B-tree, B*-tree, B-Hash Map

and B*-Hash Map index structures selection by primary key field functional processes. The

utilized records sets are composed of records with primary key fields of integer and string

type.

Figure 5.19: Functional processes of B-tree, B*-tree, B-Hash Map and B*-Hash Map index structures selection

by primary key field average time performance

Selection functional process by record primary key field
T

B-tree index structure - structural arraignment by integer primary key field

B-tree index structure - structural arraignment by string primary key field

B+-tree index structure - structural arraignment by integer primary key field
B+-tree index structure - structural arraignment by string primary key field
B-Hash Map index structure - structural arraignment by integer primary key field
B-Hash Map index structure - structural arraignment by string primary key field
B+-Hash Map index structure - structural arraignment by integer primary key field
B+-Hash Map index structure - structural arraignment by string primary key field

50

100

150

200

250
node storage capacity

300 350 400 450

145

500

average execution time (sec)

0.025

0.02

0.015

0.01

Fig. 5.20 represents the average time performance of the B-tree, B*-tree, B-Hash Map

and B*-Hash Map index structures full records scan and selection by multiple record fields

functional processes. The utilized records sets are composed of records with primary key

fields of integer and string type.

Figure 5.20: Functional processes of B-tree, B*-tree, B-Hash Map and B*-Hash Map index structures full
records scan and selection by multiple record fields average time performance

Selection functional process by multiple record fields
T

B-tree index structure - structural arraignment by integer primary key field

B-tree index structure - structural arraignment by string primary key field

B+-tree index structure - structural arraignment by integer primary key field
B+-free index structure - structural arraignment by string primary key field
B-Hash Map index structure - structural arraignment by integer primary key field
B-Hash Map index structure - structural arraignment by string primary key field
B+-Hash Map index structure - structural arraignment by integer primary key field
B+-Hash Map index structure - structural arraignment by string primary key field

f— o — ’vﬁ!‘:‘_v‘

A

Aa._ﬁ'

_b N e A —

N e

50

100

150

250
node storage capacity

300

350 400 450

146

500

average nodes

25

0.5

Computational study results of average internal and leaf nodes distribution in the

index structures

Fig. 5.21 represents the average structural distribution of the B-tree index structure

nodes in internal and leaf nodes. The utilized records set is composed of records with

primary key fields of integer type.

Figure 5.21: Average structural distribution of the B-tree index structure nodes in internal and leaf nodes

x10*

B-tree index structure
Internal and Leaf nodes

Internal nodes
Leaf nodes

50

100

150

200

250
node storage capacity

300

350

400

450

147

500

average nodes

Fig. 5.22 represents the average structural distribution of the B-tree index structure
nodes in internal and leaf nodes. The utilized records set is composed of records with

primary key fields of string type.

Figure 5.22: Average structural distribution of the B-tree index structure nodes in internal and leaf nodes

B-tree index structure
x10* Internal and Leaf nodes
25 I | T
Internal nodes
Leaf nodes

05—

| | | | | [I 1 t i
50 100 150 200 250 300 350 400 450 500
node storage capacity

148

average nodes

Fig. 5.23 represents the average structural distribution of the B*-tree index structure
nodes in internal and leaf nodes. The utilized records set is composed of records with

primary key fields of integer type.

Figure 5.23: Average structural distribution of the B*-tree index structure nodes in internal and leaf nodes

B+-tree index structure

x10% Internal and Leaf nodes
28 | T T
Internal nodes
Leaf nodes

05— =

| | | | | I I 1 1 i
50 100 150 200 250 300 350 400 450 500
node storage capacity

149

average nodes

Fig. 5.24 represents the average structural distribution of the B*-tree index structure
nodes in internal and leaf nodes. The utilized records set consists of records with primary

key fields of string type.

Figure 5.24: Average structural distribution of the B*-tree index structure nodes in internal and leaf nodes

B+-tree index structure
%10* Internal and Leaf nodes
2.5 I I |
Internal nodes
Leaf nodes

05

I] I i } |
50 100 150 200 250 300 350 400 450 500
node storage capacity

150

average nodes

Fig. 5.25 represents the average structural distribution of the B-Hash Map index structure
B-tree nodes in internal and leaf nodes. The utilized records set is composed of records

with primary key fields of integer type.

Figure 5.25: Average structural distribution of the B-Hash Map index structure B-tree nodes in internal and
leaf nodes

BHash Map B-tree index structure

Internal and Leaf nodes
2500 T T T T

Internal nodes
Leaf nodes

2000 —]

1500

1000 =

500 — =

50 100 150 200 250 300 350 400 450 500
node storage capacity

151

average nodes

Fig. 5.26 represents the average structural distribution of the B-Hash Map index structure
B-tree nodes in internal and leaf nodes. The utilized records set is composed of records

with primary key fields of string type.

Figure 5.26: Average structural distribution of the B-Hash Map index structure B-tree nodes in internal and
leaf nodes

BHash Map B-tree index structure

Internal and Leaf nodes
2500 T T T T

Internal nodes
Leaf nodes

2000 — =l

1500
1000 =

500 — =

50 100 150 200 250 300 350 400 450 500
node storage capacity

152

average nodes

Fig. 5.27 represents the average structural distribution of the B*-Hash Map index
structure B*-tree nodes in internal and leaf nodes. The utilized records set is composed of

records with primary key fields of integer type.

Figure 5.27: Average structural distribution of the B*-Hash Map index structure B*-tree nodes in internal
and leaf nodes

BplusHash Map B+-tree index structure

Internal and Leaf nodes
2500 T T T T

Internal nodes
Leaf nodes

2000 — =
1500 — =
1000 — |

500 — =1

50 100 150 200 250 300 350 400 450 500
node storage capacity

153

average nodes

Fig. 5.28 represents the average structural distribution of the B*-Hash Map index
structure B*-tree nodes in internal and leaf nodes. The utilized records set is composed of

records with primary key fields of string type.

