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Περίληψη 
Η επίτευξη παραλληλισμού σε επίπεδο εντολών (ΠσΕΕ, ILP) σε υλικό που έχει 

την δυνατότητα να τον εκμεταλλευτεί μπορεί, θεωρητικά, να βελτιώσει την 
απόδοση σε μεγάλο βαθμό. Μερικές βελτιστοποιήσεις, συμπεριλαμβανομένης της 
“ξεδιπλώματος βρόγχων” (loop unrolling) έχουν την δυνατότητα βελτίωσης του 
ΠσΕΕ και με τον συνδυασμό της με την βελτιστοποίηση των “συμπιεσμένων 
εκφράσεων” (expression compression) μπορεί να γίνει πιο αποτελεσματική χρήση 
πόρων ενός ολοκληρωμένου κυκλώματος. Για την εργασία αυτή τροποποιήθηκε 
ένας υπάρχων μεταγλωττιστής της γλώσσας C στη γλώσσα Ada (που ονομάζεται 
csense, μέρος των εργαλείων CCC (”Custom Coprocessor Complier suite”)) ώστε να 
υποστηρίζει πλήρες ξεδίπλωμα βρόγχων με διαφύλλωση και αναδιάταξη εντολών 
(που μπορεί να βελτιώσει την διαθεσιμότητα δεδομένων στην κρυφή μνήμη). 
Επίσης ολοκληρώθηκε η υλοποίηση συμπιεσμένων εκφράσεων με την δυνατότητα 
συνδυασμού και επιλογής επιπέδων ακέραιων και Boolean εκφράσεων. 

 

 

 

 

 

Λέξεις Κλειδιά: μεταφραστής/μεταγλωττιστής πηγαίου προς πηγαίου κώδικα, 
μεταγλωττιστής βελτιστοποίησης, C, Ada, πλήρες ξεδίπλωμα βρόγχων, 
διαφύλλωση/αναδιάταξη εντολών, παραλληλισμός σε επίπεδο εντολών 
(ΠσΕΕ/ΠΕΕ – ILP), διαθεσιμότητα δεδομένων στην κρυφή μνήμη, συμπίεση 
εκφράσεων, σύνθεση υψηλού επιπέδου. 
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Abstract 
Achieving Instruction level parallelism (ILP) on hardware capable of exploiting it 

can greatly improve performance, in theory. Some optimizations, including loop 
unrolling, can improve ILP, and combined with the expression compression 
optimization can improve efficiency in resource usage in an integrated circuit. For 
this paper an existing C to Ada compiler (csense, part of the CCC (”Custom 
Coprocessor Complier”) suite) was modified to implement full loop unrolling in its 
output with a capability to interleave and reorder instructions (which can potentially 
improve data locality). Additionally, the expression compression implementation 
with combined and controllable levels of integer and Boolean expressions was 
completed. 

 

 

 

 

 

Key Words: source to source compiler, transpiler, optimizing compiler, C, Ada, full loop 
unrolling, instruction interleaving/reordering, instruction level parallelism (ILP), data 
locality, expression compression, high level synthesis (HLS)  

  

iii 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

Πίνακας Περιεχομένων (Table of contents) 
ΠΡΟΣΟΧΗ: Ο Πίνακας Περιεχομένων θα πρέπει να δημιουργείται αυτόματα (από το πρότυπο του 
επεξεργαστή Κειμένου με παράθεση όλων των Στυλ Επικεφαλίδων που χρησιμοποιήσατε (με 
εμφάνιση των αριθμών σελίδων δεξιά, διαχωριζόμενες με στηλοθέτη  ….. από τον τίτλο έκαστης 
Επικεφαλίδας) 

Introduction .............................................................................................................................. 1 

1. The subject of this paper ................................................................................................. 2 

2. Key Concepts ................................................................................................................... 4 

2.1 Compilers .............................................................................................................. 4 

2.1.1 Programming language ................................................................................. 5 

2.1.2 A compilers’ general structure ..................................................................... 6 

2.1.3 Source-to-source Compilers (or “Transpilers”) .......................................... 15 

2.2 The C and Ada languages .................................................................................... 16 

2.2.1 C ................................................................................................................... 16 

2.2.2 Ada............................................................................................................... 17 

2.3 Compiler optimizations ...................................................................................... 19 

2.3.1 Data flow analysis ....................................................................................... 21 

2.3.2 Description of optimizations relevant to the CCC frontend ...................... 25 

2.4 High Level Synthesis (HLS) .................................................................................. 37 

2.5 Parallelization and performance ........................................................................ 39 

2.5.1 Data locality ................................................................................................ 39 

2.5.2 Parallel slack ................................................................................................ 40 

2.5.3 Performance theory .................................................................................... 40 

2.5.3.1 Latency and throughput ......................................................................... 41 

2.5.3.2 Speedup, Efficiency, and Scalability ....................................................... 41 

2.5.3.3 Power ...................................................................................................... 43 

2.5.3.4 Amdahl's law ........................................................................................... 43 

2.5.3.5 Gustafson-Barsis’ Law ............................................................................. 45 

2.5.3.6 Work-Span Model ................................................................................... 46 

3. The csense compiler ...................................................................................................... 50 

3.1 csense overview .................................................................................................. 50 

3.1.1 flex ............................................................................................................... 50 

3.1.1.1 Definitions section .................................................................................. 51 

3.1.1.2 Rules section ........................................................................................... 52 

iv 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

3.1.1.3 User code section .................................................................................... 53 

3.1.2 bison ............................................................................................................ 53 

3.1.2.1 General information about bison ........................................................... 53 

3.1.2.2 bison token interpretation ..................................................................... 54 

3.1.2.3 bison rules ............................................................................................... 56 

3.1.2.4 Language design process using bison ..................................................... 57 

3.1.2.5 bison grammar file structure .................................................................. 58 

3.1.2.6 An example bison file (infix calculator) .................................................. 59 

3.1.3 The files csense consists of ......................................................................... 61 

3.1.4 csense limitations ....................................................................................... 63 

3.1.5 csense optimizations .................................................................................. 63 

3.1.5.1 The “simplify and compress expressions” optimization ....................... 64 

3.1.5.2 The loop unrolling optimizations ........................................................... 73 

3.2 csense’s loop unrolling function ......................................................................... 88 

3.3 csense’s expression compression functions ...................................................... 95 

4. Results in the backend (VHDL generation from Ada input) .......................................... 97 

4.1 First test ............................................................................................................... 98 

4.1.1 State count reduction ..................................................................................... 98 

4.1.2 Modification to the .vhd output ................................................................... 101 

4.1.3 Vivado post-implementation functional simulation timing results ............ 102 

4.1.3.1 No optimizations ....................................................................................... 102 

4.1.3.2 With full unrolling ..................................................................................... 105 

4.1.3.3 Plain expression compression (with a boolean depth of 2 and an integer 
depth of 3) 106 

4.1.3.4 With full unrolling and expression compression (with a boolean depth of 
2 and an integer depth of 3) ............................................................................................. 111 

4.2 Second test ........................................................................................................ 115 

4.2.1 State count reduction ................................................................................... 115 

4.2.2 Vivado post-implementation functional simulation timing results ............ 116 

4.2.2.1 No optimizations ....................................................................................... 117 

4.2.2.2 Simple unrolling (4 times) ......................................................................... 119 

4.2.2.3 Full unrolling (maximum of 10, no reordering) ....................................... 121 

4.2.2.4 Full unrolling (maximum of 10) with instruction reordering .................. 123 

4.3 Third test ........................................................................................................... 125 

v 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

4.3.1 State count reduction ................................................................................... 128 

4.3.2 Vivado post-implementation functional simulation timing results ............ 128 

4.3.2.1 No optimizations ....................................................................................... 129 

4.3.2.2 With full unrolling and expression compression (with a boolean depth of 
3 and an integer depth of 3) ............................................................................................. 131 

4.4 Fourth test ......................................................................................................... 133 

4.4.1 State count reduction ................................................................................... 135 

4.4.2 Vivado post-implementation functional simulation timing results ............ 136 

4.4.2.1 No optimizations ....................................................................................... 136 

4.4.2.2 Full loop unrolling with instruction reordering and a boolean and integer 
depth of 3 137 

5. Related Work ............................................................................................................... 140 

5.1 Loop unrolling ................................................................................................... 140 

5.2 Source to source compilers/transpilers ........................................................... 140 

5.3 C to Ada compilers ............................................................................................ 141 

5.4 High Level Synthesis (HLS) ................................................................................ 141 

5.5 Expression simplification/compression ........................................................... 142 

Conclusion ............................................................................................................................. 143 

Βιβλιογραφία (References) ................................................................................................... 145 

6. Παράρτημα Α (Appendix A: C and Ada syntax) ........................................................... 151 

7. Παράρτημα B (Appendix B: Other optimizations) ....................................................... 244 

8. Παράρτημα Γ (Appendix C: Benchmarking) ................................................................ 256 

8.1 Hardware the benchmark was performed on (specs) ..................................... 256 

8.2 The code used for the benchmark .................................................................... 259 

8.3 Benchmark results ............................................................................................ 268 

Παράρτημα Κώδικα (Code Appendix) .................................................................................. 271 

 

 

 

 

 

  

vi 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

Λίστα Εικόνων (List of images) 
ΠΡΟΣΟΧΗ: Η Λίστα Εικόνων (ή Λίστα Σχημάτων) θα πρέπει να δημιουργείται αυτόματα (από το 
πρότυπο εισαγωγής Πίνακα Εικόνων του Επεξεργαστή Κειμένου με παράθεση όλων των Λεζαντών 
Εικόνων (ή Σχημάτων) που δημιουργήσατε κάτω από καθεμία Εικόνα (ή Σχήμα) της εργασίας σας.  

Στη Λίστα Εικόνων (ή Λίστα Σχημάτων) παρατίθενται όλες οι Λεζάντες Εικόνων (ή Σχημάτων) με 
εμφάνιση των αριθμών σελίδων δεξιά, διαχωριζόμενες με στηλοθέτη  ….. από τον τίτλο έκαστης 
Λεζάντας 

 

Image 1.  A compiler translates the source program to a target program ......................... 4 

Image 2.  The phases of a compiler .................................................................................... 7 

Image 3.  An example of an AST........................................................................................ 13 

Image 4.  An example of a  DAG ........................................................................................ 14 

Image 5.  Data flow analysis constant propagation control flow graph example ............ 24 

Image 6.  HLST Design process .......................................................................................... 38 

Image 7.  Speedup ............................................................................................................. 41 

Image 8.  Efficiency ........................................................................................................... 41 

Image 9.  Power: two core example ................................................................................. 43 

Image 10.  Times for sequential and parallel execution ................................................... 44 

Image 11.  Amdahl’s law ................................................................................................... 44 

Image 12.  Amdahl’s law corollary equalities ................................................................... 44 

Image 13.  Amdahl’s law simplification ............................................................................ 45 

Image 14.  Amdahl’s law: P tending to infinity ................................................................. 45 

Image 15.  Work-Span speedup can not be superlinear ................................................... 46 

Image 16.  Adding processors does not slow an algorithm down .................................... 47 

Image 17.  Speedup is less than or equal to the work by the span .................................. 47 

Image 18.  Brent’s lemma ................................................................................................. 47 

Image 19.  Approximation to estimate running time ....................................................... 48 

Image 20.  Overdecomposition ......................................................................................... 48 

Image 21.  Parallel slack .................................................................................................... 49 

vii 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

Image 22.  csense “include” dependencies ...................................................................... 62 

Image 23.  First test no opts post-imp. func. simulation start ........................................ 102 

Image 24.  First test no opts post-imp. func. simulation end ......................................... 103 

Image 25.  First test no opts. timing summary ............................................................... 104 

Image 26.  First test no opts. utilization summary ......................................................... 104 

Image 27.  First test full unr. post-imp. func. simulation start ....................................... 105 

Image 28.  First test full unr. post-imp. func. simulation end ......................................... 105 

Image 29.  First test ofuil timing summary ..................................................................... 106 

Image 30.  First test ofuil utilization summary ............................................................... 106 

Image 31.  Ocbe2 ocie3 std_logic to vector assignment error ....................................... 107 

Image 32.  First test ocbe2 ocie3 post-imp. func. simulation start ................................ 110 

Image 33.  First test ocbe2 ocie3 post-imp. func. simulation end .................................. 110 

Image 34.  First test ocbe2 ocie3 timing summary ......................................................... 111 

Image 35.  First test ocbe2 ocie3 utilization summary ................................................... 111 

Image 36.  First test full unr. ocbe2 ocie3 post-imp. func. simulation start ................... 113 

Image 37.  First test full unr. ocbe2 ocie3 post-imp. func. simulation end .................... 113 

Image 38.  First test ofuil ocbe2 ocie3 timing summary ................................................. 114 

Image 39.  First test ofuil ocbe2 ocie3 utilization summary ........................................... 114 

Image 40.  Second test no opts. post-imp. func. simulation start .................................. 117 

Image 41.  Second test no opts. post-imp. func. simulation end ................................... 117 

Image 42.  Second test no opts. timing summary .......................................................... 118 

Image 43.  Second test no opts. utilization summary ..................................................... 119 

Image 44.  Second test ouil post-imp. func. simulation start ......................................... 119 

Image 45.  Second test no ouil post-imp. func. simulation end ..................................... 120 

Image 46.  Second test ouil timing summary .................................................................. 120 

Image 47.  Second test ouil utilization summary ............................................................ 121 

Image 48.  Second test ofuil post-imp. func. simulation start ........................................ 121 

viii 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

Image 49.  Second test ofuil post-imp. func. simulation end ......................................... 122 

Image 50.  Second test ofuil timing summary ................................................................ 122 

Image 51.  Second test ofuil utilization summary ........................................................... 123 

Image 52.  Second test ofuilr post-imp. func. simulation start ....................................... 123 

Image 53.  Second test ofuilr. post-imp. func. simulation end ....................................... 124 

Image 54.  Second test ofuilr timing summary ............................................................... 124 

Image 55.  Second test ofuilr utilization summary ......................................................... 125 

Image 56.  Third test no opts. post-imp. func. simulation start ..................................... 129 

Image 57.  Third test no opts. post-imp. func. simulation end ....................................... 129 

Image 58.  Third test no opts. timing summary .............................................................. 130 

Image 59.  Third test no opts. utilization summary ........................................................ 130 

Image 60.  Third test ofuil ocbe3 ocie3 post-imp. func. simulation start ....................... 131 

Image 61.  Third test ofuil ocbe3 ocie3 post-imp. func. simulation end ........................ 131 

Image 62.  Third test ofuil ocbe3 ocie3 timing summary ............................................... 132 

Image 63.  Third test ofuil ocbe3 ocie3 utilization summary .......................................... 132 

Image 64.  Fourth test no opt. post-imp. func. simulation end ...................................... 136 

Image 65.  Fourth test no opts. timing summary ........................................................... 137 

Image 66.  Fourth test no opts. utilization summary ...................................................... 137 

Image 67.  Fourth test ofuilr ocbe3 ocie3 post-imp. func. simulation end .................... 138 

Image 68.  Fourth test ofuilr ocbe3 ocie3 timing summary ............................................ 139 

Image 69.  Fourth test ofuilr ocbe3 ocie3 utilization summary ...................................... 139 

Image 70.  C operator precedence.................................................................................. 170 

 

 

 

 

 

  

ix 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

Λίστα Πινάκων (List of Tables) 
ΠΡΟΣΟΧΗ: Η Λίστα Πινάκων θα πρέπει να δημιουργείται αυτόματα (από το πρότυπο εισαγωγής 
Πίνακα του Επεξεργαστή Κειμένου με παράθεση όλων των Λεζαντών Πινάκων που δημιουργήσατε, 
πάνω από καθένα Πίνακα της εργασίας σας.  

Στη Λίστα Πινάκων παρατίθενται όλες οι Λεζάντες Πινάκων με εμφάνιση των αριθμών σελίδων δεξιά, 
διαχωριζόμενες με στηλοθέτη  ….. από τον τίτλο έκαστης Λεζάντας. 

 

Table 1. First test no opts. hardware utilization ............................................................. 104 

Table 2. First test ofuil hardware utilization ................................................................... 106 

Table 3. First test ocbe2 ocie3 hardware utilization ....................................................... 111 

Table 4. First test ofuil ocbe2 ocie3 hardware utilization............................................... 114 

Table 5. First test benchmark results (running times in nanoseconds) .......................... 114 

Table 6. Second test no opts. hardware utilization ........................................................ 118 

Table 7. Second test ouil hardware utilization ............................................................... 120 

Table 8. Second test ofuil hardware utilization .............................................................. 122 

Table 9. Second test ofuilr hardware utilization ............................................................. 124 

Table 10. Second test benchmark results (running times in nanoseconds) ................... 125 

Table 11. Third test no opts. hardware utilization .......................................................... 130 

Table 12. Third test ofuil ocbe3 ocie3 hardware utilization ........................................... 132 

Table 13. Third test benchmark results (running times in nanoseconds) ...................... 132 

Table 14. Fourth test no opts. hardware utilization ....................................................... 137 

Table 15. Fourth test ofuilr ocbe3 ocie3 hardware utilization ....................................... 138 

Table 16. Fourth test benchmark results (running times in nanoseconds) .................... 139 

Table 17. Benchmark results (50x50 matrix multiplication running times in seconds) .. 270 

 

x 



Introduction 
 

The first chapter gives an outline of what the subject of this paper is. 

The second chapter explains key concepts needed to understand what was done for 
this paper, and what we are trying to accomplish. Section 2.1 expands on the structure 
of a typical compiler and the concepts one needs to know about in order to understand 
some terminology. Section 2.2 describes the C and Ada languages. Section 2.3 describes 
some optimizations, including loop unrolling and expression compression, which are the 
focus of this paper. Section 2.4 contains some theory on parallel computing and 
performance; what can theoretically be achieved by applying some of the optimizations.  

The third chapter describes the csense C to Ada compiler, its capabilities, and an 
analysis of the relevant function which was modified to implement full loop unrolling 
and interleaving of instructions , as well as expression compression.  

The fourth chapter contains benchmarks, including a description of the setup and 
the test code.  

The fifth chapter contains related work, other projects and papers trying to solve 
problems similar to the ones in this paper. 
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1. The subject of this paper 

High level synthesis (HLS) tools are important tools for the design of integrated 
circuits (IC) such as ASICs, or for programming FPGAs.  The performance of such ICs 
strongly depends on optimizations of the HDL code that generates them.  The 
benefits of optimizing range from more efficient memory usage and instruction 
processing time to power consumption efficiency, which might be achieved, for 
instance, by parallelization and elimination of redundant circuit generation 
respectively.  

Depending on the structure of a HLS tool, it might consist of a frontend, which 
translates from a high level language, and a backend which generates the HDL from 
the output of the frontend. The CCC compiler suite falls into this category.  The 
backend of the CCC compiler suite is used to produce optimized VHDL or Verilog 
code. The input for the backend is, conventionally, Ada code which must however 
adhere to a certain set of standards and syntax. These standards are defined in [1]. 
The frontend can translate C code to Ada that adheres to the said standards and is 
ideal for the backend. C code acceptable by the frontend is defined in [2]. The 
frontend can also apply optimizations to the Ada code which are expected to 
improve the ability of the backend to generate HDL code with its own optimizations 
and desired traits of the output. 

Two such optimizations are full loop unrolling and expression compression 
(described in section 2.3). 

The subject of this thesis is the effects of applying the full loop unrolling and 
expression compression optimizations to the CCC frontend's Ada output which in 
turn affects the backend's VHDL output. Although unrolling increases the states in 
the VHDL code produced by the CCC backend, when combined with expression 
compression we expect to see a decrease with the help of the PARCS optimizer 
which compresses the states in the output [3] [4]. This results in greater 
opportunities for parallelism.  

When true full unrolling is applied, the loop is eliminated entirely, effectively 
removing the cost associated with the loop control instruction and loop test 
instructions. 

By controlling the level of expression depth we can fine-tune the output of the HDL 
for the target implementation constraints i.e. capability for expressions of integer, 
boolean or a combination of the two's simultaneous execution.  

The implementation of the full loop unrolling optimization required modifying the 
loop unrolling function to alter the abstract syntax tree (AST) appropriately to 

2 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

remove the loop structure and reorder the instructions in the candidate loops, with 
all appropriate checks to make sure the requested optimizations can be applied (if 
they could not be, then fallback measures are taken in an attempt to apply the most 
possible). Options for combinations of loop unrolling optimizations (simple, full, full 
with reordering of instructions or simple with reordering of instructions) for 
specified candidate loops were also added, with a possibility to apply a final loop 
unrolling option to all loop candidates that were not specified. 

The implementation of the expression compression optimization for combined 
boolean and integer instructions of a requested level of depth for each, required 
modifying the appropriate functions and altering the way the AST of one instruction 
is decomposed into separate instructions as requested by the user. Modifications to 
the print_expression() function which outputs the final code (for the frontend) were 
also required, as well as generating the appropriate cc files as required by the 
standards of Dr. Dossis ([3]) as of 09/2022. 
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2. Key Concepts 

 

This section will attempt to give a briefing of the concepts dealt with throughout 
this paper. 

 

2.1 Compilers 
Given by [5], a compiler is “computer software that translates (compiles) source 

code written in a high-level language (e.g., C++) into a set of machine-language 
instructions that can be understood by a digital computer’s CPU. Compilers are very 
large programs, with error-checking and other abilities. Some compilers translate high-
level language into an intermediate assembly language, which is then translated 
(assembled) into machine code by an assembly program or assembler. Other compilers 
generate machine language directly. The term compiler was coined by American 
computer scientist Grace Hopper, who designed one of the first compilers in the early 
1950s.”  

A more general definition is given by [6]: “A compiler is the software whose goal is 
to translate a program from one language to another. We say that the program is 
written in source language in its initial form and the compiler produces the equivalent 
program in the target language” 

 

 

 

 

 

 

 

 

 
 
 
 

 
Image 1.  A compiler translates the source program to a target program  

Πηγή: [7] 
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2.1.1 Programming language 

[8] gives a set of definitions, that help us understand where the term “programming 
language” fits between the written representation of an algorithm and its relation to 
following a set of rules that comply to a spec:   

1. A “computational model” is a collection of values and operations. 

2. A “computation” is the application of a sequence of operations to a value to yield 
another value. 

3. A “program” is a specification of a computation. 

4. A “programming language” is a notation for writing programs. 

5. The “syntax” of a programming language refers to the structure or form of 
programs. 

6. The “semantics” of a programming language describe the relationship between a 
program and the model of computation. 

7. The “pragmatics” of a programming language describe the degree of success 
with which a programming language meets its goals both in its faithfulness to the 
underlying model of computation and in its utility for human programmers. 

2.1.1.1 Algorithms and their representation throughout history (leading up 
to high level programming languages and compilers) 

“The earliest known written algorithms come from ancient Mesopotamia, about 
2000 B.C. In this case the written descriptions contained only sequences of calculations 
on particular sets of data, not an abstract statement of the procedure; it is clear that 
strict procedures were being followed but they never seem to have been written down. 
By the time of Greek civilization, several nontrivial abstract algorithms had been studied 
rather thoroughly. The description of algorithms was always informal however, rendered 
in natural language. 

Programs written for early computing devices such as those for Babbage’s 
Calculating Engine were naturally presented in machine language rather than a true 
programming language. Thus, the three-address code for Babbage’s machine was to 
consist of instructions such as “V4 x V0 = V10” where operation signs like “x” would 
appear on an Operation-card, and subscript numbers like (4, 0, 10) would appear on a 
separate Variable-card.” 

The first “high level” programming language actually to be implemented was the 
Short Code, originally suggested by John W. Mauchly in 1949 for the UNIVAC. 

Corrado Böhm developed the first practical compiler for his PhD thesis in 1951. 
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The first implemented compiler (in the definition we know today) was Alick E. 
Glennie’s AUTOCODE, which came into use in 1952 for the Manchester Mark I. 

The term “compiler” itself was introduced by Grace Murray Hopper in 1951: “To 
compile means to compose out of materials of other documents. Therefore, the 
compiler method of automatic programming consists of assembling and organizing a 
program from programs or routines or in general from sequences of computer code 
which have been made up previously.”, although this definition is not used today. [9] 

 

2.1.2 A compilers’ general structure  
A compiler maps a source program into a semantically equivalent target program. 

There are two parts to this mapping; – analysis and synthesis: 

“The analysis part breaks up the source program into constituent pieces and 
imposes a grammatical structure on them. It then uses this structure to create an 
intermediate representation of the source program. If the analysis part detects that the 
source program is either syntactically ill formed or semantically unsound, then it must 
provide informative messages, so the user can take corrective action. The analysis part 
also collects information about the source program and stores it in a data structure 
called a symbol table , which is passed along with the intermediate representation to the 
synthesis part. The synthesis part constructs the desired target program from the 
intermediate representation and the information in the symbol table. The analysis part 
is often called the front end of the compiler; the synthesis part is the back end. If we 
examine the compilation process in more detail, we see that it operates as a sequence of 
phases , each of which transforms  one representation of the source program to 
another. A typical decomposition of a compiler into phases is shown in image 2.  
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Image 2.  The phases of a compiler 
Πηγή: [7] 

In practice, several phases may be grouped together, and the intermediate 
representations between the grouped phases need not be constructed explicitly. The 
symbol table, which stores information about the entire source program, is used by all 
phases of the compiler.  
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Some compilers have a machine-independent optimization phase between the front 
end and the back end. The purpose of this optimization phase is to perform 
transformations on the intermediate representation, so that the back end can produce a 
better target program than it would have otherwise produced from an unoptimized 
intermediate representation. Since optimization is optional, one or the other of the two 
optimization phases shown in image 2 may be missing.” [7] 

Below is an elaboration of some of the phases that are relevant to this document. 

2.1.2.1 Lexical analysis (The first part of which is called “Scanning”) 

“In this phase, the compiler receives a stream of characters as input: the source 
code. The goal of lexical analysis is to categorize the characters into groups with a 
particular meaning in accordance with the definition of the source language. These 
groups of characters are called “Lexemes” and each one of these corresponds to some 
token.  

Examples of lexemes are reserved words (“if”, “while”, etc), identifiers 
(alphanumeric character strings provided by the user), special symbols that might 
consist of one or more characters (such as “<”, “<=”, etc), among others.” 

Lexemes can be captured using regular expressions and finite automata. [6]Error: 
Reference source not found 

2.1.2.2 Syntax analysis (parsing) 

In this phase the compiler receives the lexemes as input and executes the syntax 
analysis, where the structure of the program is checked. Error checking is also 
performed at this stage. The structural components of the program are located and their 
relations are set. The syntax of a language is described using a set of context free 
grammar rules. The result of the syntax analysis is a tree, called a syntax tree. [6] 

“A grammar naturally describes the hierarchical structure of most programming 
language constructs.” 

“A context-free grammar has four components: 

1. A set of terminal symbols, sometimes referred to as "tokens." The terminals are 
the elementary symbols of the language defined by the grammar. 

2. A set of non-terminals, sometimes called "syntactic variables." Each non-terminal 
represents a set of strings of terminals. 

3. A set of productions, where each production consists of a non-terminal, called the 
head or left side of the production, an arrow, and a sequence of terminals and/or non-
terminals, called the body or right side of the production. The intuitive intent of a 
production is to specify one of the written forms of a construct; if the head non-terminal 
represents a construct, then the body represents a written form of the construct. 
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4. A designation of one of the non-terminals as the start symbol.” [7] 

2.1.2.2.1 Backus Naur Form (BNF) 

"The syntax rules for the language can be written down in Backus-Naur Form (BNF) 
or a similar notation." 

"A BNF grammar is a list of syntax rules."  

"Each rule defines one "nonterminal symbol", which appears at the left of a ":=" sign 
in the rule." "(this makes BNF grammars which are called "context free" grammars)" 

"Alternative definitions of the nonterminal symbol appear to the right of the ":=" 
sign, separated by "|" signs." 

"Often the definition of a nonterminal in a BNF grammar is recursive: it defines the 
nonterminal in terms of itself." 

"The nonterminal symbol defined in rule listed first in the grammar is called the 
"start" symbol of the grammar." 

"A symbol not defined by a rule in the grammar is a "terminal symbol", and is 
usually taken literally." 

"If a string satisfies the definition of the "start" symbol, it is in the language defined 
by the BNF grammar; otherwise not." [10] 

Below is an example of BNF for a very simple calculator: 

" 

<exp> ::= <exp> + <term> | <exp> - <term> | <term> 

<term> ::= <term> * <power> | <term> / <power> | <power> 

<power> ::= <factor> ^ <power> | <factor> 

<factor> ::= ( <exp> ) | <int> 

<int> ::= <digit> <int> | <digit> 

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

" [11] 

2.1.2.2.2 LR Parsing (“bottom up” parsing) 

LR parsing is a method and order by which grammar rules are matched to a given 
input. 

"A bottom-up parse corresponds to the construction of a parse tree for an input 
string beginning at the leaves (the bottom) and working up towards the root (the top)." 
[7] [p233] 
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"The most prevalent type of bottom-up parser today is based on a concept called 
LR(k) parsing; the "L" is for left-to-right scanning of the input, the "R" for constructing a 
rightmost derivation in reverse, and the k for the number of input symbols of lookahead 
that are used in making parsing decisions." [7] [p241] 

The Basic idea is that the LR parser has a stack (LIFO (last in first out) data structure) 
and input. Given contents of stack and k tokens, a look-ahead parser does one of 
following operations: 

 Shift: move the first input token to the top of the stack 

 or 

 Reduce: the top of the stack matches a rule. [12] 

 

Given the example input "(3+4)+(5+6)" and the rules 

" 

E := int 

E := (E) 

E := E + E 

" 

LR parsing would conduct these steps (in the order they are presented here): 

Shift ( on to stack ["("] 

Shift 3 on to stack ["(3"] 

Reduce using rule E := int ["(E"] 

Shift + on to stack ["(E+"] 

Shift 4 on to stack ["(E+4"] 

Reduce using rule E := int ["(E+E"] 

Reduce using rule E := E + E ["(E"] 

Shift ) on to stack ["(E)"] 

Reduce using rule E := (E) ["E"] 

Shift + on to stack ["E+"] 

Shift ( on to stack ["E+("] 

Shift 5 on to stack ["E+(5"] 

Reduce using rule E := int ["E+(E"] 

Shift + on to stack ["E+(E+"] 
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Shift 6 on to stack ["E+(E+6"] 

Reduce using rule E := int ["E+(E+E"] 

Reduce using rule E := E + E ["E+(E"] 

Shift ) on to stack ["E+(E)"] 

Reduce using rule E := (E) ["E+E"] 

Reduce using rule E := E + E ["E"] 

[12] 

2.1.2.3 Semantic analysis 

This stage is for the calculation of additional information and to conduct checks that 
can’t be defined in the scope of a context free grammar. The processing here conforms 
to the to the rules that ensure the correctness and the seamless execution of the source 
code, but do not describe the syntax of the language. It is based on the information that 
is available during the compilation, and due to this we say it is related to the static 
semantics of the program. [6] 

“The semantic analyzer uses the syntax tree and the information in the symbol table 
to check the source program for semantic consistency with the language definition. It 
also gathers type information and saves it in either the syntax tree or the symbol table, 
for subsequent use during intermediate-code generation. An important part of semantic 
analysis is type checking, where the compiler checks that each operator has matching 
operands. For example, many programming language definitions require an array index 
to be an integer; the compiler must report an error if a floating-point number is used to 
index an array. The language specification may permit some type conversions called 
coercions. For example, a binary arithmetic operator may be applied to either a pair of 
integers or to a pair of floating-point numbers. If the operator is applied to a floating-
point number and an integer, the compiler may convert or coerce the integer into a 
floating-point number.” [7] 

The most important function for languages with static analysis demands (such as C) 
is the symbol table. This table records information that is related to the meaning of 
names and type checking, among other things (such as scope rules and visibility, flow 
control checks). [6] 

 

2.1.2.4 Intermediate code generation 

The term “Intermediate code” refers to the data structure that preserves the source 
code during its translation. Generally, the intermediate code can express the 
functionality of the commands on a level as high as a syntax tree, or it can be more 
resemblant of the code of the target language. It may also use the characteristics of the 

11 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

machine or the execution environment of the program (for example the size of the data 
types, the positions of the variables and the availability of registers.) Moreover, the 
intermediate code may or may not integrate information stemming from the symbol 
table such as scopes and field nesting levels, among others. 

The intermediate code is especially useful for the optimization of the final program. 
For this particular processing the requirement of additional data structure use is likely, 
with information stemming from other processing phases. Optimizations are easier to be 
implemented in the intermediate code level. The intermediate code might also be the 
key to developing a portable compiler. This is achieved when the intermediate code 
does not depend on the executing machine. [6] 

2.1.2.4.1 Abstract Syntax Trees (ASTs) 

“In an abstract syntax tree for an expression, each interior node represents an 
operator; the children of the node represent the operands of the operator. More 
generally, any programming construct can be handled by making up an operator for the 
construct and treating as operands the semantically meaningful components of that 
construct. 

Abstract syntax trees, or simply syntax trees, resemble parse trees to an extent. 
However, in the syntax tree, interior nodes represent programming constructs while in 
the parse tree, the interior nodes represent non-terminals. Many non-terminals of a 
grammar represent programming constructs, but others are "helpers" of one sort of 
another, such as those representing terms, factors, or other variations of expressions. In 
the syntax tree, these helpers typically are not needed and are hence dropped.” 
[7]Error: Reference source not found 

"ASTs represent only semantically meaningful aspects of input program, unlike 
concrete syntax trees which record the complete textual form of the input. There’s no 
need to record keywords or punctuation like (), ;, else." [13] 

"A syntax-tree node representing an expression E1 + E2 has label + and two children 
representing the subexpressions E1 and E2." [7] 
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Image 3.  An example of an AST 
Πηγή: [14] 

2.1.2.4.2 Directed Acyclic Graphs (DAGs) 

"A directed acyclic graph (DAG) for an expression identifies the common 
subexpressions (subexpressions that occur more than once) of the expression." [7] 

"Like the syntax tree for an expression, a DAG has leaves corresponding to atomic 
operands and interior nodes corresponding to operators. The difference is that a node N 
in a DAG has more than one parent if N represents a common subexpression; in a syntax 
tree, the tree for the common subexpression would be replicated as many times as the 
subexpression appears in the original expression. Thus, a DAG not only represents 
expressions more succinctly, it gives the compiler important clues regarding the 
generation of efficient code to evaluate the expressions." [7] 
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Image 4.  An example of a  DAG 
Πηγή: [7]  

 

 

2.1.2.5 Code optimization 

Each compiler is different not only in relation to the optimizing capabilities it has, 
but also the compiler phases in which it conducts them. It is clear that the first 
optimizations are implemented after the semantic analysis and are concerned with 
improvements in the level of the source code. [6] 

“The machine-independent code-optimization phase attempts to improve the 
intermediate code so that better target code will result. Usually better means faster, but 
other objectives may be desired, such as shorter code, or target code that consumes less 
power.” [7] 

One such case is constant collapsing, where operations on constants are replaced 
with their final value. Optimizations of this type can be immediately integrated in the 
syntax tree, with the collapsing of a section to just one node. Other optimizations that 
can be implemented at the intermediate code level are the propagation of assignment 
operations to the rest of the program, removal of inaccessible sections of the code, the 
replacement of computationally expensive expressions by others, renaming of variables, 
the elimination of common expressions, the movement of code outside of loops 
wherever possible and the simplification of variables whose values change within loops. 
[6] 

“There is a great variation in the amount of code optimization different compilers 
perform. In those that do the most, the so-called "optimizing compilers," a significant 
amount of time is spent on this phase. There are simple optimizations that significantly 
improve the running time of the target program without slowing down compilation too 
much.”Error: Reference source not found [7] 

2.1.2.6 Code generation 

In this phase the intermediate representation of the source code which has resulted 
from the processing of the previous phases is used to create code in the target language. 
[6] 

“The code generator takes as input an intermediate representation of the source 
program and maps it into the target language. If the target language is machine code, 
registers or memory locations are selected for each of the variables used by the 
program. Then, the intermediate instructions are translated into sequences of machine 
instructions that perform the same task. A crucial aspect of code generation is the 
judicious assignment of registers to hold variables.” [7] 
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“The requirements imposed on a code generator are severe. The target program 
must preserve the semantic meaning of the source program and be of high quality; that 
is, it must make effective use of the available resources of the target machine. 
Moreover, the code generator itself must run efficiently.” [7] 

“Compilers that need to produce efficient target programs, include an optimization 
phase prior to code generation. The optimizer maps the IR into IR from which more 
efficient code can be generated. In general, the code-optimization and code-generation 
phases of a compiler, often referred to as the back end, may make multiple passes over 
the IR before generating the target program.” [7] 

The immediate synthesis of machine code is time consuming and a procedure very 
prone to errors, as it depends on the accurate determination of a large number of digital 
forms. As such, the symbolic language of the target processor for which the code will be 
generated is usually selected as the target language. When a program in its final form is 
formulated in a symbolic language, then an appropriate symbol translator can be used 
to turn it into an executable. Languages such as C and C++ are sometimes used as target 
languages due to the broad dissemination of their modern specification compliant 
compilers. [6]Error: Reference source not found 

2.1.3 Source-to-source Compilers (or “Transpilers”) 

“A conventional compiler consumes source code and produces binaries. A source-
to-source compiler produces transformed source code from the original source. This 
transformation can be e.g. refactoring, parallelization or translation to a different 
language. The advantage is that the resulting code can be modified by the programmer 
if desired and compiled with a compiler of choice.” [15] 

“Suppose you've written a program in one language but wish to convert this to 
another language, then you would invoke what's called a transpiler. The programming 
language at the input to the transpiler may be called the source language whereas the 
language at the output may be called the target language. A transpiler is sometimes 
called a source-to-source compiler. 

For example, converting C++ code to C code will involve a transpiler. Converting 
Python code to Ruby code will involve a transpiler. Let's note that in these examples 
both source and target languages are at the same level of abstraction. But let's say we 
convert Java code to bytecode, or C code to assembly code, then this is not called 
transpilation. Transpilers don't change the level of abstraction such as translating from a 
high-level language to assembly code, bytecode or machine code. 

[...] 

A transpiler [...] usually works at the abstraction of high-level languages. The output 
code is still human readable. It cannot be executed directly unless its own compiler or 
interpreter is invoked. For example, a transpiler can convert Java code to C++ code. 
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Programmer will still need to invoke a C++ compiler before executing the resultant 
machine code. 

It's acceptable to call translations at the same level of abstraction as transpilation, 
such as from .ASM assembly code to .A86 assembly code. 