Figure 5.28: Average structural distribution of the B*-Hash Map index structure B*-tree nodes in internal
and leaf nodes

BplusHash Map B+-tree index structure
Internal and Leaf nodes

2500 T T T T

Internal nodes
Leaf nodes

2000 — =

1500

1000 — =

500 [— =1

50 100 150 200 250 300 350 400 450 500

node storage capacity

154

average nodes stored record references

Computational study results of average internal and leaf nodes stored records distribution

in the index structures

Fig. 5.29 represents the average structural distribution of the B-tree index structure

nodes stored records in internal and leaf nodes. The utilized records set consists of records

with primary key fields of integer type.

Figure 5.29: Average structural distribution of the B-tree index structure nodes stored records in internal

and leaf nodes

x10*

Internal and Leaf nodes stored record references

B-tree index structure

Internal nodes
Leaf nodes

50

100

150

200

250
node storage capacity

300

350

400

450

155

500

average nodes stored record references

Fig. 5.30 represents the average structural distribution of the B-tree index structure

nodes stored records in internal and leaf nodes. The utilized records set is composed of

records with primary key fields of string type.

Figure 5.30: Average structural distribution of the B-tree index structure nodes stored records in internal

and leaf nodes

x10*

Internal and Leaf nodes stored record references

B-tree index structure

Internal nodes
Leaf nodes

50

100

150

200

250
node storage capacity

300

350

400

450

156

500

average nodes stored record references

Fig. 5.31 represents the average structural distribution of the B*-tree index structure

nodes stored records in internal and leaf nodes. The utilized records set is composed of

records with primary key fields of integer type.

Figure 5.31: Average structural distribution of the B*-tree index structure nodes stored records in internal

and leaf nodes

B+-tree index structure
x10% Internal and Leaf nodes stored record references

Internal nodes
Leaf nodes

50 100 150 200 250 300 350 400 450
node storage capacity

157

500

average nodes stored record references

Fig. 5.32 represents the average structural distribution of the B*-tree index structure

nodes stored records in internal and leaf nodes. The utilized records set is composed of

records with primary key fields of string type.

Figure 5.32: Average structural distribution of the B*-tree index structure nodes stored records in internal

and leaf nodes

x10*

Internal and Leaf nodes stored record references

B+-tree index structure

Internal nodes
Leaf nodes

50

100

150

200

250
node storage capacity

300

350

400

450

158

500

average nodes stored record references

Fig. 5.33 represents the average structural distribution of the B-Hash Map index structure
B-tree nodes stored records in internal and leaf nodes. The utilized records set is composed

of records with primary key fields of integer type.

Figure 5.33: Average structural distribution of the B-Hash Map index structure B-tree nodes stored records
in internal and leaf nodes

BHash Map B-tree index structure
Internal and Leaf nodes stored record references

11000 T T T T

Internal nodes
Leaf nodes

10000 —

9000 =

8000 — i

7000 — el

6000 — =1

5000 — =i

4000 — &

3000 — =

2000 — =

1000 &l

; I ! | I | | |
50 100 150 200 250 300 350 400 450 500
node storage capacity

159

average nodes stored record references

Fig. 5.34 represents the average structural distribution of the B-Hash Map index structure
B-tree nodes stored records in internal and leaf nodes. The utilized records set consists of

records with primary key fields of string type.

Figure 5.34: Average structural distribution of the B-Hash Map index structure B-tree nodes stored records
in internal and leaf nodes

BHash Map B-tree index structure
Internal and Leaf nodes stored record references

11000 T T T T

Internal nodes
Leaf nodes

10000 |~

9000 =

8000 — il

7000 —)

6000 — =

5000 — =

4000 — =3

3000 — =

2000 — il

1000 =

; | | | | | | |
50 100 150 200 250 300 350 400 450 500
node storage capacity

160

average nodes stored record references

Fig. 5.35 represents the average structural distribution of the B*-Hash Map index
structure B*-tree nodes stored records in internal and leaf nodes. The utilized records

set is composed of records with primary key fields of integer type.

Figure 5.35: Average structural distribution of the B*-Hash Map index structure B*-tree nodes stored records
in internal and leaf nodes

BplusHash Map B+-tree index structure
Internal and Leaf nodes stored record references

11000 I : ‘ ‘

Internal nodes
Leaf nodes

10000
9000 — i
8000 — —
7000 — |
6000 — -
5000 — i
4000 — —
3000 — o]

2000 — =

1000 !4 E
} | | | | | |]

50 100 150 200 250 300 350 400 450 500

node storage capacity

161

average nodes stored record references

Fig. 5.36 represents the average structural distribution of the B*-Hash Map index
structure B*-tree nodes stored records in internal and leaf nodes. The utilized records

set is composed of records with primary key fields of string type.

Figure 5.36: Average structural distribution of the B*-Hash Map index structure B*-tree nodes stored records
in internal and leaf nodes

BplusHash Map B+-tree index structure
Internal and Leaf nodes stored record references

11000 T T T T

Internal nodes
Leaf nodes

10000

9000 — =l

8000 [~ il

7000 [~ sl

6000 [— =l

5000 [~ =

4000 — =

3000 — =l

2000 il

1000 [~ il

; | | | | | I |
50 100 150 200 250 300 350 400 450 500
node storage capacity

162

average height

Computational study results of average height

Fig. 5.37 represents the average B-tree index structure height. The utilized records set

is composed of records with primary key fields of integer type.

Figure 5.37: Average B-tree index structure height

B-tree index structure
Height

50 100 150 200 250 300 350 400 450
node storage capacity

163

500

Fig. 5.38 represents the average B-tree index structure height. The utilized records set

is composed of records with primary key fields of string type.

Figure 5.38: Average B-tree index structure height

B-tree index structure
Height

average height

50 100 150 200 250 300 350 400 450 500
node storage capacity

164

average height

Fig. 5.39 represents the average B*-tree index structure height. The utilized records set

is composed of records with primary key fields of integer type.

Figure 5.39: Average B*-tree index structure height

B+-tree index structure
Height

50 100 150 200 250 300 350 400
node storage capacity

450

165

500

Fig. 5.40 represents the average B*-tree index structure height. The utilized records set

consists of records with primary key fields of string type.

Figure 5.40: Average B*-tree index structure height

B+-tree index structure
Height

average height

50 100 150 200 250 300 350 400 450 500
node storage capacity

166

average height

Fig. 5.41 represents the average B-Hash Map index structure B-tree height. The utilized

records set is composed of records with primary key fields of integer type.