ISO/IEC/IEEE 24765 defines five generations of languages that can be related to 
abstractions described above. 

[...] 

Given this understanding (of the syntax rules of the input language), the transpiler 
builds what is called an Abstract Syntax Tree (AST). 

The next step is to transform the AST to suit the target language. This is then used to 
generate code in the target language.” [16] 

 

2.2 The C and Ada languages 
In December 2021 the TIOBE index ranked C as #2 and Ada as #30. [17] 

Redmonk Q3(June) 2021 rankings rank C as #10. Ada is not on the list. [18] 

 

2.2.1 C 

Applications of C include Operating systems (Unix, Windows, Android), Embedded 
systems and drivers, Graphical user interface (GUI) applications such as Adobe 
Photoshop, Illustrator and Premiere, programming platforms such as Matlab and 
Mathematica, Google Chromium, Mozilla Firefox and Thunderbird, and MySQL. Other 
uses include compilers such as MINGW and Clang C and some gaming and animation 
related projects. [19] [20]  

2.2.1.1 History and development of C 

“C is a general-purpose programming language developed by Dennis Ritchie at Bell 
Laboratories in 1972. Since then, it has become a major language not only at Bell Labs 
but also throughout the world. C was originally developed for use with the Unix [a 
trademark of Bell Labs] operating system, which is largely written in C, so part of the 
success of the language is due to the acceptance of Unix. C, however, has spread far 
beyond Unix systems in the past few years, and a booming compiler industry has sprung 
up around it.  

C was originally designed for "systems programming," that is, for writing programs 
like compilers, operating systems, and text editors. It has proven satisfactory for other 
applications as well, including data base systems, telephone switching systems, 
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numerical analysis, engineering programs, and a great deal of text-processing software.” 
[21] 

“C has its roots in the language BCPL, which is a "typeless" language that operates 
only on a single data type, the machine word. As such, BCPL is an excellent match to the 
hardware of word-oriented machines such as the PDP-10. In 1970, Ken Thompson 
designed a stripped-down version of BCPL for use with the first Unix system on the PDP-
7. This stripped-down version is called B, and like BCPL is typeless.  

With the advent of the PDP-11, upon which the next version of Unix was written, it 
became clear that a typeless language did not match the hardware's capabilities. The 
PDP-11 provided several fundamental objects of different sizes— 1-byte characters, 2-
byte integers, and 4-byte floating point numbers. Β provided no way to talk about these 
different sizes, let alone operators to manipulate them.  

The C language was an attempt to deal with a variety of types, which it did by 
adding the notion of data type to the Β language. In C, as in most languages, each object 
has a type as well as a value. The type determines what kinds of machine operations can 
be applied to the value and how much storage is occupied. 

Although C was originally implemented for a PDP-11, it is not particularly tied to that 
machine, and around 1975 work began at Bell Labs on C compilers for other machines. 
In particular, a "portable compiler" was implemented, which made it relatively easy to 
modify the compiler to generate code for different machines. 

As the Unix operating system spread, the technology of the portable compiler made 
it possible to move the operating system and its programs from one kind of hardware to 
another with little work. This meant that C became more widely available and used. 

In the late 1970s, C became available from commercial sources, as well as from Bell 
Labs, for microprocessors like the Z80. This marked the beginning of C's commercial 
success. Since then, it has been implemented on many computers, from the smallest 
microprocessors to machines as large as the Cray-1; compilers are available from dozens 
of suppliers. The C language is sufficiently well standardized that with some care, it is 
possible to write C programs that will run without change on any machine that supports 
the standard language and the standard run-time environment.” [21] 

2.2.1.2 C’s syntax 

For an elaboration of C’s syntax see appendix A. 

2.2.2 Ada 
“Ada’s philosophy is different from most other languages. Underlying Ada’s design 

are principles that include the following: 

Readability is more important than conciseness. Syntactically this shows through the 
fact that keywords are preferred to symbols, that no keyword is an abbreviation, etc. 
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Very strong typing. It is very easy to introduce new types in Ada, with the benefit of 
preventing data usage errors. 

It is similar to many functional languages in that regard, except that the programmer 
has to be much more explicit about typing in Ada, because there is almost no type 
inference. 

Explicit is better than implicit. Although this is a Python7 commandment, Ada takes 
it way further than any language we know of: 

– There is mostly no structural typing, and most types need to be explicitly named 
by the programmer. 

– As previously said, there is mostly no type inference. 

– Semantics are very well defined, and undefined behavior is limited to an absolute 
minimum. 

– The programmer can generally give a lot of information about what their program 
means to the compiler (and other programmers). This allows the compiler to be 
extremely helpful (read: strict) with the programmer.” [22] 

2.2.2.1 Ada’s history and use-cases 

“In the 1970s the United States Department of Defense (DOD) suffered from an 
explosion of the number of programming languages, with different projects using 
different and non-standard dialects or language subsets / supersets. The DOD decided to 
solve this problem by issuing a request for proposals for a common, modern 
programming language. The winning proposal was one submitted by Jean Ichbiah from 
CII Honeywell-Bull. 

The first Ada standard was issued in 1983; it was subsequently revised and 
enhanced in 1995, 2005 and 2012, with each revision bringing useful new features.” [22] 

“Today, Ada is heavily used in embedded real-time systems, many of which are 
safety critical. While Ada is and can be used as a general-purpose language, it will really 
shine in low-level applications: 

 Embedded systems with low memory requirements (no garbage collector allowed). 

 Direct interfacing with hardware. 

 Soft or hard real-time systems. 

 Low-level systems programming. 

Specific domains seeing Ada usage include Aerospace & Defense, civil aviation, rail, 
and many others. These applications require a high degree of safety: a software defect is 
not just an annoyance, but may have severe consequences. Ada provides safety features 
that detect defects at an early stage — usually at compilation time or using static 
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analysis tools. Ada can also be used to create applications in a variety of other areas, 
such as: 

 Video game programming 

 Real-time audio 

 Kernel modules” [22] 

2.2.2.2 Ada’s syntax 

Ada’s syntax is elaborated in appendix A. 

2.3 Compiler optimizations 
Programmers generally write clean, high level programs and usually do not write 

optimal code. Optimal code can depend on features not expressed to the programmer. 
Modern architectures assume optimization. [23] "[Optimization] is the concept of 
program transformation, to make it consume fewer resources such as CPU and memory. 
This will result in more efficient machine code and therefore a better performing 
program. 

 

Generally, we can give our compiler optimization the following rules: 

 

    The optimization must not in any way change the function or meaning of the 
program 

    The optimization should increase the performance of the program 

    The compilation time must remain reasonable 

    The optimization must not delay compilation 

 

Since our code optimization reduces code readability, it is often conducted at the 
end of development." [24] 

"Different kinds of optimizations [can affect]: 

 Time: improve execution speed 

 Space: reduce amount of memory needed 

 Power: lower power consumption (e.g. to extend battery life)" [23] 

It should be noted that in some cases optimizations might lead to security flaws 
(although this arguably violates rule #1 from [24]). [25] So, ideally, optimizations should 
go through some program analysis to determine if the transformation really is safe, but 
also to determine whether the transformation is cost effective. Typically there is no 
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guarantee that the transformations will improve performance, nor that compilation will 
produce optimal code. [23] 

"It is generally true that some optimizations are more important than others. Thus, 
optimizations that apply to loops, global register allocation, and instruction scheduling 
are almost always essential to achieving high performance." [26] 

"For almost every optimization or set of optimizations, we can easily construct a 
program for which they have significant value and only they apply." [26]  

[26] categorizes "the intraprocedural (or global) optimizations covered in [its] 
Chapters 12 through 18 (excluding trace and percolation scheduling) into four groups, 
numbered I through IV, with group I being the most important and group IV the least. 

 

Group I consists mostly of optimizations that operate on loops, but also includes 

several that are important for almost all programs on most systems, such as 
constant folding, global register allocation, and instruction scheduling. Group I consists 
of 

1. constant folding; 

2. algebraic simplifications and reassociation; 

3. global value numbering; 

4. sparse conditional constant propagation; 

5. the pair consisting of common-subexpression elimination and loop-invariant code 
motion or the single method of partial-redundancy elimination; 

6. strength reduction; 

7. removal of induction variables and linear-function test replacement; 

8. dead-code elimination; 

9. unreachable-code elimination (a control-flow optimization); 

10. graph-coloring register allocation; 

11. software pipelining, with loop unrolling, variable expansion, register renaming, 
and hierarchical reduction; and 

12. branch and basic-block (list) scheduling. 

 

Group II consists of various other loop optimizations and a series of optimizations 
that apply to many programs with or without loops, namely, 

1. local and global copy propagation, 
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2. leaf-routine optimization, 

3. machine idioms and instruction combining, 

4. branch optimizations and loop inversion, 

5. unnecessary bounds-checking elimination, and 

6. branch prediction. 

 

Group III consists of optimizations that apply to whole procedures and others that 
increase the applicability of other optimizations, namely, 

1. procedure integration, 

2. tail-call optimization and tail-recursion elimination, 

3. in-line expansion, 

4. shrink wrapping, 

5. scalar replacement of aggregates, and 

6. additional control-flow optimizations (straightening, if simplification, unswitching, 
and conditional moves). 

 

Finally, group IV consists of optimizations that save code space but generally do not 
save time, namely, 

1. code hoisting and 

2. tail merging." [26] 

A list of compiler optimizations and a brief description of them can be found at [27]. 
There are too many to include in this document in detail, so only some of the most 
popular/noteworthy/important ones are expanded on in appendix B (Most from group 
I). The ones that the CCC frontend applies are expanded on in section 2.3.2. 

2.3.1 Data flow analysis 

Some optimizations require data flow analysis, and others do not. 

""Data-flow analysis" refers to a body of techniques that derive information about 
the flow of data along program execution paths. For example, one way to 
implement global common subexpression elimination requires us to 
determine whether two textually identical expressions evaluate to the same 
value along any possible execution path of the program." [7] 

"The execution of a program can be viewed as a series of transformations of the 
program state, which consists of the values of all the variables in the 
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program, including those associated with stack frames below the top of the 
run-time stack. Each execution of an intermediate-code statement 
transforms an input state to a new output state. The input state is associated 
with the program point before the statement and the output state is 
associated with the program point after the statement. 

When we analyze the behavior of a program, we must consider all the possible 
sequences of program points ("paths") through a flow graph that the 
program execution can take. We then extract, from the possible program 
states at each point, the information we need for the particular data-flow 
analysis problem we want to solve. In more complex analyses, we must 
consider paths that jump among the flow graphs for various procedures, as 
calls and returns are executed." [7] 

"The purpose of data-flow analysis is to provide global information about how a 
procedure (or a larger segment of a program) manipulates its data. 

For example, constant-propagation analysis seeks to determine whether all 
assignments to a particular variable that may provide the value of that 
variable at some particular point necessarily give it the same constant value. 
If so, a use of the variable at that point can be replaced by the constant. 

The spectrum of possible data-flow analyses ranges from abstract execution of a 
procedure, which might determine, for example, that it computes the 
factorial function, to much simpler and easier analyses such as the reaching 
definitions problem. 

In all cases, we must be certain that a data-flow analysis gives us information that 
does not misrepresent what the procedure being analyzed does, in the sense 
that it must not tell us that a transformation of the code is safe to perform 
that, in fact, is not safe. We must guarantee this by careful design of the 
data-flow equations and by being sure that the solution to them that we 
compute is, if not an exact representation of the procedure’s manipulation 
of its data, at least a conservative approximation of it. For example, for the 
reaching definitions problem, where we determine what definitions of 
variables may reach a particular use, the analysis must not tell us that no 
definitions reach a particular use if there are some that may. The analysis is 
conservative if it may give us a larger set of reaching definitions than it might 
if it could produce the minimal result." [26] 

[28] provides a simple example for a constant propagation data flow analysis. The 
example algorithm to be analyzed is: 
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" 

  k = 2; 

  if (...) { 

    a = k + 2; 

    x = 5; 

  } else { 

    a = k * 2; 

    x = 8; 

  } 

  k = a; 

  while (...) { 

     b = 2; 

     x = a + k; 

     y = a * b; 

     k++; 

  } 

  print(a+x); 

" [28] 

"The goal of constant propagation is to determine where in the program variables 
are guaranteed to have constant values. More specifically, the information 
computed for each CFG (control flow graph) node n is a set of pairs, each of 
the form (variable, value). If we have the pair (x, v) at node n, that means 
that x is guaranteed to have value v whenever n is reached during program 
execution. 

Below is the CFG for the example program, annotated with constant-propagation 
information. " [28] 
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Image 5.  Data flow analysis constant propagation control flow graph example 

Πηγή: [28] 
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2.3.2 Description of optimizations relevant to the CCC frontend 

(For other important optimizations not implemented by the CCC 
frontend see appendix B.) 

2.3.2.1 Constant folding 

"Constant-expression evaluation, or constant folding, refers to the evaluation at 
compile time of expressions whose operands are known to be 
constant. It is a relatively simple transformation to perform, in most 
cases. In its simplest form, constant-expression evaluation involves 
determining that all the operands in an expression are constant-
valued, performing the evaluation of the expression at compile time, 
and replacing the expression by its value. For Boolean values, this 
optimization is always applicable. 

For integers, it is almost always applicable—the exceptions are cases that would 
produce run-time exceptions if they were executed, such as divisions 
by zero and overflows in languages whose semantics require overflow 
detection. Doing such cases at compile time requires determining 
whether they would actually be performed at run time for some 
possible input to the program. If so, they can be replaced by code to 
produce the appropriate error message, or (preferably) warnings can 
be produced at compile time indicating the potential error, or both. For 
the special case of addressing arithmetic, constant-expression 
evaluation is always worthwhile and safe—overflows do not matter." 
[26] 

"For floating-point values, the situation is more complicated. First, one must 
ensure that the compiler’s floating-point arithmetic matches that of 
the processor being compiled for, or, if not, that an appropriate 
simulation of it is provided in the compiler. Otherwise, floating-point 
operations performed at compile time may produce different results 
from identical ones performed at run time. Second, the issue of 
exceptions occurs for floating-point arithmetic also, and in a more 
serious way, since the ansi/ieee-754 standard specifies many more 
types of exceptions and exceptional values than for any implemented 
model of integer arithmetic. The possible cases—including infinities, 
NaNs, denormalized values, and the various exceptions that may 
occur—need to be taken into account. Anyone considering 
implementing constant-expression evaluation for floating-point values 
in an optimizer would be well advised to read the ansi/ieee-754 1985 
standard and Goldberg’s explication of it very carefully ( [29])" [26] 
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Example: 

input: 

" 

int x = (2+3) * y;  

b & false; 

" [19] 

output: 

" 

int x = 5 * y; 

false; 

" [23] 

2.3.2.2 Algebraic Simplification 

Algebraic simplification can be seen as a more general form of constant folding. 
It takes advantage of mathematically sound simplification rules. [23] 

"Algebraic simplifications use algebraic properties of operators or particular 
operator-operand combinations to simplify expressions. Reassociation 
refers to using specific algebraic properties—namely, associativity, 
commutativity, and distributivity—to divide an expression into parts 
that are constant, loop-invariant (i.e., have the same value for each 
iteration of a loop), and variable." [26] 

"The most obvious algebraic simplifications involve combining a binary operator 
with an operand that is the algebraic identity element for the operator 
or with an operand that always yields a constant, independent of the 
value of the other operand. 

For example, for any integer-valued constant or variable i, the following are 
always true: 

i + 0 = 0 + i = i - 0 = i 

0 - i = -i 

i * 1 = 1 * i = i / 1 = i 

i * 0 = 0 * i = 0 

There are also simplifications that apply to unary operators, or to combinations 
of unary and binary operators, such as 

- (- i) = i 
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i + (-j) = i - j 

Similar simplifications apply to Boolean and bit-field types. For b, a Boolean 
valued constant or variable, we have 

b V true = true V b = true 

b V false = false V b = b 

and corresponding rules for &." [26] 

"Another class of simplifications involves the use of commutativity and 
associativity. For example, for integer variables i and j , 

(i - j) + (i - j) + (i - j) + (i - j) = 4 * i - 4 * j 

except that we may incur spurious overflows in the simplified form. For 
example, on a 32-bit system, if i = 230 = 0x40000000 and j = 230 - 1 = 
0x3fffffff , then the expression on the left evaluates to 4 without 
incurring any overflows, while that on the right also evaluates to 4, but 
incurs two overflows, one for each multiplication. Whether the 
overflows matter or not depends on the source language—in C or 
Fortran 77 they don’t, while in Ada they do. It is essential that the 
optimizer implementer be aware of such issues." [26] 

2.3.2.3 Common Subexpression Elimination 

"An occurrence of an expression E is called a common subexpression if E was 
previously computed and the values of the variables in E have not 
changed since the previous computation. We avoid recomputing E if 
we can use its previously computed value; that is, the variable x to 
which the previous computation of E was assigned has not changed in 
the interim. If x has changed, it may still be possible to reuse the 
computation of E if we assign its value to a new variable y, as well as to 
x, and use the value of y in place of a recomputation of E." [7] 

The idea is to replace an expression with previously stored evaluations of that 
expression. [23] 

Example: 

input: 

" 

i = x + y + 1; 

j = x + y; 

" [27] 

output: 
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" 

t1 = x + y; 

i = t1 + 1; 

j = t1; 

" [27] 

For safety, we must be sure that the shared expression always has the same 
value in both places. [23] 

"[CSE Elimination] almost always improves performance. But sometimes, it 
might be less expensive to recompute an expression, rather than to 
allocate another register to hold its value (or to store it in memory and 
later reload it)." [23] 

2.3.2.4 Code Motion (Hoisting) 

"Loops are a very important place for optimizations, especially the inner loops 
where programs tend to spend the bulk of their time. The running time 
of a program may be improved if we decrease the number of 
instructions in an inner loop, even if we increase the amount of code 
outside that loop." [7] 

"Loop-invariant code motion recognizes computations in loops that produce the 
same value on every iteration of the loop and moves them out of the 
loop. Note that if a computation occurs inside a nested loop, it may 
produce the same value for every iteration of the inner loop(s) for each 
particular iteration of the outer loop(s), but different values for 
different iterations of the outer loop(s). Such a computation will be 
moved out of the inner loop(s), but not the outer one(s). 

Many, but not all, of the most important instances of loop-invariant code are 
addressing computations that access elements of arrays, which are not 
exposed to view and, hence, to optimization until we have translated a 
program to an intermediate code or to a lower-level one." [26] 

Example 1: 

input: 

" 

while (b) { 

z = y/x; 

… // y, x not updated 

} 
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" [23] 

output: 

" 

z = y/x; 

while (b) { 

… // y, x not updated 

} 

" [23] 

This is not limited only to the body of the loop, but its expression as well. 

Example 2: 

input: 

" 

while (i <= limit-2)  

 /* statement does not change limit */ 

" [7] 

output: 

" 

t = limit-2 

while (i <= t) 

 /* statement does not change limit or t */ 

" [7] 

 

2.3.2.5 Loop Unrolling 

"Loop unrolling replaces the body of a loop by several copies of the body and 
adjusts the loop-control code accordingly. The number of copies is 
called the unrolling factor and the original loop is called the rolled 
loop." [26] 

"Unrolling reduces the overhead of executing an indexed loop and may improve 
the effectiveness of other optimizations, such as common-
subexpression elimination, induction-variable optimizations, 
instruction scheduling, and software pipelining." [26] 

Example: 
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input: 

" 

for(int i=0; i<100; i=i+1) { 

 s = s + a[i]; 

} 

" [23] 

output: 

" 

for(int i=0; i<99; i=i+2){ 

 s = s + a[i]; 

 s = s + a[i+1]; 

} 

" [23] 

"The unrolled loop executes the loop-closing test and branch half as many times 
as the original loop and may increase the effectiveness of instruction 
scheduling by, e.g., making two loads of a[i] values available to be 
scheduled in each iteration. On the other hand, the unrolled version is 
larger than the rolled version, so it may impact the effectiveness of the 
instruction cache, possibly negating the improvement gained from 
unrolling. Such concerns dictate that we exercise caution in deciding 
which loops to unroll and by what unrolling factors." [26] 

"Also, notice that we have oversimplified the unrolling transformation in the 
example: we have assumed that the loop bounds are known constants 
and that the unrolling factor divides the number of iterations evenly. In 
general, these conditions are, of course, not satisfied. However, loops 
with general bounds can still be unrolled. What we need to do is to 
keep a rolled copy of the loop, exit the unrolled copy when the number 
of iterations remaining is less than the unrolling factor, and then use 
the rolled copy to execute the remaining iterations. We take this 
approach rather than testing in each unrolled copy of the loop body for 
early termination because one reason for unrolling loops is to allow 
instruction scheduling more latitude, in particular to allow it to 
interleave instructions from the copies of the body, which it cannot do 
as effectively if there is conditional control flow between the copies." 
[26] 
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"The most important issues in loop unrolling are deciding which loops to unroll 
and by what factor. This has two aspects: one involves architectural 
characteristics, such as the number of registers available, the available 
overlap among, for example, floating-point operations and memory 
references, and the size and organization of the instruction cache; and 
the other is the selection of particular loops in a program to unroll and 
the unrolling factors to use for them. The impact of some of the 
architectural characteristics is often best determined by 
experimentation. The result is usually a heuristic, but unrolling 
decisions for individual loops can benefit significantly from feedback 
from profiled runs of the program that contains the loops. 

The result of a set of such experiments would be rules that can be used to 
decide what loops to unroll, which might depend, for example, on the 
following types of characteristics of loops: 

1.those that contain only a single basic block (i.e., straight-line code), 

2.those that contain a certain balance of floating-point and memory operations 
or a certain balance of integer memory operations, 

3.those that generate a small number of intermediate-code instructions, and 

4.those that have simple loop control. 

The first and second criteria restrict unrolling to loops that are most likely to 
benefit from instruction scheduling. The third keeps the unrolled 
blocks of code short, so as not to adversely impact cache performance. 
The last criterion keeps the compiler from unrolling loops for which it is 
difficult to determine when to take the early exit to the rolled copy for 
the final iterations, such as when traversing a linked list. The unrolling 
factor may be anywhere from two up, depending on the specific 
contents of the loop body, but will usually not be more than four and 
almost never more than eight, although further development of VLIW 
machines may provide good use for larger unrolling factors. 

Loop unrolling generally increases the available instruction-level parallelism, 
especially if several other transformations are performed on the copies 
of the loop body to remove unnecessary dependences. Such 
transformations include software register renaming, variable 
expansion, and instruction combining. Using dependence testing to 
disambiguate potential aliases between memory addresses can also 
remove dependences. Thus, unrolling has the potential of significant 
benefit for most implementations and particularly for superscalar and 
VLIW ones." [26] 

31 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

("VLIW" stands for "Very Large Instruction Word", an instruction set 
architecture ("ISA") designed for instruction level parallelism ("ILP"). 
ILP is the parallel or simultaneous execution of a sequence of 
instructions in a computer program. See [30] for VLIW.) 

2.3.2.5.1 Full loop unrolling 

It is possible to fully unroll a loop. If an index is used, it can be replaced by the 
actual constant values it will have for every instruction. The loop itself 
is removed, only the body is kept. 

Example: 

input: 

" 

for(i = 0; i < 5; i++) 

{ 

 a[i] = b[i] + c[i]; 

} 

" 

output: 

" 

a[0] = b[0] + c[0]; 

a[1] = b[1] + c[1]; 

a[2] = b[2] + c[2]; 

a[3] = b[3] + c[3]; 

a[4] = b[4] + c[4]; 

i = 5; 

" 

 

2.3.2.6 Expression simplification and compression 

Expression simplification is the decomposition of one instruction which consists 
of multiple embedded expressions into multiple instructions consisting 
of less or only one expression. Compression can be applied to control 
the level of depth of the expressions before being split into more 
instructions. 
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The benefit of this optimization is, if a boolean instruction takes 2ns to execute 
and the clock speed of the target hardware is 6ns, 4ns have been 
wasted waiting for the next instruction if the expression depth is the 
minimum. A boolean expression depth (compression) of three would 
fit the clock cycle perfectly, and so no time would be wasted. If, 
however, we incorrectly set a compression level of 4, then 4ns would 
be wasted again as two clock cycles would be necessary (all of the first 
ones used, but only 1/3 of the second one). It is thus important that 
these constraints are able to be declared properly. 

Input: 

" 

i = (c < (b - 1)) || (a && (b > (c + 5))); 

" 

Output (compression level of 2 for both boolean and integer operations): 

" 

i1 = c < (b - 1); 

i2 = b > (c + 5); 

i3 = i1 || (a && i2); 

" 

 

2.3.2.7 Loop Pipelining/Software Pipelining 

"Software pipelining operates specifically on loop bodies and, since loops are 
where most programs spend most of their execution time, can result in 
large improvements in performance, often a factor of two or more." 
[26] 

"In a compiler that does software pipelining, it is crucial to making it as effective 
as possible to have loop unrolling, variable expansion, and register 
renaming available to be performed on the loop bodies that are being 
pipelined." [26] 

"Software pipelining is an optimization that can improve the loop-executing 
performance of any system that allows instruction-level parallelism, 
including VLIW and superscalar systems, but also one-scalar 
implementations that allow, e.g., integer and floating-point 
instructions to be executing at the same time but not to be initiated at 
the same time. It works by allowing parts of several iterations of a loop 
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to be in process at the same time, so as to take advantage of the 
parallelism available in the loop body." [26] 

"Since software pipelining moves a fixed number of iterations of a loop out of 
the loop body, we must either know in advance that the loop is 
repeated at least that many times, or we must generate code that tests 
this, if possible, at run time and that chooses to execute either a 
software-pipelined version of the loop or one that is not. Of course, for 
some loops it is not possible to determine the number of iterations 
they take without executing them, and software pipelining cannot be 
applied to such loops." [26] 

For the example below assume S3 depends on S2 and S2 depends on S1: 

input: 

" 

for(i1 = 1; i1 < 2; i1++) 

{ 

 for(i2 = 1; i2 < 10; i2++) 

 { 

  S1(); 

  S2(); 

  S3(); 

 } 

} 

" (C appropriation of an example from [31]) 

output: 

" 

for(i1 = 1; i1 < 2; i1++) 

{ 

 S1(); 

 S2(); S1(); // These will run in parallel 

 for(i2 = 3; i2 < 10; i2++) 

 { 

  S3(); S2(); S1(); // These will run in parallel 

 } 
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 S3(); S2(); // These will run in parallel 

 S3(); 

} 

" (C appropriation of an example from [31]) 

2.3.2.7.1 Recurrence duplication 

With recurrence duplication a recurrent assignment might be repeated through 
a temporary variable, in order to eliminate dependence cycles and thus 
allow pipelining with a minimal initiation interval between consecutive 
iterations (II). [4] It can be combined with code motion. 

Example input: 

" 

for (i = 0; i < 1000; i++) { 

   curr[x] = clp[block[i] + curr[x]]; 

   x++; 

} 

" [4] 

Example (expression simplified): 

" 

i = 0; 

temp = i < 1000; 

while (temp) { 

   t1 = block[i]; 

   t2 = curr[x]; 

   t3 = t1 + t2; 

   t4 = clp[t3]; 

   curr[x] = t4; 

   x++; 

   i++; 

   temp = i < 1000; 

} 

" [4] 
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Example (expression simplified and pipelined with II = 4cc) output: 

" 

i = 0; 

t1 = block[i]; // Pipeline prologue 

t2 = curr[x]; 

t3 = t1 + t2; 

t4 = clp[t3]; 

i++; 

temp = i < 1000; 

while (temp) { // Pipeline body 

   curr[x] = t4; x++; t1 = block[i]; // These will run in parallel 

   t2 = curr[x]; 

   t3 = t1 + t2; i++; // These will run in parallel 

   t4 = clp[t3]; temp = i < 1000; // These will run in parallel 

} 

curr[x] = t4; // Pipeline epilogue 

x++; 

" [4] 

Example (expression simplified and pipelined with II = 1cc) output: 

" 

i = 0; 

t_x = x; // Temporary for recurrence duplication 

t1 = block[i]; // Pipeline prologue 

t2 = curr[t_x]; 

t_x++; 

i++; 

t3 = t1 + t2; 

t1 = block[i]; 

t2 = curr[t_x]; 

t_x++; 
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i++; 

t4 = clp[t3]; 

t3 = t1 + t2; 

t1 = block[i]; 

t2 = curr[t_x]; 

t_x++; 

i++; 

temp = i < 1000; 

while (temp) { // Pipeline body 

   curr[x] = t4; x++; t4 = clp[t3]; t3 = t1 + t2; t1 = block[i]; t2 = curr[t_x]; t_x++; 
temp = i < 999; i++; // All will run in parallel 

} 

curr[x] = t4; // Pipeline epilogue 

x++; 

t4 = clp[t3]; 

t3 = t1 + t2; 

curr[x] = t4; 

x++; 

t4 = clp[t3]; 

curr[x] = t4; 

x++; 

" [4] 

 

2.4 High Level Synthesis (HLS) 
"HLS is an automated design process that takes as input an algorithmic 

description in order to create the digital hardware that implements the 
desired function. Typically, the control algorithms are written in a high-
level programming language such as C or variants (SystemC, OpenCL 
framework, among others), and the automated tool provides the 
register transfer level (RTL) hardware description. " [32] 
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"The HLST design process workflow is summarized in image 6. First, the desired 
control algorithm is described using a high-level programming 
language, typically C." [32] 

 

 
Image 6.  HLST Design process 

Πηγή: [32] 

 

 

"Together with the algorithm to implement, the HLST takes as an input a set of 
constraints defined by the designer in order to perform the RTL 
synthesis. This is the most critical point in the design flow, since the 
defined constraints will define the final performance, resource usage, 
and energy consumption, leading to optimum or subpar 
implementations. Typically, when using HLS tools for C-to-VHDL 
translation the most important constraints are those related to loop 
unrolling, pipelining, and memories partition. By combining correctly 
both constraints optimum implementations can be achieved 
considering the required performance and available resources/cost." 
[32] 

 

"The output of the HLST includes the set of solutions created as a result of the 
set of constraints. For each solution, the HDL description (either VHDL 
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or Verilog), operator scheduling graphs, and performance reports are 
provided." [32] 

 

"One of the main benefits of the HLST approach is that a set of algorithms and 
HLS constraints can be directly evaluated. This enables new design 
possibilities and opens the window to wide design space exploration 
leading to unprecedented optimization. It is important to note that, for 
complex algorithms, it is unfeasible to test a high number of 
implementations as well as unrolling/pipelining possibilities by using 
hand-coded solutions." [32] 

 

2.5 Parallelization and performance 
"Given the complexities of computer architecture, and the fact that different 

computers can vary significantly, how can you optimize code for 
performance across a range of computer architectures? The trick is to 
realize that modern computer architectures are designed around two 
key assumptions: data locality and the availability of parallel 
operations. Get these right and good performance can be achieved on 
a wide range of machines, although perhaps after some per-machine 
tuning. However, if you violate these assumptions, you cannot expect 
good performance no matter how much low-level tuning you do." [33] 
[p50] 

2.5.1 Data locality 

"Good use of memory bandwidth and good use of cache depends on good data 
locality, which is the reuse of data from nearby locations in time or 
space. Therefore, you should design your algorithms to have good data 
locality by using one or more of the following strategies: 

Break work up into chunks that can fit in cache. If the working set for a chunk of 
work does not fit in cache, it will not run efficiently. 

Organize data structures and memory accesses to reuse data locally when 
possible. Avoid unnecessary accesses far apart in memory and 
especially simultaneous access to multiple memory locations located a 
power of two apart. The last consideration is to avoid cache conflicts 
on caches with low associativity. 

To avoid unnecessary TLB misses, avoid accessing too many pages at once. 
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Align data with cache line boundaries. Avoid having unrelated data accesses 
from different cores access the same cache lines, to avoid false 
sharing." [33][p50] 

(TLB stands for "Translation Lookaside Buffer (TLB). The TLB is a specialized 
cache that translates logical addresses to physical addresses for a small 
set of active pages. Like ordinary caches, it may have hierarchical levels 
and may be split for instructions versus data." [33][p47] The working 
set is "the total amount of physical memory that needs to be accessed 
within a time period that is short relative to the disk access time". 
[33][p47]) 

"Another issue that affects the achievable performance of an algorithm is 
arithmetic intensity. This is the ratio of computation to 
communication. Given the fact that on-chip compute performance is 
still rising with the number of transistors, but off-chip bandwidth is not 
rising as fast, in order to achieve scalability approaches to parallelism 
should be sought that give high arithmetic intensity. This ideally means 
that a large number of on-chip compute operations should be 
performed for every off-chip memory access." [33][p50-51] 

2.5.2 Parallel slack 

"Parallel slack is the amount of “extra” parallelism available (Section 2.5.6) 
above the minimum necessary to use the parallel hardware resources. 
Specifying a significant amount of potential parallelism higher than the 
actual parallelism of the hardware gives the underlying software and 
hardware schedulers more flexibility to exploit machine resources. 

Normally you want to choose the smallest work units possible that reasonably 
amortize the overhead of scheduling them and give good arithmetic 
intensity. Breaking down a problem into exactly as many chunks of 
work as there are cores available on the machine is tempting, but not 
necessarily optimal, even if you know the number of cores on the 
machine. If you only have one or a few tasks on each core, then a delay 
on one core (perhaps due to an operating system interrupt) is likely to 
delay the entire program." [33][p51] 

2.5.3 Performance theory 

The primary purpose of parallelization, is performance. Performance is usually 
about one of the following: 

"Reducing the total time it takes to compute a single result (latency; Section 
2.5.1) 
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Increasing the rate at which a series of results can be computed (throughput; 
Section 2.5.1) 

Reducing the power consumption of a computation" [33][p54] 

2.5.3.1 Latency and throughput 

"The time it takes to complete a task is called latency. It has units of time. The 
scale can be anywhere from nanoseconds to days. Lower latency is 
better. 

The rate a which a series of tasks can be completed is called throughput. This 
has units of work per unit time. Larger throughput is better. A related 
term is bandwidth, which refers to throughput rates that have a 
frequency-domain interpretation, particularly when referring to 
memory or communication transactions. 

Some optimizations that improve throughput may increase the latency. For 
example, processing of a series of tasks can be parallelized by 
pipelining, which overlaps different stages of processing. However, 
pipelining adds overhead since the stages must now synchronize and 
communicate, so the time it takes to get one complete task through 
the whole pipeline may take longer than with a simple serial 
implementation." [33][p55] 

2.5.3.2 Speedup, Efficiency, and Scalability 

"Two important metrics related to performance and parallelism are speedup 
and efficiency. Speedup compares the latency for solving the identical 
computational problem on one hardware unit (“worker”) versus on P 
hardware units:" [33][p56] 

 

 
Image 7.  Speedup 

Πηγή: [33][p56] 

"where T1 is the latency of the program with one worker and TP is the latency 
on P workers. Efficiency is speedup divided by the number of workers:" 
[33][p56] 

 

 

 
Image 8.  Efficiency 

Πηγή: [33][p56] 
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"Efficiency measures return on hardware investment. Ideal efficiency is 1 (often 
reported as 100%), which corresponds to a linear speedup, but many 
factors can reduce efficiency below this ideal. 

If T1 is the latency of the parallel program running with a single worker," 
[33][p56] image 7 (“speedup”) "is sometimes called relative speedup, 
because it shows relative improvement from using P workers. This uses 
a serialization of the parallel algorithm as the baseline. However, 
sometimes there is a better serial algorithm that does not parallelize 
well. If so, it is fairer to use that algorithm for T1 , and report absolute 
speedup, as long as both algorithms are solving an identical 
computational problem. Otherwise, using an unnecessarily poor 
baseline artificially inflates speedup and efficiency." [33][p56] 

"An algorithm that runs P times faster on P processors is said to exhibit linear 
speedup. Linear speedup is rare in practice, since there is extra work 
involved in distributing work to processors and coordinating them. In 
addition, an optimal serial algorithm may be able to do less work 
overall than an optimal parallel algorithm for certain problems, so the 
achievable speedup may be sublinear in P, even on theoretical ideal 
machines. Linear speedup is usually considered optimal since we can 
serialize the parallel algorithm, as noted above, and run it on a serial 
machine with a linear slowdown as a worst-case baseline. 

However, as exceptions that prove the rule, an occasional program will exhibit 
superlinear speedup—an efficiency greater than 100%. Some common 
causes of superlinear speedup include: 

Restructuring a program for parallel execution can cause it to use cache 
memory better, even when run on with a single worker! But if T1 from 
the old program is still used for the speedup calculation, the speedup 
can appear to be superlinear." [33] [p56-57] 

"The program’s performance is strongly dependent on having a sufficient 
amount of cache memory, and no single worker has access to that 
amount. If multiple workers bring that amount to bear, because they 
do not all share the same cache, absolute speedup really can be 
superlinear. 

The parallel algorithm may be more efficient than the equivalent serial 
algorithm, since it may be able to avoid work that its serialization 
would be forced to do. For example, in search tree problems, searching 
multiple branches in parallel sometimes permits chopping off branches 
(by using results computed in sibling branches) sooner than would 
occur in the serial code. 
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However, for the most part, sublinear speedup is the norm." [33][p57] 

2.5.3.3 Power 

"Parallelization can reduce power consumption. CMOS is the dominant circuit 
technology for current computer hardware. CMOS power consumption 
is the sum of dynamic power consumption and static power 
consumption". [33][p57] 

"Suppose that parallelization speeds up an application by 1.5× on two cores. 
You can use this speedup either to reduce latency or reduce power. If 
your latency requirement is already met, then reducing the clock rate 
of the cores by 1.5× will save a significant amount of power. Let P1 be 
the power consumed by one core running the serial version of the 
application. Then the power consumed by two cores running the 
parallel version of the application will be given by:" [33][p57-58] 

 

 

 

 

 
Image 9.  Power: two core example 

Πηγή: [33][p58] 

"where the factor of 2 arises from having two cores. Using two cores running 
the parallelized version of the application at the lower clock rate has 
the same latency but uses (in this case) 40% less power. 