Figure 5.41: Average B-Hash Map index structure B-tree height

BHash Map B-tree index structure
Height

50

100

150

200 250 300 350 400
node storage capacity

450

167

500

average height

Fig. 5.42 represents the average B-Hash Map index structure B-tree height. The utilized

records set is composed of records with primary key fields of string type.

Figure 5.42: Average B-Hash Map index structure B-tree height

BHash Map B-tree index structure
Height

50 100 150 200 250 300 350 400 450
node storage capacity

168

500

average height

node storage capacity

169

Fig. 5.43 represents the average B*-Hash Map index structure B*-tree height. The
utilized records set is composed of records with primary key fields of integer type.
Figure 5.43: Average B*-Hash Map index structure B*-tree height
BplusHash Map B+-tree index structure
Height

T \ \ \ |
| | | | | | | | | |
50 100 150 200 250 300 350 400 450 500

average height

Fig. 5.44 represents the average B*-Hash Map index structure B*-tree height. The

utilized records set consists of records with primary key fields of string type.

Figure 5.44: Average B*-Hash Map index structure B*-tree height

BplusHash Map B+-tree index structure
Height
I I T I 1

50 100 150 200 250 300 350 400 450 500
node storage capacity

170

5.2.2 Computational process on real data

This computational process was conducted as an average time performance approximation
of the B-tree, B*-tree, B-Hash and B*-Hash Map index structures insertion, deletion and

selection functions execution time in a set of real data.

The utilized dataset consists of real anonymized data and constitutes a RDBMS relational
table stored records set of 1, 056, 320 bank transaction operations. These stored transnational
operations are processes of crediting and debiting funds to customers bank accounts and
funds transfer between banking companies - institutions. The dataset was constructed and
minimized in order to be stored as a RDBMS table to which the B-tree, B*-tree, B-Hash and
B*-Hash Map index structures are linked and store the relational table record references

set. The RDBMS table stored records are composed of the following data parts:

The transaction identifier - primary key field (string type).
e The customer bank account identifier (string type).

e The transaction operation type (string type).

Debit operation.

Credit operation.

e The transaction operation (string type).

Cash withdrawal operation.

Remittance to another bank operation.

Credit in cash operation.

Collection from another bank operation.

Credit card withdrawal operation.

e The transaction operation full date-time (string type).

171

A subset of 500,000 records objects (part of the 1,056, 320 records dataset) is stored in a
dynamic array structure in an ascending sorted arraignment - order based on the stored

records transaction operation real date-time.

This 500,000 records set references are stored in the B-tree, B*-tree, B-Hash and B*-
Hash Map index structures that are linked to the RDBMS relational table that contains these
records utilizing the record insertion function of each individual index structure. Then the
record references set insertion process time is measured and stored. In addition the internal
and leaf nodes, the record references that are stored in the leaf and internal nodes of the
B-tree and B*-tree index structures and the structures height are measured and stored.
For the B-Hash and B*-Hash Map index structures B-tree and B*-tree substructures the
average nodes, nodes stored record references and height are measured. After the insertion
process the record references set is selected from the B-tree, B*-tree, B-Hash and B*-Hash
Map index structures based on the primary key field of each record and the total selection
process time is measured and stored. As all the record references are stored in the B-tree,
B*-tree, B-Hash and B*-Hash Map index structures the complete - full scan and selection
process of all the stored record references of the index structures is preformed based on
the auxiliary record field that is the same for all the records. The full selection process time
is also measured and stored. Then a random reordering - rearrangement process of the
input data set was repeatedly performed 100 times. Specifically each record that is stored
in the dynamic array structure switches position with a randomly selected record that is
stored in the array structure. This procedure was repeated 100 times for the whole stored
records set rearrangement in order to randomly be constructed the set of 500,000 records.
Then the deletion of all records that had been inserted in the structures was performed
and the completion time of the overall deletion operation was measured and stored. After
the deletion process the dataset array structure is reconstructed - rearranged to its initial

state to be reused.

This computational process was repeated 5,000 times for each node capacity of the B-
tree, B*-tree, B-Hash and B*-Hash Map index structures in a capacity range from 11 to
501 stored record references with an increment factor of 10. For each node capacity, the
average of 5,000 measurements taken for each function was calculated. The B-Hash and
B*-Hash Map index structures are composed of 10 B-tree and B*-tree index structures. In

addition, the total average execution time of each individual function was calculated.

172

average execution time (sec)

25

The above set of computational - measurement processes was implemented separately
for the B-tree, B*-tree, B-Hash and B*-Hash Map index structures in discrete computational

procedures.

Computational study results of insertion and deletion functional processes

average time performance

Fig. 5.45 represents the average time performance of the B-tree index structure insertion

and deletion functional processes.

Figure 5.45: Functional process of B-tree index structure insertion and deletion average time performance

B-tree index structure
Insertion and Deletion

Insertion functional process
Deletion functional process

50 100 160 200 250 300 350 400 450
node storage capacity

173

500

average execution time (sec)

25

Fig. 5.46 represents the average time performance of the B*-tree index structure insertion

and deletion functional processes.

Figure 5.46: Functional process of B*-tree index structure insertion and deletion average time performance

B+-tree index structure
Insertion and Deletion

T T I I
Insertion functional process
Deletion functional process

50

100

150

200

250 300 350 400 450 500
node storage capacity

174

average execution time (sec)

Fig. 5.47 represents the average time performance of the B-Hash Map index structure

insertion and deletion functional processes.

Figure 5.47: Functional process of B-Hash Map index structure insertion and deletion average time

performance
BHash Map index structure
Insertion and Deletion

I I [|

Insertion functional process

Deletion functional process
| | | | | | | | | I

50 100 150 200 250 300 350 400 450 500

node storage capacity

175

average execution time (sec)

25

Fig. 5.48 represents the average time performance of the B*-Hash Map index structure

insertion and deletion functional processes.

Figure 5.48: Functional process of B*-Hash Map index structure insertion and deletion average time
performance

BplusHash Map index structure
Insertion and Deletion

[I I [|
Insertion functional process
Deletion functional process

50 100 150 200 250 300 350 400 450 500
node storage capacity

176

average execution time (sec)

Fig. 5.49 represents the average time performance of the B-tree, B*-tree, B-Hash Map

and B*-Hash Map index structures insertion functional processes.