Unfortunately, reality is not so simple. Current chips have so many transistors 
that frequency and voltage are already scaled down to near the lower 
limit just to avoid overheating, so there is not much leeway for raising 
the frequency." [33][p58] 

"Especially in mobile devices, parallelism can be used to reduce latency. This 
reduces the time the device, including its display and other 
components, is powered up. This not only improves the user 
experience but also reduces the overall power consumption for 
performing a user’s task: a win-win." [33][p58] 

2.5.3.4 Amdahl's law 

"Amdahl argued that the execution time T1 of a program falls into two 
categories: 

Time spent doing non-parallelizable serial work 
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Time spent doing parallelizable work 

Call these Wser and Wpar , respectively. Given P workers available to do the 
parallelizable work, the times for sequential execution and parallel 
execution are:" [33][p59] 

 

 

 

 
Image 10.  Times for sequential and parallel execution 

Πηγή: [33][p59] 

"The bound on TP assumes no superlinear speedup, and is an exact equality 
only if the parallelizable work can be perfectly parallelized. Plugging 
these relations into the definition of speedup yields Amdahl’s Law:" 
[33][p59] 

 

 

 

 
Image 11.  Amdahl’s law 

Πηγή: [33][p59] 

"Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial 
fraction of the total work. Then the following equalities hold:" 
[33][p59] 

 

 

 

 
Image 12.  Amdahl’s law corollary equalities 

Πηγή: [33][p59] 

"Substitute these into " [33][p59] image 11 (“Amdahl’s law”) " and simplify to 
get:" [33][p59] 
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Image 13.  Amdahl’s law simplification 
Πηγή: [33][p59] 

"Now consider what happens when P tends to infinity:" [33][p60] 

 

 

 

 
Image 14.  Amdahl’s law: P tending to infinity 

Πηγή: [33][p60] 

"Speedup is limited by the fraction of the work that is not parallelizable, even 
using an infinite number of processors. If 10% of the application cannot 
be parallelized, then the maximum speedup is 10×. If 1% of the 
application cannot be parallelized, then the maximum speedup is 100×. 
In practice, an infinite number of processors is not available. With 
fewer processors, the speedup may be reduced, which gives an upper 
bound on the speedup." [33][p60] 

 

2.5.3.5 Gustafson-Barsis’ Law 

"Amdahl’s Law views programs as fixed and the computer as changeable, but 
experience indicates that as computers get new capabilities, 
applications change to exploit these features. Most of today’s 
applications would not run on computers from 10 years ago, and many 
would run poorly on machines that are just 5 years old." [33][p60-61] 

"More than two decades after the appearance of Amdahl’s Law, John 
Gustafson2 noted that several programs at Sandia National Labs were 
speeding up by over 1000×. Clearly, Amdahl’s Law could be evaded.  

Gustafson noted that problem sizes grow as computers become more powerful. 
As the problem size grows, the work required for the parallel part of 
the problem frequently grows much faster than the serial part. If this is 
true for a given application, then as the problem size grows the serial 
fraction decreases and speedup improves." [33][p61] 

"Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass 
half empty” or “glass half full.” The difference lies in whether you want 
to make a program run faster with the same workload or run in the 
same time with a larger workload. History clearly favors programs 
getting more complex and solving larger problems, so Gustafson’s 
observations fit the historical trend. Nevertheless, Amdahl’s Law still 
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haunts you when you need to make an application run faster on the 
same workload to meet some latency target. 

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In 
order for it to hold it is critical to ensure that serial work grows much 
more slowly than parallel work, and that synchronization and other 
forms of overhead are scalable." [33][p62] 

2.5.3.6 Work-Span Model 

"The work-span model is much more useful than Amdahl’s law for estimating 
program running times, because it takes into account imperfect 
parallelization. Furthermore, it is not just an upper bound as it also 
provides a lower bound. 

It lets you estimate TP from just two numbers: T1 and T∞. 

In the work-span model, tasks form a directed acyclic graph. A task is ready to 
run if all of its predecessors in the graph are done. The basic work-span 
model ignores communication and memory access costs. It also 
assumes task scheduling is greedy, which means the scheduler never 
lets a hardware worker sit idle while there is a task ready to run. 

The extreme times for P = 1 and P = ∞ are so important that they have names. 
Time T1 is called the work of an algorithm. It is the time that a 
serialization of the algorithm would take and is simply the total time it 
would take to complete all tasks. Time T∞ is called the span of an 
algorithm. The span is the time a parallel algorithm would take on an 
ideal machine with an infinite number of processors. Span is equivalent 
to the length of the critical path. The critical path is the longest chain of 
tasks that must be executed one after each other. Synonyms for span 
in the literature are step complexity or depth." [33][p62] 

"Work and span each put a limit on speedup. Superlinear speedup is impossible 
in the work-span model:" [33][p63] 

 

 

 

 
Image 15.  Work-Span speedup can not be superlinear 

Πηγή: [33][p63] 

"On an ideal machine with greedy scheduling, adding processors never slows 
down an algorithm:" [33][p63] 
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Image 16.  Adding processors does not slow an algorithm down 

Πηγή: [33][p63] 

"Or more colloquially:" [33][p63] 

 

 

 

 
Image 17.  Speedup is less than or equal to the work by the span 

Πηγή: [33][p63] 

"The span provides more than just an upper bound on speedup. It can also be 
used to estimate a lower bound on speedup for an ideal machine. An 
inequality known as Brent’s Lemma [Bre74] bounds TP in terms of the 
work T1 and the span T∞ :" [33][p63] 

 

 

 

 
Image 18.  Brent’s lemma 

Πηγή: [33][p63] 

 

"Here is the argument behind the lemma. The total work T1 can be divided into 
two categories: perfectly parallelizable work and imperfectly 
parallelizable work. The imperfectly parallelizable work takes time T∞ 
no matter how many workers there are. The perfectly parallelizable 
work remaining takes time T1 − T∞ with a single worker, and since it is 
perfectly parallelizable it speeds up by P if all P workers are working on 
it. But if not all P workers are working on it, then at least one worker is 
working on the T∞ component. The argument resembles Amdahl’s 
argument, but generalizes the notion of an inherently serial portion of 
work to imperfectly parallelizable work. 

Though the argument resembles Amdahl’s argument, it proves something quite 
different. Amdahl’s argument put a lower bound on TP and is exact 
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only if the parallelizable portion of a program is perfectly parallelizable. 
Brent’s Lemma puts an upper bound on TP . It says what happens if the 
worst possible assignment of tasks to workers is chosen. 

In general, work-span analysis is a far better guide than Amdahl’s Law, because 
it usually provides a tighter upper bound and also provides a lower 
bound." [33][p63-64] 

"Brent’s Lemma leads to a useful formula for estimating TP from the work T1 
and span T∞ . To get much speedup, T1 must be significantly larger 
than T∞ , In this case, T1 − T∞ ≈ T1 and the right side of " [33][p64] 
image 18 (“Brent’s lemma”) " also turns out to be a good lower bound 
estimate on TP . So the following approximation works well in practice 
for estimating running time:" [33][p64] 

 

 

 

 
Image 19.  Approximation to estimate running time 

Πηγή: [33][p64] 

 

"The approximation says a lot: 

Increasing the total work T1 hurts parallel execution proportionately. 

The span T∞ impacts scalability, even when P is finite. 

When designing a parallel algorithm, avoid creating significantly more work for 
the sake of parallelization, and focus on reducing the span, because the 
span is the fundamental asymptotic limit on scalability. Increase the 
work only if it enables a drastic decrease in span." [33][p65] 

"Brent’s Lemma also leads to a formal motivation for overdecomposition. From 
Equation" [33][p65] image 18 (“Brent’s lemma”) "the following 
condition can be derived:" [33][p65] 

 

 

 

 
Image 20.  Overdecomposition 

Πηγή: [33][p65] 
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"It says that greedy scheduling achieves linear speedup if a problem is 
overdecomposed to create much more potential parallelism than the 
hardware can use. The excess parallelism is called the parallel slack, 
and is defined by:" [33][p65] 

 

 

 

 
Image 21.  Parallel slack 

Πηγή: [33][p65] 

"In practice, a parallel slack of at least 8 works well. 

If you remember only one thing about time estimates for parallel programs, 
remember" [37][p65] image 19 (“Approximation to estimate running 
time”). "From it, you can derive performance estimates just by 
knowing the work T1 and span T∞ of an algorithm. However, this 
formula assumes the following three important qualifications: 

Memory bandwidth is not a limiting resource. 

There is no speculative work. In other words, the parallel code is doing T1 total 
work, period. 

The scheduler is greedy." [33][p65] 
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3. The csense compiler 

 

This chapter describes the csense compiler, its capabilities and details on the 
functions that perform the loop unrolling optimization and expression 
simplification/compression. 

 

3.1 csense overview 
csense is a source to source compiler by Michael Dosis and Georgios Dimitriou, 

written in C that translates from C to Ada (the implementation is due to Georgios 
Dimitriou). It uses flex for the lexical analysis and bison for parsing. The intermediate 
representation (IR) is in the form of an abstract syntax tree (AST). The AST is constructed 
by a set of structs forming trees with linked lists sometimes connected to them (for 
example: a "for" loop and its body are connected via a linked list.).  

 

3.1.1 flex 

flex stands for "the fast lexical analyser generator". [34] 

flex files usually end in ".l". 

"'flex' is a tool for generating "scanners".  A scanner is a program which recognizes 
lexical patterns in text.  The 'flex' program reads the given input files, or its standard 
input if no file names are given, for a description of a scanner to generate.  The 
description is in the form of pairs of regular expressions and C code, called "rules".  'flex' 
generates as output a C source file, 'lex.yy.c' by default, which defines a routine 'yylex()'.  
This file can be compiled and linked with the flex runtime library to produce an 
executable.  When the executable is run, it analyzes its input for occurrences of the 
regular expressions.  Whenever it finds one, it executes the corresponding C code." [35] 

 

"The 'flex' input file consists of three sections, separated by a line containing only 
'%%'. 

 

         definitions 

         %% 

         rules 

         %% 
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         user code 

" [35] 

3.1.1.1 Definitions section 

"The "definitions section" contains declarations of simple "name" definitions to 
simplify the scanner specification, and declarations of "start conditions", which are 
explained in a later section. 

 

   Name definitions have the form: 

 

         name definition 

 

   The 'name' is a word beginning with a letter or an underscore ('_') followed by 
zero or more letters, digits, '_', or '-' (dash).  The definition is taken to begin at the first 
non-whitespace character following the name and continuing to the end of the line.  The 
definition can subsequently be referred to using '{name}', which will expand to 
'(definition)'.  For example, 

 

         DIGIT    [0-9] 

         ID       [a-z][a-z0-9]* 

 

 Defines 'DIGIT' to be a regular expression which matches a single digit, and 'ID' to 
be a regular expression which matches a letter followed by zero-or-more letters-or-
digits.  A subsequent reference to 

 

         {DIGIT}+"."{DIGIT}* 

 

   is identical to 

 

         ([0-9])+"."([0-9])* 

 

   and matches one-or-more digits followed by a '.' followed by zero-or-more digits. 
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   An unindented comment (i.e., a line beginning with '/*') is copied verbatim to the 
output up to the next '*/'. 

 

   Any _indented_ text or text enclosed in '%{' and '%}' is also copied verbatim to the 
output (with the %{ and %} symbols removed).  The %{ and %} symbols must appear 
unindented on lines by themselves. 

 

   A '%top' block is similar to a '%{' ...  '%}' block, except that the code in a '%top' 
block is relocated to the _top_ of the generated file, before any flex definitions (1).  The 
'%top' block is useful when you want certain preprocessor macros to be defined or 
certain files to be included before the generated code.  The single characters, '{' and '}' 
are used to delimit the '%top' block, as show in the example below: 

 

         %top{ 

             /* This code goes at the "top" of the generated file. */ 

             #include <stdint.h> 

             #include <inttypes.h> 

         } 

 

   Multiple '%top' blocks are allowed, and their order is preserved. 

" [35] 

3.1.1.2 Rules section 

"The "rules" section of the 'flex' input contains a series of rules of the form: 

 

         pattern   action 

 

   where the pattern must be unindented and the action must begin on the same 
line. " [35] 

" 

   In the rules section, any indented or %{ %} enclosed text appearing before the first 
rule may be used to declare variables which are local to the scanning routine and (after 
the declarations) code which is to be executed whenever the scanning routine is 
entered.  Other indented or %{ %} text in the rule section is still copied to the output, 
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but its meaning is not well-defined and it may well cause compile-time errors (this 
feature is present for POSIX compliance.  *Note Lex and Posix::, for other such features). 

 

   Any _indented_ text or text enclosed in '%{' and '%}' is copied verbatim to the 
output (with the %{ and %} symbols removed).  The %{ and %} symbols must appear 
unindented on lines by themselves." [35] 

3.1.1.3 User code section 

"The user code section is simply copied to 'lex.yy.c' verbatim.  It is used for 
companion routines which call or are called by the scanner. The presence of this section 
is optional; if it is missing, the second '%%' in the input file may be skipped, too." [35] 

 

3.1.2 bison 

The "NAME" section in the bison "man" page reads "GNU Project parser generator 
(yacc replacement)". [36] 

A bison file usually has a “.y” extension. 

" 

“Bison” is a general-purpose parser generator that converts an annotated context-
free grammar into a deterministic LR or generalized LR (GLR) parser employing LALR(1), 
IELR(1) or canonical LR(1) parser tables. Once you are proficient with Bison, you can use 
it to develop a wide range of language parsers, from those used in simple desk 
calculators to complex programming languages. 

" [37] 

3.1.2.1 General information about bison 

"Bison was written originally by Robert Corbett.  Richard Stallman made it Yacc-
compatible.  Wilfred Hansen of Carnegie Mellon University added multi-character string 
literals and other features.  Since then, Bison has grown more robust and evolved many 
other new features thanks to the hard work of a long list of volunteers." [37] 

"In order for Bison to parse a language, it must be described by a “context-free 
grammar”.  This means that you specify one or more “syntactic groupings” and give rules 
for constructing them from their parts.  For example, in the C language, one kind of 
grouping is called an ‘expression’.  One rule for making an expression might be, “An 
expression can be made of a minus sign and another expression”.  Another would be, 
“An expression can be an integer”.  As you can see, rules are often recursive, but there 
must be at least one rule which leads out of the recursion. 
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   The most common formal system for presenting such rules for humans to read is 
“Backus-Naur Form” or “BNF”, which was developed in order to specify the language 
Algol 60.  Any grammar expressed in BNF is a context-free grammar.  The input to Bison 
is essentially machine-readable BNF." [37] 

"Although it can handle almost all context-free grammars, Bison is optimized for 
what are called LR(1) grammars.  In brief, in these grammars, it must be possible to tell 
how to parse any portion of an input string with just a single token of lookahead." [37] 

"Parsers for LR(1) grammars are “deterministic”, meaning roughly that the next 
grammar rule to apply at any point in the input is uniquely determined by the preceding 
input and a fixed, finite portion (called a “lookahead”) of the remaining input." [37] 

3.1.2.2 bison token interpretation 

"In the formal grammatical rules for a language, each kind of syntactic unit or 
grouping is named by a “symbol”.  Those which are built by grouping smaller constructs 
according to grammatical rules are called “nonterminal symbols”; those which can’t be 
subdivided are called “terminal symbols” or “token kinds”.  We call a piece of input 
corresponding to a single terminal symbol a “token”, and a piece corresponding to a 
single nonterminal symbol a “grouping”. 

 

   We can use the C language as an example of what symbols, terminal and 
nonterminal, mean.  The tokens of C are identifiers, constants (numeric and string), and 
the various keywords, arithmetic operators and punctuation marks.  So the terminal 
symbols of a grammar for C include ‘identifier’, ‘number’, ‘string’, plus one symbol for 
each keyword, operator or punctuation mark: ‘if’, ‘return’, ‘const’, ‘static’, ‘int’, ‘char’, 
‘plus-sign’, ‘open-brace’, ‘close-brace’, ‘comma’ and many more. (These tokens can be 
subdivided into characters, but that is a matter of lexicography, not grammar.) 

 

   Here is a simple C function subdivided into tokens: 

    

     int             /* keyword ‘int’ */ 

     square (int x)  /* identifier, open-paren, keyword ‘int’, 

                        identifier, close-paren */ 

     {               /* open-brace */ 

       return x * x; /* keyword ‘return’, identifier, asterisk, 

                        identifier, semicolon */ 

     }               /* close-brace */ 
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" [37] 

"The Bison parser reads a sequence of tokens as its input, and groups the tokens 
using the grammar rules.  If the input is valid, the end result is that the entire token 
sequence reduces to a single grouping whose symbol is the grammar’s start symbol.  If 
we use a grammar for C, the entire input must be a ‘sequence of definitions and 
declarations’. If not, the parser reports a syntax error." [37] 

"A nonterminal symbol in the formal grammar is represented in Bison input as an 
identifier, like an identifier in C.  By convention, it should be in lower case, such as ‘expr’, 
‘stmt’ or ‘declaration’. 

 

   The Bison representation for a terminal symbol is also called a “token kind”.  
Token kinds as well can be represented as C-like identifiers.  By convention, these 
identifiers should be upper case to distinguish them from nonterminals: for example, 
‘INTEGER’, ‘IDENTIFIER’, ‘IF’ or ‘RETURN’.  A terminal symbol that stands for a particular 
keyword in the language should be named after that keyword converted to upper case.  
The terminal symbol ‘error’ is reserved for error recovery." [37] 

"The grammar rules also have an expression in Bison syntax.  For example, here is 
the Bison rule for a C ‘return’ statement.  The semicolon in quotes is a literal character 
token, representing part of the C syntax for the statement; the naked semicolon, and the 
colon, are Bison punctuation used in every rule. 

 

     stmt: RETURN expr ';' ;" [37] 

"The token kind is a terminal symbol defined in the grammar, such as ‘INTEGER’, 
‘IDENTIFIER’ or ‘','’.  It tells everything you need to know to decide where the token may 
validly appear and how to group it with other tokens.  The grammar rules know nothing 
about tokens except their kinds. 

 

   The semantic value has all the rest of the information about the meaning of the 
token, such as the value of an integer, or the name of an identifier.  (A token such as ‘','’ 
which is just punctuation doesn’t need to have any semantic value.) 

 

   For example, an input token might be classified as token kind ‘INTEGER’ and have 
the semantic value 4.  Another input token might have the same token kind ‘INTEGER’ 
but value 3989.  When a grammar rule says that ‘INTEGER’ is allowed, either of these 
tokens is acceptable because each is an ‘INTEGER’.  When the parser accepts the token, 
it keeps track of the token’s semantic value." [37] 
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3.1.2.3 bison rules 

"In order to be useful, a program must do more than parse input; it must also 
produce some output based on the input.  In a Bison grammar, a grammar rule can have 
an “action” made up of C statements.  Each time the parser recognizes a match for that 
rule, the action is executed. 

 

   Most of the time, the purpose of an action is to compute the semantic value of the 
whole construct from the semantic values of its parts.  For example, suppose we have a 
rule which says an expression can be the sum of two expressions.  When the parser 
recognizes such a sum, each of the subexpressions has a semantic value which describes 
how it was built up. The action for this rule should create a similar sort of value for the 
newly recognized larger expression. 

 

   For example, here is a rule that says an expression can be the sum of two 
subexpressions: 

 

     expr: expr '+' expr   { $$ = $1 + $3; } ; 

 

The action says how to produce the semantic value of the sum expression from the 
values of the two subexpressions." [37] 

"Each token has a semantic value.  In a similar fashion, each token has an associated 
location, but the type of locations is the same for all tokens and groupings.  Moreover, 
the output parser is equipped with a default data structure for storing locations." [37] 

"Like semantic values, locations can be reached in actions using a dedicated set of 
constructs.  In the example above, the location of the whole grouping is ‘@$’, while the 
locations of the subexpressions are ‘@1’ and ‘@3’. 

 

   When a rule is matched, a default action is used to compute the semantic value of 
its left hand side.  In the same way, another default action is used for locations.  
However, the action for locations is general enough for most cases, meaning there is 
usually no need to describe for each rule how ‘@$’ should be formed.  When building a 
new location for a given grouping, the default behavior of the output parser is to take 
the beginning of the first symbol, and the end of the last symbol" [37] 

"When you run Bison, you give it a Bison grammar file as input.  The most important 
output is a C source file that implements a parser for the language described by the 
grammar.  This parser is called a “Bison parser”, and this file is called a “Bison parser 
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implementation file”. Keep in mind that the Bison utility and the Bison parser are two 
distinct programs: the Bison utility is a program whose output is the Bison parser 
implementation file that becomes part of your program. 

 

   The job of the Bison parser is to group tokens into groupings according to the 
grammar rules—for example, to build identifiers and operators into expressions.  As it 
does this, it runs the actions for the grammar rules it uses. 

 

   The tokens come from a function called the “lexical analyzer” that you must supply 
in some fashion (such as by writing it in C). The Bison parser calls the lexical analyzer 
each time it wants a new token.  It doesn’t know what is “inside” the tokens (though 
their semantic values may reflect this).  Typically the lexical analyzer makes the tokens 
by parsing characters of text, but Bison does not depend on this. 

    

The Bison parser implementation file is C code which defines a function named 
‘yyparse’ which implements that grammar.  This function does not make a complete C 
program: you must supply some additional functions.  One is the lexical analyzer.  
Another is an error-reporting function which the parser calls to report an error.  In 
addition, a complete C program must start with a function called ‘main’; you have to 
provide this, and arrange for it to call ‘yyparse’ or the parser will never run. 

 

   Aside from the token kind names and the symbols in the actions you write, all 
symbols defined in the Bison parser implementation file itself begin with ‘yy’ or ‘YY’.  
This includes interface functions such as the lexical analyzer function ‘yylex’, the error 
reporting function‘yyerror’ and the parser function ‘yyparse’ itself.  This also includes 
numerous identifiers used for internal purposes." [37] 

3.1.2.4 Language design process using bison 

"The actual language-design process using Bison, from grammar specification to a 
working compiler or interpreter, has these parts: 

 

  1. Formally specify the grammar in a form recognized by Bison.  For each 
grammatical rule in the language, describe the action that is to be taken when an 
instance of that rule is recognized.  The action is described by a sequence of C 
statements. 
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  2. Write a lexical analyzer to process input and pass tokens to the parser. The 
lexical analyzer may be written by hand in C.  It could also be produced using Lex, but 
the use of Lex is not discussed in this manual. 

 

  3. Write a controlling function that calls the Bison-produced parser. 

 

  4. Write error-reporting routines. 

   

To turn this source code as written into a runnable program, you must follow these 
steps: 

 

  1. Run Bison on the grammar to produce the parser. 

 

  2. Compile the code output by Bison, as well as any other source 

     files. 

 

  3. Link the object files to produce the finished product. 

" [37] 

3.1.2.5 bison grammar file structure 

"The input file for the Bison utility is a “Bison grammar file”.  The general form of a 
Bison grammar file is as follows: 

 

     %{ 

     PROLOGUE 

     %} 

 

     BISON DECLARATIONS 

 

     %% 

     GRAMMAR RULES 

     %% 
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     EPILOGUE 

 

The ‘%%’, ‘%{’ and ‘%}’ are punctuation that appears in every Bison grammar file to 
separate the sections. 

 

 The prologue may define types and variables used in the actions.  You can also use 
preprocessor commands to define macros used there, and use ‘#include’ to include 
header files that do any of these things.  You need to declare the lexical analyzer ‘yylex’ 
and the error printer ‘yyerror’ here, along with any other global identifiers used by the 
actions in the grammar rules. 

 

   The Bison declarations declare the names of the terminal and nonterminal 
symbols, and may also describe operator precedence and the data types of semantic 
values of various symbols. 

 

   The grammar rules define how to construct each nonterminal symbol from its 
parts. 

 

   The epilogue can contain any code you want to use.  Often the definitions of 
functions declared in the prologue go here.  In a simple program, all the rest of the 
program can go here." [37] 

3.1.2.6 An example bison file (infix calculator) 

The example that follows is an Infix notation calculator. 

"Here is the Bison code for ‘calc.y’, an infix desk-top calculator. 

 

     /* Infix notation calculator. */ 

 

     %{ 

       #include <math.h> 

       #include <stdio.h> 

       int yylex (void); 

       void yyerror (char const *); 

     %} 
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     /* Bison declarations. */ 

     %define api.value.type {double} 

     %token NUM 

     %left '-' '+' 

     %left '*' '/' 

     %precedence NEG   /* negation--unary minus */ 

     %right '^'        /* exponentiation */ 

 

     %% /* The grammar follows. */ 

     input: 

       %empty 

     | input line 

     ; 

 

     line: 

       '\n' 

     | exp '\n'  { printf ("\t%.10g\n", $1); } 

     ; 

 

     exp: 

       NUM 

     | exp '+' exp        { $$ = $1 + $3;      } 

     | exp '-' exp        { $$ = $1 - $3;      } 

     | exp '*' exp        { $$ = $1 * $3;      } 

     | exp '/' exp        { $$ = $1 / $3;      } 

     | '-' exp  %prec NEG { $$ = -$2;          } 

     | exp '^' exp        { $$ = pow ($1, $3); } 

     | '(' exp ')'        { $$ = $2;           } 

     ; 
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     %% 

 

 In the second section (Bison declarations), ‘%left’ declares token kinds and says 
they are left-associative operators.  The declarations ‘%left’ and ‘%right’ (right 
associativity) take the place of ‘%token’ which is used to declare a token kind name 
without associativity/precedence.  (These tokens are single-character literals, which 
ordinarily do not need to be declared.  We declare them here to specify the 
associativity/precedence.) 

 

   Operator precedence is determined by the line ordering of the declarations; the 
higher the line number of the declaration (lower on the page or screen), the higher the 
precedence.  Hence, exponentiation has the highest precedence, unary minus (‘NEG’) is 
next, followed by ‘*’ and ‘/’, and so on.  Unary minus is not associative, only precedence 
matters (‘%precedence’. 

 

   The other important new feature is the ‘%prec’ in the grammar section for the 
unary minus operator.  The ‘%prec’ simply instructs Bison that the rule ‘| '-' exp’ has the 
same precedence as ‘NEG’—in this case the next-to-highest. 

 

   Here is a sample run of ‘calc.y’: 

 

     $ calc 

     4 + 4.5 - (34/(8*3+-3)) 

     6.880952381 

     -56 + 2 

     -54 

     3 ^ 2 

     9 

" [37] 

3.1.3 The files csense consists of 

The files the project consists of and their dependencies are shown in the image 
below. 
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Image 22.  csense “include” dependencies 
 

The "main" function is in translator.c. 

translator.c is where the IR (AST) gets converted to Ada code (making appropriate 
checks along the way.) 

csensetypes.h defines types identified by the compiler. 

intermediate.h defines expressions, instructions and the like. 

translator.h is where Ada types are defined. 

profiler.h is where command "statistics" profiling types are defined. 

profiler.c is where functions for the profiling (mentioned in profiler.h's description) 
are implemented. 

symtab.h is where the types for the symbol table are defined. 

symtab.c contains functions for interacting with the symbol table. 

intermediate.c contains functions for creating, deleting and modifying the IR 
(instructions, expressions, etc). 

irloadstore.c contains functions for storing/loading the IR into/from a file. 

optimizer.c contains functions mainly for applying optimizations to the IR. A lot of 
functions are used for checks and tasks used in the optimization functions that are 
repeated throughout multiple optimizations. 
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csensetraps.h (This file does not do anything relevant or noteworthy in respect to 
this document) 

csense.tab.c and csense.tab.h are generated by running "bison -d csense.y". 

lex.yy.c is generated by running "flex csense.l" 

 

To compile the project with gcc (the gnu c compiler), run "gcc *.c -lfl" in the project 
folder. 

3.1.4 csense limitations 

Not all C and Ada features are supported by csense. The features that are NOT 
supported are listed below: 

• Function pointers. 

• Unnamed functions. 

• Varargs. 

• Unions. 

• Strings (including string constants). 

• Non-null pointer constants with non-pointer values. 

• Shift operations. 

• Type casting. 

• Subprogram access types. 

• Unnamed subprograms. 

• Indexing an access object. 

• The "goto" statement. 

• Any of the '#' directives ('#' is not even recognized as a token, hence no 
"#include", "#ifndef", etc is considered legal.) 

 

3.1.5 csense optimizations 

csense supports several optimization options: 

" 

optimization options: 

-ose     : simplify and compress expressions 

-ocbe=n  : compress boolean expressions of up to n levels 
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-ocie=m  : compress integer expressions of up to m levels 

   -ouil l1 l2 […] : unroll inner loop 

   -ofuil l1 l2 […]: fully unroll inner loop 

   -ouilr l1 l2 […]: unroll inner loop and reorder lines 

   -ofuilr l1 l2 […]: fully unroll inner loop and reorder lines 

   -ocm : code motion 

   -olp : loop pipeline 

   -olprcm : loop pipeline with code motion and recurrence duplication 

   -olpm : loop pipeline with minimal prologue/epilogue 

   -olpmrcm : loop pipeline with minimal prologue/epilogue, code motion and 
recurrence duplication 

" 

Where “n” and “m” can be constants and “l1”, “l2” loop candidate indexes (which 
can be omitted. In such a case the unrolling option in question is implemented on all the 
candidates that have not been mentioned already). 

(Since code motion and loop pipelining have already been described in brief in the 
second chapter of this document and are not its focus, no examples will be provided in 
this section concerning these.) 

 

3.1.5.1 The “simplify and compress expressions” optimization 

The -ose ("simplify and compress expressions") option divides expressions into ones 
with no more than two operands if no other option is specified. A temporary variable is 
generated for reassignment. An example is provided to illustrate the difference: 

C input: 

" 

int main(void) 

{ 

 int a; 

  

 a = 5 - 8 * 4 + 3; 

 a = 4 + a + 5; 
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 return 0; 

} 

" 

 

Ada output without "-ose": 

" 

--------------------------------------------------------------- 

------------------  C front-end translator  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

 

package from_c_program1 is 

 

   function main 

            return INTEGER; 

 

end from_c_program1; 

 

------------------------------------------------------------- 

 

package body from_c_program1 is 

 

   function main 

            return INTEGER is 

      V001_a: INTEGER; 

   begin 

      V001_a := -24; 

      V001_a := (4 + V001_a) + 5; 

      return 0; 

   end main; 
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end from_c_program1; 

" 

 

Ada output with "-ose": 

" 

--------------------------------------------------------------- 

------------------  C front-end translator  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

 

--------------------------------------------------------------- 

-------------------  C front-end optimizer  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

----    option -ose     : simplify expressions  --------------- 

--------------------------------------------------------------- 

 

package from_c_program1 is 

 

   function main 

            return INTEGER; 

 

end from_c_program1; 

 

------------------------------------------------------------- 

 

package body from_c_program1 is 

 

   function main 

            return INTEGER is 
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      V001_a: INTEGER; 

      OPT_TEMP_000: INTEGER; 

   begin 

      V001_a := -24; 

      OPT_TEMP_000 := 4 + V001_a; 

      V001_a := OPT_TEMP_000 + 5; 

      return 0; 

   end main; 

end from_c_program1; 

" 

(Note that constant folding has been automatically applied to the first assignment to 
"a" in both cases, even though no other optimization option has been requested.) 

The -ocbe=n (“compress boolean expressions of up to n levels”) and -ocie=m 
(“compress integer expressions of up to m levels”) options control the amount of 
instructions of the respective types that can appear in one instruction. The depth level 
can be the same or independent and can apply to expressions with mixed instruction 
types. 

Below are a couple of examples: 

C input: 

" 

int main(int argc) 

{ 

 int a = 5, b = 10, c = 15; 

 int bool_expr, int_expr; 

  

 bool_expr = (2 && (!b)) || (c && (a || 0)); 

 int_expr = 1 == ((-a > (b + c - 5)) != (7 <= c)); 

  

 return 0; 

} 

" 
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Ada output with -ocbe=3 and -ocie=2: 

" 

--------------------------------------------------------------- 

------------------  C front-end translator  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

----    option -noshort : turn off short-circuit logic mode  -- 

----    option -msize=10000   : set external memory size to  -- 

----                      10000   byte elements  -------------- 

--------------------------------------------------------------- 

 

--------------------------------------------------------------- 

-------------------  C front-end optimizer  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

----    option -ose     : simplify and compress expressions  -- 

----    option -ocbe=3  : compress boolean expressions of up -- 

----                      to 3 levels 

----    option -ocie=2  : compress integer expressions of up -- 

----                      to 2 levels 

--------------------------------------------------------------- 

 

package test1_separate_bool_int_28092022 is 

 

   function main ( 

               P01_argc: in INTEGER) 

            return INTEGER; 

 

end test1_separate_bool_int_28092022; 
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------------------------------------------------------------- 

 

package body test1_separate_bool_int_28092022 is 

 

   function main ( 

               P01_argc: in INTEGER) 

            return INTEGER is 

      V002_a: INTEGER; 

      V003_b: INTEGER; 

      V004_c: INTEGER; 

      V005_bool_expr: BOOLEAN; 

      V006_int_expr: BOOLEAN; 

      OPT_TEMP_000: INTEGER; 

      OPT_TEMP_001: INTEGER; 

      OPT_TEMP_002: BOOLEAN; 

      OPT_TEMP_003: BOOLEAN; 

      TEMPORARY0000: INTEGER; 

      TEMPORARY0001: INTEGER; 

      TEMPORARY0002: BOOLEAN; 

      TEMPORARY0003: BOOLEAN; 

   begin 

      V002_a := 5; 

      TEMPORARY0000 := 5; 

      V003_b := 10; 

      TEMPORARY0001 := 10; 

      V004_c := 15; 

      TEMPORARY0002 := false; 

      V005_bool_expr := (2 and (not V003_b)) or (V004_c and (V002_a or 
TEMPORARY0002)); 

      OPT_TEMP_000 := -V002_a; 

      OPT_TEMP_001 := (V003_b + V004_c) - 5; 
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      OPT_TEMP_002 := OPT_TEMP_000 > OPT_TEMP_001; 

      OPT_TEMP_003 := 7 <= V004_c; 

      TEMPORARY0003 := true; 

      V006_int_expr := TEMPORARY0003 = (OPT_TEMP_002 /= OPT_TEMP_003); 

      return 0; 

   end main; 

end test1_separate_bool_int_28092022; 

" 

C input: 

" 

int main(int argc) 

{ 

 int a = 5, b = 10, c = 15; 

 int d, e; 

  

 d = ((!((32 + a - 89) == -(17 - c)) && ((24 + 27) < (c - a))) == !((-b) + 9)) || !(!((5 >= 
(3 - (-4))) != 8) && ((12 < (15 - 2)) == ((10 - 9) + b))); 

 e = ((75 == c) > ((95 || a) != b)) && ((57 < a) != (b > ((c - a) > 43))); 

  

 return 0; 

} 

" 

 

Ada output with -ocbe=2 and -ocie=3: 

" 

--------------------------------------------------------------- 

------------------  C front-end translator  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

----    option -noshort : turn off short-circuit logic mode  -- 

----    option -msize=10000   : set external memory size to  -- 
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----                      10000   byte elements  -------------- 

--------------------------------------------------------------- 

 

--------------------------------------------------------------- 

-------------------  C front-end optimizer  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

----    option -ose     : simplify and compress expressions  -- 

----    option -ocbe=2  : compress boolean expressions of up -- 

----                      to 2 levels 

----    option -ocie=3  : compress integer expressions of up -- 

----                      to 3 levels 

--------------------------------------------------------------- 

 

package test3_combined_consts_30092022 is 

 

   function main ( 

               P01_argc: in INTEGER) 

            return INTEGER; 

 

end test3_combined_consts_30092022; 

 

------------------------------------------------------------- 

 

package body test3_combined_consts_30092022 is 

 

   function main ( 

               P01_argc: in INTEGER) 

            return INTEGER is 

      V002_a: INTEGER; 
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      V003_b: INTEGER; 

      V004_c: INTEGER; 

      V005_d: BOOLEAN; 

      V006_e: BOOLEAN; 

      OPT_TEMP_000: BOOLEAN; 

      OPT_TEMP_001: BOOLEAN; 

      OPT_TEMP_002: INTEGER; 

      OPT_TEMP_003: BOOLEAN; 

      OPT_TEMP_004: BOOLEAN; 

      OPT_TEMP_005: BOOLEAN; 

      OPT_TEMP_006: BOOLEAN; 

      OPT_TEMP_007: BOOLEAN; 

      OPT_TEMP_008: BOOLEAN; 

      TEMPORARY0000: INTEGER; 

      TEMPORARY0001: INTEGER; 

      TEMPORARY0002: BOOLEAN; 

   begin 

      V002_a := 5; 

      TEMPORARY0000 := 5; 

      V003_b := 10; 

      TEMPORARY0001 := 10; 

      V004_c := 15; 

      OPT_TEMP_000 := ((32 + V002_a) - 89) = (- (17 - V004_c)); 

      OPT_TEMP_001 := (not OPT_TEMP_000) and (51 < (V004_c - V002_a)); 

      OPT_TEMP_002 := (- V003_b) + 9; 

      OPT_TEMP_003 := OPT_TEMP_002 = 0; 

      OPT_TEMP_004 := 1 = (1 + V003_b); 

      TEMPORARY0002 := false; 

      OPT_TEMP_005 := TEMPORARY0002 and OPT_TEMP_004; 

      V005_d := (OPT_TEMP_001 = OPT_TEMP_003) or (not OPT_TEMP_005); 

72 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

      OPT_TEMP_006 := 75 = V004_c; 

      OPT_TEMP_007 := (95 or V002_a) /= V003_b; 

      OPT_TEMP_008 := (V004_c - V002_a) > 43; 

      V006_e := (OPT_TEMP_006 > OPT_TEMP_007) and ((57 < V002_a) /= (V003_b > 
OPT_TEMP_008)); 

      return 0; 

   end main; 

end test3_combined_consts_30092022; 

" 

 

3.1.5.2 The loop unrolling optimizations 

There are four options for loop unrolling given by csense's optimizer as of the 
writing of this text. 

The first (-ouil) is the simplest, it will make up to four copies of the loop body.  

The second (-ofuil) will unroll the body up to ten times. If the iterations happen to 
be less, the loop structure will be eradicated and modifications of the index will be 
replaced by their final value (this is especially desirable if the code is to be translated to 
a language such as VHDL and printed to a circuit board (a PCB) as this will mean less 
inessential circuitry on the board).  

The third (-ouilr) will reorder the instructions in the unrolled body so the scheme 
looks like "a1, a2, a3, b1, b2, b3" instead of the default "a1, b1, a2, b2, a3, b3", as long as 
the index is not used. (This is still a work in progress; checks to confirm that there are no 
write-after-read(WAR), read-after-write(RAW) or write-after-write(WAW) dependencies 
within the body have not been implemented yet.) 

The final option (-ofuilr) combines reordering and full loop unrolling, although the 
same restrictions on the third (-ouilr) options apply (so if the index is used at all, it falls 
back to the second option (-ofuil)). 