Figure 5.49: Functional processes of the B-tree, B*-tree, B-Hash Map and B*-Hash Map index structures
insertion average time performance

Insertion functional process

I I [
B-tree index struciure
B+-tree index structure
B-Hash Map index structure
e B+-Hash Map index structure

25

| | | | | | | | | I
1
50 100 150 200 250 300 350 400 450 500
node storage capacity

177

average execution time (sec)

Fig. 5.50 represents the average time performance of the B-tree, B*-tree, B-Hash Map

and B*-Hash Map index structures deletion functional processes.

Figure 5.50: Functional processes of the B-tree, B*-tree, B-Hash Map and B*-Hash Map index structures
deletion average time performance

Deletion functional process

I I [
B-tree index struciure
B+-tree index structure
B-Hash Map index structure
e B+-Hash Map index structure

25

| | | | | | | | | I
1
50 100 150 200 250 300 350 400 450 500
node storage capacity

178

Computational study results of selection by primary key field and full scan - selection

functional processes average time performance

Fig. 5.51 represents the average time performance of the B-tree index structure selection

by primary key field and full scan - selection functional processes.

Figure 5.51: Functional process of B-tree index structure selection by primary key field and full scan -
selection average time performance

B-tree index structure

4.5

w
]

w

average execution time (sec)
M
R [9;]

2]

0.5

Selection

Selection by primary key field functional process
Selection by multiple fields functional process

50

100

160

200

250
node storage capacity

300

350

400 450

179

500

average execution time (sec)

Fig. 5.52 represents the average time performance of the B*-tree index structure selection

by primary key field and full scan - selection functional processes.

Figure 5.52: Functional process of B*-tree index structure selection by primary key field and full scan -
selection average time performance

B+-tree index structure

Selection
05 T T I I T

Selection by primary key field functional process
Selection by multiple fields functional process

0.45 - =

0.4 — i
0.35 - =

0.3 — i

0.15 =

01 — =

0.05 - —

| | | | | | | | | |
0
50 100 150 200 250 300 350 400 450 500
node storage capacity

180

average execution time (sec)

Fig. 5.53 represents the average time performance of the B-Hash Map index structure

selection by primary key field and full scan - selection functional processes.

Figure 5.53: Functional process of B-Hash Map index structure selection by primary key field and full scan
- selection average time performance

BHash Map index structure

Selection
0.5 T T I I |

Selection by primary key field functional process
Selection by multiple fields functional process

0.45 - 2l

04— |

0.35 - G

0.3 — |

0.16 - =

0.1 — ol

0.05 [~ =

| | | | | | | | | I
0]
50 100 150 200 250 300 350 400 450 500
node storage capacity

181

4.5

£
o

w

average execution time (sec)
N
[(42

)

0.5

Fig. 5.54 represents the average time performance of the B*-Hash Map index structure

selection by primary key field and full scan - selection functional processes.

Figure 5.54: Functional process of B*-Hash Map index structure selection by primary key field and full scan
- selection average time performance

BplusHash Map index structure

Selection
I I I [[I
Selection by primary key field functional process
Selection by multiple fields functional process
I | | 1 I I I I I I
50 100 150 200 250 300 350 400 450 500

node storage capacity

182

average execution time (sec)

Fig. 5.55 represents the average time performance of the B-tree, B*-tree, B-Hash Map

and B*-Hash Map index structures selection by primary key field functional processes.

Figure 5.55: Functional processes of B-tree, B*-tree, B-Hash Map and B*-Hash Map index structures selection
by primary key field average time performance

5 Selection functional process by record primary key field

I I I [
B-tree index siructure
B+-tree index structure
B-Hash Map index structure
B+-Hash Map index structure

9
T
|

o
T
|

50 100 150 200 250 300 350 400 450 500
node storage capacity

183

0.12

0.11

0.1

o
=1
©

average execution time (sec)
(=
[=]
[+=]

0.07

0.06

0.05

Fig. 5.56 represents the average time performance of the B-tree, B*-tree, B-Hash Map
and B*-Hash Map index structures full records scan and selection by multiple record fields

functional processes.

Figure 5.56: Functional processes of B-tree, B*-tree, B-Hash Map and B*-Hash Map index structures full
records scan and selection by multiple record fields average time performance

Selection functional process by multiple record fields

T I I I

B-tree index structure
B+-tree index structure
B-Hash Map index structure
B+-Hash Map index structure

50 100 150 200 250 300 350 400 450 500
node storage capacity

184

average nodes

x10%

Computational study results of average internal and leaf nodes distribution in the

index structures

Fig. 5.57 represents the average structural distribution of the B-tree index structure

nodes in internal and leaf nodes.

Figure 5.57: Average structural distribution of the B-tree index structure nodes in internal and leaf nodes

B-tree index structure
Internal and Leaf nodes

Internal nodes
Leaf nodes

50

100

1560

200

250
node storage capacity

300

350

400

450

185

500

average nodes

x10*

Fig. 5.58 represents the average structural distribution of the B*-tree index structure

nodes in internal and leaf nodes.

Figure 5.58: Average structural distribution of the B*-tree index structure nodes in internal and leaf nodes

B+-tree index structure
Internal and Leaf nodes

Internal nodes
Leaf nodes

50

100

150

200

250
node storage capacity

300

350

400

450

186

500

average nodes

0.8

0.6

0.4

0.2

Fig. 5.59 represents the average structural distribution of the B-Hash Map index structure

B-tree nodes in internal and leaf nodes.

Figure 5.59: Average structural distribution of the B-Hash Map index structure B-tree nodes in internal and

leaf nodes
BHash Map B-tree index structure
%104 Internal and Leaf nodes
I I I I
Internal nodes
Leaf nodes
| | | I i i f : | |
50 100 150 200 250 300 350 400 450

node storage capacity

187

500

average nodes

0.8

0.6

0.4

0.2

x10*

Fig. 5.60 represents the average structural distribution of the B*-Hash Map index

structure B*-tree nodes in internal and leaf nodes.

Figure 5.60: Average structural distribution of the B*-Hash Map index structure B*-tree nodes in internal

and leaf nodes

BplusHash Map B+-tree index structure

Internal and Leaf nodes

Internal nodes
Leaf nodes

50 100 150 200

250
node storage capacity

300

350

400

450

188

500

Computational study results of average internal and leaf nodes stored records distribution

in the index structures

Fig. 5.61 represents the average structural distribution of the B-tree index structure

nodes stored records in internal and leaf nodes.

Figure 5.61: Average structural distribution of the B-tree index structure nodes stored records in internal
and leaf nodes

B-tree index structure
% 10° Internal and Leaf nodes stored record references
F]

average nodes stored record references

4.5

e
3

w

N
3

S

]

0.5

Internal nodes
Leaf nodes

50

100

150

200

250
node storage capacity

300

350

400

450

189

500

average nodes stored record references

4.5

W
3

w

N
3

N

]

0.5

x10%

Fig. 5.62 represents the average structural distribution of the B*-tree index structure

nodes stored records in internal and leaf nodes.

Figure 5.62: Average structural distribution of the B*-tree index structure nodes stored records in internal
and leaf nodes

B+-tree index structure
Internal and Leaf nodes stored record references

Internal nodes
Leaf nodes

50 100 150 200 250 300 350 400 450
node storage capacity

190

500

average nodes stored record references

4.5

W
3

w

N
3

N

]

0.5

x10*

Fig. 5.63 represents the average structural distribution of the B-Hash Map index structure

B-tree nodes stored records in internal and leaf nodes.

Figure 5.63: Average structural distribution of the B-Hash Map index structure B-tree nodes stored records

in internal and leaf nodes

BHash Map B-tree index structure
Internal and Leaf nodes stored record references

=]

Internal nodes
Leaf nodes

50 100 150 200

250
node storage capacity

300

350

400

450

191

500

average nodes stored record references

4.5

W
3

w

N
3

N

]

0.5

x10*

Fig. 5.64 represents the average structural distribution of the B*-Hash Map index

structure B*-tree nodes stored records in internal and leaf nodes.

Figure 5.64: Average structural distribution of the B*-Hash Map index structure B*-tree nodes stored records
in internal and leaf nodes

BplusHash Map B+-tree index structure
Internal and Leaf nodes stored record references

Internal nodes
Leaf nodes

| } } | | | S |

50 100 150 200 250 300 350 400 450
node storage capacity

192

500

average height

Computational study results of average height

Fig. 5.65 represents the average B-tree index structure height.

Figure 5.65: Average B-tree index structure height

B-tree index structure
Height

50

100

1560

200

250
node storage capacity

300

350

400

450

193

500

average height

Fig. 5.66 represents the average B*-tree index structure height.

Figure 5.66: Average B*-tree index structure height

B+-tree index structure
Height

50

100

1560

200

250
node storage capacity

300

350

400

450 500

194

average height

Fig. 5.67 represents the average B-Hash Map index structure B-tree height.

Figure 5.67: Average B-Hash Map index structure B-tree height

BHash Map B-tree index structure

Height

a2

50

100

1560

200

250
node storage capacity

300

350

400

450 500

195

Fig. 5.68 represents the average B*-Hash Map index structure B*-tree height.

Figure 5.68: Average B*-Hash Map index structure B*-tree height

BplusHash Map B+-tree index structure
Height

average height

N |

50 100 150 200 250 300 350 400 450 500
node storage capacity

196

5.3 Analysis and evaluation of the computations results

5.3.1 Theoretical analysis

In-memory system B-tree and B*-tree index structures

The node size - capacity increment in the stored record references incrementally affects
the rate and analogy of the B-tree and B*-tree index structures width-wise structural
expansion in association with the structural expansion in height. Increasing the capacity of
each individual node component increases the record references that can be stored in each
node by reducing the total number of nodes required to store the record references set
that the indices contain. Consequently there is a correlation of the node capacity with the
record references set storage distribution in the nodes set, the nodes structural distribution
in internal and leaf nodes and the B-tree and B*-tree index structures height. The node
capacity increment affects the gradual reduction and eventually the balancing - stabilization

of the index structures height.

The dynamic construction and structural mutability associated with the distribution,
layout - arrangement and organization of the structures nodes and the nodes stored record
references are based on the functional property of structural stabilization — balancing of
the B-tree and B*-tree index structures insertion and deletion operations. Therefore the
dynamic mutability of the node capacity in stored record references affects the structural

formulation of the B-tree and B*-tree index structures.

Furthermore, increasing the node capacity in stored record references increases the
probability of the average simple record reference insertion - storage in a node (it is
not required the node split) of the B-tree and B*-tree index structures and therefore
increases the set of record references stored by simple storage procedure in the B-tree
and B*-tree index structures nodes reducing the node splits and the structural reordering,
rearrangement and reconstruction at the nodes and tree structural levels. This reduction in
nodes splits causes a reduction in the B-tree and B*-tree index structures average height as
the total number of internal and leaf nodes created by the node splits is reduced. Moreover
the leaf nodes set is increased with a quite higher rate related to the internal nodes as each

internal node creation (node split) requires multiple leaf nodes splits (creations). So we

197

can conclude that the B-tree and B*-tree index structures are composed of quite more leaf
nodes than internal nodes. Consequently, the nodes size - capacity of the B-tree and B*-
tree index structures has an impact on the efficiency and speed in terms of time resources
management and time performance of the insertion function. The node capacity increment

implies the average increase in the time efficiency and speed of the insertion function.

The node capacity increment in stored record references increases the probability of
the average simple deletion of a record reference from a node of the B-tree and B*-tree
index structures. Therefore increases the record references set deleted - removed by simple
deletion processes from the B-tree and B*-tree index structures nodes reducing the nodes
structural reordering, rearrangement and reconstruction operations. Reducing the set of
nodes rearrangement and reconstruction - rebuilding procedures and their application
rate has an effect on maintaining the distribution - proportion of the B-tree and B*-tree
index structures nodes in leaf and internal nodes and on keeping the height reduction
rate at a low level. Furthermore the deletion function requires on average a quite larger
set of nodes rearrangements - reconstructions related to the insertion function in order to
structurally re-balance and stabilize the B-tree and B*-tree index structures. Consequently,
the nodes capacity of the B-tree and B*-tree index structures has an impact on the efficiency
and speed in terms of time resources management and time performance of the deletion
function. The node capacity increment implies the average increase in the time efficiency

and speed of the deletion function.