 

Below are a few demonstrations: 

 

Given C input: 

" 

int main(void) 
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{ 

 int a[50][50], b[50], i, j; 

 for (i = 4; i < 50; i++ ) { 

  b[i] = 1;  

  for (j = 2; j < 9; j++ ) { 

   a[i][j] = 5; 

  } 

 } 

 return 0; 

} 

" 

 

Ada output (no optimizations): 

" 

--------------------------------------------------------------- 

------------------  C front-end translator  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

 

package from_c_program3 is 

 

   type TYPE000 is array (0..49) of INTEGER; 

   type TYPE001 is array (0..49) of TYPE000; 

 

   function main 

            return INTEGER; 

 

end from_c_program3; 

 

------------------------------------------------------------- 
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package body from_c_program3 is 

 

   function main 

            return INTEGER is 

      V003_i: INTEGER; 

      V004_j: INTEGER; 

      GV000_V001_a: TYPE001; 

      GV001_V002_b: TYPE000; 

      INDEX000: INTEGER; 

      TEMPINT000: INTEGER; 

      INDEX001: INTEGER; 

      TEMPINT001: INTEGER; 

   begin 

      V003_i := 4; 

      TEMPINT000 := 45; 

      for INDEX000 in 0..TEMPINT000 loop 

         GV001_V002_b(V003_i) := 1; 

         V004_j := 2; 

         TEMPINT001 := 6; 

         for INDEX001 in 0..TEMPINT001 loop 

            GV000_V001_a(V003_i)(V004_j) := 5; 

            V004_j := V004_j + 1; 

         end loop; 

         V003_i := V003_i + 1; 

      end loop; 

      return 0; 

   end main; 

end from_c_program3; 

" 
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Ada output (-ouil, ordinary loop unrolling): 

" 

--------------------------------------------------------------- 

------------------  C front-end translator  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

 

--------------------------------------------------------------- 

-------------------  C front-end optimizer  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

----    option -ouil    : unroll inner loop  ------------------ 

--------------------------------------------------------------- 

 

package from_c_program3_ouil is 

 

   type TYPE000 is array (0..49) of INTEGER; 

   type TYPE001 is array (0..49) of TYPE000; 

 

   function main 

            return INTEGER; 

 

end from_c_program3_ouil; 

 

------------------------------------------------------------- 

 

package body from_c_program3_ouil is 

 

   function main 
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            return INTEGER is 

      V003_i: INTEGER; 

      V004_j: INTEGER; 

      OPT_TEMP_000: INTEGER; 

      GV000_V001_a: TYPE001; 

      GV001_V002_b: TYPE000; 

      INDEX000: INTEGER; 

      TEMPINT000: INTEGER; 

      INDEX001: INTEGER; 

      TEMPINT001: INTEGER; 

   begin 

      V003_i := 4; 

      TEMPINT000 := 45; 

      for INDEX000 in 0..TEMPINT000 loop 

         GV001_V002_b(V003_i) := 1; 

         V004_j := 2; 

         TEMPINT001 := 0; 

         for INDEX001 in 0..TEMPINT001 loop 

            OPT_TEMP_000 := V004_j; 

            GV000_V001_a(V003_i)(OPT_TEMP_000) := 5; 

            OPT_TEMP_000 := V004_j + 1; 

            GV000_V001_a(V003_i)(OPT_TEMP_000) := 5; 

            OPT_TEMP_000 := V004_j + 2; 

            GV000_V001_a(V003_i)(OPT_TEMP_000) := 5; 

            OPT_TEMP_000 := V004_j + 3; 

            GV000_V001_a(V003_i)(OPT_TEMP_000) := 5; 

            V004_j := V004_j + 4; 

         end loop; 

         TEMPINT001 := 8 - V004_j; 

         for INDEX001 in 0..TEMPINT001 loop 
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            GV000_V001_a(V003_i)(V004_j) := 5; 

            V004_j := V004_j + 1; 

         end loop; 

         V003_i := V003_i + 1; 

      end loop; 

      return 0; 

   end main; 

end from_c_program3_ouil; 

" 

 

Ada output (-ofuil, full loop unrolling): 

" 

--------------------------------------------------------------- 

------------------  C front-end translator  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

 

--------------------------------------------------------------- 

-------------------  C front-end optimizer  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

----    option -ouil    : unroll inner loop  ------------------ 

----    option -ofuil   : fully unroll inner loop  ------------ 

--------------------------------------------------------------- 

 

package from_c_program3_ofuil is 

 

   type TYPE000 is array (0..49) of INTEGER; 

   type TYPE001 is array (0..49) of TYPE000; 
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   function main 

            return INTEGER; 

 

end from_c_program3_ofuil; 

 

------------------------------------------------------------- 

 

package body from_c_program3_ofuil is 

 

   function main 

            return INTEGER is 

      V003_i: INTEGER; 

      V004_j: INTEGER; 

      GV000_V001_a: TYPE001; 

      GV001_V002_b: TYPE000; 

      INDEX000: INTEGER; 

      TEMPINT000: INTEGER; 

   begin 

      V003_i := 4; 

      TEMPINT000 := 45; 

      for INDEX000 in 0..TEMPINT000 loop 

         GV001_V002_b(V003_i) := 1; 

         V004_j := 2; 

         GV000_V001_a(V003_i)(2) := 5; 

         GV000_V001_a(V003_i)(3) := 5; 

         GV000_V001_a(V003_i)(4) := 5; 

         GV000_V001_a(V003_i)(5) := 5; 

         GV000_V001_a(V003_i)(6) := 5; 

         GV000_V001_a(V003_i)(7) := 5; 

         GV000_V001_a(V003_i)(8) := 5; 
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         V004_j := V004_j + 7; 

         V003_i := V003_i + 1; 

      end loop; 

      return 0; 

   end main; 

end from_c_program3_ofuil; 

" 

 

To demonstrate the reordering options (-ouilr and -ofuilr) a different input file is 
going to be used, since the use of the index variable in the previous example would 
cause the options to fall back to keeping the standard order of the unrolled loop body. 

 

Given C input: 

" 

int main(void) 

{ 

 int x, y, z, i, j; 

 for (i = 4; i < 50; i++ ) { 

  for (j = 2; j < 19; j++ ) { 

   x = 1; 

   y = 2; 

   z = 3; 

  } 

 } 

 return 0; 

} 

" 

 

Ada output (-ouil, ordinary loop unrolling): 

" 

--------------------------------------------------------------- 
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------------------  C front-end translator  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

 

--------------------------------------------------------------- 

-------------------  C front-end optimizer  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

----    option -ouil    : unroll inner loop  ------------------ 

--------------------------------------------------------------- 

 

package from_c_program5_ouil is 

 

   function main 

            return INTEGER; 

 

end from_c_program5_ouil; 

 

------------------------------------------------------------- 

 

package body from_c_program5_ouil is 

 

   function main 

            return INTEGER is 

      V001_x: INTEGER; 

      V002_y: INTEGER; 

      V003_z: INTEGER; 

      V004_i: INTEGER; 

      V005_j: INTEGER; 

      INDEX000: INTEGER; 
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      TEMPINT000: INTEGER; 

      INDEX001: INTEGER; 

      TEMPINT001: INTEGER; 

   begin 

      V004_i := 4; 

      TEMPINT000 := 45; 

      for INDEX000 in 0..TEMPINT000 loop 

         V005_j := 2; 

         TEMPINT001 := 3; 

         for INDEX001 in 0..TEMPINT001 loop 

            V001_x := 1; 

            V002_y := 2; 

            V003_z := 3; 

            V001_x := 1; 

            V002_y := 2; 

            V003_z := 3; 

            V001_x := 1; 

            V002_y := 2; 

            V003_z := 3; 

            V001_x := 1; 

            V002_y := 2; 

            V003_z := 3; 

            V005_j := V005_j + 4; 

         end loop; 

         TEMPINT001 := 18 - V005_j; 

         for INDEX001 in 0..TEMPINT001 loop 

            V001_x := 1; 

            V002_y := 2; 

            V003_z := 3; 

            V005_j := V005_j + 1; 
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         end loop; 

         V004_i := V004_i + 1; 

      end loop; 

      return 0; 

   end main; 

end from_c_program5_ouil; 

" 

 

Ada output (-ouilr, unroll inner loops and reorder instructions in the body): 

" 

--------------------------------------------------------------- 

------------------  C front-end translator  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

 

--------------------------------------------------------------- 

-------------------  C front-end optimizer  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

----    option -ouil    : unroll inner loop  ------------------ 

----    option -ouilr   : unroll inner loop and reorder  ------ 

--------------------------------------------------------------- 

 

package from_c_program5_ouilr is 

 

   function main 

            return INTEGER; 

 

end from_c_program5_ouilr; 
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------------------------------------------------------------- 

 

package body from_c_program5_ouilr is 

 

   function main 

            return INTEGER is 

      V001_x: INTEGER; 

      V002_y: INTEGER; 

      V003_z: INTEGER; 

      V004_i: INTEGER; 

      V005_j: INTEGER; 

      INDEX000: INTEGER; 

      TEMPINT000: INTEGER; 

      INDEX001: INTEGER; 

      TEMPINT001: INTEGER; 

   begin 

      V004_i := 4; 

      TEMPINT000 := 45; 

      for INDEX000 in 0..TEMPINT000 loop 

         V005_j := 2; 

         TEMPINT001 := 3; 

         for INDEX001 in 0..TEMPINT001 loop 

            V001_x := 1; 

            V001_x := 1; 

            V001_x := 1; 

            V001_x := 1; 

            V002_y := 2; 

            V002_y := 2; 

            V002_y := 2; 

            V002_y := 2; 
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            V003_z := 3; 

            V003_z := 3; 

            V003_z := 3; 

            V003_z := 3; 

            V005_j := V005_j + 4; 

         end loop; 

         TEMPINT001 := 18 - V005_j; 

         for INDEX001 in 0..TEMPINT001 loop 

            V001_x := 1; 

            V002_y := 2; 

            V003_z := 3; 

            V005_j := V005_j + 1; 

         end loop; 

         V004_i := V004_i + 1; 

      end loop; 

      return 0; 

   end main; 

end from_c_program5_ouilr; 

" 

 

Ada output (-ofuilr, fully unroll inner loops and reorder instructions in the body): 

" 

--------------------------------------------------------------- 

------------------  C front-end translator  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

 

--------------------------------------------------------------- 

-------------------  C front-end optimizer  ------------------- 

--------------------- CCC Compiler Group ---------------------- 
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--------------------------------------------------------------- 

----    option -ouil    : unroll inner loop  ------------------ 

----    option -ouilr   : unroll inner loop and reorder  ------ 

----    option -ofuil   : fully unroll inner loop  ------------ 

--------------------------------------------------------------- 

 

package from_c_program5_ofuilr is 

 

   function main 

            return INTEGER; 

 

end from_c_program5_ofuilr; 

 

------------------------------------------------------------- 

 

package body from_c_program5_ofuilr is 

 

   function main 

            return INTEGER is 

      V001_x: INTEGER; 

      V002_y: INTEGER; 

      V003_z: INTEGER; 

      V004_i: INTEGER; 

      V005_j: INTEGER; 

      INDEX000: INTEGER; 

      TEMPINT000: INTEGER; 

      INDEX001: INTEGER; 

      TEMPINT001: INTEGER; 

   begin 

      V004_i := 4; 
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      TEMPINT000 := 45; 

      for INDEX000 in 0..TEMPINT000 loop 

         V005_j := 2; 

         V001_x := 1; 

         V001_x := 1; 

         V001_x := 1; 

         V001_x := 1; 

         V001_x := 1; 

         V001_x := 1; 

         V001_x := 1; 

         V001_x := 1; 

         V001_x := 1; 

         V001_x := 1; 

         V002_y := 2; 

         V002_y := 2; 

         V002_y := 2; 

         V002_y := 2; 

         V002_y := 2; 

         V002_y := 2; 

         V002_y := 2; 

         V002_y := 2; 

         V002_y := 2; 

         V002_y := 2; 

         V003_z := 3; 

         V003_z := 3; 

         V003_z := 3; 

         V003_z := 3; 

         V003_z := 3; 

         V003_z := 3; 

         V003_z := 3; 
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         V003_z := 3; 

         V003_z := 3; 

         V003_z := 3; 

         V005_j := V005_j + 10; 

         TEMPINT001 := 18 - V005_j; 

         for INDEX001 in 0..TEMPINT001 loop 

            V001_x := 1; 

            V002_y := 2; 

            V003_z := 3; 

            V005_j := V005_j + 1; 

         end loop; 

         V004_i := V004_i + 1; 

      end loop; 

      return 0; 

   end main; 

end from_c_program5_ofuilr; 

" 

3.2 csense’s loop unrolling function 
(Most work has been done by Tolis Tsakiridis & Giorgos Chatzianastasiou. The 

reordering section and the modifications to implement full unrolling have been done by 
the author of this document.) 

The first thing the loop unrolling function does when called is count the number of 
inner "for" loops that might be candidates for unrolling. For every candidate it finds, it 
first checks the second expression: if the expression is not of a form similar to "variable < 
INTEGER" it skips the candidate and moves on to the next one. The same action is taken 
if the subsequent first expression check indicates that an assignment to the index 
variable is missing, or if the third expression check is not of the form "++index_variable" 
or "index_variable++". A fourth check will skip to the next candidate if the index variable 
is modified within the loop body. 

After this, the unroll factor is determined. If the assignment in the first expression of 
the for loop to the index variable is not a constant value, the unroll factor is set to 4 if 
full unrolling is not requested or to the constant "MAX_UNROLL_FACTOR" (10 as of the 
writing of this document) otherwise. If it is, however, there will be a few more checks 
following. The candidate might still be skipped if there are less than or equal to one 
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iteration in the loop. If the iterations are less than four, then the full unrolling flag is set 
regardless of whether it was requested or not. A "true full unroll" flag will also be set to 
"on". The "remain" flag will be set to "off", so no second rolled loop will be appended 
after the unrolled loop for the iterations that remain (the loop in its initial form minus 
the amount of iterations that were run unrolled). Else, if full unrolling has not been 
requested, the unrolling factor is set to four and the remain flag is set to "off" if the 
iteration count modulus the unroll factor results to zero. Else, if the iterations are more 
than the "MAX_UNROLL_FACTOR" constant, then there is a nested check: if the 
"MAX_UNROLL_FACTOR" constant is larger than the iterations minus itself (the 
"MAX_UNROLL_FACTOR") then the "true full unroll" flag is set to "on". After this nested 
check but within the same "else" (there is no "else" after the nested check) the unroll 
factor is set to "MAX_UNROLL_FACTOR" and the remain flag is set to "off" if the 
iteration count modulus the unroll factor results to zero. Else, finally, we have the true 
full unrolling case: the "true full unroll" flag is set to "on", the unroll factor is set to the 
iterations, and the "remain" flag is set to "off". 

The next check is whether the "expression simplification" flag is "on"; if it is not, 
then nested and compound writes as well as comma expressions are simplified. 

After this, a check is performed in case the second expression in the loop does not 
have a constant as a right child (e.g. it is "var < other_var" instead of "var < CONST"); 
dependencies are analyzed for the loop candidate and if the "abort" flag is set along the 
way, the loop candidate is skipped. This is the final check where the loop candidate 
might be skipped, so beyond this point the AST begins to get modified. 

If the "remain" flag is "on", the loop and its body in their original form are copied in 
order to be appended to the unrolled loop (or the last instruction of the fully unrolled 
"loop"). The first expression is set to null for this copy. 

The first expression to be modified in the original loop is the second one: the right 
child of the operator is set to what it is minus the unroll factor (minus one). 

The third expression is then modified to become an "assign add" expression (e.g. 
"i++" becomes "i += unroll_factor"). 

Before implementing the actual unrolling of the body a check is made in case the 
index variable is used within it; if it is, a temporary variable is generated. Any 
modification to the index will first become an assignment to this variable, and this 
temporary variable will subsequently replace any appearance of the actual index 
variable within the body. 

There are two different sections run depending on if reordering is requested (-ouilr 
or -ofuilr). If it is and the index is not used in the body, then the instructions in the body 
are counted. Following this, the first instruction in the body is copied to each place of an 
array for as many iterations there will be in the loop (the unroll factor). Then, for the 
amount of instructions in the body (that were counted earlier), for as many times as the 
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unroll factor the pointer to the current instruction is set to the array (mentioned in the 
previous sentence) the element of which is the index (used in the latest mentioned 
loop). The current pointer is then set to its next element (as it is a linked list) for as many 
times up to the current index of the instruction count loop. Outside of this last loop but 
still within the one up to the unroll factor, another two dimensional array, the first 
dimension of which is set to the instruction count loop index and the second of which is 
set to the unroll factor loop index, is set to the current pointer. Once the instruction 
count loop has finished, the current pointer is set to the very first element of the two 
dimensional array. To finish the reordering section, for as many times as the instruction 
count, for as many times as the unroll factor, the next element of the current pointer is 
set to point to the two dimensional array, the first dimension of which is set to the index 
of the instruction count loop and the second of which is set to the unroll factor loop 
index. The current pointer will subsequently be set to its next element (which was just 
set in the previous step). The reordering section has now finished, and the instructions 
should now be reordered. 

The second section runs if either no reordering has been requested, or if the index 
variable is used. Thus, since we can not be certain that we are here solely because 
reordering has not been requested, there is another check in case it has been. If true, a 
warning is printed notifying us that reordering is not possible and that the simple 
versions (-ouil or -ofuil) will be implemented instead. After appropriate pointer variable 
initializations, the first instruction in the body is copied to each place of an array for as 
many iterations there will be in the loop (the unroll factor), much like in the reordering 
section. The current pointer is then set to the first instruction in the body (not the array 
with the duplicated instructions). If the "true full unroll" flag is "on" and the index is 
used, every appearance of the index variable is replaced by its initialization value (the 
right hand side of the first expression in the unroll candidate loop), a constant. (This is 
achieved by a function that recursively calls itself until it finds a variable type with a 
specific ID in the instruction; it then proceeds to make appropriate changes to the node.) 
Then, for as many times as the unroll factor (minus one, because the original already 
exists and does not need to be modified), a copy of the first instruction is assigned to a 
pointer variable. If the index is not used, the next element of what the current pointer 
points to is set to the pointer variable (mentioned in the previous sentence). The current 
pointer is then set to the last instruction and the unroll factor loop continues to its next 
iteration. So, if the index is used, if the "true full unroll" flag is set to "off", then an 
additional instruction is appended to the next element of the current pointer: an 
assignment of the index variable plus the constant that represents the index of the 
unroll factor loop to the temporary variable that was generated earlier (right before 
starting the unrolling). The next element of the current pointer is then set to the copy of 
the first instruction, and on every iteration along the way to setting the current pointer 
to the last element in the list a check and modification is made to each instruction to 
replace every appearance of the index variable with the temporary variable. Otherwise, 
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the case is that the index is used and the "true full unroll" flag is "on". A "current 
temporary" variable is set to the assignment to the temporary much like in the non true 
full unrolling case mentioned earlier. The index variable (which is of course on the right 
hand side of the assignment to the temporary) is then replaced by the constant in its 
initialization instruction, much like before entering the unroll factor loop. The 
assignment now has the form "temp = 1 + 2", two constants on the right hand side of 
the assignment, so they are simplified to simply one: the final value. (This is achieved by 
a function that works similar to the one used for variable-to-constant transformation, 
the main difference being that it replaces the sum node with a new constant node of the 
sum of the two constants it finds.) The current pointer (not the temporary current 
pointer) is then set to the next element of the array with copies of the first instructions 
of the loop body. Then, for every next element of the current pointer (as long as one 
exists) every appearance of the index variable in the instruction is replaced by the 
temporary variable (not the pointer to the current temporary variable). Finally, every 
appearance of the temporary variable is replaced by the right hand side of the 
assignment to the temporary variable, which should hold the constant. (Note that the 
actual assignment to the temporary variable instruction is never actually connected to 
the AST; it is skipped entirely and free'd, therefore not appearing in the final output.) 

The loop body has now been unrolled, but there are a few more things that might 
be done before we exit the function: if the index variable is used within the body and the 
"true full unroll" flag is set to "off", an assignment instruction of the form "temp = 
index_variable" is generated and appended to the start of the loop body. For a final 
time, all appearances of the index variable within the body are replaced by the 
temporary variable. If these conditions are not true, the variables for the first and for the 
current pointer are set to the first instruction in the loop body. 

Lastly, the "true full unroll" flag is checked again. If it is "on", a copy of the first and 
the third section of the "for" loop candidate is made (e.g. 
"for(<first>;<second>;<third>)"). After the first section has been copied, the pointer to 
the first instruction in the loop body is set to the new (copied "first") instruction. Its next 
element is then set to the first instruction in the for loop. Next, the current pointer is set 
to the (new) first instruction, and subsequently to the last instruction in the loop body. 
After this, the third section is copied. Once done, a check is made in case the "remain" 
flag is "on" (recall that this is set if there are any remaining iterations; that is, when the 
iterations divided with the unroll factor, do not have a remainder of zero). If it is, the 
newly copied third expression is set to the loop candidate's next element (that was set 
before we started the unrolling itself). Regardless of the previous check, the next 
element of the current pointer (which at this point points to the last instruction in the 
loop body) is set to the copied third expression. Finally, the pointer to the first 
instruction in the loop is copied onto the loop candidate's node itself, thus eliminating 

91 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

the loop structure entirely (which results in the fully unrolled loop body – without the 
actual loop – that can be seen in the examples above). 

The following is a pseudocode generalization for the entire loop unrolling function: 

" 

for each loop candidate { 

 declare and initialize variables; 

 

 if the first or second or third expression is invalid or the index variable is modified 
within the body { 

  skip to the next candidate; 

 } 

  

 <determine unroll factor, if there are any iterations that will remain and if we 
have a case of true full unrolling> 

  

 divide compound instructions into one operation per instruction; 

  

 if the right hand side of the middle expression is not a constant and is modified 
within the body { 

  skip to the next candidate; 

 } 

  

 if any iterations will remain { 

  connect a copy of the loop with the appropriately modified iteration 
count as the next instruction after the original loop; 

 } 

  

 modify the limit of the second expression of the loop to be what it was minus the 
unroll factor minus one; 

 modify the third expression of the loop to become an assign-add (+=) expression 
with the unroll factor; 

  

 if the index variable is used within the loop body { 
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  generate a temporary variable; 

 } 

  

 if the index is not used and reordering has been requested { 

  initialize variables; 

  unroll the loop; 

  reorder its instructions; 

  reattach the instructions as the loop's new body; 

 } else { 

  if reordering has been requested { 

   print warning that no reordering will be performed; 

  } 

   

  initialize variables; 

   

  for each local index up to the unroll factor { 

   if the index is not used { 

    unroll the loop and continue to the next local iteration; 

   } 

    

   if no true full unrolling is to be done { 

    unroll the loop while attaching an assignment of the 
modification of the index variable to the temporary variable before the current copy of 
the loop body; 

    replace every appearance of the index variable in the loop 
body with the temporary variable; 

   } else { 

    generate an assignment of the modification of the index 
variable to the temporary variable; 

    replace the index variable in the instruction generated by 
the above line with its initialization value; 
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    replace the sum in the instruction modified in the above 
line with its result; 

    unroll the loop while replacing each appearance of the 
temporary variable with the right hand side of the instruction modified in the above 
three lines; 

   } 

  } 

 } 

  

 if the index variable is used within the body and we are not in the case of true full 
unrolling { 

  generate and attach an assignment instruction of the index variable to 
the temporary variable before the beginning of the loop body; 

  reinitialize local variables; 

 } else { 

  reinitialize local variables (in a different order); 

 } 

  

 if in the case of true full unrolling { 

  copy the first expression of the loop to the beginning of the loop body; 

  if there is another loop for the remaining iterations attached to the 
original loop, attach the (copied) third expression of the loop before it; 

  attach the last instruction in the loop body before the copied third 
expression; 

  copy the first instruction in the loop body (which is now the copied first 
expression) to the loop node (effectively keeping the body but eradicating the loop 
components. Whatever pointed to the loop node now points to the first instruction in 
the remaining body.); 

 } 

} 

" 
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Here is some more analytic pseudocode for the initialization of the two dimensional 
array of the reordering section: 

" 

for (k = 0; k <= commands_in_loop_count; k++) { 

 for (j = 0; j < unroll_factor; j++) { 

  set the current_pointer to the j'th element of the array of the copied first 
instructions; 

  for (kk = 0; kk < k; kk++) { // This loop is to find the index of the instruction 
to be copied. 

   set the current_pointer to its next element; 

  } 

  reordered_instruction_table[k][j] = current_pointer; 

 } 

} 

" 

3.3 csense’s expression compression functions 
(Most work has been done by Dr. Georgios Dimitriou, finding a way to implement 

mixed integer and Boolean expressions was done by the compiler of this document.) 

The parent function for the expression simplification function calls a function to 
simplify the instruction sequence for each subroutine it finds. This latter function then 
runs through a switch statement to check the type (expression, if, while, etc.) of the 
current instruction being processed and subsequently calls a function to simplify the 
expression tree with relevant checks and calls to instruction connection functions as 
required for each type case. It is this expression tree simplification function where most 
of the spadework is done. This function checks the type of the expression in an 
instruction with a switch statement and then, according to what type of node 
(operators, identifier, etc) it is dealing with, mostly interconnects instructions with the 
instruction returned by recursive calls to itself.  

Specifically for the integer and Boolean operators: a call is made to a function to 
calculate the expression’s full and original depth level (or “height”). The operators are 
then checked again, and if the calculated height is the same as the sole integer or 
Boolean height calculated by another similar function, we proceed to the actual 
simplification (the calls to connect instructions to recursive calls of the function being 
described) depending on the conditions which mostly in turn depend on the requested 
expression depth level by the user and the remaining (current) height of the function’s 

95 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

iteration. This latter height gets passed in and is decreased on every recursive call. At 
some point, we either return the current instruction generated and connected from a 
condition or we return a new, further simplified instruction generated once the switch 
statement ends. 

For mixed expressions there are two parameters decreased on every call: integer 
and Boolean height. For expressions not involving one of the two types the non-relevant 
one is not decreased. 
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4. Results in the backend (VHDL generation from Ada 
input) 

This chapter contains a few benchmarks with results from applying a range of 
combinations of loop unrolling and expression compression. The resulting .ada files were 
used as input to the CCC backend. Results were obtained between December 2022 and 
January 2023. 

The benchmarking is done by measuring the time taken to run the post-implementation 
functional simulation in Xilinx Vivado 2018.3 in project mode with the Zedboard, an 
evaluation and development board based on the Xilinx Zynq-7000, as the target. 

The constraints file (.xdc) used was a variation of the following for all tests: 

" 

create_clock -period 100.000 [get_ports clock] 

 

 

#set_property IOSTANDARD LVDS_25 [get_ports *] 

#set_property IOSTANDARD LVCMOS33 [get_ports *] 

set_property IOSTANDARD LVTTL [get_ports *] 

 

# clock, reset, start, results_read, busy, done  location constraints        

 

set_property PACKAGE_PIN R18 [get_ports reset]           

set_property PACKAGE_PIN R16 [get_ports start]           

set_property PACKAGE_PIN P16 [get_ports results_read]    

set_property PACKAGE_PIN T22 [get_ports busy]            

set_property PACKAGE_PIN T21 [get_ports done]            

set_property PACKAGE_PIN Y9 [get_ports clock] 

set_property PACKAGE_PIN U22 [get_ports our_main] 

97 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

 

set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets reset_IBUF] 

set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets start_IBUF] 

set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets results_read_IBUF] 

set_property CLOCK_DEDICATED_ROUTE FALSE [get_nets clock_IBUF]           

" 

Package pin Y9 is a clock pulse at 33.33MHz, according to the Zedboard Hardware User 
Guide, and so was the most sensible choice to map the clock to. Had the clock been 
mapped to a button, for example, we would need to repeatedly press the button to 
advance each clock cycle; which is infeasible for a count above 500.  

Reset, start and results_read have been mapped to buttons to make testing on the 
hardware easier. 

Busy, done and our_main have been mapped to LEDs. 

 

4.1 First test 

4.1.1 State count reduction 

The PARCS optimizer in the backend reduces the amount of states in the original VHDL 
output. A theoretical advantage of expression compression is that states can be reduced 
further by the PARCS optimizer. 

To test the output, the following c input was used (while the contents are the same, the 
filenames indicate the optimizations used to preserve results and prevent overwriting): 

" 

int main(int argc) 

{ 

 int m2[50], a = 5, b = 10, c = 15, i, j; 

  

 for (i = 4; i < 50; i++ ) { 

  for (j = 2; j < 19; j++ ) { 

   m2[j] = a || ((b + c - (5 + a) > (a - c)) && (b || !c)); 
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  } 

 } 

  

 return 0; 

} 

" 

 

The unoptimized (by the backend) result of the output of running "./a.exe 
input_files/f_c_p7_loop1_no_opts.c" generates 40 states: 

" 

[...] 

   SIGNAL done_int : std_logic; 

 

   TYPE states_type IS (state_40,  

                        state_39, state_38, state_37, state_36, state_35,  

                        state_34, state_33, state_32, state_31, state_30,  

                        state_29, state_28, state_27, state_26, state_25,  

                        state_24, state_23, state_22, state_21, state_20,  

                        state_19, state_18, state_17, state_16, state_15,  

                        state_14, state_13, state_12, state_11, state_10,  

                        state_9, state_8, state_7, state_6, state_5,  

                        state_4, state_3, state_2, state_1, state_0); 

   SIGNAL state : states_type;  -- this stores the current and next state of the circuit 

 

   SIGNAL v002_m2 : Std_logic_vector(49 DOWNTO 0) ;  

[...] 
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" 

 

The backend PARCS optimized result of the output of running "./a.exe 
input_files/f_c_p7_loop1_no_opts.c" generates 18 states:  

" 

[...] 

 SIGNAL done_int : std_logic; 

 

   TYPE states_type IS (state_18,  

                        state_17, state_16, state_15, state_14, state_13,  

                        state_12, state_11, state_10, state_9, state_8,  

                        state_7, state_6, state_5, state_4, state_3,  

                        state_2, state_1, state_0); 

   SIGNAL state : states_type;  -- this stores the current and next state of the circuit 

 

   SIGNAL v002_m2 : Std_logic_vector(49 DOWNTO 0) ; 

[...] 

" 

 

This is a 55% decrease.  

We will now focus only on the PARCS optimized results' state increase/decrease in 
relation to the unoptimized input results shown above (18 states). 

 

The PARCS optimized result of the output of running "./a.exe -noshort -ofuil 
input_files/f_c_p7_loop1_ofuil.c" generates 73 states: a 305.55% increase from the non 
optimized version. For reference, the simple non PARCS optimized result has 153 states. 
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The PARCS optimized result of the output of running "./a.exe -noshort -ocbe=2 -ocie=3 
input_files/f_c_p7_loop1_ocbe2_ocie3.c" generates 11 states: a 38.88% decrease from 
the non optimized version. For reference, the simple non PARCS optimized result has 30 
states. 

 

The PARCS optimized result of the output of running "./a.exe -noshort -ofuil -ocbe=2 -
ocie=3 input_files/f_c_p7_loop1_ofuil_ocbe2_ocie3.c" generates 62 states: a 244.44% 
increase from the non optimized version and 15.06% decrease from the compressionless 
version. For reference, the simple non PARCS optimized result has 131 states. 

 

We can thus conclude that expression compression is quite an important aid to 
decreasing the amount of states in the VHDL output, which could prove crucial when 
combined with loop unrolling (which increases the amount of states).  

 

4.1.2 Modification to the .vhd output 

The output of each .vhd file was modified in order to accommodate for the fact that the 
entity generated returns a "main[31:0]" variable (OUT  std_logic_vector(31 DOWNTO 0)) 
that needs a pin mapping for the Zedboard. There are only 8 LEDs on the Zedboard and 
all outputs must be mapped to a pin. Normally we would output the final value to a 
multiplexer to solve this issue. However, since this "main[31:0]" variable which 
originated from the "return 0;" line in the .c file (which is required for it to compile 
properly with gcc) is only set in the "reset" section of the .vhd and never gets any other 
value, we can safely replace the "main" variable with an "our_main" variable (OUT 
std_logic) which turns on after the first run has finished. The changes are the following 
(output of "diff <original>.vhd <modified>.vhd"): 

" 

<         main : OUT  std_logic_vector(31 DOWNTO 0); 

--- 

>         --main : OUT  std_logic_vector(31 DOWNTO 0); -- This is the original line 

>         our_main : OUT  std_logic; -- This line was added for pin mapping 

163c164,165 

<        main <= (OTHERS => '0'); 
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--- 

>        --main <= (OTHERS => '0'); -- Original line 

>        our_main <= '0'; -- Line added for pin mapping 

192c194 

<            IF results_read = '1' THEN done_int <= '0'; END IF; 

--- 

>            IF results_read = '1' THEN done_int <= '0'; our_main <= '1'; END IF; 

" 

This change is reflected in all the .vhd files presented. 

 

4.1.3 Vivado post-implementation functional simulation 
timing results 

4.1.3.1 No optimizations 

 

 

 
Image 23.  First test no opts post-imp. func. simulation start 

Πηγή: (none) 
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Image 24.  First test no opts post-imp. func. simulation end 

Πηγή: (none) 

 

The backend PARCS optimized result of the output of running "./a.exe 
input_files/f_c_p7_loop1_no_opts.c" finished in 414300.0ns with a clock cycle of 
100.0ns. 

The tcl console commands used for the simulation were the following: 

" 

add_force clock {0 0ns} {1 50ns} -repeat_every 100ns 

add_force reset {0 0ns} {1 100ns} 

add_force start {0 0ns} {1 100ns} 

add_force results_read {0 0ns}  

run 300ns 

run 400000ns 

run 20000ns 

add_force results_read {1 0ns} 

" 

(As can be seen, "reset" is active low.) 
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Table 1. First test no opts. hardware utilization 

Total Pow-
er 

Failed 
Routes LUT FF BRAMs URAM DSP 

    115 107 0.00 0 0 
0.11 0 115 107 0.00 0 0 

 

Πηγή: (None) 

 

 

 
Image 25.  First test no opts. timing summary 

Πηγή: (none) 

 

 

 

 
Image 26.  First test no opts. utilization summary 

Πηγή: (none) 
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4.1.3.2 With full unrolling 

 

 

 
Image 27.  First test full unr. post-imp. func. simulation start 

Πηγή: (none) 

 

 
Image 28.  First test full unr. post-imp. func. simulation end 

Πηγή: (none) 

 

The backend PARCS optimized result of the output of running "./a.exe -noshort -ofuil 
input_files/f_c_p7_loop1_ofuil.c" finished in 561500.0ns with a clock cycle of 100.0ns. 
This is a x0.7378 speedup from the original (so actually a slowdown). The tcl console 
commands used were the same as the ones in the non-optimized section bar the "run" 
commands which used different ns values. 
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Table 2. First test ofuil hardware utilization 

Total Pow-
er 

Failed 
Routes LUT FF BRAMs URAM DSP 

    144 208 0.00 0 0 
0.11 0 144 208 0.00 0 0 

Πηγή: (None) 

 

 

 
Image 29.  First test ofuil timing summary 

Πηγή: (none) 

 

 

 

 
Image 30.  First test ofuil utilization summary 

Πηγή: (none) 

 

 

4.1.3.3 Plain expression compression (with a boolean depth of 2 and an 
integer depth of 3) 

There were a few errors in the output of the CCC backend, according to Vivado, 
concerning assignments of std_logic types to std_logic_vectors and vice versa: 

106 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

 

 
Image 31.  Ocbe2 ocie3 std_logic to vector assignment error 

Πηγή: (none) 

 

Therefore a few modifications needed to be made for Vivado's version of the .vhd input 
(output of "diff <original>.vhd <modified>.vhd): 

" 

<         main : OUT  std_logic_vector(31 DOWNTO 0); 

<         done, busy : OUT std_logic 

--- 

>         --main : OUT  std_logic_vector(31 DOWNTO 0); 

>         done, busy, our_main : OUT std_logic 

122,123c122,123 

<    SIGNAL opt_temp_002 : std_logic; 

<    SIGNAL opt_temp_003 : std_logic; 

--- 

>    SIGNAL opt_temp_002 : std_logic_vector(31 DOWNTO 0); 

>    SIGNAL opt_temp_003 : std_logic_vector(31 DOWNTO 0); 
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140c140 

<    SIGNAL var5 : std_logic; 

--- 

>    SIGNAL var5 : std_logic_vector(31 DOWNTO 0); 

142,143c142,143 

<    SIGNAL var7 : std_logic; 

<    SIGNAL var8 : std_logic; 

--- 

>    SIGNAL var7 : std_logic_vector(31 DOWNTO 0); 

>    SIGNAL var8 : std_logic_vector(31 DOWNTO 0); 

161c161,162 

<        main <= (OTHERS => '0'); 

--- 

>        --main <= (OTHERS => '0'); 

>        our_main <= '0'; 

170,171c171,172 

<        opt_temp_002 <= '0'; 

<        opt_temp_003 <= '0'; 

--- 

>        opt_temp_002 <= (OTHERS => '0'); 

>        opt_temp_003 <= (OTHERS => '0'); 

180c181 

<        var5 <= '0'; 

--- 

>        var5 <= (OTHERS => '0'); 

182,183c183,184 
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<        var7 <= '0'; 

<        var8 <= '0'; 

--- 

>        var7 <= (OTHERS => '0'); 

>        var8 <= (OTHERS => '0'); 

192c193 

<            IF results_read = '1' THEN done_int <= '0'; END IF; 

--- 

>            IF results_read = '1' THEN done_int <= '0'; our_main <= '0'; END IF; 

249c250 

<             IF opt_temp_000 > opt_temp_001 THEN var7 <= '1'; ELSE var7 <= '0'; END IF; 

--- 

>             IF opt_temp_000 > opt_temp_001 THEN var7 <= (OTHERS => '1'); ELSE var7 <= 
(OTHERS => '0'); END IF; 

258c259 

<             v002_m2(CONV_INTEGER(v007_j)) <= opt_temp_003; 

--- 

>             v002_m2(CONV_INTEGER(v007_j)) <= opt_temp_003(0); 

" 
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Image 32.  First test ocbe2 ocie3 post-imp. func. simulation start 

Πηγή: (none) 

 

 
Image 33.  First test ocbe2 ocie3 post-imp. func. simulation end 

Πηγή: (none) 

 

The backend PARCS optimized result of the output of running "./a.exe -noshort -ocbe=2 
-ocie=3 input_files/f_c_p7_loop1_ocbe2_ocie3.c" finished in 570700.0ns with a clock 
cycle of 100.0ns. This is a x0.7260 speedup from the original (so actually a slowdown) 
and a x0.9839 speedup from the fully unrolled version (also a slowdown). The tcl console 
commands used were the same as the ones in the non-optimized section bar the "run" 
commands which used different ns values and varied in count. 
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Table 3. First test ocbe2 ocie3 hardware utilization 

Total Pow-
er 

Failed 
Routes LUT FF BRAMs URAM DSP 

    79 82 0.00 0 0 
0.11 0 79 82 0.00 0 0 

Πηγή: (None) 

 

 

 
Image 34.  First test ocbe2 ocie3 timing summary 

Πηγή: (none) 

 

 

 

 
Image 35.  First test ocbe2 ocie3 utilization summary 

Πηγή: (none) 

 

 

4.1.3.4 With full unrolling and expression compression (with a boolean depth 
of 2 and an integer depth of 3) 

The same problem with the plain expression compression problem was encountered 
when combining the two optimizations. The changes that were required were therefore 
similar to the ones in the previous example: std_logic variables with mixed assignments 
were converted to std_logic_vector, while some assignments were modified to use the 
least significant bits (LSBs) for the operations. The following shows a glimpse of the 
changes (tail of the output of "diff <original>.vhd <modified>.vhd): 
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" 

640c640 

<             v002_m2(CONV_INTEGER(const2)) <= opt_temp_035; 

--- 

>             v002_m2(CONV_INTEGER(const2)) <= opt_temp_035(0); 

654c654 

<             var70 <= var69 and opt_temp_038; 

--- 

>             var70(0) <= var69 and opt_temp_038(0); 

660c660 

<             v002_m2(CONV_INTEGER(const13)) <= opt_temp_039; 

--- 

>             v002_m2(CONV_INTEGER(const13)) <= opt_temp_039(0); 

691c691 

<             var78 <= var77 and opt_temp_042; 

--- 

>             var78(0) <= var77 and opt_temp_042(0); 

697c697 

<             v002_m2(CONV_INTEGER(v007_j)) <= opt_temp_043; 

--- 

>             v002_m2(CONV_INTEGER(v007_j)) <= opt_temp_043(0); 

" 
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Image 36.  First test full unr. ocbe2 ocie3 post-imp. func. simulation start 

Πηγή: (none) 

 

 
Image 37.  First test full unr. ocbe2 ocie3 post-imp. func. simulation end 

Πηγή: (none) 

 

The backend PARCS optimized result of the output of running "./a.exe -noshort -ofuil -
ocbe=2 -ocie=3 input_files/f_c_p7_loop1_ofuil_ocbe2_ocie3.c" finished in 483300.0ns 
with a clock cycle of 100.0ns. This is a x0.8572 speedup from the original (so actually a 
slowdown), a x1.1618 speedup from the plain fully unrolled version, and a x1.1808 
speedup from the plain expression compression version. The tcl console commands used 
were the same as the ones in the non-optimized section bar the "run" commands which 
used different ns values and varied in count. 
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Table 4. First test ofuil ocbe2 ocie3 hardware utilization 

Total Pow-
er 

Failed 
Routes LUT FF BRAMs URAM DSP 

    142 140 0.00 0 0 
0.11 0 142 140 0.00 0 0 

Πηγή: (None) 

 

 

 
Image 38.  First test ofuil ocbe2 ocie3 timing summary 

Πηγή: (none) 

 

 

 

 
Image 39.  First test ofuil ocbe2 ocie3 utilization summary 

Πηγή: (none) 

The results show a slowdown from the original unoptimized version for every 
modification applied. The timings of the example with full unrolling combined with 
expression compression are similar to the unoptimized version, however, with a 
difference of about ~70000ns. 

Table 5. First test benchmark results (running times in nanoseconds) 

 No optimization Fully unrolled Bool=2, integer=3 Fully unrolled, 
bool=2, integer=3 

Run 1 414300.0ns 561500.0ns 570700.0ns 483300.0ns 

Πηγή: (None) 
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4.2 Second test 
The second test will focus on loop unrolling and instruction reordering. To test the 
output, the following .c input was used (while the contents are the same, the filenames 
indicate the optimizations used to preserve results and prevent overwriting): 

" 

int main(int argc) 

{ 

 int a = 5, b = 10, c = 15, i, j, x, y, z; 

  

 for (i = 4; i < 50; i++ ) { 

  for (j = 2; j < 19; j++ ) { 

   x = (2 && (!b)) || (c && (a || 0)); 

   y = 1 == ((-a > (b + c - 5)) != (7 <= c)); 

   z = ((c && a) == 0) && (((a + c) > (c - 4)) || (b != 10)); 

  } 

 } 

  

 return 0; 

} 

" 

4.2.1 State count reduction 

 

The unoptimized (by the backend) result of the output of running "./a.exe -noshort 
input_files/f_c_p7_loop4_2_no_opts.c" generates 45 states. 

 

The backend PARCS optimized result of the output of running "./a.exe -noshort 
input_files/f_c_p7_loop4_2_no_opts.c" generates 17 states. 
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This is a 62.2% decrease.  

We will now focus on the PARCS optimized results' state increase/decrease in relation to 
the unoptimized input results shown above (17 states). 

 

The PARCS optimized result of the output of running "./a.exe -noshort -ouil 
input_files/f_c_p7_loop4_2_ouil.c" generates 64 states: a 276.47% increase from the 
non optimized version. For reference, the simple non PARCS optimized result has 152 
states. 

 

The PARCS optimized result of the output of running "./a.exe -noshort -ofuil 
input_files/f_c_p7_loop4_2_ofuil.c" generates 128 states: a 652.94% increase from the 
non optimized version. For reference, the simple non PARCS optimized result has 296 
states. 

 

The PARCS optimized result of the output of running "./a.exe -noshort -ofuilr 
input_files/f_c_p7_loop4_2_ofuilr.c" generates 128 states: a 652.94% increase from the 
non optimized version. For reference, the simple non PARCS optimized result has 296 
states. 

 

The higher the unrolling factor, the more dramatic the increase of states seems to be. 
Nevertheless, the PARCS optimizer is evidently capable of decreasing the states to less 
than half the amount of the original .vhd file in every case. Reordering doesn’t seem to 
cause any deviation in the state count of the output whatsoever.  

 

4.2.2 Vivado post-implementation functional simulation 
timing results 

 

As with the first test, the "main" stc_logic_vector was replaced with a std_logic 
"our_main" in all input files for Vivado. 
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4.2.2.1 No optimizations 

 

 

 
Image 40.  Second test no opts. post-imp. func. simulation start 

Πηγή: (none) 

 

 
Image 41.  Second test no opts. post-imp. func. simulation end 

Πηγή: (none) 
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The backend PARCS optimized result of the output of running "./a.exe -noshort 
input_files/f_c_p7_loop4_2_no_opts.c" finished in 1039900.0ns with a clock cycle of 
100.0ns. The tcl console commands used were the same as the ones in the first test bar 
the "run" commands which used different ns values and varied in count. They are 
repeated below for convenience: 

" 

add_force clock {0 0ns} {1 50ns} -repeat_every 100ns 

add_force reset {0 0ns} {1 100ns} 

add_force start {0 0ns} {1 100ns} 

add_force results_read {0 0ns}  

run 300ns 

run 1000000ns 

run 50000ns 

add_force results_read {1 0ns} {0 100ns} 

run 1000ns 

" 

Table 6. Second test no opts. hardware utilization 

Total Pow-
er 

Failed 
Routes LUT FF BRAMs URAM DSP 

    80 89 0.00 0 0 
0.11 0 80 89 0.00 0 0 

Πηγή: (None) 

 

 

 
Image 42.  Second test no opts. timing summary 

Πηγή: (none) 
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Image 43.  Second test no opts. utilization summary 

Πηγή: (none) 

 

 

4.2.2.2 Simple unrolling (4 times) 

 

 

 
Image 44.  Second test ouil post-imp. func. simulation start 

Πηγή: (none) 
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Image 45.  Second test no ouil post-imp. func. simulation end 

Πηγή: (none) 

 

 

The backend PARCS optimized result of the output of running "./a.exe -noshort -ouil 
input_files/f_c_p7_loop4_2_ouil.c" finished in 943300.0ns with a clock cycle of 100.0ns. 
This is a speedup of x1.1024 in relation to the unoptimized version. The tcl console 
commands used were the same as the ones in the first test bar the "run" commands 
which used different ns values and varied in count. 

 

Table 7. Second test ouil hardware utilization 

Total Pow-
er 

Failed 
Routes LUT FF BRAMs URAM DSP 

    168 142 0.00 0 0 
0.11 0 168 142 0.00 0 0 

Πηγή: (None) 

 

 

 
Image 46.  Second test ouil timing summary 

Πηγή: (none) 
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Image 47.  Second test ouil utilization summary 

Πηγή: (none) 

 

 

 

4.2.2.3 Full unrolling (maximum of 10, no reordering) 

 

 

 
Image 48.  Second test ofuil post-imp. func. simulation start 

Πηγή: (none) 
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Image 49.  Second test ofuil post-imp. func. simulation end 

Πηγή: (none) 

 

The backend PARCS optimized result of the output of running "./a.exe -noshort -ofuil 
input_files/f_c_p7_loop4_2_ofuil.c" finished in 952500.0ns with a clock cycle of 100.0ns. 
This is a speedup of x1.0918 in relation to the unoptimized version and a x0.9903 
speedup (so actually a slowdown) in relation to the simple unrolled version. The tcl 
console commands used were the same as the ones in the first test bar the "run" 
commands which used different ns values and varied in count. 

Table 8. Second test ofuil hardware utilization 

Total Pow-
er 

Failed 
Routes LUT FF BRAMs URAM DSP 

    156 142 0.00 0 0 
0.11 0 156 142 0.00 0 0 

Πηγή: (None) 

 

 

 
Image 50.  Second test ofuil timing summary 

Πηγή: (none) 
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Image 51.  Second test ofuil utilization summary 

Πηγή: (none) 

 

 

4.2.2.4 Full unrolling (maximum of 10) with instruction reordering 

 

 

 
Image 52.  Second test ofuilr post-imp. func. simulation start 

Πηγή: (none) 
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Image 53.  Second test ofuilr. post-imp. func. simulation end 

Πηγή: (none) 

 

The backend PARCS optimized result of the output of running "./a.exe -noshort -ofuilr 
input_files/f_c_p7_loop4_2_ofuilr.c" finished in 952500.0ns with a clock cycle of 
100.0ns. This seems to present no change whatsoever in relation to the version of full 
unrolling without reordering. So this is still a speedup of x1.0918 in relation to the 
unoptimized version and a x0.9903 speedup (so actually a slowdown) in relation to the 
simple unrolled version. The tcl console commands used were the same as the ones in 
the first test bar the "run" commands which used different ns values and varied in count. 

 

Table 9. Second test ofuilr hardware utilization 

Total Pow-
er 

Failed 
Routes LUT FF BRAMs URAM DSP 

    156 142 0.00 0 0 
0.11 0 156 142 0.00 0 0 

Πηγή: (None) 

 

 

 
Image 54.  Second test ofuilr timing summary 

Πηγή: (none) 
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Image 55.  Second test ofuilr utilization summary 

Πηγή: (none) 

 

 

This second test reflected no improvements in latency by applying full unrolling over 
simple unrolling, whether the instructions are reordered or not. 

Table 10. Second test benchmark results (running times in nanoseconds) 

 No optimization Unrolled 4 times Fully unrolled (10 
times) 

Fully unrolled (10 
times) and 
reordered 

Run 1 1039900.0ns 943300.0ns 952500.0ns 952500.0ns 

Πηγή: (None) 

 

4.3 Third test 
The third test is meant to resemble a section of Twofish's decryption algorithm.  

" 

/* Code taken and adjusted from:  

 * https://github.com/bheesham/applied-cryptography-accompanying-source-
code/blob/master/TWOFISH  

 * It is meant to resemble a step in decryption. 

 */ 

 

int pow(int base, int exp)  
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{ 

 int result = 1; 

 

 for( ;exp > 0; exp--) result *= base; 

 

 return result; 

} 

 

int rotr(int x, int n)  

{ 

 //return ((x >> (n)) | (x << (32 - n))); 

 return ((x / pow(2, n)) | (x * pow(2, (32 - n)))); 

} 

 

int rotl(int x, int n)  

{ 

 //return ((x << (n)) | (x >> (32 - n))); 

 return ((x * pow(2, n)) | (x / pow(2, (32 - n)))); 

} 

 

int main(int argc) 

{ 

 int t0 = 1, t1 = 2, i, j, blk[4], l_key[45]; 

 

 for(i = 0; i < 45; i++) l_key[i] = i; 

 

 for (j = 0; j < 8; j++ ) { 

  blk[0] = 5; 

  blk[1] = 9; 

  blk[2] = 10; 
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  blk[3] = 7; 

  for (i = 0; i < 8; i++ ) { 

                   if (i % 2) { 

                      if ((i % 4) >= 2)  

                         blk[i % 4] = rotr(blk[i % 4] ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]), 1); 

                      else 

                         blk[i % 4] = rotr(blk[i % 4] ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]), 1); 

                   } else { 

                      if ((i % 4) >= 2)  

                         blk[i % 4] = rotl(blk[i % 4], 1) ^ (t0 + t1 + l_key[4 * (i) + 10]); 

                      else 

                         blk[i % 4] = rotl(blk[i % 4], 1) ^ (t0 + t1 + l_key[4 * (i) + 8]); 

                   } 

 

                   t0 = blk[0] ^ blk[3]; 

                   t1 = blk[1] ^ blk[2]; 

  } 

 } 

  

 return 0; 

} 

" 

It consists of four functions: "pow" which calculates the power given a base and an 
exponent, "rotl" which rotates an integer to the left (this calls "pow" twice), "rotr" which 
rotates an integer to the right (this also calls "pow" twice), and the main function which 
calls "rotl" and "rotr" along with some other calculations in a couple of conditions in a 
loop. Due to these conditions, however, csense could not apply loop unrolling to this 
particular loop. It was applied to an array initialization loop earlier in the "main" 
function. Expression compression could be and was applied to the calculations in 
"main". 
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4.3.1 State count reduction 

The unoptimized (by the backend) result of the output of running "./a.exe -noshort 
input_files/tf_decr_part_no_opts.c" generates 96 states for main, 12 states for pow 8 
states for rotl and 8 states for rotr. 

 

The backend PARCS optimized result of the output of running "./a.exe -noshort 
input_files/tf_decr_part_no_opts.c" generates 48 states for main, 6 states for pow, 5 
states for rotl and 5 states for rotr. 

 

This is a total decrease of 48.38%.  

We will now focus on the PARCS optimized results' state increase/decrease in relation to 
the unoptimized input results shown above (48 states for main, 6 states for pow, 5 
states for rotl and 5 states for rotr; a total state count of 64). 

 

The PARCS optimized result of the output of running "./a.exe -noshort -ofuil -ocbe=3 -
ocie=3 input_files/tf_decr_part_ofuil_ocbe3_ocie3.c" generates a total of 75 states (59 
states for main, 6 states for pow, 5 states for rotl and 5 states for rotr): a 17.19% 
increase from the non optimized version. For reference, the simple non PARCS 
optimized result has 123 states for main, 12 states for pow, 8 states for rotl and 8 states 
for rotr; a total state count of 151. 

 

4.3.2 Vivado post-implementation functional simulation 
timing results 

 

For the simulation a top level wrapper was appended to the project in order to avoid 
mapping "main"'s "rotl" and "rotr" I/O variables to pins on the Zedboard. For all 
simulations (including behavioral) a testbench was required to be written declaring two 
separate instances of the "pow" component; one for "rotl" and one for "rotr". As with 
the first and second tests, the "main" stc_logic_vector was replaced with a std_logic 
"our_main" in all input files for Vivado. 
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4.3.2.1 No optimizations 

 

 

 
Image 56.  Third test no opts. post-imp. func. simulation start 

Πηγή: (none) 

 

 
Image 57.  Third test no opts. post-imp. func. simulation end 

Πηγή: (none) 

 

The backend PARCS optimized result of the output of running "./a.exe -noshort 
input_files/tf_decr_part_no_opts.c" finished in 698400.0ns with a clock cycle of 100.0ns. 
Since we used a testbench, only a "run 700000ns" tcl command was required to run the 
simulation. 
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Table 11. Third test no opts. hardware utilization 

Total Pow-
er 

Failed 
Routes LUT FF BRAMs URAM DSP 

    120 87 0.00 0 0 
0.11 0 120 87 0.00 0 0 

Πηγή: (None) 

 

 

 
Image 58.  Third test no opts. timing summary 

Πηγή: (none) 

 

 

 

 
Image 59.  Third test no opts. utilization summary 

Πηγή: (none) 
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4.3.2.2 With full unrolling and expression compression (with a boolean depth 
of 3 and an integer depth of 3) 

 

 

 
Image 60.  Third test ofuil ocbe3 ocie3 post-imp. func. simulation start 

Πηγή: (none) 

 

 
Image 61.  Third test ofuil ocbe3 ocie3 post-imp. func. simulation end 

Πηγή: (none) 

 

The backend PARCS optimized result of the output of running "./a.exe -noshort -ofuil -
ocbe=3 -ocie=3 input_files/tf_decr_part_ofuil_ocbe3_ocie3.c" finished in 692300.0ns 
with a clock cycle of 100.0ns. This is a x1.0088 speedup in relation to the unoptimized 
version. Since we used a testbench, only a "run 700000ns" tcl command was required to 
run the simulation. 
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Table 12. Third test ofuil ocbe3 ocie3 hardware utilization 

Total Pow-
er 

Failed 
Routes LUT FF BRAMs URAM DSP 

         
0.11 0 269 178 0.00 0 0 

Πηγή: (None) 

 

 

 
Image 62.  Third test ofuil ocbe3 ocie3 timing summary 

Πηγή: (none) 

 

 

 

 
Image 63.  Third test ofuil ocbe3 ocie3 utilization summary 

Πηγή: (none) 

 

 

Table 13. Third test benchmark results (running times in nanoseconds) 

 No optimization Fully unrolled (10 
times) Bool=3, 
integer=3 

Run 1 698400.0ns 692300.0ns 

Πηγή: (None) 
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As can be seen, we got a very slight increase in performance in the third test with our 
optimizations. 

 

4.4 Fourth test 
The fourth test is an implementation of the sha1 hashing algorithm. Its implementation 
in the form used for this project involved Y. Hara, H. Tomiyama, S. Honda, H. Takada, K. 
Ishii, Uwe Hollerbach, Peter C. Gutmann and Bruce Schneier. 

 

" 

/* 

+--------------------------------------------------------------------------+ 

| CHStone : a suite of benchmark programs for C-based High-Level Synthesis | 

| 
======================================================================== 
| 

|                                                                          | 

| * Collected and Modified : Y. Hara, H. Tomiyama, S. Honda,               | 

|                            H. Takada and K. Ishii                        | 

|                            Nagoya University, Japan                      | 

|                                                                          | 

| * Remark :                                                               | 

|    1. This source code is modified to unify the formats of the benchmark | 

|       programs in CHStone.                                               | 

|    2. Test vectors are added for CHStone.                                | 

|    3. If "main_result" is 0 at the end of the program, the program is    | 

|       correctly executed.                                                | 

|    4. Please follow the copyright of each benchmark program.             | 

+--------------------------------------------------------------------------+ 

*/ 

/* NIST Secure Hash Algorithm */ 

/* heavily modified by Uwe Hollerbach uh@alumni.caltech edu */ 
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/* from Peter C. Gutmann's implementation as found in */ 

/* Applied Cryptography by Bruce Schneier */ 

 

/* NIST's proposed modification to SHA of 7/11/94 may be */ 

/* activated by defining USE_MODIFIED_SHA */ 

 

/* Tools */ 

 

void 

local_memset (unsigned int s[16], int c, int n, int e) 

{ 

  unsigned int uc; 

  int i; 

  int m; 

 

  m = n / 4; 

  uc = (unsigned int) c; 

  i = 0; 

  while (e-- > 0) 

    { 

      i++; 

    } 

  while (m-- > 0) 

    { 

      s[i++] = uc; 

    } 

} 

 

void 

local_memcpy (unsigned int s1[16], const unsigned char s2[8192], int ps2, int n) 
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{ 

  int i1, i2; 

  unsigned int tmp; 

  int m; 

  m = n / 4; 

  i1 = 0; 

  i2 = ps2; 

 

  while (m-- > 0) 

    { 

      s1[i1] = 

            0xFF && s2[i2++] || (0xFF && (s2[i2++] * 256)) || 

         (0xFF & (s2[i2++] * (256*256))) || 

   (0xFF & (s2[i2++] * (256*256*256))); 

      i1++; 

    } 

} 

"  

For the tests, only the “local_memcpy” function was compiled. 

 

4.4.1 State count reduction 

The unoptimized (by the backend) result of the output of running "./a.exe -noshort 
input_files/sha1_no_opts.c" generates 43 states for local_memcpy. 

 

The backend PARCS optimized result of the output of running "./a.exe -noshort 
input_files/sha1_no_opts.c" generates 23 states for local_memcpy. 

 

This is a 46.51% decrease.  

We will now focus on the PARCS optimized results' state increase/decrease in relation to 
the unoptimized input results shown above (23 states). 
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The PARCS optimized result of the output of running "./a.exe -noshort -ofuilr -ocbe=3 -
ocie=3 input_files/sha1_ofuilr_ocbe3_ocie3.c" generates 25 states: an 8.7% increase 
from the non optimized version. For reference, the simple non PARCS optimized result 
has 55 states. 

 

This time a very slight increase was observed for the state count where only expression 
compression was applied. 

 

4.4.2 Vivado post-implementation functional simulation 
timing results 

 

 

4.4.2.1 No optimizations 

 

 

 
Image 64.  Fourth test no opt. post-imp. func. simulation end 

Πηγή: (none) 

 

The backend PARCS optimized result of the output of running "./a.exe -noshort 
input_files/sha1_no_opts.c" finished in 500.0ns with a clock cycle of 100.0ns. No other 
commands were required for the simulation to run. 
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Table 14. Fourth test no opts. hardware utilization 

Total Pow-
er 

Failed 
Routes LUT FF BRAMs URAM DSP 

    79 72 0.00 0 0 
0.11 0 79 72 0.00 0 0 

Πηγή: (None) 

 

 

 
Image 65.  Fourth test no opts. timing summary 

Πηγή: (none) 

 

 

 

 
Image 66.  Fourth test no opts. utilization summary 

Πηγή: (none) 

 

 

 

4.4.2.2 Full loop unrolling with instruction reordering and a boolean and 
integer depth of 3 

(No unrolling was available for this test, so only the expression compression was actually 
applied.) 

There were errors while compiling related to std_logic_vectors being assigned to 
std_logic, so the LSB modification was required in the main source: 
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" 

[...] 

   WHEN state_23 => 

            var7 <= var6 or opt_temp_011(0); 

            state <= state_24; 

          WHEN state_24 => 

            opt_temp_016 <= var7 or opt_temp_015(0); 

            state <= state_25; 

[...] 

" 

 

 
Image 67.  Fourth test ofuilr ocbe3 ocie3 post-imp. func. simulation end 

Πηγή: (none) 

 

The backend PARCS optimized result of the output of running "./a.exe -noshort -ofuilr -
ocbe=3 -ocie=3 input_files/sha1_ofuilr_ocbe3_ocie3.c" finished in 400.0ns with a clock 
cycle of 100.0ns. This is a x1.25 speedup in relation to the unoptimized version. No other 
commands were required for the simulation to run. 

 

Table 15. Fourth test ofuilr ocbe3 ocie3 hardware utilization 

Total Pow-
er 

Failed 
Routes LUT FF BRAMs URAM DSP 

    81 72 0.00 0 0 
0.11 0 81 72 0.00 0 0 

Πηγή: (None) 
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Image 68.  Fourth test ofuilr ocbe3 ocie3 timing summary 

Πηγή: (none) 

 

 

 

 
Image 69.  Fourth test ofuilr ocbe3 ocie3 utilization summary 

Πηγή: (none) 

 

 

 

Table 16. Fourth test benchmark results (running times in nanoseconds) 

 No optimization Ex. Comp.: 
Bool=3, integer=3 

Run 1 500.0ns 400.0ns 

Πηγή: (None) 

 

The fourth test did show a slight increase in performance. 
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5. Related Work  

This chapter briefly summarizes some work related (admittedly quite loosely) to the 
subjects of this paper. 

 

5.1 Loop unrolling 
[38] use a neural network to find the optimal unrolling factor for TIRAMISU 

programs. 

[39] modify LLVM's DAG for loop optimizations. 

[40] describes loop optimizations (including loop unrolling) of a code generator 
written in python. 

[41] apply loop unrolling on an ASIP (Application Specific Instruction-set Processor) 
to improve ILP and performance.  

[42] benchmark several versions of matrix multiplication methods (including some 
that are loop-unrolled). 

[43] traversed a linked list in an unrolled loop and discovered a slight improvement 
in energy usage and power consumption. 

[44] measures performance of unrolled and pipelined inner loops on an FPGA (field 
programmable gate array) to simulate specialized hardware for (particular) programs. 

[45] transform a shadow AST (as the original is immutable) of clang to implement 
OpenMP's loop transformations (including loop unrolling). 

[46] show a less favorable result of applying loop unrolling to AES (advanced 
encryption standard) encryption algorithms, compared to other optimizations. 

[47] present a reduction technique using loop unrolling (among others) to increase 
parallelisim and performance on GPUs. 

 

 

5.2 Source to source compilers/transpilers 
[48] present a python to NumPy/CuPy source to source optimizing (parallelizing) 

compiler. 

[49] present a C++ to FHE (fully homomorphic encryption) C++ transpiler. 

[50] present a new code generation framework for optimizing DSL (domain specific 
language) code.  
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[51] present an AMR (Abstract Meaning Representation: rooted, labeled, directed, 
acyclic graphs, comprising whole sentences) to SPARQL (a semantic query language for 
databases) transpilation method for KBQA (Knowledge Base Question Answering). 

5.3 C to Ada compilers 
[52], [53] is a public domain/MIT license C to Ada compiler that supports the C '#' 

directive (although explicit parameters might need to be set when calling the executable 
to aid in correct translation). 

[54] describes another C to Ada translator. The '#' directive is also supported. 

(None of the two projects mentioned in this section indicate a support of 
optimizations.) 

 

5.4 High Level Synthesis (HLS) 
[55] present a HLS tool (called “CaT”) with source-to-source (high level P4-16 to 

lower level P4-14) compilation to generate P4 output optimized for ALUs. (P4 is a 
language for packet switches.) 

[56] present an algorithm (called “Iris”) to automatically create an efficient data 
layout to maximize the use of available bandwidth (intended for High Bandwidth 
Memory (HBM) architectures). This could aid or improve on HLS output. 

[57] present a HLS library for explainable artificial intelligence (XAI, specifically 
convolutional neural networks (CNNs)) and show results on FPGAs. 

[58] present a hardware/software (including a HLS) implementation of BIKE (“Bit 
Flipping Key Encapsulation”. From the website at bikesuite.org: “BIKE is a code-based 
key encapsulation mechanism based on QC-MDPC (Quasi-Cyclic Moderate Density 
Parity-Check) codes submitted to the NIST Post-Quantum Cryptography Standardization 
Process”) for embedded platforms. 

[59] present a Graph Neural Network (GNN) design for particle detection (called 
“JEDI-net”) with reduced latency and improved efficiency compared to previous 
approaches oriented for HLS. 

[60] present a programming abstraction that leverages HLS, Dynamic Partial 
Reconfiguration and synchronization mechanisms to use an FPGA as a multi-tasking 
server with preempting scheduling and priority queues. 

[61] present a scalable and automatic stencil acceleration framework on modern 
HBM-based FPGAs (called "SASA") which employs a multi-PE (processing element) 
approach to exploit temporal and spatial parallelisms (generates the optimized FPGA 
design with the best parallelism configuration in TAPA high-level synthesis C++) for 
better scalability. 
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[62] present "a novel design and optimization methodology for the compilation and 
mapping of fixed function neural networks to digital signal processors (DSPs) on the 
FPGAs employing high-level synthesis flow." 

[63] present an automated design space exploration tool for applying HLS 
optimization directives, (called "Chimera"), which significantly reduces the human effort 
and expertise needed for creating high-performance HLS designs. 

 

5.5 Expression simplification/compression 
[64] present an MBA (mixed Boolean and arithmetic) simplifier, called “SSLEM,” 

based on a new concept of “semi-linear” MBA expression transformation which could be 
used for obfuscated malware detection. 
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Conclusion 

 

This paper accompanies the modifications to implement full loop unrolling, full loop 
unrolling with instruction reordering/interleaving (for cases where the index is not used 
in the body), and expression compression for mixed Boolean and integer expressions in 
the csense optimizing source to source compiler. The modifications aim to improve ILP 
and data locality, as well as resource use efficiency.  

Benchmarks run on the post implementation functional simulations in Vivado with 
the Zedboard as the target hardware and a clock cycle of 100ns did not show a deviation 
greater than 0.25 in speedup or slowdown. For two tests which combined full loop 
unrolling with expression compression, there was a very faint increase in performance, 
but the decrease seen in one of the other two tests dwarfed any semblance of an 
improvement due to full loop unrolling specifically. A slight increase in performance was 
seen in the simple unrolled version compared to the completely plain version in one 
test, with a slightly smaller improvement seen in the full loop unrolled versions. This 
simply reflects on the well known fact that the unrolling factor must be chosen carefully 
for each algorithm and target hardware combination (a dynamic unrolling factor is not 
available in csense as of the time of this writing). Nevertheless, benchmarks in the 
related work section do show improvements by applying the same optimization, and it is 
expected that systems using a VLIW architecture or ASICs based on the output code 
would benefit the most out of it.  

The state count in the VHDL output by the backend PARCS optimizer using our 
expression compressed Ada input, was reduced by more than 38.88% in one case while 
an increase of 8.7% was observed in another. In all cases, the loop unrolled versions 
increased the state count sharply. The minimum state count increase observed involving 
loop unrolling was 17.19% (which was combined with expression compression). 
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Γράψτε Προτάσεις μελλοντικής επέκτασης της εργασίας σας 
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6. Παράρτημα Α (Appendix A: C and Ada syntax) 

Below is an elaboration of the syntax of the C and Ada languages. 

6.1 C’s syntax 
A C source code file is usually given a ".c" extension. 

Everything is case sensitive.  

6.1.1 Comments 
 

Comments traditionally begin with "/*" and end with "*/". This type can span 
multiple lines until the ending is found. A comment can be inserted anywhere within the 
.c file and anything within it will be completely ignored. Another way to comment is by 
starting with "//" on a line. This type turns anything after it into a comment and spans 
only one line. 

6.1.2 The ‘#’ directive and string parameters in standard 
library functions 

 

The "#" directives give commands to the compiler and are usually placed at the start 
of the .c file. 

The "#include" directive is used to include functions from libraries or "header" files, 
usually with a ".h" extension. By convention, standard libraries are included by giving 
their filename between a less than ("<") and a greater than (">") character, and custom 
header files included in the same directory as the .c file are enclosed between two 
double quotes ('"'). A header file can in turn include other header files as well. 

The "#define" directive declares constants; replacements of a string of characters 
(usually in upper case to differentiate them from variable and function names), numbers 
and underscores by a value (usually numeric). E.g. in "#define MAX_UNROLL_FACTOR 
10" the value "10" is going to replace every appearance of the string 
"MAX_UNROLL_FACTOR" unless it's within double quotes (e.g. a string within a "printf" 
function. ("printf" is one of the functions provided by including the <stdio.h> library. It 
accepts input to print to stdout (usually the screen or terminal window) as the first 
argument, and values in the second, third, and so on. The values in a string (what the 
input is) replace special combinations of characters such as "%d" ("decimal", for ints), 
"%f" (for floats), "%c" (for single characters) and "%s" (for strings).)). 
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6.1.3 Value and type management, functions, naming and 
scope 

 

Values all have a type in C (although coercions might change them) and variables are 
used to store values of a specified type. Variable and function types can be coerced to a 
different type by "casting" (e.g. . 

" 

float a, b = 1.2; 

int c; 

a = b + 1; // Coercion: "1" will automatically be converted to "1.0". 

c = (int)b; // Casting: "c" will get "b"'s rounded value: 1. 

" 

) but unlike immediate value usage must be explicit; otherwise, an error is thrown. A 
C program consists of at least one function called "main", where execution always starts 
and that may call other functions (either defined in a .h file or within the same source 
file above or below the "main" function. If the function is defined below the "main" 
function, its declaration must be declared above "main".). Valid variable and function 
names can be described by the regex "[a-zA-Z_][a-zA-Z0-9_]*" excluding some reserved 
words such as "else" and "while" (among others). 

A basic function declaration (the first line) and its body (the rest of it) looks 
something like the example below: 

" 

int squareInt (int i) // this line is the declaration of the function 

{ 

 return i*i; 

} 

" 

Functions all return a value of a type (the first word in the example), be it custom 
(such as a struct or union) or standard, including the "void" type, where the return 
statement can be omitted (as "void" indicates a lack of a value). "void" can also be used 
when casting. The input that the function expects is declared between a "(" and a ")" 
which should always be present, even if there is no input. If there are multiple input 
variables they are separated by a ",". A function's body begins with a "{" and ends with a 
"}" (everything within these characters is in a separate scope). Once the return 
statement is found and executed in the function no further code within the function call 
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is run. To run or call a function (within another, such as "main") type its name along with 
input (if any) as an argument where the declared input existed omitting the type and 
replacing the variable name with a value or a valid initialized variable of the same type 
(eg. "squareInt(2);" or "int j; j = 1; squareInt(j);"). The ";" character separates commands 
from each other and indicate their end and a new beginning after their appearance. 

6.1.4 Standard types and sizes 
 

The standard types of values are the following: 

" 

int 

float 

double 

char 

" 

"int" is an integer, "float" and "double" are decimals (separated by a ".") and "char" 
is for characters. All of these support negative values, although all printable "char" 
characters are above 0. Additionally, "short", when included before "int" or on its own 
declares an integer with a smaller value than plain "int". Likewise, "long", which can also 
be applied to "double" (unlike "short") signifies an "int" or "double" with a size bigger 
than the default. When "short" and "long" appear on their own they by default declare 
integers. Although each machine/compiler might assign different sizes for the amount of 
memory each declared variable holds, it is guaranteed that "short" <= "int" <= "long" 
and "float" <= "double" <= "long double" in size. "unsigned" can be applied to integers to 
double their size at the expense of not supporting negative values. If a char takes up one 
byte, an unsigned char (which is also considered an integer) has valid values in the range 
of 0 to 255, enough for every character in the extended ASCII table. Special characters 
are usually "escaped" (they consist of a "\" followed by another character), for example 
'\t' is one character and indicates a tab. '\n' is a new line. To refer to a single character, it 
should be enclosed between two "'"s (single quotes). 

6.1.5 Variable declaration and scope 
 

Variables can be declared outside functions (called "globals") or anywhere within a 
function, although putting all declarations at the beginning of the function's body is 
considered good practice. When a variable is declared with the same name within a 
different scope, the newest declaration is valid until exiting the scope of the latest 
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declaration. The scope immediately before the one that ended then takes validity, as 
shown in the example below. 

" 

#include <stdio.h> 

 

int a = 1; 

 

void printA() 

{ 

 int a = 2; 

  

 printf("A = %d\n", a); 

} 

 

int main() 

{ 

 printA(); // Prints "A = 2". 

 

 printf("A = %d\n", a); // Prints "A = 1". 

  

 return 0; 

} 

" 

It is not possible to re-declare a variable with the same name within the same scope 
(regardless of type); an error is thrown. A variable can not be used before its declaration. 
Variables can be initialized with a value on declaration using the "=" ("assignment") 
operator, and multiple declarations of variables of the same type can be done in the 
same command as long as they are separated by a  "," (e.g. "float a, b = 1.2;"). The 
assignment is optional in the declaration. Uninitialized variables contain random and 
generally unpredictable values ("garbage"). 
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6.1.6 Compound or derived data types 
 

In addition to ordinary type variables, derived data types exist, such as arrays, 
structures, unions and pointers. It should be noted that constants can be declared by 
appending the keyword “const” in front of a declaration that would otherwise have 
been a variable (e.g. “int I = 0;” declares a variable, “const int i = 0;” declares a constant; 
the value can not be changed once it is set, so the second “i” is immutable). 

6.1.7 Pointers and addresses 
 

A pointer is declared by appending a "*" to the left of a variable name. The "*" 
symbol is called the "dereference" operator and can be used when declaring any type 
(e.g. a pointer array of a structure type). When using a variable that was declared as a 
pointer without the "*" operator, it refers to an address. When the "*" is present, it 
refers to the contents of where the pointer variable points to. It is possible to have 
pointers to pointers (and pointers to pointers to pointers and so on). The "reference" 
operator, "&", can be applied anywhere the dereference operator can be applied 
excluding variable declaration (something like "int b; int *p = &b;" is legal, however) and 
works in the opposite way. A "&" to the left of an ordinary operand refers to its address 
rather than its contents. Trying to use an uninitialized pointer will cause a segmentation 
fault (crash) during runtime, and referencing a variable too many times will cause an 
error during compilation. An example is provided to demonstrate pointer use: 

" 

#include <stdio.h> 

 

int main() 

{ 

        int a; 

        int *p = &a, **p2 = &p; 

 

        printf("a = %d\n", a); 

        printf("&a = %d\n", &a); 

        printf("p = %d\n", p); 

        printf("*p = %d\n", *p); 

        printf("*&*p = %d\n", *&*p); 
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        printf("&p = %d\n", &p); 

        printf("p2 = %d\n", p2); 

        printf("*p2 = %d\n", *p2); 

        printf("**p2 = %d\n", **p2); 

        printf("&p2 = %d\n", &p2); 

 

        return 0; 

} 

 

/* 

output: 

 

a = 0 

&a = 1811352364 

p = 1811352364 

*p = 0 

*&*p = 0 

&p = 1811352352 

p2 = 1811352352 

*p2 = 1811352364 

**p2 = 0 

&p2 = 1811352344 

*/ 

" 

 

6.1.8 Arrays, dimensions and indexing  
 

An array is declared by appending a "[", the size (always an integer or an integer 
constant, variable use is not allowed) and a "]" (e.g. "int a[5];"). Arrays always start from 
0 and end at <whatever their size was declared> -1 (so in the previous example "a[4]" is 
the last place). Arrays can also hold a structure, union, or a pointer to any type. Although 
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arrays aren't pointers, they can be accessed by using the pointer form as well (for the 
previous example, "a[4]" is equivalent to "*(a+4)"). It is also possible to have multiple 
dimensions (e.g. "a[4][2][8]", which can also be written as "*(*(*(a+4)+2)+8)" provided 
this is not its declaration). Arrays can also be initialized using a form similar to "{{1,4}, 
{2,8,16}}", omitting places will initialize only the first places provided with a value. 