The node capacity increment causes the reduction of node splitting, nodes structural
rearrangements - reconstructions (tree re-balancing operations) while increasing the set
of functional algorithmic steps for the implementation and completion of each individual

operation.

The record references location and selection in the nodes internal dynamic array storage
structures is based on the binary and interpolation node-side search functions. Reducing
the B-tree and B*-tree index structures height reduces the total number of node-level record
references location and selection operations as it reduces the nodes transitions (vertical
nodes paths size from the root node to the bottom leaf nodes level of the structures). This
reduces the average number of nodes (nodes set) where the localization-selection operations
are applied. In parallel, the node capacity increment has impact on the branching factor
increment. These factors reduce the average time of the record references selection function

based on primary key field as they reduce the average time of the stored record references

198

node-side location - selection operations and the set of node-side location - selection
operations at the structure tree level. This optimization is partially compensated by the node
storage capacity increment as the average number of stored record references contained
in each node is increased reducing the efficiency and time performance of the node-size

location selection operations.

Therefore, the storage size - capacity increment of the B-tree and B*-tree index structures
nodes affects the time resources management efficiency optimization of the primary key

field-based record references selection function.

The average height and internal nodes set reduction, the leaf nodes set increment and
the general B-tree index nodes set reduction causes the recursive transition-crossing (scan
and selection) operations between different structural levels nodes decreasing the recursion
stack operations set and the stack memory usage (depth). In addition, the node storage
capacity increment in record references affects the record references storage gathering on
fewer nodes with higher capacity, reducing the memory gaps (unused allocated memory)
in the in-memory (main memory - RAM) system. This increases the fast and efficient
management (usage) of the allocated memory by using the required memory and reducing
the location - selection time of the nodes and nodes semi-dynamic array structures memory
components - memory structural parts that the stored record references sets are contained.
This time reduction of the nodes location and selection in memory is caused as the nodes
and the stored record references sets of nodes are more dense stored and distributed in
the memory system in more continuous and larger memory chunks as dynamic array
structures. The location and transition in less and continuous large memory components -
chunks (B-tree index structure nodes) which are randomly distributed in memory (larger
memory gaps between the nodes memory parts) is time efficient and fast as the location
and transition operations in continuous memory is quite faster in compare to the location
and transition operations in more and smaller memory components (nodes with small

storage capacity) that the memory is randomly distributed and less continuous.

Consequently, the node capacity increment of the B-tree index structure affects the
time resources management efficiency optimization of the complete B-tree stored records

references set scan - selection function.

199

This full scan - selection function of the B*-tree index structure stored record references
set is based on the structural property of the B'-tree that contains the stored record
references set in a set of Double Linked List structure leaf nodes at the bottom leaf nodes
level of the tree. In this case a complete iterative scan - selection process is implemented in
the Double Linked List structure nodes that store the record references. Therefore the B*-
tree index structure full selection function has a little better theoretical time performance
in compare with the B-tree because there are not recursive transfer between nodes of
different structural levels (recursion stack operations). Moreover the B*-tree nodes storage
distribution in the memory system affects the selection function time and memory resources

management efficiency and time performance.

Consequently, the node capacity increment of the B*-tree index structure affects the time
resources management efficiency optimization of the complete records references set scan

- selection function.

As the nodes capacity of the B-tree and B*-tree index structures increases in proportion
to the total number of stored record references of the structures, the structures tend
to transform into semi-dynamic array structures losing their structural and functional
properties. This causes the gradual destabilization and reduction of the B-tree and B*-tree
index structures functional performance in terms of time and memory resource management

efficiency.

On-disk file system B-tree and B*-tree index structures

On real RDBMS file systems as MySQL, PostgreSQL and SQLite on-disk file systems the
B-tree - B*-tree indexes are constructed to be utilized and operate as disk-based memory
system structures that are stored on disk. Each B-tree - B*-tree index structure record
insertion, deletion, update and selection operation requires the load - transfer of the index
structure nodes, stored record references and records physical data from the storage disk
system to the main memory (RAM) system. The exchange of this data between the main
and disk memory systems for processing applying a set of transactions and operations
that affects the stored data on disk requires a large set of read - write and delete disk
operations. These read - write and delete disk operations (disk access operations) are
quite time consuming and inefficient in terms of time and memory resources management,

especially when a large B-tree - B*-tree index structure part or the whole structure must

200

be located and transferred from the disk memory system to the main memory in order to

be implemented a set of transactions - operations.

The RDBMS file systems indexing sub-systems B*-tree index structures store the records
sets - record references sets at the last bottom leaf nodes level and the upper internal nodes
levels store only the node references and nodes metadata. As opposed to the B*-tree the B-
tree index structures store the records sets - record references sets in both leaf and internal
nodes and the internal nodes also store the node references and a set of nodes metadata.
Each node is a memory component on the disk memory system that consists of fixed size
- capacity allocated memory chunks. The leaf nodes can store a quite larger set of records
sets - record references sets in compare to the internal nodes which store both the records
and nodes references sets. Therefore, a typical leaf node can store a large set of records in a
set of less disk memory components related to the internal node which can not fit and store
the same set of records utilizing the same memory components. This causes the internal
nodes memory components distribution - scatter in remote disk memory system parts (disk
locations) requiring more disk access operations for the reconstruction, rearrangement and
transfer of an internal nodes from the disk to main memory compared to a leaf node.
As already mentioned, the B*-tree stores the records data only in the leaf nodes and as
opposed to the B*-tree the B-tree index structures store the records data in both leaf
and internal nodes. This affects the efficiency of the B-tree insertion, deletion, update and
selection functions in terms of time and memory resources management reducing the
functional performance of the B-tree related to the B*-tree because of the larger set of disk
accesses that the B-tree implements through its functions. Consequently, in practice, the

B*-tree index structure is more functionally efficient and fast related to the B-tree.