 

6.1.9 Strings (or char arrays) 
 

Strings don't exist in C, but char arrays can fulfill this purpose. The '\0' character 
indicates the end of a string and is required at the end of one for the correct function of 
standard library functions; it is automatically appended to the end when using '"' 
(multiple chars, or "string") notation. It is also possible to set a char pointer to a string 
value. The example below demonstrates valid string usage: 

" 

#include <stdio.h> 

 

int main() 

{ 

 char straasn[] = "test0"; 

 char strfasn[20] = "test1"; 

 char straaan[] = {'t', 'e', 's', 't', '2', '\0'}; 

 char strfaan[20] = {'t', 'e', 's', 't', '3', '\0'}; 

 char *ptrstr = "test4"; 

  

 printf("straasn = %s\n", straasn); 

 printf("strfasn = %s\n", strfasn); 

 printf("straaan = %s\n", straaan); 

 printf("strfaan = %s\n", strfaan); 

 printf("ptrstr = %s\n", ptrstr); 

 

 return 0; 

} 
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/* 

output: 

straasn = test0 

strfasn = test1 

straaan = test2 

strfaan = test3 

ptrstr = test4 

 

*/ 

" 

 

6.1.10  Structs, component referral, dynamic memory 
management and typedef 

 

Structures are types that can hold more variables within them accessed by 
appending a "." to the right of their name followed by the name of the variable. An 
example initialization and use is shown: 

" 

#include <stdio.h> 

 

int main() 

{ 

        struct 

        { 

                int i1, i2, ai[2][2]; 

                float f1; 

                struct { int si1, si2; } iis; 

                char c; 

        } s1, s2 = {1, 2, {{6, 7}, {8, 9}}, 3.14, {4, 5}, 'c'}; 

 

        s1.iis.si2 = 3; 
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        printf("s2.ai[0][0] = %d\n", s2.ai[0][0]); 

        printf("s2.ai[0][1] = %d\n", s2.ai[0][1]); 

        printf("s1.iis = %d\n", s1.iis); 

        printf("s1.iis.si2 = %d\n\n", s1.iis.si2); 

 

        return 0; 

} 

/* 

output: 

 

s2.ai[0][0] = 6 

s2.ai[0][1] = 7 

s1.iis = 32568 

s1.iis.si2 = 3 

 

*/ 

" 

Structs can also be assigned names to be used in a later statement and can be 
ended without an immediate declaration. The "->" operator is used instead of "." to 
access elements in pointers to structs, although it is also possible to access a pointer to a 
struct's element in the form "(*sp).element;".  

The "sizeof()" operator returns the size of a type in bytes. "malloc()" is a function 
provided by stdlib.h; it allocates memory for a complex type. The "free()" function, also 
provided by stdlib.h, deallocates the memory. The following example includes some of 
the elements mentioned: 

" 

#include <stdio.h> 

#include <stdlib.h> 

 

struct ourStruct 

{ 
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 int v; 

 struct ourStruct *next; 

}; 

 

int main() 

{ 

 struct ourStruct *os, *osprev; 

  

 os = osprev = (struct ourStruct*)malloc(sizeof(struct ourStruct)); 

 os->next = (struct ourStruct*)malloc(sizeof(struct ourStruct)); 

 os->next->v = 2; 

 os = (*os).next; // Equivalent to "os = os->next;" 

 

 printf("os->v = %d\n", os->v); // os->v = 2 

 

 free(osprev); 

 free(os); 

 

 return 0; 

} 

" 

"typedef" can be used to set names for complex types such as structs, so instead of 
declaring "struct sn { ... }; struct sn si;" one could instead type "typedef struct { ... } sn; sn 
si;". In the second example "sn" is the second argument of typedef and tells it what 
name to associate the struct with; it is not an instantiation of the struct. The struct can 
still be given a name though, right after the keyword "struct", as in the previous 
example. 

 

6.1.11  Enums 
 

Enums are similar to constants. Each value in an enum has an ascending int value 
related to its index within it by default, but custom values can be inserted explicitly 

160 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

instead as well. The next value in an enum is what the one before it is +1. An enum 
instance is not necessary for a value to be used. Enums can not have values named the 
same way they are in another enum within the same scope. The example below provides 
a demonstration: 

" 

#include <stdio.h> 

 

typedef enum // Anonymous enum 

{ 

 ZERO, 

 ONE 

} etd; // typedef value given here 

 

enum eStartAt1 // Named enum 

{ 

 TWO = 2, 

 THREE, 

 FOUR 

}; 

 

enum eCustomVals 

{ 

 VAL00 = 4, 

 VAL01 = 4, 

 VALA, 

 VAL10 = 2, 

 VAL11 = 2, 

 VAL12 = 2, 

 VALB, 

 VAL2 = 'a' 

} ecvi; // enum instance declared here 
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int main() 

{ 

 enum { ONE = 8 }; 

 etd etdi; 

 enum eStartAt1 esa1 = THREE; 

 

 etdi = TWO; 

 ecvi = VALA; 

  

 printf("ZERO = %d\n", ZERO); 

 printf("ONE = %d\n", ONE); 

 printf("esa1 = THREE = %d\n", esa1); 

 printf("etdi = TWO = %d\n", etdi);  

 printf("ecvi = VALA = %d\n", ecvi); 

  

 ecvi = VALB; 

 

 printf("ecvi = VALB = %d\n", ecvi); 

 

 ecvi = VAL2; 

 

 printf("ecvi = VAL2 = %d\n", ecvi); 

 

 return 0; 

} 

 

/* 

output: 

 

ZERO = 0 
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ONE = 8 

esa1 = THREE = 3 

etdi = TWO = 2 

ecvi = VALA = 5 

ecvi = VALB = 3 

ecvi = VAL2 = 97 

*/ 

" 

 

6.1.12  Unions and memory allocation 
 

Unions are similar to structs in syntax. The difference is in how memory is handled. 
In structs, each member (variable) gets its own separate storage of the size necessary. 
That is, the collective memory allocated for a struct instance is equal to the size of all of 
its members combined. A union only allocates memory for the largest member in its 
declaration. This is, of course, enough for the smaller members to operate, so only one 
member can be used at a time without being corrupted. 

The example below is provided to clarify: 

" 

#include <stdio.h> 

 

union ourUnion 

{ 

 char c1; 

 char c2; 

 int i; 

}; 

 

int main() 

{ 

 union ourUnion ou; 
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 ou.c1 = 'x'; 

     

 printf("ou.c1 = %c\n", ou.c1); // ou.c1 = x 

 

     ou.c2 = 'T'; 

 

 printf("ou.c1 = %c\n", ou.c1); // ou.c1 = T 

 

 ou.i = 2736757; 

 

 printf("ou.c1 = %c\n", ou.c1); // ou.c1 = u 

 printf("ou.i = %d\n", ou.i); // ou.i = 2736757 

 

 return 0; 

} 

"  

 

6.1.13  Operators and precedence 
 

There are multiple assignment operations in C, usually involving the operand to its 
left as an implied right operand immediately after the assignment operator itself 
(excluding the ordinary "=" operator). The "=" operator assigns the variable to its left to 
the result of the expression on its right. These can be cascaded (provided the 
assignments are not attempted on variable declaration, where only one is allowed per 
variable declaration). As shown in the example below, the rightmost value gets assigned 
first: 

" 

#include <stdio.h> 

 

int main() 

{ 

        int a, b, c, d; 
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        c = 2; 

        b = 100; 

 

        a = b += c = d = 8 / 2; 

 

        printf("a = %d\n", a); // a = 104 

        printf("b = %d\n", b); // b = 104 

        printf("c = %d\n", c); // c = 4 

        printf("d = %d\n", d); // d = 4 

 

        return 0; 

} 

" 

Arithmetic operators include "+" for addition, "-" for negation (so it can be used 
without a numeric left operand) or subtraction, "*" for multiplication, "/" for division, 
"%" for modulus (division remainder). "++" to increment and "--" to decrement by one 
apply to variables, when on the right of them they are in/decremented after the 
statement they are in has been executed. When on the left, the addition/subtraction 
happens before the rest of the statement. The example below should clarify the 
difference: 

" 

#include <stdio.h> 

 

int main() 

{ 

        int a, b, c; 

 

        a = 1; 

        b = 5; 

 

        c = b++ + ++a; 
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        printf("a = %d\n", a); // a = 2 

        printf("b = %d\n", b); // b = 6 

        printf("c = %d\n", c); // c = 7 

        printf("c = %d\n", ++c); // c = 8 

        printf("c = %d\n", c++); // c = 8 

 

        return 0; 

} 

" 

Bitwise operators can only be used on integer and character types, whether signed 
or unsigned, and are called so because they operate on the binary value of the ints or 
characters. These include "&": AND, "|": OR (inclusive), "^": XOR (exclusive), "~": one's 
complement (inversion), "<<": left shift, ">>": right shift. The shift operators do not 
rotate bits, and shifting bits out of range will not throw an error, but simply replace the 
empty space with zeroes, as shown in the example below: 

" 

#include <stdio.h> 

 

int main() 

{ 

        int b, a = 1; 

 

        b = a << 4; 

 

        printf("b = %d\n", b); // b = 16 

 

        b = a >> 5; 

 

        printf("b = %d\n", b); // b = 0 

 

        return 0; 
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} 

" 

In C there are numeric/assignment combo operators such as "+=", "-=", "*=", "/=", 
"%=", "<<=", ">>=", "&=", "|=" and "^=". As an example "i += 2;" is equivalent to "i = i + 
2;". 

The last sets of non-unary operators are the relational, equality and logical 
operators. The relational operators are ">" (is greater than), ">=" (is greater than or 
equal to), "<" (is less than), "<=" (is less than or equal to). Equality operators include "==" 
(is equal to) and "!=" (is not equal to). Logical operators include "&&": AND and "||": OR. 
There is also the unary negation operator "!". By definition, the numeric value of a 
relational or logical expression is 1 if the relation is true, and 0 if the relation is false. 
Expressions connected by "&&" or "||" are evaluated left to right, and evaluation stops 
as soon as the truth or falsehood of the result is known. The example below is provided 
to help clarify: 

" 

#include <stdio.h> 

 

int main() 

{ 

 int a = 2, b = 1; 

 int c = ((!a) != b); 

 

 printf("a == b = %d\n", a == b); 

 printf("c = %d\n", c); 

 printf("(!a) = %d\n", !a); 

 printf("!(a == b) = %d\n", !(a == b)); 

 printf("(!a) > b = %d\n", (!a) > b); 

 printf("a > b = %d\n", a > b); 

 printf("a && b = %d\n", a && b); 

 printf("(!a) && b = %d\n", (!a) && b);  

 printf("1 || (!a) && b = %d\n", 1 || (!a) && b); 

  

 return 0; 
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} 

 

/* 

output: 

 

a == b = 0 

c = 1 

(!a) = 0 

!(a == b) = 1 

(!a) > b = 0 

a > b = 1 

a && b = 1 

(!a) && b = 0 

1 || (!a) && b = 1 

*/ 

" 

Using "(" and ")" we can change the default order of operations. 

The ternary operators "?" and ":", also sometimes called "select" always go 
together. If the value to the left of "?" is anything but 0, then the value to the left of ":" 
is run, otherwise the value to the right of ":" is run instead (only one of the two will be 
run). Example: 

" 

#include <stdio.h> 

 

int main() 

{ 

 int a = -2; 

 

 4 ? printf("True\n") : printf("False\n"); 

 0 ? printf("True\n") : printf("False\n"); 

 a ? printf("a is not 0\n") : printf("a is 0\n"); 
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 return 0; 

} 

/* 

output: 

 

True 

False 

a is not 0 

*/ 

" 

Note the lack of a ";" after the statement to the right of "?". It isn't possible to have 
a "return" statement with the ternary operators (something like "a ? return 1 : return 0;" 
would be illegal). 

Operator precedence is shown in the following image: 
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Image 70.  C operator precedence 

Πηγή: [65] 

In words,  

"() [] -> ." have the highest precedence and are evaluated in the left to right order 
(hereon "LtR" for brevity),  

next "! ~ ++ -- + - *(type) sizeof": right to left ("RtL"),  

"* / %": LtR,  

"+ -": LtR,  

"<< >>": LtR,  

"< <= > >=": LtR,  

"== !=": LtR,  

"&": LtR,  

"^": LtR,  

"|": LtR,  

"&&": LtR,  

"||": LtR,  

"? :": RtL,  

"= += -= *= /= %= &= ^= |= <<= >>=": RtL,  

and last, ",": LtR. 

Unary "&", "+", "-" and "*" have higher precedence than the binary forms. 

6.1.14  Keywords, loops and conditions 
 

Inside functions it is possible to use "if()", "if() ... else", "switch" and loops including 
"while", "do ... while" and "for(...;...;...)". 

The "if" clause runs the code within "{" and "}" immediately after it (or only the 
statement following it, if the braces are excluded) only if the value inside the parenthesis 
following the "if" keyword evaluates to a "true" (non-zero) value. It is possible to trail it 
with the "else" keyword that will run if the statement evaluates to "false" (zero). "if" 
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statements can be nested, but the "else" keyword associates with the "if" immediately 
before it. The example below demonstrates the "if" clause: 

" 

#include <stdio.h> 

 

int main() 

{ 

        int a = 0, b = 1; 

 

        if(a) 

                printf("a is true\n"); 

        else 

                if(b >= 1) // An "if ... else" clause counts as one statement, so no braces are 
needed for the "else" of "if(a)". 

                { // "if(b >= 1)" has more than one statement though, so braces must be 
used. 

                        printf("b >= 1\n"); 

 

                        if (b == 1) 

                                 printf("b == 1\n"); 

 

                        b = 2; 

                } 

                else 

                { 

                        printf("b < 1\n"); 

                        b = 1; 

                } 

        // This line and everything that follows it is outside the scope of "if(a)"'s "else". 

 

        return 0; 
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} 

 

/* 

output: 

 

b >= 1 

b == 1 

*/ 

" 

The switch statement will run the code below it when a "case"'s value is matched 
with the input. Without a "break;" keyword, however, all code below it will run, 
including "case"'s that do not match the input. The "default" keyword can be used to run 
a section of code if there was no match within the entire "switch" statement. Switch 
statements are demonstrated in the following example: 

" 

#include <stdio.h> 

 

int main() 

{ 

 char c1 = 'b'; 

 int i1 = 5; 

 

 switch(c1) 

 { 

  case 'a': 

   printf("c1 = a\n"); 

   break; 

  case 'b': // this case is true 

  case 'c': 

   switch(i1) 

   { 
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    case 1: case 2: case 3: 

     printf("i1 < 4\n"); 

    default: 

     printf("i1 >= 4\n"); 

   } 

  case 'd':  

   printf("End of fallthrough due to a break keyword\n"); 

   break; 

  case 'e': 

   printf("This will not be printed\n"); 

 } 

 

 return 0; 

} 

 

/* 

output: 

 

i1 >= 4 

End of fallthrough due to a break keyword 

*/ 

" 

"break" can be used to stop execution of a loop, as will be shown. The "continue" 
keyword can only be used inside loops. Any code beyond these within the same scope 
will not be run. "continue;" stops execution at a point and starts the next iteration of the 
loop instead of exiting altogether, contrary to what "break;" does. 

The scope for loops is similar to the "if" clause. The simplest loop in C is the "while" 
loop, with the syntax being "while() ..." or "while() { ... }". The statement(s) following it 
will only run for as long as what is between the "(" and the ")" evaluates to non-zero. If 
the while clause evaluates to true, the statements after it are run. When they finish they 
return to the clause again, and if it is still true, they run again. It is possible to have an 
infinite loop. A "do ... while()" or "do { ... } while()" loop is the same as a simple "while" 
loop, with the difference that the clause is evaluated after it has run at least once. 
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This example demonstrates some of the keywords explained: 

" 

#include <stdio.h> 

 

int main() 

{ 

 int i = 0, j = 0, k = 0; 

 

 while(-1) // This will (theoretically) never end 

 { 

  while(i < 2) 

  { 

   while(j < 2)  

    printf("k = %d, j = %d, i = %d\n", k, j++, i); 

   j = 0; 

   i++; 

  } 

 

  k++; 

  i = j = 0; 

 

  if(k <= 1)  

   continue; 

 

  printf("This will not run the first time\n"); 

 

  if(k >= 5) 

   break; // This will end the infinite loop 

 } 
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 while(0)  

  printf("This will never run\n"); 

 

 do  

  printf("This will run at least once\n");  

 while(0); 

 

 return 0; 

} 

 

/* 

output: 

 

k = 0, j = 0, i = 0 

k = 0, j = 1, i = 0 

k = 0, j = 0, i = 1 

k = 0, j = 1, i = 1 

k = 1, j = 0, i = 0 

k = 1, j = 1, i = 0 

k = 1, j = 0, i = 1 

k = 1, j = 1, i = 1 

This won't run the first time 

k = 2, j = 0, i = 0 

k = 2, j = 1, i = 0 

k = 2, j = 0, i = 1 

k = 2, j = 1, i = 1 

This won't run the first time 

k = 3, j = 0, i = 0 

k = 3, j = 1, i = 0 

k = 3, j = 0, i = 1 
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k = 3, j = 1, i = 1 

This won't run the first time 

k = 4, j = 0, i = 0 

k = 4, j = 1, i = 0 

k = 4, j = 0, i = 1 

k = 4, j = 1, i = 1 

This won't run the first time 

This will run at least once 

*/ 

" 

The last type of loop is the "for" loop. It always has two ";"s within its' parentheses. 
The syntax is "for(...;...;...)". The first argument is usually used for variable initializations, 
the second is the condition to check (like what is within the parenthesis in a "while" 
loop) and the third runs at the end of every iteration. The example below shows a for 
loop and a while that is equivalent to it: 

" 

#include <stdio.h> 

 

int main() 

{ 

 int i, j, k, a[5][5]; 

 

 j = 0; 

 while(j < 5) 

 { 

  i = 0; // first statement in a for loop 

  while(i < 5) // second statement in a for loop 

  { 

   a[i][j] = i + j; 

   i++; // third statement in a for loop 

  } 
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  j++; 

 } 

 

 for(j = 0; j < 5; j++) 

  for(k = 0, i = 0; i < 5; i++, k++) 

   printf("a[%d][%d] = %d\n", i, j, a[i][j]); 

 

 printf("k = %d\n", k); 

 

 return 0; 

} 

 

/* 

output: 

 

a[0][0] = 0 

a[1][0] = 1 

a[2][0] = 2 

a[3][0] = 3 

a[4][0] = 4 

a[0][1] = 1 

a[1][1] = 2 

a[2][1] = 3 

a[3][1] = 4 

a[4][1] = 5 

a[0][2] = 2 

a[1][2] = 3 

a[2][2] = 4 

a[3][2] = 5 

a[4][2] = 6 
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a[0][3] = 3 

a[1][3] = 4 

a[2][3] = 5 

a[3][3] = 6 

a[4][3] = 7 

a[0][4] = 4 

a[1][4] = 5 

a[2][4] = 6 

a[3][4] = 7 

a[4][4] = 8 

k = 5 

*/ 

" 

As shown, there can be more than one statement in the first and third section of 
"for", separated by a ",". 

The “goto” statement works much like jump instructions (usually “JMP”) in 
assembly: it will jump to the line of code annotated with the label stated to the right of 
the “goto” statement. The label should be followed by a colon (“:”), but not when being 
referred to. This example should help clarify: 

" 

#include <stdio.h> 

 

int main() { 

 int i, j; 

 

 j = 0; 

here1: i = 0; // "here1" is a label. 

 printf("i has been reinitialized to %d\n", i); 

 

here2: ++i; 

 ++j; 

 printf("i is now %d\n", i); 
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 if (i < 5) {  

  goto here2; 

 } else { 

  if (j > 15)  

   goto exit; 

 } 

 

 goto here1; 

 

exit:  

 return 0; 

} 

 

/* 

output: 

i has been reinitialized to 0 

i is now 1 

i is now 2 

i is now 3 

i is now 4 

i is now 5 

i has been reinitialized to 0 

i is now 1 

i is now 2 

i is now 3 

i is now 4 

i is now 5 

i has been reinitialized to 0 

i is now 1 

i is now 2 

i is now 3 
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i is now 4 

i is now 5 

i has been reinitialized to 0 

i is now 1 

i is now 2 

i is now 3 

i is now 4 

i is now 5 

 

*/ 

" 

(It should be noted that “goto” usage is discouraged and should be avoided in most 
conventional cases; see [69]. ) 

 

6.1.15  Function pointers, recursion 
 

Functions can be recursive (call an instance of themselves), as shown in the 
following example: 

" 

#include <stdio.h> 

 

int factorialFun(int n) 

{ 

        if(n <= 1) 

                return n; 

        else 

                return n * factorialFun(n-1); 

} 

 

int main() 

{ 
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        printf("The factorial of 5 is %d\n", factorialFun(5)); // The factorial of 5 is 120 

 

        return 0; 

} 

" 

Recursion can also lead to infinite calls; the equivalent to an infinite loop if used 
incorrectly/appropriately. 

It is also possible to declare pointers to functions. This way, it is possible to call 
different functions by the same name (provided their input is the same, as well as what 
they return). The demonstration below is a slightly modified example from [66]: 

" 

#include <stdio.h> 

 

void add(int a, int b) 

{ 

 printf("a + b =  %d\n", a + b); 

} 

 

void subtract(int a, int b) 

{ 

 printf("a - b = %d\n", a - b); 

} 

 

void multiply(int a, int b) 

{ 

 printf("a * b = %d\n", a * b); 

} 

   

int main() 

{ 

 // fun_ptr_arr is an array of function pointers 

181 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

 void (*fun_ptr_arr[])(int, int) = {add, subtract, multiply}; 

 int a = 15, b = 10; 

   

 // 0 for add, 1 for subtract and 2 for multiply 

 (*fun_ptr_arr[1])(a, b); 

 (*fun_ptr_arr[0])(a, b); 

 (*fun_ptr_arr[2])(a, b); 

 

 return 0; 

} 

/* 

output: 

 

a - b = 5 

a + b =  25 

a * b = 150 

*/ 

" 
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6.2 Ada’s syntax 
A Ada source code file is given an ".ada" extension if the package declaration and 

body are in the same file. (This is what the csense compiler of this paper’s project 
outputs. The GNAT compiler, however, requires the declarations to be in a “.ads” file, 
and the body in a separate“.adb” file.) 

Only one line comments exist in Ada. They start with a "--". Everything after 
encountering these two characters together will be ignored until the next line. 

Everything that follows is either based on or directly quotes [22]. 

 

6.2.1 Package and library inclusion, procedures 
 

The "with" clause is Ada's equivalent of C's "#include" clause. With it libraries and 
packages can be included in the project. Unlike C, an Ada program can consist of 
"procedures" (equivalent to a C function that returns "void") with any given name. The 
example below demonstrates a simple Ada program: 

" 

with Ada.Text_IO; 

 

procedure Greet is 

begin 

 -- Print "Hello, World!" to the screen 

 Ada.Text_IO.Put_Line ("Hello, World!"); 

end Greet; 

" 

"Ada.Text_IO" is a system library. "Greet" is the procedure's name and could be any 
valid variable name. From "begin" and until "end <procedure_name>;" is encountered, 
the body of the procedure is defined. "Put_Line" is similar to C's "printf", with the 
difference that it adds a new line at the end of its input string. By adding a "use" clause 
after the "with" clause ("use Ada.Text_IO;"), the necessity to type "Ada.Text_IO." in 
front of "Put_Line" is removed. 

"The type "Integer" is a predefined signed type, and its range depends on the 
computer architecture. On typical current processors "Integer" is 32-bit signed." 
Variables are declared after the "is" and before the "begin" keywords in a procedure. 
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6.2.2 The “if” clause and basic input/output 
 

"The if statement minimally consists of the reserved word "if", a condition (which 
must be a Boolean value), the reserved word "then" and a non-empty sequence of 
statements (the then part) which is executed if the condition evaluates to True, and a 
terminating "end if;"." Before the "end if;" multiple "elsif" and/or one "else" section can 
be included (optionally). The "Get" function reads input from "stdin" (equivalent to C's 
"scanf"). The "Put" function is the same as "Put_Line" with the difference that it does 
not add a new line at the end. 

" 

with Ada.Text_IO; use Ada.Text_IO; 

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO; 

 

procedure Check_Direction is 

 N : Integer; 

begin 

 Put ("Enter an integer value: "); -- Puts a String 

 Get (N); -- Reads an Integer 

 Put (N); -- Puts an Integer 

 if N = 0 or N = 360 then 

  Put_Line (" is due east"); 

 elsif N in 1 .. 89 then 

  Put_Line (" is in the northeast quadrant"); 

 elsif N = 90 then 

  Put_Line (" is due north"); 

 elsif N in 91 .. 179 then 

  Put_Line (" is in the northwest quadrant"); 

 elsif N = 180 then 

  Put_Line (" is due west") 

 elsif N in 181 .. 269 then 

  Put_Line (" is in the southwest quadrant"); 
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 elsif N = 270 then 

  Put_Line (" is due south"); 

 elsif N in 271 .. 359 then 

  Put_Line (" is in the southeast quadrant"); 

 else 

  Put_Line (" is not in the range 0..360"); 

 end if; 

end Check_Direction; 

" 

"This example expects the user to input an integer between 0 and 360 inclusive, and 
displays which quadrant or axis the value corresponds to. The in operator in Ada tests 
whether a scalar value is within a specified range and returns a Boolean result." 

6.2.3 Loops, range, parameters and variables 
 

"Ada has three ways of specifying loops. They differ from the C / Java / Javascript 
for-loop, however, with simpler syntax and semantics in line with Ada’s philosophy." 

"The first kind of loop is the "for" loop, which allows iteration through a discrete 
range." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Greet_5a is 

begin 

 for I in 1 .. 5 loop 

  Put_Line ("Hello, World!" & Integer'Image (I)); -- 

  --                                                 ^ Procedure parameter 

 end loop; 

end Greet_5a; 

" 

" 

Executing this procedure yields the following output: 
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Hello, World! 1 

Hello, World! 2 

Hello, World! 3 

Hello, World! 4 

Hello, World! 5 

" 

"A few things to note: 

 1 .. 5 is a discrete range, from 1 to 5 inclusive. 

 The loop parameter I (the name is arbitrary) in the body of the loop has a value 
within this range. 

 I is local to the loop, so you cannot refer to I outside the loop. 

 Although the value of I' is incremented at each iteration, from the program’s 
perspective it is constant. An attempt to modify its value is illegal; the compiler would 
reject the program. 

 Integer'Image is a function that takes an Integer and converts it to a String. It is an 
example of a language construct known as an attribute, indicated by the ”'” syntax. 

 The & symbol is the concatenation operator for String values 

 The end loop marks the end of the loop 

The ”step” of the loop is limited to 1 (forward direction) and -1 (backward). To 
iterate backwards 

over a range, use the reverse keyword: 

" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Greet_5a_Reverse is 

begin 

 for I in reverse 1 .. 5 loop 

  Put_Line ("Hello, World!" & Integer'Image (I)); 

 end loop; 

end Greet_5a_Reverse; 

" 
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" 

Executing this procedure yields the following output: 

Hello, World! 5 

Hello, World! 4 

Hello, World! 3 

Hello, World! 2 

Hello, World! 1 

" 

" 

The bounds of a for loop may be computed at run-time; they are evaluated once, 
before the loop body is executed. If the value of the upper bound is less than the value 
of the lower bound, then the loop is not executed at all. This is the case also for reverse 
loops. Thus no output is produced in the following example: 

" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Greet_No_Op is 

begin 

 for I in reverse 5 .. 1 loop 

  Put_Line ("Hello, World!" & Integer'Image (I)); 

 end loop; 

end Greet_No_Op; 

" 

"The simplest loop in Ada is the bare loop, which forms the foundation of the other 
kinds of Ada loops." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Greet_5b is 

 I : Integer := 1; -- Variable declaration 
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 -- ^ Type 

 --                    ^ Initial value 

begin 

 loop 

  Put_Line ("Hello, World!" & Integer'Image (I)); 

  exit when I = 5; -- Exit statement 

  --                  ^ Boolean condition 

  -- Assignment 

  I := I + 1; -- There is no I++ short form to increment a variable 

 end loop; 

end Greet_5b; 

" 

" 

This example has the same effect as Greet_5a shown earlier. 

It illustrates several concepts: 

 We have declared a variable named I between the is and the begin. This constitutes 
a declarative region. Ada clearly separates the declarative region from the statement 
part of a subprogram. A declaration can appear in a declarative region but is not allowed 
as a statement. 

 The bare loop statement is introduced by the keyword loop on its own and, like 
every kind of loop statement, is terminated by the combination of keywords end loop. 
On its own, it is an infinite loop. You can break out of it with an exit statement. 

 The syntax for assignment is ":=", and the one for equality is "=". There is no way to 
confuse them, because as previously noted, in Ada, statements and expressions are 
distinct, and expressions are not valid statements. 

" 

So ":=" in Ada is the equivalent to "=" in C, and "=" in Ada is equivalent to "==" in C. 

"The last kind of loop in Ada is the while loop." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Greet_5c is 
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 I : Integer := 1; 

begin 

 -- Condition must be a Boolean value (no Integers). 

 -- Operator "<=" returns a Boolean 

 while I <= 5 loop 

  Put_Line ("Hello, World!" & Integer'Image (I)); 

  I := I + 1; 

 end loop; 

end Greet_5c; 

" 

"The condition is evaluated before each iteration. If the result is false, then the loop 
is terminated. 

This program has the same effect as the previous examples. 

Note that Ada has different semantics than C-based languages with respect to the 
condition in a while loop. In Ada the condition has to be a Boolean value or the compiler 
will reject the program; the condition is not an integer that is treated as either True or 
False depending on whether it is non-zero or zero." 

 

6.2.4  The case statement 
 

"Ada’s case statement is similar to the C and C++ switch statement, but with some 
important differences. 

Here’s an example, a variation of a program that was shown earlier with an if 
statement:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO; 

 

procedure Check_Direction is 

 N : Integer; 

begin 

 loop 
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  Put ("Enter an integer value: "); -- 

  Get (N); -- Reads an Integer 

  Put (N); -- Puts an Integer 

  case N is 

   when 0 | 360 => 

    Put_Line (" is due east"); 

   when 1 .. 89 => 

    Put_Line (" is in the northeast 

   when 90 => 

    Put_Line (" is due north"); 

   when 91 .. 179 => 

    Put_Line (" is in the northwest 

   when 180 => 

    Put_Line (" is due west"); 

   when 181 .. 269 => 

    Put_Line (" is in the southwest 

   when 270 => 

    Put_Line (" is due south"); 

   when 271 .. 359 => 

    Put_Line (" is in the southeast 

   when others => 

    Put_Line (" Au revoir"); 

    exit; 

  end case; 

 end loop; 

end Check_Direction; 

" 

"This program repeatedly prompts for an integer value and then, if the value is in 
the range 0..360, displays the associated quadrant or axis. If the value is an Integer 
outside this range, the loop (and the program) terminate after outputting a farewell 
message. 
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The effect of the case statement is similar to the if statement in an earlier example, 
but the case statement can be more efficient because it does not involve multiple range 
tests. 

Notable points about Ada’s case statement: 

 The case expression (here the variable N) must be of a discrete type, i.e. either an 
integer type or an enumeration type.  

 Every possible value for the case expression needs to be covered by a unique 
branch of the case statement. This will be checked at compile time. 

 A branch can specify a single value, such as 0; a range of values, such as 1 .. 89; or 
any combination of the two (separated by a |). 

 As a special case, an optional final branch can specify others, which covers all values 
not included in the earlier branches. 

 Execution consists of the evaluation of the case expression and then a transfer of 
control to the statement sequence in the unique branch that covers that value. 

 When execution of the statements in the selected branch has completed, control 
resumes after the end case. Unlike C, execution does not fall through to the next branch. 
So Ada doesn’t need (and doesn’t have) a "break" statement." 

 

6.2.5 Nested procedures, expressions verses statements 
 

"Let’s look at an example of a nested procedure:"  

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Main is 

 procedure Nested is 

 begin 

  Put_Line ("Hello World"); 

 end Nested; 

begin 

 Nested; 

 -- Call to Nested 

end Main; 
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" 

"A declaration cannot appear as a statement. If you need to declare a local variable 
amidst the statements, you can introduce a new declarative region with a block 
statement:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Greet is 

begin 

 loop 

  Put_Line ("Please enter your name: "); 

  declare 

   Name : String := Get_Line; 

   --                            ^ Call to the Get_Line function 

  begin 

   exit when Name = ""; 

   Put_Line ("Hi " & Name & "!"); 

  end; 

  -- Name is undefined here 

 end loop; 

 Put_Line ("Bye!"); 

end Greet; 

" 

"The Get_Line function allows you to receive input from the user, and get the result 
as a string. It is more or less equivalent to the scanf C function. 

It returns a String, which, is an Unconstrained array type. For now we simply note 
that, if you wish to declare a String variable and do not know its size in advance, then 
you need to initialize the variable during its declaration." 

"Ada 2012 introduced an expression analog for conditional statements (if and case). 

Here’s an alternative version of an example we saw earlier; the if statement has 
been replaced by an if expression:" 

" 
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with Ada.Text_IO; use Ada.Text_IO; 

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO; 

 

procedure Check_Positive is 

 N : Integer; 

begin 

 Put ("Enter an integer value: "); -- Put a String 

 Get (N); -- Reads in an integer value 

 Put (N); -- Put an Integer 

 declare 

  S : String := 

   (if N > 0 then " is a positive number" 

   else " is not a positive number"); 

 begin 

  Put_Line (S); 

 end; 

end Check_Positive; 

" 

"The if expression evaluates to one of the two Strings depending on N, and assigns 
that value to the local variable S. 

Ada’s if expressions are similar to if statements. However, there are a few 
differences that stem from the fact that it is an expression: 

 All branches’ expressions must be of the same type 

 It must be surrounded by parentheses if the surrounding expression does not 
already contain them 

 An else branch is mandatory unless the expression following then has a Boolean 
value. In that case an else branch is optional and, if not present, defaults to "else True"." 

"Analogous to if expressions, Ada also has case expressions. They work just as you 
would expect." 

" 

with Ada.Text_IO; use Ada.Text_IO; 
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procedure Main is 

begin 

 for I in 1 .. 10 loop 

  Put_Line (case I is 

   when 1 | 3 | 5 | 7 | 9 => "Odd", 

   when 2 | 4 | 6 | 8 | 10 => "Even"); 

 end loop; 

end Main; 

" 

"This program produces 10 lines of output, alternating between ”Odd” and ”Even”." 

"The syntax differs from case statements, with branches separated by commas" 
(","). 

 

6.2.6 Type declarations, attributes, overflow  
 

"A nice feature of Ada is that you can define your own integer types, based on the 
requirements of your program (i.e., the range of values that makes sense). In fact, the 
definitional mechanism that Ada provides forms the semantic basis for the predefined 
integer types. There is no ”magical” built-in type in that regard, which is unlike most 
languages." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Integer_Type_Example is 

 -- Declare a signed integer type, and give the bounds 

 type My_Int is range -1 .. 20; 

 --                                           ^ High bound 

 --                                    ^ Low bound 

 -- Like variables, type declarations can only appear in 

 -- declarative regions 

begin 

 for I in My_Int loop 
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  Put_Line (My_Int'Image (I)); 

  --                             ^ 'Image attribute, converts a value to a String 

 end loop; 

end Integer_Type_Example; 

" 

"This example illustrates the declaration of a signed integer type, and several things 
we can do with them. Every type declaration in Ada starts with the type keyword." 

"After the type, we can see a range that looks a lot like the ranges that we use in for 
loops, that defines the low and high bound of the type. Every integer in the inclusive 
range of the bounds is a valid value for the type." 

"In Ada, an integer type is not specified in terms of its machine representation, but 
rather by its range. The compiler will then choose the most appropriate representation." 

"Another point to note in the above example is the My_Int'Image (I) expression. The 
"Name'Attribute (optional params)" notation is used for what is called an attribute in 
Ada. 

An attribute is a built-in operation on a type, a value, or some other program entity. 
It is accessed by using a "'" symbol (the ASCII apostrophe). 

Ada has several types available as ”built-ins”; Integer is one of them. Here is how 
Integer might be defined for a typical processor: 

"type Integer is range -(2 ** 31) .. +(2 ** 31 - 1);" 

"**" is the exponent operator, which means that the first valid value for Integer is 
−2^31 , and the last valid value is 2^31 − 1. 

Ada does not mandate the range of the built-in type Integer." 

"Unlike some other languages, Ada requires that operations on integers should be 
checked for overflow." 

" 

procedure Main is 

 A : Integer := Integer'Last; 

 B : Integer; 

begin 

 B := A + 5; 

 -- This operation will overflow, eg. it will 

 -- raise an exception at run time. 

195 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

end Main; 

" 

"There are two types of overflow checks: 

 Machine-level overflow, when the result of an operation exceeds the maximum 
value (or is less than the minimum value) that can be represented in the storage 
reserved for an object of the type, and 

 Type-level overflow, when the result of an operation is outside the range defined 
for the type. 

Mainly for efficiency reasons, while machine level overflow always results in an 
exception, type level overflows will only be checked at specific boundaries, like 
assignment:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Main is 

 type My_Int is range 1 .. 20; 

 A : My_Int := 12; 

 B : My_Int := 15; 

 M : My_Int := (A + B) / 2; 

 -- No overflow here, overflow checks are done at 

 -- specific boundaries. 

begin 

 for I in 1 .. M loop 

  Put_Line ("Hello, World!"); 

 end loop; 

 -- Loop body executed 13 times 

end Main; 

" 

"Type level overflow will only be checked at specific points in the execution. The 
result, as we see above, is that you might have an operation that overflows in an 
intermediate computation, but no exception will be raised because the final result does 
not overflow." 
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"Ada also features unsigned Integer types. They’re called modular types in Ada 
parlance. The reason for this designation is due to their behavior in case of overflow: 
They simply ”wrap around”, as if a modulo operation was applied. 

For machine sized modular types, for example a modulus of 2**32, this mimics the 
most common implementation behavior of unsigned types. However, an advantage of 
Ada is that the modulus is more general:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Main is 

 type Mod_Int is mod 2 ** 5; 

 --                  ^ Range is 0 .. 31 

 A : Mod_Int := 20; 

 B : Mod_Int := 15; 

 M : Mod_Int := A + B; 

 -- No overflow here, M = (20 + 15) mod 32 = 3 

begin 

 for I in 1 .. M loop 

  Put_Line ("Hello, World!"); 

 end loop; 

end Main; 

" 

"The modulus does not need to be a power of 2." 