B-Hash Map and B*-Hash Map index structures

Based on the theoretical analysis of the B-tree, B*-tree, B-Hash Map and B*-Hash Map
index structures it can be concluded that the insertion, deletion, update and selection
functions of the B-Hash Map and B*-Hash Map index structures have generally and
approximately higher performance in terms of average time and memory resource management
efficiency related to the B-tree and B*-tree indexes corresponding functions on disk-based
and in-memory file systems. Furthermore as the B-tree and B*-tree index structures have
approximately the same average time performance on in-memory file systems, the B-Hash

Map and B*-Hash Map index structures that are composed of B-tree and B*-tree indexes

201

nodes have proportional functional performance.

5.3.2 Computational processes results on constructed and real data

In this implementation, the theoretical analysis and the conducted computational processes
data analysis on constructed and real data shown in Fig. 5.9 — 5.56 and in set of the other
related figures, demonstrate that the implemented and developed insertion, deletion and
selection functions of the B-tree, B*-tree, B-Hash Map and B*-Hash Map index structures

are on average quite consistent with the existing theory and theoretical analysis.

Furthermore, the B-tree, B*-tree, B-Hash Map and B*-Hash Map index structures height,
the internal and leaf nodes and the records references sets that are stored in the internal
and leaf nodes computational data shown in the related figures provided by the conducted
computational processes are also correspond to the related provided theory and theoretical

analysis.

As indicated through the theoretical analysis, the average time performance of the B-
tree, B™-tree, B-Hash Map and B*-Hash Map index structures functions on real dataset
is quite higher but approximately analogous to the average time performance of the B-
tree, B*-tree, B-Hash Map and B*-Hash Map index structures functions on synthetic data

(records set with records primary key fields of string type).

202

Chapter 6

Summary and inferences

Realizing and observing that there are not sufficient dynamic, efficient, refactorable -
maintainable and general-purpose implementations in C of in-memory (RAM) system B-
tree, B*-tree, B-Hash Map and B*-Hash Map indexes structures combined with a complete,
qualitative and concurrently simple theoretical and computational analysis, the conducted
study aims to fill partially this gap. In this study, an open-source C programming language
software package was implemented, developed and provided (based on the cited studies
and researches) that includes a set of quite dynamic, efficient, refactorable, maintainable,
testable and general-purpose in-memory system B-tree, B*-tree, B-Hash Map and B*-
Hash Map index structures combined with a complete theoretical and computational
analysis of the indexes structure, functions and functional efficiency in terms of time
and memory resources. The theoretical analysis of the B-tree, B*-tree, B-Hash Map and
B*-Hash Map index structures functional performance was carried out and implemented
through a computational processes set on real and synthetic data providing metric data for
meta-analysis, evaluation and comparison. The theoretical analysis of the computational
processes metric data demonstrates that the implemented in-memory B-tree and B*-tree
index structures functions have quite similar average time performance. Furthermore,
it can be concluded that the implemented in-memory B-Hash Map and B*-Hash Map
index structures functions are quite faster and more efficient in terms of time resources
management related to the B-tree and B*-tree index structures functions. Finally, the
provided packages are available on GitHub for meta-analysis, evaluation, modification,
refactoring, testing and further development in order to be implemented and created a

more dynamic, complete, maintainable and stable software package.

203

https://github.com/SalakosSot

References

[1]

[2]
[3]
[4]

[5]

(6]

[7]

(8]

[9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. Bayer and E. McCreight, “Organization and maintenance of large ordered indices,” in Proceedings of
the 1970 ACM SIGFIDET (Now SIGMOD) Workshop on Data Description, Access and Control, SIGFIDET
’70, (New York, NY, USA), p. 107141, Association for Computing Machinery, 1970.

D. Comer, “Ubiquitous b-tree,” ACM Computing Surveys (CSUR), vol. 11, no. 2, pp- 121-137, 1979.
S. E. Fischbeck, “The ubiquitous b-tree: volume ii,” 1987.

C. E. Langenhop and W. E. Wright, “A model of the dynamic behavior of b-trees,” Acta informatica,
vol. 27, no. 1, pp. 41-59, 1989.

G. Held and M. Stonebraker, “B-trees re-examined,” Communications of the ACM, vol. 21, no. 2, pp. 139—
143, 1978.

C. Jiang-Hsing and G. D. Knott, “An analysis of b-trees and their variants,” Information Systems, vol. 14,
no. 5, pp. 359-370, 1989.

P. Koruga and M. Baca, “Analysis of b-tree data structure and its usage in computer forensics,” in
Central European Conference on Information and Intelligent Systems, p. 423, Faculty of Organization and

Informatics Varazdin, 2010.

W. E. Wright, “Some average performance measures for the b-tree,” Acta Informatica, vol. 21, no. 6,
pp. 541-557, 1985.

A. C.-C. Yao, “On random 2-3 trees,” Acta Informatica, vol. 9, no. 2, pp. 159-170, 1978.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT press, 2022.
C. Thomas H, L. Charles E, R. Ronald L, S. Clifford, ef al., “Introduction to algorithms,” 2016.

H. Knebl, “Algorithms and data structures,” Cham: Springer Nature Switzerland AG, 2020.

D. P. Mehta and S. Sahni, Handbook of data structures and applications. Chapman and Hall/CRC, 2004.

S. Salakos and N. Ploskas, “Analysis and comparison of binary and interpolation search algorithms in

a b-tree,” in 25th Pan-Hellenic Conference on Informatics, pp. 7478, 2021.
S. Sippu and E. Soisalon-Soininen, “Transaction processing.”

T. Lahdenmaki and M. Leach, Relational Database Index Design and the Optimizers. USA: Wiley-

Interscience, 2005.

H. Korth, S. Sudarshan, and P. Abraham Silberschatz, Database System Concepts. McGraw-Hill Education,
2010.

A. Silberschatz, H. Korth, and S. Sudarshan, Database System Concepts. McGraw-Hill Education, 2019.

R. Elmasri, “Fundamentals of database systems seventh edition,” 2021.

204

[20] R. Ramakrishnan and J. Gehrke, Database Management Systems. McGraw-Hill higher education, McGraw-
Hill Education, 2003.

[21] H. Garcia-Molina, Database Systems: The Complete Book. Pearson Education, 2008.

[22] G. Graefe and H. Kuno, “Modern b-tree techniques,” in 2011 IEEE 27th International Conference on
Data Engineering, pp. 1370-1373, IEEE, 2011.

[23] G. Graefe, “Modern b-tree techniques,” Foundations and Trends® in Databases, vol. 3, no. 4, pp. 203-402,
2011.

2

[24] “Mysql innodb storage engine and index system.” https://dev.mysql.com/doc/refman/8.0/en/

innodb-storage-engine.html.

[25] P. Kieseberg, S. Schrittwieser, P. Frithwirt, and E. Weippl, “Analysis of the internals of mysql/innodb b+
tree index navigation from a forensic perspective,” in 2019 International Conference on Software Security
and Assurance (ICSSA), pp. 46-51, IEEE, 2019.

[26] P. Fruhwirt, P. Kieseberg, and E. Weippl, “Using internal mysql/innodb b-tree index navigation for
data hiding purposes,”

[27] P. Fruhwirt, P. Kieseberg, S. Schrittwieser, M. Huber, and E. Weippl, “Innodb database forensics:
Enhanced reconstruction of data manipulation queries from redo logs,” Information Security Technical
Report, vol. 17, no. 4, pp. 227-238, 2013.

[28] P. Frihwirt, M. Huber, M. Mulazzani, and E. R. Weippl, “Innodb database forensics,” in 2010 24th
IEEE International Conference on Advanced Information Networking and Applications, pp. 1028-1036, IEEE,
2010.

[29] M.-A. Manu, “Mysql database engines review, analysis, compilation and customization,” 2013.
[30] “Postgresql documentation.” https://wuw.postgresql.org/docs/current/.
[31] H. Dombrovskaya, B. Novikov, and A. Bailliekova, PostgreSQL Query Optimization. Springer, 2021.

[32] E. Inersjo, “Comparing database optimisation techniques in postgresql: Indexes, query writing and the

query optimiser,” 2021.

[33] D. Kuhn, S. R. Alapati, and B. Padfield, Expert Oracle Indexing and Access Paths: Maximum Performance
for Your Database. Springer, 2016.

[34] “Architecture of sqlite system.” https://www.sqlite.org/arch.html.
[35] M. Owens and G. Allen, SQLite. Springer, 2010.

[36] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesystem,” ACM Transactions on Storage
(TOS), vol. 9, no. 3, pp. 1-32, 2013.

[37] W. A. Bhat and M. A. Wani, “Forensic analysis of b-tree file system (btrfs),” Digital Investigation, vol. 27,
pp- 57-70, 2018.

2

[38] D. Galles, “B-tree visualization.” https://www.cs.usfca.edu/~galles/visualization/BTree.html,

2011.
[39] A. Levitin, Introduction to the Design & Analysis of Algorithms. Always learning, Pearson, 2012.

[40] S. Saha and S. Shukla, Advanced Data Structures: Theory and Applications. CRC Press, 2019.

205

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://www.postgresql.org/docs/current/
https://www.sqlite.org/arch.html
https://www.cs.usfca.edu/~galles/visualization/BTree.html

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]
[52]

[53]

R. A. Baeza-Yates, “Expected behaviour of b+-trees under random insertions,” Acta Informatica, vol. 26,
no. 5, pp. 439-471, 1989.

C. A. Shaffer, A practical introduction to data structures and algorithm analysis. Prentice Hall Upper Saddle
River, NJ, 1997.

S. Groppe, Data management and query processing in semantic web databases. Springer Science & Business
Media, 2011.

S. Sippu and E. Soisalon-Soininen, Transaction processing: Management of the logical database and its

underlying physical structure. Springer, 2015.

V. Srinivasan and M. J. Carey, “Performance of b+ tree concurrency control algorithms,” The VLDB
Journal, vol. 2, no. 4, pp. 361-406, 1993.

M. T. 0. Ling Liu, Encyclopedia of Database Systems. Springer Science+Business Media, LLC, part of
Springer Nature 2018, 2018.

S. D. Viglas, “Adapting the b+-tree for asymmetric i/o,” in East European Conference on Advances in

Databases and Information Systems, pp. 399—412, Springer, 2012.

D. Galles, “B+-tree visualization.” https://www.cs.usfca.edu/~galles/visualization/BPlusTree.

html, 2011.

K. Mehlhorn, P. Sanders, and P. Sanders, Algorithms and data structures: The basic toolbox, vol. 55.
Springer, 2008.

A. Drozdek, Data Structures and algorithms in C++. Cengage Learning, 2012.
T. Mailund, The joys of hashing: hash table programming with C. Apress, 2019.
S. S. Skiena, The algorithm design manual, vol. 2. Springer, 1998.

R. Sedgewick, Algorithms in c++, parts 1-4: fundamentals, data structure, sorting, searching. Pearson
Education, 1998.

206

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

	Introduction
	Thesis subject and content
	Content structure

	Theoretical analysis and implementation of the B-tree data structure
	B-tree index structural properties and characteristics
	B-tree index structure implementation and development theoretical base
	B-tree index structure
	B-tree index node structure
	B-tree nodes number and height approximation

	B-tree index structure basic functional levels
	B-tree index structure functions
	Records selection by primary key fields
	Records selection by multiple fields (constraints)
	Records insertion based on primary key fields
	Records deletion based on primary key fields

	Theoretical analysis and implementation of the B+-tree data structure
	B+-tree index structural properties and characteristics
	B+-tree index structure implementation and development base
	B+-tree index structure
	B+-tree index node structure
	B+-tree nodes number and height approximation

	B+-tree index structure basic functional levels
	B+-tree index structure functions
	Records selection by primary key fields
	Records selection by multiple fields
	Records insertion based on primary key fields
	Records deletion based on primary key fields

	B-Hash and B+-Hash Map index structures
	B-Hash and B+-Hash Map indexes structural properties and characteristics
	B-Hash and B+-Hash Map index structures basic functional levels
	Records insertion based on primary key fields
	Records deletion based on primary key fields
	Records selection by the records primary key fields
	Records selection by multiple records fields (selection conditions)

	Computational study
	Development environment
	Computational process
	Computational process on synthetic data
	Computational process on real data

	Analysis and evaluation of the computations results
	Theoretical analysis
	Computational processes results on constructed and real data

	Summary and inferences