"Enumeration types are another nicety of Ada’s type system. Unlike C’s enums, they 
are not integers, 

and each new enumeration type is incompatible with other enumeration types. 
Enumeration types are part of the bigger family of discrete types, which makes them 
usable in certain situations [...] one context that we have already seen is a case 
statement." 

" 

" 

with Ada.Text_IO; use Ada.Text_IO; 
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procedure Enumeration_Example is 

 type Days is (Monday, Tuesday, Wednesday, 

  Thursday, Friday, Saturday, Sunday); 

 -- An enumeration type 

begin 

 for I in Days loop 

  case I is 

   when Saturday .. Sunday => 

    Put_Line ("Week end!"); 

   when Monday .. Friday => 

    Put_Line ("Hello on " & Days'Image (I)); 

    -- 'Image attribute, works on enums too 

  end case; 

 end loop; 

end Enumeration_Example; 

" 

"Enumeration types are powerful enough that, unlike in most languages, they’re 
used to define the 

standard Boolean type: 

"type Boolean is (False, True);" 

As mentioned previously, every ”built-in” type in Ada is defined with facilities 
generally available to the user." 

"Like most languages, Ada supports floating-point types. The most commonly used 
floating-point type is Float." 

"The Ada language does not specify the precision (number of decimal digits in the 
mantissa) for Float; on a typical 32-bit machine the precision will be 6. 

All common operations that could be expected for floating-point types are available, 
including absolute value and exponentiation. For example:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Floating_Point_Operations is 
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 A : Float := 2.5; 

begin 

 A := abs (A - 4.5); 

 Put_Line ("The value of A is " & Float'Image (A)); 

 A := A ** 2 + 1.0; 

 Put_Line ("The value of A is " & Float'Image (A)); 

end Floating_Point_Operations; 

" 

"The value of A is 2.0 after the first operation and 5.0 after the second operation. 

In addition to Float, an Ada implementation may offer data types with higher 
precision such as Long_Float and Long_Long_Float. Like Float, the standard does not 
indicate the exact precision of these types: it only guarantees that the type Long_Float, 
for example, has at least the precision of Float. In order to guarantee that a certain 
precision requirement is met, we can define custom floating-point types." 

"Ada allows the user to specify the precision for a floating-point type, expressed in 
terms of decimal digits. Operations on these custom types will then have at least the 
specified precision. The syntax for a simple floating-point type declaration is: 

"type T is digits <number_of_decimal_digits>;" 

The compiler will choose a floating-point representation that supports the required 
precision. For example:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Custom_Floating_Types is 

 type T3 is digits 3; 

 type T15 is digits 15; 

 type T18 is digits 18; 

begin 

 Put_Line ("T3 requires " & Integer'Image (T3'Size) & " bits"); 

 Put_Line ("T15 requires " & Integer'Image (T15'Size) & " bits"); 

 Put_Line ("T18 requires " & Integer'Image (T18'Size) & " bits"); 

end Custom_Floating_Types; 
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" 

"In this example, the attribute 'Size is used to retrieve the number of bits used for 
the specified data type. As we can see by running this example, the compiler allocates 32 
bits for T3, 64 bits for T15 and 128 bits for T18. This includes both the mantissa and the 
exponent." 

"The number of digits specified in the data type is also used in the format when 
displaying floating-point variables. For example:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Display_Custom_Floating_Types is 

 type T3 is digits 3; 

 type T18 is digits 18; 

 

 C1 : constant := 1.0e-4; 

 A : T3 := 1.0 + C1; 

 B : T18 := 1.0 + C1; 

begin 

 Put_Line ("The value of A is " & T3'Image (A)); 

 Put_Line ("The value of B is " & T18'Image (B)); 

end Display_Custom_Floating_Types; 

" 

"As expected, the application will display the variables according to specified 
precision (1.00E+00 and 1.00010000000000000E+00)." 

"In addition to the precision, a range can also be specified for a floating-point type. 
The syntax is similar to the one used for integer data types — using the "range" 
keyword." 

"The application is responsible for ensuring that variables of this type stay within 
this range; otherwise an exception is raised. In this example, the exception 
Constraint_Error is raised when assigning 2.0 to the variable A:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 
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procedure Floating_Point_Range_Exception is 

 type T_Norm is new Float range -1.0 .. 1.0; 

 A : T_Norm; 

begin 

 A := 2.0; 

 Put_Line ("The value of A is " & T_Norm'Image (A)); 

end Floating_Point_Range_Exception; 

" 

"Ada is strongly typed. As a result, different types of the same family are 
incompatible with each other; a value of one type cannot be assigned to a variable from 
the other type. For example:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Illegal_Example is 

 -- Declare two different floating point types 

 type Meters is new Float; 

 type Miles is new Float; 

 Dist_Imperial : Miles; 

 -- Declare a constant 

 Dist_Metric : constant Meters := 1000.0; 

begin 

 -- Not correct: types mismatch 

 Dist_Imperial := Dist_Metric * 621.371e-6; 

 Put_Line (Miles'Image (Dist_Imperial)); 

end Illegal_Example; 

" 

"A consequence of these rules is that, in the general case, a ”mixed mode” 
expression like 2 * 3.0 will trigger a compilation error. In a language like C or Python, 
such expressions are made valid by implicit conversions. In Ada, such conversions must 
be made explicit:" 

" 
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with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Conv is 

 type Meters is new Float; 

 type Miles is new Float; 

 Dist_Imperial : Miles; 

 Dist_Metric : constant Meters := 1000.0; 

begin 

 Dist_Imperial := Miles (Dist_Metric) * 621.371e-6; 

 --                           ^ Type conversion, from Meters to Miles 

 -- Now the code is correct 

 Put_Line (Miles'Image (Dist_Imperial)); 

end Conv; 

" 

"Of course, we probably do not want to write the conversion code every time we 
convert from meters to miles. The idiomatic Ada way in that case would be to introduce 
conversion functions along with the types." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Conv is 

 type Meters is new Float; 

 type Miles is new Float; 

 

 -- Function declaration, like procedure but returns a value. 

 function To_Miles (M : Meters) return Miles is 

  --                                                      ^ Return type 

 begin 

  return Miles (M) * 621.371e-6; 

 end To_Miles; 

 

202 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

 Dist_Imperial : Miles; 

 Dist_Metric : constant Meters := 1000.0; 

begin 

 Dist_Imperial := To_Miles (Dist_Metric); 

 Put_Line (Miles'Image (Dist_Imperial)); 

end Conv; 

" 

"The Ada compiler will always reject code that mixes floating-point and integer 
variables without explicit conversion. The following Ada code will not compile:" 

" 

procedure Main is 

 A : Integer := 3; 

 B : Integer := 2; 

 F : Float; 

begin 

 F := A / B; 

end Main; 

" 

"The offending line must be changed to "F := Float (A) / Float (B);" in order to be 
accepted by the compiler." 

"In Ada you can create new types based on existing ones. This is very useful: you get 
a type that has the same properties as some existing type but is treated as a distinct 
type in the interest of strong typing." 

" 

procedure Main is 

 -- ID card number type, incompatible with Integer. 

 type Social_Security_Number 

 is new Integer range 0 .. 999_99_9999; 

 --                   ^ Since a SSN has 9 digits max, and cannot be negative, we enforce a 
validity constraint. 

 SSN : Social_Security_Number := 555_55_5555; 
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 --                                                               ^ You can put underscores as formatting in 
any number. 

 I : Integer; 

 Invalid : Social_Security_Number := -1; 

 --                                                               ^ This will cause a runtime error 

 -- (and a compile time warning with GNAT) 

begin 

 I := SSN; -- Illegal, they have different types 

 SSN := I; -- Likewise illegal 

 I := Integer (SSN); -- OK with explicit conversion 

 SSN := Social_Security_Number (I); -- Likewise OK 

end Main; 

" 

"The type Social_Security is said to be a derived type; its parent type is Integer." 

6.2.7 Subtypes, aliases (type synonyms) 
 

"types may be used in Ada to enforce constraints on the valid range of values. 
However, we sometimes want to enforce constraints on some values while staying 
within a single type. This is where subtypes come into play. A subtype does not 
introduce a new type." 

"Several subtypes are predefined in the standard package in Ada, and are 
automatically available to you:" 

" 

subtype Natural is Integer range 0 .. Integer'Last; 

subtype Positive is Integer range 1 .. Integer'Last; 

" 

"While subtypes of a type are statically compatible with each other, constraints are 
enforced at run time: if you violate a subtype constraint, an exception will be raised." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Greet is 
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 type Days is (Monday, Tuesday, Wednesday, Thursday, 

  Friday, Saturday, Sunday); 

 subtype Weekend_Days is Days range Saturday .. Sunday; 

 Day : Days := Saturday; 

 Weekend : Weekend_Days; 

begin 

 Weekend := Day; 

 --         ^ Correct: Same type, subtype constraints are respected 

 Weekend := Monday; 

 --         ^ Wrong value for the subtype 

 -- Compiles, but exception at runtime 

end Greet; 

" 

"We could also create type aliases, which generate alternative names — aliases — 
for known types. Note that type aliases are sometimes called type synonyms. 

We achieve this in Ada by using subtypes without new constraints. In this case, 
however, we don’t get all of the benefits of Ada’s strong type checking. Let’s rewrite an 
example using type aliases:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Undetected_Imperial_Metric_Error is 

 -- Declare two type aliases 

 subtype Meters is Float; 

 subtype Miles is Float; 

 Dist_Imperial : Miles; 

 -- Declare a constant 

 Dist_Metric : constant Meters := 100.0; 

begin 

 -- No conversion to Miles type required: 

 Dist_Imperial := (Dist_Metric * 1609.0) / 1000.0; 
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 -- Not correct, but undetected: 

 Dist_Imperial := Dist_Metric; 

 Put_Line (Miles'Image (Dist_Imperial)); 

end Undetected_Imperial_Metric_Error; 

" 

"In the example above, the fact that both Meters and Miles are subtypes of Float 
allows us to mix variables of both types without type conversion." 

"Subtypes in Ada correspond to type aliases if, and only if, they don’t have new 
constraints. Thus, if we add a new constraint to a subtype declaration, we don’t have a 
type alias anymore. For example, the following declaration can’t be considered a type 
alias of Float:" 

" 

subtype Meters is Float range 0.0 .. 1_000_000.0; 

" 

6.2.8 Subprograms, parameters and default values, modes 
 

"Procedures are one kind of subprogram. 

There are two kinds of subprograms in Ada, functions and procedures. The 
distinction between the two is that a function returns a value, and a procedure does 
not." 

"This example shows the definition of a function:" 

" 

-- We define the Increment function 

function Increment (I : Integer) return Integer is 

begin 

 return I + 1; 

end Increment; 

" 

"Subprograms in Ada can, of course, have parameters. One syntactically important 
note is that a subprogram which has no parameters does not have a parameter section 
at all, for example:" 

" 
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procedure Proc; 

function Func return Integer; 

" 

"In this example, we see that parameters can have default values. When calling the 
subprogram, you can then omit parameters if they have a default value. Unlike C/C++, a 
call to a subprogram without parameters does not include parentheses." 

" 

function Increment_By 

 (I : Integer := 0; 

 Incr : Integer := 1) return Integer is 

begin 

 return I + Incr; 

end Increment_By; 

" 

"We can then call our subprogram this way:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

with Increment_By; 

 

procedure Show_Increment is 

 A, B, C : Integer; 

begin 

 C := Increment_By; 

 --   ^ Parameterless call, value of I is 0 and Incr is 1 

 

 Put_Line ("Using defaults for Increment_By is " 

  & Integer'Image (C)); 

 

 A := 10; 

 B := 3; 

 C := Increment_By (A, B); 
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 --                                ^ Regular parameter passing 

 

 Put_Line ("Increment of " & Integer'Image (A) 

  & " with " & Integer'Image (B) 

  & " is " & Integer'Image (C)); 

 

 A := 20; 

 B := 5; 

 C := Increment_By (I => A, 

  Incr => B); 

 --          ^ Named parameter passing 

 

 Put_Line ("Increment of " & Integer'Image (A) 

  & " with " & Integer'Image (B) 

  & " is " & Integer'Image (C)); 

end Show_Increment; 

" 

"Ada allows you to name the parameters when you pass them, whether they have a 
default or not. 

There are some rules: 

 Positional parameters come first. 

 A positional parameter cannot follow a named parameter." 

"As briefly mentioned earlier, Ada allows you to declare one subprogram inside of 
another." 

"For the previous example, we can move the duplicated code (call to Put_Line) to a 
separate procedure. This is a shortened version with the nested Display_Result 
procedure." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

with Increment_By; 
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procedure Show_Increment is 

 A, B, C : Integer; 

 

 procedure Display_Result is 

 begin 

  Put_Line ("Increment of " & Integer'Image (A) 

   & " with " & Integer'Image (B) 

   & " is " & Integer'Image (C)); 

 end Display_Result; 

begin 

 A := 10; 

 B := 3; 

 C := Increment_By (A, B); 

 Display_Result; 

end Show_Increment; 

" 

"An important feature of function calls in Ada is that the return value at a call 
cannot be ignored; that is, a function call cannot be used as a statement. 

If you want to call a function and do not need its result, you will still need to 
explicitly store it in a local variable." 

" 

function Quadruple (I : Integer) return Integer is 

 function Double (I : Integer) return Integer is 

 begin 

  return I * 2; 

 end Double; 

 

 Res : Integer := Double (Double (I)); 

 --                                         ^ Calling the double function 

begin 

 Double (I); 
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 -- ERROR: cannot use call to function "Double" as a statement 

 

 return Res; 

end Quadruple; 

" 

"A subprogram parameter can be specified with a mode, which is one of the 
following: 

in -- Parameter can only be read, not written 

out -- Parameter can be written to, then read 

in out -- Parameter can be both read and written 

The default mode for parameters is in; so far, most of the examples have been using 
in parameters." 

"The first mode for parameters is the one we have been implicitly using so far. 
Parameters passed using this mode cannot be modified, so that the following program 
will cause an error:" 

" 

procedure Swap (A, B : Integer) is 

 Tmp : Integer; 

begin 

 Tmp := A; 

 

 -- Error: assignment to "in" mode parameter not allowed 

 A := B; 

 -- Error: assignment to "in" mode parameter not allowed 

 B := Tmp; 

end Swap; 

" 

"To correct our code above, we can use an ”in out” parameter." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

210 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

procedure In_Out_Params is 

 procedure Swap (A, B : in out Integer) is 

  Tmp : Integer; 

 begin 

  Tmp := A; 

  A := B; 

  B := Tmp; 

 end Swap; 

 

 A : Integer := 12; 

 B : Integer := 44; 

begin 

 Swap (A, B); 

 Put_Line (Integer'Image (A)); -- Prints 44 

end In_Out_Params; 

" 

"An in out parameter will allow read and write access to the object passed as 
parameter, so in the example above, we can see that A is modified after the call to 
Swap." 

"The ”out” mode applies when the subprogram needs to write to a parameter that 
might be uninitialized at the point of call. Reading the value of an out parameter is 
permitted, but it should only be done after the subprogram has assigned a value to the 
parameter. Out parameters behave a bit like return values for functions. When the 
subprogram returns, the actual parameter (a variable) will have the value of the out 
parameter at the point of return." 

"While reading an out variable before writing to it should, ideally, trigger an error, 
imposing that as a rule would cause either inefficient run-time checks or complex 
compile-time rules. So from the user’s perspective an out parameter acts like an 
uninitialized variable when the subprogram is invoked." 

"GNAT will detect simple cases of incorrect use of out parameters. For example, the 
compiler will emit a warning for the following program:" 

" 

procedure Outp is 
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 procedure Foo (A : out Integer) is 

  B : Integer := A; -- Warning on reference to uninitialized A 

 begin 

  A := B; 

 end Foo; 

begin 

 null; 

end Outp; 

" 

"A subprogram can be declared without being fully defined, This is possible in 
general, and can be useful if you need subprograms to be mutually recursive, as in the 
example below:" 

" 

procedure Mutually_Recursive_Subprograms is 

 procedure Compute_A (V : Natural); 

 -- Forward declaration of Compute_A 

 

 procedure Compute_B (V : Natural) is 

 begin 

  if V > 5 then 

   Compute_A (V - 1); 

   -- Call to Compute_A 

  end if; 

 end Compute_B; 

 

 procedure Compute_A (V : Natural) is 

 begin 

  if V > 2 then 

   Compute_B (V - 1); 

   -- Call to Compute_B 

  end if; 

212 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

 end Compute_A; 

begin 

 Compute_A (15); 

end Mutually_Recursive_Subprograms; 

" 

6.2.9 Subprogram renaming  
 

"Subprograms can be renamed by using the renames keyword and declaring a new 
name for a subprogram:" 

" 

procedure New_Proc renames Original_Proc; 

" 

"This can be useful, for example, to improve the readability of your application 
when you’re using code from external sources that cannot be changed in your system. 
Let’s look at an example:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed 
(A_Message : String) is 

begin 

 Put_Line (A_Message); 

end A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed; 

" 

"As the wording in the name of procedure above implies, we cannot change its 
name. We can, however, rename it to something like Show in our test application and 
use this shorter name. Note that we also have to declare all parameters of the original 
subprogram — we may rename them, too, in the declaration. For example:" 

" 

with A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed; 

 

procedure Show_Renaming is  
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 procedure Show (S : String) renames 
A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed; 

begin 

 Show ("Hello World!"); 

end Show_Renaming; 

" 

"Note that the original name 
(A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed) is still visible after 
the declaration of the Show procedure. We may also rename subprograms from the 
standard library. For example, we may rename Integer'Image to Img:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Show_Image_Renaming is 

 function Img (I : Integer) return String renames Integer'Image; 

begin 

 Put_Line (Img (2)); 

 Put_Line (Img (3)); 

end Show_Image_Renaming; 

" 

"Renaming also allows us to introduce default expressions that were not available in 
the original declaration. For example, we may specify "Hello World!" as the default for 
the String parameter of the Show procedure:" 

" 

with A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed; 

 

procedure Show_Renaming_Defaults is 

 procedure Show (S : String := "Hello World!") renames 
A_Procedure_With_Very_Long_Name_That_Cannot_Be_Changed; 

begin 

 Show; 

end Show_Renaming_Defaults; 
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" 

6.2.10  Records, aggregates 
 

"Records allow composing a value out of instances of other types. Each of those 
instances will be given a name. The pair consisting of a name and an instance of a 
specific type is called a field, or a component." 

"Fields look a lot like variable declarations, except that they are inside of a record 
definition. And as with variable declarations, you can specify additional constraints when 
supplying the subtype of the field." 

" 

type Date is record 

 Day : Integer range 1 .. 31; 

 Month : Months := January; 

 -- This component has a default value 

 Year : Integer range 1 .. 3000 := 2012; 

 --                                                       ^ Default value 

end record; 

" 

"Record components can have default values. When a variable having the record 
type is declared, a field with a default initialization will be automatically set to this value. 
The value can be any expression of the component type, and may be run-time 
computable." 

"Records have a convenient notation for expressing values. This notation is called 
aggregate notation, and the literals are called aggregates. They can be used in a variety 
of contexts that we will see throughout the course, one of which is to initialize records. 
An aggregate is a list of values separated by commas and enclosed in parentheses. It is 
allowed in any context where a value of the record is expected." 

" 

Ada_Birthday : Date := (10, December, 1815); 

Leap_Day_2020 : Date := (Day => 29, Month => February, Year => 2020); 

--                                             ^ By name 

" 
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"To access components of a record instance, you use an operation that is called 
component selection. This is achieved by using the dot notation. For example, if we 
declare a variable Some_Day of the Date record type mentioned above, we can access 
the Year component by writing "Some_Day.Year". Let’s look at an example:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Record_Selection is 

 type Months is 

  (January, February, March, April, May, June, July, 

  August, September, October, November, December); 

 type Date is record 

  Day : Integer range 1 .. 31; 

  Month : Months; 

  Year : Integer range 1 .. 3000 := 2032; 

 end record; 

 

 procedure Display_Date (D : Date) is 

 begin 

  Put_Line ("Day:" & Integer'Image (D.Day) 

   & ", Month: " & Months'Image (D.Month) 

   & ", Year:" & Integer'Image (D.Year)); 

 end Display_Date; 

 

 Some_Day : Date := (1, January, 2000); 

begin 

 Display_Date (Some_Day); 

 

 Put_Line ("Changing year..."); 

 Some_Day.Year := 2001; 
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 Display_Date (Some_Day); 

end Record_Selection; 

" 

"When we use D.Year in the call to Put_Line, we’re retrieving the information stored 
in that component. When we write Some_Day.Year := 2001, we’re overwriting the 
information that was previously stored in the Year component of Some_Day." 

"We can rename record components as well. Instead of writing the full component 
selection using the dot notation, we can declare an alias that allows us to access the 
same component. We can rename record components by using the renames keyword in 
a variable declaration. For example:" 

" 

Some_Day : Date 

Y : Integer renames Some_Day.Year; 

" 

"Here, Y is an alias, so that every time we using Y, we are really using the Year 
component of Some_Day." 

6.2.11  Arrays: indexing, size/range, the <> wildcard 
 

"Arrays in Ada are used to define contiguous collections of elements that can be 
selected by indexing. Here’s a simple example:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Greet is 

 type My_Int is range 0 .. 1000; 

 type Index is range 1 .. 5; 

 type My_Int_Array is array (Index) of My_Int; 

 --                                                                 ^ Type of elements 

 --                                                ^ Bounds of the array 

 

 Arr : My_Int_Array := (2, 3, 5, 7, 11); 

 --                                     ^ Array literal, called aggregate in Ada 
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begin 

 for I in Index loop 

  Put (My_Int'Image (Arr (I))); 

  --                                         ^ Take the Ith element 

 end loop; 

 New_Line; 

end Greet; 

" 

"The first point to note is that we specify the index type for the array, rather than its 
size. Here we declared an integer type named Index ranging from 1 to 5, so each array 
instance will have 5 elements, with the initial element at index 1 and the last element at 
index 5. Although this example used an integer type for the index, Ada is more general: 
any discrete type is permitted to index an array, including Enum types." 

"Another point to note is that querying an element of the array at a given index uses 
the same syntax as for function calls: that is, the array object followed by the index in 
parentheses. Thus when you see an expression such as A (B), whether it is a function call 
or an array subscript depends on what A refers to. Notice how we initialize the array 
with the (2, 3, 5, 7, 11) expression. This is another kind of aggregate in Ada, and is in a 
sense a literal expression for an array, in the same way that 3 is a literal expression for 
an integer." 

"New_Line outputs an end of line." 

"Semantically, an array object in Ada is the entire data structure, and not simply a 
handle or pointer. Unlike C and C++, there is no implicit equivalence between an array 
and a pointer to its initial element." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Array_Bounds_Example is 

 type My_Int is range 0 .. 1000; 

 type Index is range 11 .. 15; 

 --                                 ^ Low bound can be any value 

 type My_Int_Array is array (Index) of My_Int; 

 Tab : My_Int_Array := (2, 3, 5, 7, 11); 

begin 
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 for I in Index loop 

  Put (My_Int'Image (Tab (I))); 

 end loop; 

 New_Line; 

end Array_Bounds_Example; 

" 

"The bounds of an array can be any values. In the first example we constructed an 
array type whose first index is 1, but in the example above we declare an array type 
whose first index is 11. That’s perfectly fine in Ada, and moreover since we use the index 
type as a range to iterate over the array indices, the code using the array does not need 
to change." 

"Since you can use any discrete type to index an array, enumeration types are 
permitted." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Month_Example is 

 type Month_Duration is range 1 .. 31; 

 type Month is (Jan, Feb, Mar, Apr, May, Jun, 

  Jul, Aug, Sep, Oct, Nov, Dec); 

 type My_Int_Array is array (Month) of Month_Duration; 

 --                                                ^ Can use an enumeration type as the index 

 

 Tab : constant My_Int_Array := (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31); 

 --       ^ constant is like a variable but cannot be modified 

 -- Maps months to number of days (ignoring leap years) 

 

 Feb_Days : Month_Duration := Tab (Feb); 

 -- Number of days in February 

begin 

 for M in Month loop 

  Put_Line(Month'Image (M) & " has " 
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   & Month_Duration'Image (Tab (M)) 

 end loop; 

end Month_Example;  

" 

"In the example above, we are: 

 Creating an array type mapping months to month durations in days. 

 Creating an array, and instantiating it with an aggregate mapping months to their 
actual durations in days. 

 Iterating over the array, printing out the months, and the number of days for each." 

"As is true in general in Ada, the indexing operation is strongly typed. If you use a 
value of the wrong type to index the array, you will get a compile-time error." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Greet is 

 type My_Int is range 0 .. 1000; 

 type My_Index is range 1 .. 5; 

 type Your_Index is range 1 .. 5; 

 

 type My_Int_Array is array (My_Index) of My_Int; 

 Tab : My_Int_Array := (2, 3, 5, 7, 11); 

begin 

 for I in Your_Index loop 

  Put (My_Int'Image (Tab (I))); 

  --                      ^ Compile time error 

 end loop; 

 New_Line; 

end Greet; 

" 
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"Arrays in Ada are bounds checked. This means that if you try to access an element 
outside of the bounds of the array, you will get a run-time error instead of accessing 
random memory as in unsafe languages." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Greet is 

 type My_Int is range 0 .. 1000; 

 type Index is range 1 .. 5; 

 

 type My_Int_Array is array (Index) of My_Int; 

 Tab : My_Int_Array := (2, 3, 5, 7, 11); 

begin 

 for I in Index range 2 .. 6 loop 

  Put (My_Int'Image (Tab (I))); 

  --                      ^ Will raise an exception when I = 6 

 end loop; 

 New_Line; 

end Greet; 

" 

When the index type of the array isn't known, it is possible to use "'Range": 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Range_Example is 

 type My_Int is range 0 .. 1000; 

 type My_Int_Array is array (1 .. 5) of My_Int; 

 Tab : My_Int_Array := (2, 3, 5, 7, 11); 

begin 

 for I in Tab'Range loop 

 --                ^ Gets the range of Tab 

221 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

  Put (My_Int'Image (Tab (I))); 

 end loop; 

 New_Line; 

end Range_Example;  

" 

Or "'First" and "'Last" using the ".." notation: 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Array_Attributes_Example is 

 type My_Int is range 0 .. 1000; 

 type My_Int_Array is array (1 .. 5) of My_Int; 

 Tab : My_Int_Array := (2, 3, 5, 7, 11); 

begin 

 for I in Tab'First .. Tab'Last - 1 loop 

 --                        ^ Iterate on every index except the last 

  Put (My_Int'Image (Tab (I))); 

 end loop; 

 New_Line; 

end Array_Attributes_Example; 

" 

"The 'Range, 'First and 'Last attributes in these examples could also have been 
applied to the array type name, and not just the array instances. 

Although not illustrated in the above examples, another useful attribute for an array 
instance A is A'Length, which is the number of elements that A contains." 

"Ada also allows you to declare array types whose bounds are not fixed: in that case, 
the bounds will need to be provided when creating instances of the type." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Unconstrained_Array_Example is 
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 type Days is (Monday, Tuesday, Wednesday, 

  Thursday, Friday, Saturday, Sunday); 

 type Workload_Type is array (Days range <>) of Natural; 

 -- Indefinite array type 

 --                                                    ^ Bounds are of type Days, but not known 

 

 Workload : constant Workload_Type (Monday .. Friday) := (Friday => 7, others => 
8); 

 --                                                                  ^ Specify the bounds when declaring 

 --                                                                                                                              ^ Default 
value 

 --                                                                                                          ^ Specify element by 
name of index 

begin 

 for I in Workload'Range loop 

  Put_Line (Integer'Image (Workload (I))); 

 end loop; 

end Unconstrained_Array_Example; 

" 

"The fact that the bounds of the array are not known is indicated by the Days range 
<> syntax. Given a discrete type Discrete_Type, if we use Discrete_Type for the index in 
an array type then Discrete_Type serves as the type of the index and comprises the 
range of index values for each array instance. If we define the index as Discrete_Type 
range <> then Discrete_Type serves as the type of the index, but different array 
instances may have different bounds from this type. An array type that is defined with 
the Discrete_Type range <> syntax for its index is referred to as an unconstrained array 
type, and, as illustrated above, the bounds need to be provided when an instance is 
created. 

The above example also shows other forms of the aggregate syntax. You can specify 
associations by name, by giving the value of the index on the left side of an arrow 
association. 1 => 2 thus means ”assign value 2 to the element at index 1 in my array”. 
others => 8 means ”assign value 8 to every element that wasn’t previously assigned in 
this aggregate”." 

"The so-called ”box” notation (<>) is commonly used as a wildcard or placeholder in 
Ada. You will often see it when the meaning is ”what is expected here can be anything”." 
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"While unconstrained arrays in Ada might seem similar to variable length arrays in C, 
they are in reality much more powerful, because they’re truly first-class values in the 
language. You can pass them as parameters to subprograms or return them from 
functions, and they implicitly contain their bounds as part of their value. This means that 
it is useless to pass the bounds or length of an array explictly along with the array, 
because they are accessible via the ’First, ’Last, ’Range and ’Length attributes explained 
earlier. 

Although different instances of the same unconstrained array type can have 
different bounds, a specific instance has the same bounds throughout its lifetime." 

"The String type in Ada is a simple array. Here is how the string type is defined in 
Ada:" 

" 

type String is array (Positive range <>) of Character; 

" 

"The only built-in feature Ada adds to make strings more ergonomic is custom 
literals, as we can see in the example below. 

String literals are a syntactic sugar for aggregates, so that in the following example, 
A and B have the same value." 

" 

package String_Literals is 

 -- These two declarations are equivalent 

 A : String (1 .. 11) := "Hello World"; 

 B : String (1 .. 11) := ('H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd'); 

end String_Literals; 

" 

"You can omit the bounds when creating an instance of an unconstrained array type 
if you supply an initialization, since the bounds can be deduced from the initialization 
expression." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Greet is 

 Message : constant String := "dlroW olleH"; 

 --                       ^ Bounds are automatically computed from initialization value 
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begin 

 for I in reverse Message'Range loop 

  Put (Message (I)); 

 end loop; 

 New_Line; 

end Greet; 

" 

"A String value is stack allocated, it is accessed efficiently, and its bounds are 
immutable." 

"A very important point about arrays: bounds have to be known when instances are 
created. It is for example illegal to do the following." 

" 

declare 

 A : String; 

begin 

 A := "World"; 

end; 

" 

"Also, while you of course can change the values of elements in an array, you cannot 
change the array’s bounds (and therefore its size) after it has been initialized. So this is 
also illegal:" 

" 

declare 

 A : String := "Hello"; 

begin 

 A := "World"; -- OK: Same size 

 A := "Hello World"; -- Not OK: Different size 

end; 

" 

"Also, while you can expect a warning for this kind of error in very simple cases like 
this one, it is impossible for a compiler to know in the general case if you are assigning a 
value of the correct length, so this violation will generally result in a run-time error." 
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"It is important to know that arrays are not the only types whose instances might be 
of unknown size at compile-time.  

Such objects are said to be of an indefinite subtype, which means that the subtype 
size is not known at compile time, but is dynamically computed (at run time)." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Indefinite_Subtypes is 

 function Get_Number return Integer is 

 begin 

  return Integer'Value (Get_Line); 

 end Get_Number; 

 

 A : String := "Hello"; 

 -- Indefinite subtype 

 

 B : String (1 .. 5) := "Hello"; 

 -- Definite subtype 

 

 C : String (1 .. Get_Number); 

 -- Indefinite subtype (Get_Number's value is computed at run-time) 

begin 

 null; 

end Indefinite_Subtypes; 

" 

"The return type of a function can be any type; a function can return a value whose 
size is unknown at compile time. Likewise, the parameters can be of any type. For 
example, this is a function that returns an unconstrained String:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 
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procedure Main is 

 type Days is (Monday, Tuesday, Wednesday, 

  Thursday, Friday, Saturday, Sunday); 

 

 function Get_Day_Name (Day : Days := Monday) return String is 

 begin 

  return 

   (case Day is 

    when Monday => "Monday", 

    when Tuesday => "Tuesday", 

    when Wednesday => "Wednesday", 

    when Thursday => "Thursday", 

    when Friday => "Friday", 

    when Saturday => "Saturday", 

    when Sunday => "Sunday"); 

 end Get_Day_Name; 

begin 

 Put_Line ("First day is " & Get_Day_Name (Days'First)); 

end Main; 

" 

"While we can have array types whose size and bounds are determined at run time, 
the array’s component type needs to be of a definite and constrained type. 

Thus, if you need to declare, for example, an array of Strings, the String subtype 
used as component will need to have a fixed size." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Show_Days is 

 type Days is (Monday, Tuesday, Wednesday, 

  Thursday, Friday, Saturday, Sunday); 
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 subtype Day_Name is String (1 .. 2); 

 -- Subtype of string with known size 

 

 type Days_Name_Type is array (Days) of Day_Name; 

 --                                                        ^ Type of the index 

 --                                                                       ^ Type of the element. Must be definite 

 

 Names : constant Days_Name_Type := ("Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"); 

 -- Initial value given by aggregate 

begin 

 for I in Names'Range loop 

  Put_Line (Names (I)); 

 end loop; 

end Show_Days; 

" 

"It is possible to take and use a slice of an array (a contiguous sequence of elements) 
as a name or a value." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure Main is 

 Buf : String := "Hello ..."; 

 Full_Name : String := "John Smith"; 

begin 

 Buf (7 .. 9) := "Bob"; 

 -- Careful! This works because the string on the right side is the 

 -- same length as the replaced slice! 

 Put_Line (Buf); 

 -- Prints "Hello Bob" 

 Put_Line ("Hi " & Full_Name (1 .. 4)); -- Prints "Hi John" 

end Main; 
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" 

"As we can see above, you can use a slice on the left side of an assignment, to 
replace only part of an array. 

A slice of an array is of the same type as the array, but has a different subtype, 
constrained by the bounds of the slice." 

"Slices will only work on one dimensional arrays." 

"An Ada aggregate is, in effect, a literal value for a composite type. It’s a very 
powerful notation that helps you to avoid writing procedural code for the initialization 
of your data structures in many cases. A basic rule when writing aggregates is that every 
component of the array or record has to be specified, even components that have a 
default value." 

"There are a few shortcuts that you can use to make the notation more convenient: 

 To specify the default value for a component, you can use the <> notation. 

 You can use the | symbol to give several components the same value. 

 You can use the others choice to refer to every component that has not yet been 
specified, provided all those fields have the same type. 

 You can use the range notation .. to refer to specify a contiguous sequence of 
indices in an array. 

However, note that as soon as you used a named association, all subsequent 
components likewise need to be specified with names associations." 

" 

package Points is 

 type Point is record 

  X, Y : Integer := 0; 

 end record; 

 

 type Point_Array is array (Positive range <>) of Point; 

 

 Origin : Point := (X | Y => <>); -- use the default values 

 Origin_2 : Point := (others => <>); -- likewise use the defaults 

  

 Points_1 : Point_Array := ((1, 2), (3, 4)); 

 Points_2 : Point_Array := (1 => (1, 2), 2 => (3, 4), 3 .. 20 => <>); 
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end Points; 

" 

6.2.12  Overloading 
 

"It is possible in Ada to have functions that have the same name, but different types 
for their parameters." 

"This is a common concept in programming languages, called overloading , or name 
overloading. One of the novel aspects of Ada’s overloading facility is the ability to 
resolve overloading based on the return type of a function." 

"However, sometimes an ambiguity makes it impossible to resolve which 
declaration of an overloaded name a given occurrence of the name refers to. This is 
where a qualified expression becomes useful." 

" 

package Pkg is 

 type SSID is new Integer; 

 

 function Convert (Self : SSID) return Integer; 

 function Convert (Self : SSID) return String; 

 function Convert (Self : Integer) return String; 

end Pkg; 

" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

with Pkg; use Pkg; 

 

procedure Main is 

 S : String := Convert (123_145_299); 

 --                     ^ Invalid, which convert should we call? 

 S2 : String := Convert (SSID'(123_145_299)); 

 --                                      ^ We specify that the type of the expression is SSID. 

 -- We could also have declared a temporary 

 I : SSID := 123_145_299; 
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 S3 : String := Convert (I); 

begin 

 Put_Line (S); 

end Main;  

" 

6.2.13  Access types, discriminants 
 

"Here is how you declare a simple pointer type, or access type, in Ada:" 

" 

package Dates is 

 type Months is (January, February, March, April, May, June, July, 

  August, September, October, November, December); 

 

 type Date is record 

  Day : Integer range 1 .. 31; 

  Month : Months; 

  Year : Integer; 

 end record; 

end Dates; 

" 

" 

with Dates; use Dates; 

 

package Access_Types is 

 -- Declare an access type 

 type Date_Acc is access Date; 

 --                                         ^ "Designated type" 

 --                                         ^ Date_Acc values point to Date objects 

 

 D : Date_Acc := null; 
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 --                          ^ Literal for "access to nothing" 

 --  ^ Access to date 

end Access_Types; 

" 

"In line with Ada’s strong typing philosophy, if you declare a second access type 
whose designated type is Date, the two access types will be incompatible with each 
other, and you will need an explicit type conversion to convert from one to the other:" 

" 

with Dates; use Dates; 

 

package Access_Types is 

 -- Declare an access type 

 type Date_Acc is access Date; 

 type Date_Acc_2 is access Date; 

 

 D : Date_Acc := null; 

 D2 : Date_Acc_2 := D; 

 --                 ^ Invalid! Different types 

 D3 : Date_Acc_2 := Date_Acc_2 (D); 

 --                 ^ Valid with type conversion 

end Access_Types; 

" 

"Once we have declared an access type, we need a way to give variables of the 
types a meaningful value! You can allocate a value of an access type with the new 
keyword in Ada." 

" 

with Dates; use Dates; 

 

package Access_Types is 

 type Date_Acc is access Date; 
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 D : Date_Acc := new Date; 

 --                          ^ Allocate a new Date record 

end Access_Types; 

" 

"If the type you want to allocate needs constraints, you can put them in the subtype 
indication, just as you would do in a variable declaration:" 

" 

with Dates; use Dates; 

 

package Access_Types is 

 type String_Acc is access String; 

 --                 ^ Access to unconstrained array type 

 

 Msg : String_Acc; 

 --    ^ Default value is null 

 

 Buffer : String_Acc := new String (1 .. 10); 

 --                                                          ^ Constraint required 

end Access_Types; 

" 

"Ada also allows you to initialize along with the allocation. This is done via the 
qualified expression syntax:" 

" 

with Dates; use Dates; 

 

package Access_Types is 

 type Date_Acc is access Date; 

 type String_Acc is access String; 

 

 D : Date_Acc := new Date'(30, November, 2011); 

 Msg : String_Acc := new String'("Hello"); 
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end Access_Types; 

" 

"Dereferencing a pointer uses the .all syntax in Ada, but is often not needed - in 
many cases, the access value will be implicitly dereferenced for you:" 

" 

with Dates; use Dates; 

 

package Access_Types is 

 type Date_Acc is access Date; 

 

 D : Date_Acc := new Date'(30, November, 2011); 

 Today : Date := D.all; 

 --                         ^ Access value dereference 

 J : Integer := D.Day; 

 --                     ^ Implicit dereference for record and array components 

 -- Equivalent to D.all.day 

end Access_Types; 

" 

"As you might know if you have used pointers in C or C++, we are still missing 
features that are considered fundamental to the use of pointers, such as: 

 Pointer arithmetic (being able to increment or decrement a pointer in order to 
point to the next or previous object) 

 Manual deallocation - what is called free or delete in C. This is a potentially unsafe 
operation. To keep within the realm of safe Ada, you need to never deallocate manually. 

Those features exist in Ada, but are only available through specific standard library 
APIs. 

The guideline in Ada is that most of the time you can avoid manual allocation, and 
you should." 

"Discriminants can be used to obtain the functionality of what are sometimes called 
”variant records”: records that can contain different sets of fields." 

" 

package Variant_Record is 
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 type Expr; -- Forward declaration of Expr 

 type Expr_Access is access Expr; -- Access to a Expr 

 type Expr_Kind_Type is (Bin_Op_Plus, Bin_Op_Minus, Num); 

 -- A regular enumeration type 

 type Expr (Kind : Expr_Kind_Type) is record 

 --                 ^ The discriminant is an enumeration value 

  case Kind is 

   when Bin_Op_Plus | Bin_Op_Minus => 

    Left, Right : Expr_Access; 

   when Num => 

    Val : Integer; 

  end case; 

 -- Variant part. Only one, at the end of the record 

 -- definition, but can be nested 

 end record; 

end Variant_Record; 

" 

"The fields that are in a when branch will be only available when the value of the 
discriminant is covered by the branch. In the example above, you will only be able to 
access the fields Left and Right when the Kind is Bin_Op_Plus or Bin_Op_Minus. If you 
try to access a field that is not valid for your record, a Constraint_Error will be raised." 

" 

with Variant_Record; use Variant_Record; 

 

procedure Main is 

 E : Expr := (Num, 12); 

begin 

 E.Left := new Expr'(Num, 15); 

 -- Will compile but fail at runtime 

end Main; 

" 
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6.2.14  Encapsulation and visibility, generics 
 

"One of the main principles of modular programming, as well as object oriented 
programming, is encapsulation. 

Encapsulation, briefly, is the concept that the implementer of a piece of software 
will distinguish between the code’s public interface and its private implementation. This 
is not only applicable to software libraries but wherever abstraction is used. 

In Ada, the granularity of encapsulation is a bit different from most object-oriented 
languages, because privacy is generally specified at the package level." 

" 

package Encapsulate is 

 procedure Hello; 

private 

 procedure Hello2; 

 -- Not visible from external units 

end Encapsulate; 

" 

" 

with Encapsulate; 

 

procedure Main is 

begin 

 Encapsulate.Hello; 

 Encapsulate.Hello2; 

 -- Invalid: Hello2 is not visible 

end Main; 

" 

"Ada’s limited type facility allows you to declare a type for which assignment and 
comparison operations are not automatically provided." 

" 

package Stacks is 

 type Stack is limited private; 
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 -- Limited type. Cannot assign nor compare. 

 

 procedure Push (S : in out Stack; Val : Integer); 

 procedure Pop (S : in out Stack; Val : out Integer); 

private 

 subtype Stack_Index is Natural range 1 .. 10; 

 type Content_Type is array (Stack_Index) of Natural; 

 

 type Stack is limited record 

  Top : Stack_Index; 

  Content : Content_Type; 

 end record; 

end Stacks; 

" 

" 

with Stacks; use Stacks; 

 

procedure Main is 

 S, S2 : Stack; 

begin 

 S := S2; 

 -- Illegal: S is limited. 

end Main; 

" 

"Generics are used for metaprogramming in Ada. They are useful for abstract 
algorithms that share common properties with each other. 

Either a subprogram or a package can be generic. A generic is declared by using the 
keyword "generic"." 

"Formal types are abstractions of a specific type. For example, we may want to 
create an algorithm that works on any integer type, or even on any type at all, whether a 
numeric type or not. The following example declares a formal type T for the Set 
procedure." 
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" 

generic 

 type T is private; 

 -- T is a formal type that indicates that any type can be used, 

 -- possibly a numeric type or possibly even a record type. 

procedure Set (Dummy : T); 

" 

" 

procedure Set (Dummy : T) is 

begin 

 null; 

end Set; 

" 

"The declaration of T as private indicates that you can map any type to it. But you 
can also restrict the declaration to allow only some types to be mapped to that formal 
type. Here are some examples:" 

" 

type T is private; -- Any type 

type T is (<>); -- Any discrete type 

type T is digits <>; -- Any floating-point type 

" 

"We don’t repeat the generic keyword for the body declaration of a generic 
subprogram or package. Instead, we start with the actual declaration and use the 
generic types and objects we declared. For example:" 

" 

generic 

 type T is private; 

 X : in out T; 

procedure Set (E : T); 

" 

" 
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procedure Set (E : T) is 

 -- Body definition: "generic" keyword is not used 

begin 

 X := E; 

end Set; 

" 

"Generic subprograms or packages can’t be used directly. Instead, they need to be 
instantiated, which we do using the new keyword, as shown in the following example:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

with Set; 

 

procedure Show_Generic_Instantiation is 

 Main : Integer := 0; 

 Current : Integer; 

 

 procedure Set_Main is new Set (T => Integer, X => Main); 

 -- Here, we map the formal parameters to actual types and objects. 

 -- 

 -- The same approach can be used to instantiate functions or 

 -- packages, e.g.: 

 -- function Get_Main is new ... 

 -- package Integer_Queue is new ... 

begin 

 Current := 10; 

 Set_Main (Current); 

 Put_Line ("Value of Main is " & Integer'Image (Main)); 

end Show_Generic_Instantiation; 

" 
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6.2.15  Exceptions 
 

"Ada uses exceptions for error handling. Unlike many other languages, Ada speaks 
about raising, not throwing, an exception and handling, not catching, an exception." 

"Ada exceptions are not types, but instead objects." 

"Here’s how you declare an exception:" 

" 

package Exceptions is 

 My_Except : exception; 

 -- Like an object. *NOT* a type ! 

end Exceptions; 

" 

"Ada does not require that a subprogram declare every exception it can potentially 
raise." 

" 

with Exceptions; use Exceptions; 

 

procedure Main is 

begin 

 raise My_Except; 

 -- Execution of current control flow abandoned; an exception of kind 

 -- "My_Except" will bubble up until it is caught. 

 

 raise My_Except with "My exception message"; 

 -- Execution of current control flow abandoned; an exception of 

 -- kind "My_Except" with associated string will bubble up until it is caught. 

end Main; 

" 

"The neat thing in Ada is that you can add an exception handler to any statement 
block as follows:" 

" 
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with Ada.Text_IO; use Ada.Text_IO; 

with Ada.Exceptions; use Ada.Exceptions; 

 

procedure Open_File is 

 File : File_Type; 

begin 

 -- Block (sequence of statements) 

 begin 

  Open (File, In_File, "input.txt"); 

 exception 

  when E : Name_Error => 

  --       ^ Exception to be handled 

   Put ("Cannot open input file : "); 

   Put_Line (Exception_Message (E)); 

   raise; 

   -- Reraise current occurence 

 end; 

end Open_File; 

" 

"In the example above, we’re using the Exception_Message function from the 
Ada.Exceptions package. This function returns the message associated with the 
exception as a string. 

You don’t need to introduce a block just to handle an exception: you can add it to 
the statements block of your current subprogram:" 

" 

with Ada.Text_IO; use Ada.Text_IO; 

with Ada.Exceptions; use Ada.Exceptions; 

 

procedure Open_File is 

 File : File_Type; 

begin 
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 Open (File, In_File, "input.txt"); 

 -- Exception block can be added to any block 

exception 

 when Name_Error => 

  Put ("Cannot open input file"); 

end Open_File; 

" 

"Exception handlers have an important restriction that you need to be careful 
about: 

Exceptions raised in the declarative section are not caught by the handlers of that 
block. So for example, in the following code, the exception will not be caught." 

" 

with Ada.Text_IO; use Ada.Text_IO; 

with Ada.Exceptions; use Ada.Exceptions; 

 

procedure Be_Careful is 

 function Dangerous return Integer is 

 begin 

  raise Constraint_Error; 

  return 42; 

 end Dangerous; 

begin 

 declare 

  A : Integer := Dangerous; 

 begin 

  Put_Line (Integer'Image (A)); 

 exception 

  when Constraint_Error => Put_Line ("error!"); 

 end; 

end Be_Careful; 

" 
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"Ada has a very small number of predefined exceptions: 

 Constraint_Error is the main one you might see. It’s raised: 

– When bounds don’t match or, in general, any violation of constraints. 

– In case of overflow 

– In case of null dereferences 

– In case of division by 0 

 Program_Error might appear, but probably less often. It’s raised in more arcane 
situations, such as for order of elaboration issues and some cases of detectable 
erroneous execution. 

 Storage_Error will happen because of memory issues, such as: 

– Not enough memory (allocator) 

– Not enough stack 

 Tasking_Error will happen with task related errors, such as any error happening 
during task activation." [22]  

 

6.2.16  Topics not covered 
 

Tasking (for concurrent programming) and protected objects/types are not covered 
in this document, among other features of Ada. These include: packages, contracts and 
object oriented programming. The standard library is also not covered here. It should be 
noted that it is possible to use C functions and variables in Ada and vice versa. 
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7. Παράρτημα B (Appendix B: Other optimizations) 

This appendix contains explanations of some other important optimizations. 

7.1 Strength Reduction 
"Strength reduction replaces expensive operations, such as multiplications and 

divisions, by less expensive ones, such as additions and subtractions. It 
is a special case of the method of finite differences applied to 
computer programs." [26] 

"The best well known method, finite differences, consists of replacing each 
derivative by a difference quotient in the classic formulation." [67] 

"For example, the sequence 

0 , 3, 6, 9, 12, ... 

has first differences (i.e., differences between successive elements) that consist 
of all 3s. Thus, it can be written as s_i = 3 * i for i = 0, 1, 2, ... or as 
s_(i+1) = s_i + 3 with s_0 = 0. 

The second form is the strength-reduced version—instead of doing 
multiplications, we do additions. Similarly, the sequence 

0 , 1, 4, 9, 16, 25, ... 

has first differences 

1 , 3, 5, 7, 9, ... 

and second differences that consist of all 2s. It can be written as s_i = i^2 for i = 
0, 1, 2, 3, ..., or as s_(i+1) = s_i + 2 * i + 1 for s_0 = 0, or as s_(i+1) = s_i + 
t_i where t_(i+1) = t_i + 2, s_0 = 0, and t_0 = 1. Here, after two finite 
differencing operations, we have reduced computing a sequence of 
squares to two additions for each square. 

Strength reduction is not limited to replacing multiplication by additions and 
replacing addition by increment operations. Allen and Cocke ( [68]) 
discuss a series of applications for it, such as replacing exponentiation 
by multiplications, division and modulo by subtractions, and 
continuous differentiable functions by quadratic 

interpolations." [26] 

A few examples: 

input: 

" 
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a * 4; 

a * 7; 

a / 32767; 

" [19] 

output: 

" 

a << 2; 

(a << 3) – a; 

(a >> 15) + (a >> 30); 

" [23] 

7.2 Constant Propagation 
"Constant propagation is a transformation that, given an assignment x = c for a 

variable x and a constant c, replaces later uses of x with uses of c as 
long as intervening assignments have not changed the value of x." [26] 

"More generally, constant propagation reduces the number of registers needed 
by a procedure and increases the effectiveness of several other 
optimizations, such as constant-expression evaluation, induction-
variable optimizations, and dependence-analysis-based 
transformations." [26] 

Example: 

input: 

" 

int x = 5; 

int y = x * 2; 

" [23] 

output: 

" 

int y = 5 * 2; 

" [23] 

"To be most effective, constant propagation can be interleaved with constant 
folding. For safety, it requires a data-flow analysis." [23] 
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7.3 Copy Propagation 
The equivalent of constant propagation for variables.  

"Copy propagation is a transformation that, given an assignment x = y for some 
variables x and y, replaces later uses of x with uses of y, as long as 
intervening instructions have not changed the value of either x or y." 
[26]  

This interacts with the scoping rules of the language. [23] 

Example: 

input: 

" 

x = y; 

if (x > 1) { 

 x = x * f(x – 1); 

} 

" [23] 

output: 

" 

x = y; 

if (y > 1) { 

 x = y * f(y – 1); 

} 

" [23] 

"One advantage of copy propagation is that it often turns the copy statement 
into dead code." [7] 

7.4 Dead Code Elimination 
"A variable is dead if it is not used on any path from the location in the code 

where it is defined to the exit point of the routine in question. An 
instruction is dead if it computes only values that are not used on any 
executable path leading from the instruction. If a dead variable’s value 
is assigned to a local variable, the variable and the instruction that 
assigns to it are dead if the variable is not used on any executable path 
to the procedure’s exit (including its being returned as the value of the 
procedure). If it is assigned to a variable with wider visibility, it 
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generally requires interprocedural analysis to determine whether it is 
dead, unless there is another instruction that assigns to the same 
variable on every executable path from its point of computation. 

Programs may include dead code before optimization, but such code is much 
more likely to arise from optimization; strength reduction is an 
example of an optimization that produces dead code, and there are 
many others. Many optimizations create dead code as part of a division 
of labor principle: keep each optimization phase as simple as possible 
so as make it easy to implement and maintain, leaving it to other 
phases to clean up after it." [26] 

Example: 

input: 

" 

x = y * y; // x is dead! 

... // x never used 

x = z * z; 

" [23] 

output: 

" 

... 

x = z * z; 

" [23] 

It is only applicable if the code in question is pure (i.e. it has no externally visible 
side effects (such as raising an exception, modifying a global variable or 
going into an infinite loop.)) [23] 

7.5 Unreachable Code Elimination 
"Unreachable code is code that cannot possibly be executed, regardless of the 

input data. It may never have been executable for any input data to 
begin with, or it may have achieved that status as a result of other 
optimizations. Its elimination has no direct effect on the execution 
speed of a program but obviously decreases the space the program 
occupies, and so may have secondary effects on its speed, particularly 
by improving its instruction-cache utilization. 

Note that elimination of unreachable code is one of two transformations that 
are occasionally confused with each other. The other is dead-code 
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elimination, which removes code that is executable but that has no 
effect on the result of the computation being performed." [26] 

7.6 Function Inlining 
"Procedure integration, also called automatic inlining, replaces calls to 

procedures with copies of their bodies. It can be a very useful 
optimization, because it changes calls from opaque objects that may 
have unknown effects on aliased variables and parameters to local 
code that not only exposes its effects but that can be optimized as part 
of the calling procedure. 

Some languages provide the programmer with a degree of control over inlining. 
C++, for example, provides an explicit inline attribute that may be 
specified for a procedure. Ada provides a similar facility. Both are 
characteristics of the procedure, not of the call site. While this is a 
desirable option to provide, it is significantly less powerful and 
discriminating than automatic procedure integration can be. An 
automatic procedure integrator can differentiate among call sites and 
can select the procedures to integrate according to machine-specific 
and performance-related criteria, rather than by depending on the 
user’s intuition. 

The opportunity to optimize inlined procedure bodies can be especially valuable 
if it enables loop transformations that were originally inhibited by 
having procedure calls embedded in loops or if it turns a loop that calls 
a procedure, whose body is itself a loop, into a nested loop." [26] 

"If procedures are invoked indirectly through a pointer or via the method-
dispatch mechanism prevalent in object-oriented programming, 
analysis of the program's pointers or references can in some cases 
determine the targets of the indirect invocations. If there is a unique 
target, inlining can be applied." [7] 

Inlining is best done at the AST or relatively high-level IR. [23] 

Example: 

input: 

" 

int add (int x, int y) 

{ 

  return x + y; 

} 
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int sub (int x, int y) 

{ 

  return add (x, -y); 

} 

" [27] 

output: 

" 

int sub (int x, int y) 

{ 

  return x + -y; 

} 

" [27] 

"Code inlining might increase the code size." [23] 

7.7 Tail Call Elimination 
"Tail-call optimization and its special case, tail-recursion elimination, are 

transformations that apply to calls. They often reduce or eliminate a 
significant amount of procedure-call overhead and, in the case of tail-
recursion elimination, enable loop optimizations that would otherwise 
not apply. 

A call from procedure f() to procedure g() is a tail call if the only thing f() does, 
after g() returns to it, is itself return. The call is tail-recursive if f() and 
g() are the same procedure." [26] 

"Combined with inlining, a recursive function can become as cheap as a while 
loop." [23] 

"A tail-recursive call can be replaced with a goto, which avoids the overhead of 
the call and return and can also reduce stack space usage." [27] 

Example: 

input: 

" 

int f (int i) 

{ 
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  if (i > 0) 

    { 

      g (i); 

      return f (i - 1); 

    } 

  else 

    return 0; 

} 

" [27] 

output: 

" 

int f (int i) 

{ 

 

 entry: 

 

  if (i > 0) 

    { 

      g (i); 

      i--; 

      goto entry; 

    } 

  else 

    return 0; 

} 

" [27] 

7.8 Loop fusion and Loop fission/distribution 
"The fusion transform is characterized by mapping multiple loop indexes in the 

original program to the same loop index. The new loop fuses 
statements from different loops." [7] 
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"Fission is the inverse of fusion. It maps the same loop index for different 
statements to different loop indexes in the transformed code. This 
splits the original loop into multiple loops." [7] 

"Although loop fusion reduces loop overhead, it does not always improve run-
time performance, and may reduce run-time performance. For 
example, the memory architecture may provide better performance if 
two arrays are initialized in separate loops, rather than initializing both 
arrays simultaneously in one loop." [27] 

Example: 

Fusion input, fission output: 

" 

for (i = 0; i < 300; i++) 

  a[i] = a[i] + 3; 

 

for (i = 0; i < 300; i++) 

  b[i] = b[i] + 4; 

" [27] 

Fusion output, fission input: 

" 

for (i = 0; i < 300; i++) 

{ 

  a[i] = a[i] + 3; 

  b[i] = b[i] + 4; 

} 

" [27] 

7.9 Loop Collapsing 
"Some nested loops can be collapsed into a single-nested loop to reduce loop 

overhead and improve run-time performance." [27] 

"Loop collapsing can improve the opportunities for other optimizations, such as 
loop unrolling." [27] 

Example: 
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input: 

" 

int a[100][300]; 

 

for (i = 0; i < 300; i++) 

  for (j = 0; j < 100; j++) 

    a[j][i] = 0; 

" [27] 

output: 

" 

int a[100][300]; 

int *p = &a[0][0]; 

 

for (i = 0; i < 30000; i++) 

  *p++ = 0; 

" [27] 

7.10  Variable expansion 
"Variable expansion in the body of an unrolled loop that has an unrolling factor 

of n selects variables that can be expanded into n separate copies, one 
for each copy of the loop body, and that can be combined at the loop’s 
exits to produce the values that the original variables would have had. 
The expansion has the desirable property of decreasing the number of 
dependences in the loop, thus making instruction scheduling likely to 
be more effective when applied to it." [26] 

Example: 

input (rolled loop): 

" 

acc = 10; 

max = 0; 

imax = 0; 

for(i = 1; i <= 100; i++) 

{ 
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 acc = acc + a[i] * b[i]; 

 if(a[i] > max) 

 { 

  max = a[i]; 

  imax = i; 

 } 

} 

" (C appropriation of an example from [26]) 

output (unrolled loop): 

" 

acc = 10; 

acc1 = 0; 

max = 0; 

max1 = 0; 

imax = 0; 

imax1 = 0; 

i1 = 2; 

for(i = 1; i <= 99; i += 2) 

{ 

 acc = acc + a[i] * b[i]; 

 if(a[i] > max) 

 { 

  max = a[i]; 

  imax = i; 

 } 

 acc1 = acc1 + a[i1] * b[i1]; 

 if(a[i1] > max1) 

 { 

  max1 = a[i1]; 

  imax1 = i1; 
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 } 

 i1 += 2; 

} 

acc += acc1; 

if(max1 > max) 

{ 

 max = max1; 

 imax = imax1; 

} 

" (C appropriation of an example from [26]) 

7.11  Register renaming 
"Register renaming is a transformation that may increase the flexibility available 

to code scheduling. It can be applied to low-level code to remove 
unnecessary dependences between instructions that use the same 
register by replacing some of the uses by other registers." [26] 

7.12  Instruction combining 
"Machine idioms are instructions or instruction sequences for a particular 

architecture that provide a more efficient way of performing a 
computation than one might use if one were compiling for a more 
generic architecture. Many machine idioms are instances of instruction 
combining, i.e., the replacement of a sequence of instructions by a 
single one that achieves the same effect." [26] 

"The primary technique for recognizing opportunities to use machine idioms is 
pattern matching. The search has two main parts. The first part is 
looking for instructions whose purpose can be achieved by faster, more 
specialized instructions. The second part begins by looking for an 
instruction that may be the first of a group that can be combined into a 
shorter or faster sequence; finding one triggers a search for the other 
instruction(s) that are needed to form the appropriate group. Unless 
the target architecture allows functionally independent instructions to 
be combined into one (as, in some cases, was true for the Stanford 
mips architecture), the searching can be done most efficiently and 
effectively on the dependence DAG, rather than on straight-line code." 
[26] 
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"An instruction combiner may increase the number of superscalar instruction 
groups that are required to execute a sequence of instructions." [26] 
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8. Παράρτημα Γ (Appendix C: Benchmarking) 

This chapter contains a benchmark to measure the improvement in execution time 
by applying the loop unrolling optimizations of csense. Although no hardware that 
csense optimizations target was at our disposal, a small benchmark was still attempted 
on one ordinary PC (desktop) machine. 

 

8.1 Hardware the benchmark was performed on (specs) 
The relevant part of the "sudo lshw" command shows the hardware this benchmark 

was performed on: 

" 

  *-core 

       description: Motherboard 

       product: GA-A75M-UD2H 

       vendor: Gigabyte Technology Co., Ltd. 

       physical id: 0 

     *-firmware 

          description: BIOS 

          vendor: Award Software International, Inc. 

          physical id: 0 

          version: F2 

          date: 06/08/2011 

          size: 128KiB 

          capacity: 4MiB 

          capabilities: isa pci pnp apm upgrade shadowing cdboot bootselect 
socketedrom edd int13floppy360 int13floppy1200 int13floppy720 int13floppy2880 
int5printscreen int9keyboard int14serial int17printer int10video acpi usb ls120boot 
zipboot biosbootspecification 

     *-cpu 

          description: CPU 

          product: AMD A8-3850 APU with Radeon(tm) HD Graphics 

          vendor: Advanced Micro Devices [AMD] 
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          physical id: 4 

          bus info: cpu@0 

          version: AMD A8-3850 APU with Radeon(tm) HD Graphics 

          slot: Socket M2 

          size: 2899MHz 

          capacity: 3GHz 

          width: 64 bits 

          clock: 100MHz 

          capabilities: fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep 
mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt 
pdpe1gb rdtscp x86-64 3dnowext 3dnow constant_tsc rep_good nopl nonstop_tsc cpuid 
extd_apicid aperfmperf pni monitor cx16 popcnt lahf_lm cmp_legacy svm extapic 
cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt hw_pstate 
vmmcall arat npt lbrv svm_lock nrip_save pausefilter cpufreq 

        *-cache:0 

             description: L1 cache 

             physical id: a 

             slot: Internal Cache 

             size: 128KiB 

             capacity: 128KiB 

             capabilities: synchronous internal write-back 

             configuration: level=1 

        *-cache:1 

             description: L3 cache 

             physical id: c 

             slot: External Cache 

             size: 1MiB 

             capacity: 1MiB 

             capabilities: synchronous internal write-back 

             configuration: level=3 

     *-cache 

          description: L1 cache 
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          physical id: b 

          slot: Internal Cache 

          size: 128KiB 

          capacity: 128KiB 

          capabilities: synchronous internal write-back 

          configuration: level=1 

     *-memory 

          description: System Memory 

          physical id: 27 

          slot: System board or motherboard 

          size: 8GiB 

        *-bank:0 

             description: DIMM 1333 MHz (0.8 ns) [empty] 

             product: None 

             vendor: None 

             physical id: 0 

             serial: None 

             slot: A0 

             width: 64 bits 

             clock: 1333MHz (0.8ns) 

        *-bank:1 

             description: DIMM 1333 MHz (0.8 ns) [empty] 

             product: None 

             vendor: None 

             physical id: 1 

             serial: None 

             slot: A1 

             width: 64 bits 

             clock: 1333MHz (0.8ns) 

        *-bank:2 
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             description: DIMM 1333 MHz (0.8 ns) 

             product: None 

             vendor: None 

             physical id: 2 

             serial: None 

             slot: A2 

             size: 4GiB 

             width: 64 bits 

             clock: 1333MHz (0.8ns) 

        *-bank:3 

             description: DIMM 1333 MHz (0.8 ns) 

             product: None 

             vendor: None 

             physical id: 3 

             serial: None 

             slot: A3 

             size: 4GiB 

             width: 64 bits 

             clock: 1333MHz (0.8ns) 

" 

8.2 The code used for the benchmark 
The input C file was a simple matrix multiplication algorithm (found in and adjusted 

from [70]) which was split into two parts. 

Part 1: 

" 

 

 

int main() { 

 

 long a[50][50],b[50][50],mul[50][50],i,j,k; 
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" 

 

Part 2: 

" 

 

 for(i=0;i<50;i++) {   

  for(j=0;j<50;j++) {   

   mul[i][j]=0;   

   for(k=0;k<50;k++) {   

    mul[i][j]+=a[i][k]*b[k][j];   

   }   

  }   

 } 

  

 return 0; 

} 

 

" 

 

The initializations were generated by the following two commands: 

" 

for i in $(seq 0 49); do for j in $(seq 0 49); do echo "a[$i][$j] = $(( $RANDOM % 1000 
));" >> matMulabInit.txt; done done 

for i in $(seq 0 49); do for j in $(seq 0 49); do echo "b[$i][$j] = $(( $RANDOM % 1000 
));" >> matMulabInit.txt; done done 

" 

(Larger array sizes were also tried but 10000x10000 caused the terminal to crash 
when a compilation was attempted by gcc, 1000x1000 caused the executable a 
segmentation fault when run, and 500x500 and 100x100 resulted in csense printing the 

260 



UPGRADE OF A C TO ADA REASEARCH COMPILER – ΜΑΡΓΑΡΙΤΗΣ ΔΟΥΛΑΚΗΣ 

following error: "Global memory capacity exceeded; try to decrease global storage 
requirements!". 50x50 did not present any errors anywhere, and hence was selected for 
the benchmark.) 

 

The final .c file was then generated using "cat": 

" 

cat matrixMultiplicationforcsense_noInit.c_firstHalf.txt matMulabInit.txt 
matrixMultiplicationforcsense_noInit.c_secondHalf.txt > matMulForCsense_50x50.c 

" 

 

The resulting Ada code had to be divided into an .adb and an .ads file to be compiled 
by gcc-gnat, and a third .adb needed to be created to call the function "main" in the first 
.adb. The files also needed to be renamed, as the GNAT compiler wanted them to be all 
lowercase letters. 

 

The "run" or calling .adbs have a form similar to the following: 

" 

with matMulForCsense_50x50; 

with Ada.Text_IO; use Ada.Text_IO; 

 

procedure run_matMulForCsense_50x50 is 

begin 

   Put_Line("Execution returned: " & Integer'Image(matMulForCsense_50x50.main)); 

end run_matMulForCsense_50x50; 

" 

 

The corresponding .ads file: 

" 

package matMulForCsense_50x50 is 

 

   type TYPE000 is array (0..49) of INTEGER; 

   type TYPE001 is array (0..49) of TYPE000; 
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   function main 

            return INTEGER; 

 

end matMulForCsense_50x50; 

" 

 

The first 40 lines of the corresponding .adb (the result of the command "head -40 
matmulforcsense_50x50.adb"): 

" 

--------------------------------------------------------------- 

------------------  C front-end translator  ------------------- 

--------------------- CCC Compiler Group ---------------------- 

--------------------------------------------------------------- 

 

 

------------------------------------------------------------- 

 

package body matMulForCsense_50x50 is 

 

   function main 

            return INTEGER is 

      V004_i: INTEGER; 

      V005_j: INTEGER; 

      V006_k: INTEGER; 

      GV000_V001_a: TYPE001; 

      GV001_V002_b: TYPE001; 

      GV002_V003_mul: TYPE001; 

      TEMPORARY000: INTEGER; 

      TEMPORARY001: INTEGER; 

      TEMPORARY002: INTEGER; 
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      INDEX000: INTEGER; 

      TEMPINT000: INTEGER; 

      INDEX001: INTEGER; 

      TEMPINT001: INTEGER; 

      INDEX002: INTEGER; 

      TEMPINT002: INTEGER; 

   begin 

      GV000_V001_a(0)(0) := 325; 

      GV000_V001_a(0)(1) := 355; 

      GV000_V001_a(0)(2) := 158; 

      GV000_V001_a(0)(3) := 396; 

      GV000_V001_a(0)(4) := 755; 

      GV000_V001_a(0)(5) := 838; 

      GV000_V001_a(0)(6) := 543; 

      GV000_V001_a(0)(7) := 407; 

      GV000_V001_a(0)(8) := 99; 

      GV000_V001_a(0)(9) := 314; 

      GV000_V001_a(0)(10) := 126; 

      GV000_V001_a(0)(11) := 462; 

" 

 

The last 30 lines of the same .adb (the result of the command "tail -30 
matmulforcsense_50x50.adb"): 

" 

      GV001_V002_b(49)(44) := 78; 

      GV001_V002_b(49)(45) := 482; 

      GV001_V002_b(49)(46) := 41; 

      GV001_V002_b(49)(47) := 154; 

      GV001_V002_b(49)(48) := 850; 

      GV001_V002_b(49)(49) := 888; 

      V004_i := 0; 
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      TEMPINT000 := 49; 

      for INDEX000 in 0..TEMPINT000 loop 

         V005_j := 0; 

         TEMPINT001 := 49; 

         for INDEX001 in 0..TEMPINT001 loop 

            GV002_V003_mul(V004_i)(V005_j) := 0; 

            V006_k := 0; 

            TEMPINT002 := 49; 

            for INDEX002 in 0..TEMPINT002 loop 

               TEMPORARY000 := GV000_V001_a(V004_i)(V006_k); 

               TEMPORARY001 := GV001_V002_b(V006_k)(V005_j); 

               TEMPORARY002 := GV002_V003_mul(V004_i)(V005_j); 

               TEMPORARY002 := TEMPORARY002 + (TEMPORARY000 * TEMPORARY001); 

               GV002_V003_mul(V004_i)(V005_j) := TEMPORARY002; 

               V006_k := V006_k + 1; 

            end loop; 

            V005_j := V005_j + 1; 

         end loop; 

         V004_i := V004_i + 1; 

      end loop; 

      return 0; 

   end main; 

end matMulForCsense_50x50; 

" 

 

The last 55 lines of the "-ouil" (ordinary unrolling) .adb (the result of the command 
"tail -55 matmulforcsense_50x50_ouil.adb"): 

" 

      GV001_V002_b(49)(47) := 154; 

      GV001_V002_b(49)(48) := 850; 

      GV001_V002_b(49)(49) := 888; 
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      V004_i := 0; 

      TEMPINT000 := 49; 

      for INDEX000 in 0..TEMPINT000 loop 

         V005_j := 0; 

         TEMPINT001 := 49; 

         for INDEX001 in 0..TEMPINT001 loop 

            GV002_V003_mul(V004_i)(V005_j) := 0; 

            V006_k := 0; 

            TEMPINT002 := 11; 

            for INDEX002 in 0..TEMPINT002 loop 

               OPT_TEMP_000 := V006_k; 

               TEMPORARY000 := GV002_V003_mul(V004_i)(V005_j); 

               TEMPORARY001 := GV000_V001_a(V004_i)(OPT_TEMP_000); 

               TEMPORARY002 := GV001_V002_b(OPT_TEMP_000)(V005_j); 

               TEMPORARY003 := TEMPORARY000 + (TEMPORARY001 * TEMPORARY002); 

               GV002_V003_mul(V004_i)(V005_j) := TEMPORARY003; 

               OPT_TEMP_000 := V006_k + 1; 

               TEMPORARY004 := GV002_V003_mul(V004_i)(V005_j); 

               TEMPORARY005 := GV000_V001_a(V004_i)(OPT_TEMP_000); 

               TEMPORARY006 := GV001_V002_b(OPT_TEMP_000)(V005_j); 

               TEMPORARY007 := TEMPORARY004 + (TEMPORARY005 * TEMPORARY006); 

               GV002_V003_mul(V004_i)(V005_j) := TEMPORARY007; 

               OPT_TEMP_000 := V006_k + 2; 

               TEMPORARY008 := GV002_V003_mul(V004_i)(V005_j); 

               TEMPORARY009 := GV000_V001_a(V004_i)(OPT_TEMP_000); 

               TEMPORARY010 := GV001_V002_b(OPT_TEMP_000)(V005_j); 

               TEMPORARY011 := TEMPORARY008 + (TEMPORARY009 * TEMPORARY010); 

               GV002_V003_mul(V004_i)(V005_j) := TEMPORARY011; 

               OPT_TEMP_000 := V006_k + 3; 

               TEMPORARY012 := GV002_V003_mul(V004_i)(V005_j); 
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               TEMPORARY013 := GV000_V001_a(V004_i)(OPT_TEMP_000); 

               TEMPORARY014 := GV001_V002_b(OPT_TEMP_000)(V005_j); 

               TEMPORARY015 := TEMPORARY012 + (TEMPORARY013 * TEMPORARY014); 

               GV002_V003_mul(V004_i)(V005_j) := TEMPORARY015; 

               V006_k := V006_k + 4; 

            end loop; 

            TEMPINT002 := 49 - V006_k; 

            for INDEX002 in 0..TEMPINT002 loop 

               TEMPORARY016 := GV002_V003_mul(V004_i)(V005_j); 

               TEMPORARY017 := GV000_V001_a(V004_i)(V006_k); 

               TEMPORARY018 := GV001_V002_b(V006_k)(V005_j); 

               TEMPORARY019 := TEMPORARY016 + (TEMPORARY017 * TEMPORARY018); 

               GV002_V003_mul(V004_i)(V005_j) := TEMPORARY019; 

               V006_k := V006_k + 1; 

            end loop; 

            V005_j := V005_j + 1; 

         end loop; 

         V004_i := V004_i + 1; 

      end loop; 

      return 0; 

   end main; 

end matMulForCsense_50x50_ouil; 

" 

 

The 25 last corresponding "-ofuil" (full loop unrolling) .adb lines (the result of the 
command "tail -25 matmulforcsense_50x50_ofuil.adb") were the following: 

" 

               TEMPORARY029 := GV000_V001_a(V004_i)(OPT_TEMP_000); 

               TEMPORARY030 := GV001_V002_b(OPT_TEMP_000)(V005_j); 

               TEMPORARY031 := TEMPORARY028 + (TEMPORARY029 * TEMPORARY030); 

               GV002_V003_mul(V004_i)(V005_j) := TEMPORARY031; 
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               OPT_TEMP_000 := V006_k + 8; 

               TEMPORARY032 := GV002_V003_mul(V004_i)(V005_j); 

               TEMPORARY033 := GV000_V001_a(V004_i)(OPT_TEMP_000); 

               TEMPORARY034 := GV001_V002_b(OPT_TEMP_000)(V005_j); 

               TEMPORARY035 := TEMPORARY032 + (TEMPORARY033 * TEMPORARY034); 

               GV002_V003_mul(V004_i)(V005_j) := TEMPORARY035; 

               OPT_TEMP_000 := V006_k + 9; 

               TEMPORARY036 := GV002_V003_mul(V004_i)(V005_j); 

               TEMPORARY037 := GV000_V001_a(V004_i)(OPT_TEMP_000); 

               TEMPORARY038 := GV001_V002_b(OPT_TEMP_000)(V005_j); 

               TEMPORARY039 := TEMPORARY036 + (TEMPORARY037 * TEMPORARY038); 

               GV002_V003_mul(V004_i)(V005_j) := TEMPORARY039; 

               V006_k := V006_k + 10; 

            end loop; 

            V005_j := V005_j + 1; 

         end loop; 

         V004_i := V004_i + 1; 

      end loop; 

      return 0; 

   end main; 

end matMulForCsense_50x50_ofuil; 

" 

 

Each running .adb was then compiled using gnatmake: 

" 

$ gnatmake run_matmulforcsense_50x50_ofuil.adb 

gcc -c run_matmulforcsense_50x50_ofuil.adb 

gcc -c matmulforcsense_50x50_ofuil.adb 

matmulforcsense_50x50_ofuil.adb:69:07: warning: variable "INDEX000" is never 
read and never assigned 
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matmulforcsense_50x50_ofuil.adb:71:07: warning: variable "INDEX001" is never 
read and never assigned 

matmulforcsense_50x50_ofuil.adb:73:07: warning: variable "INDEX002" is never 
read and never assigned 

matmulforcsense_50x50_ofuil.adb:5078:11: warning: for loop implicitly declares 
loop variable 

matmulforcsense_50x50_ofuil.adb:5078:11: warning: declaration hides "INDEX000" 
declared at line 69 

matmulforcsense_50x50_ofuil.adb:5081:14: warning: for loop implicitly declares 
loop variable 

matmulforcsense_50x50_ofuil.adb:5081:14: warning: declaration hides "INDEX001" 
declared at line 71 

matmulforcsense_50x50_ofuil.adb:5085:17: warning: for loop implicitly declares 
loop variable 

matmulforcsense_50x50_ofuil.adb:5085:17: warning: declaration hides "INDEX002" 
declared at line 73 

gnatbind -x run_matmulforcsense_50x50_ofuil.ali 

gnatlink run_matmulforcsense_50x50_ofuil.ali 

" 

The resulting executables run despite the warnings. 

8.3 Benchmark results 
The results from running each executable three times are shown below: 

" 

$ time ./run_matmulforcsense_50x50 

Execution returned:  0 

 

real 0m0.020s 

user 0m0.013s 

sys 0m0.003s 

$ time ./run_matmulforcsense_50x50 

Execution returned:  0 
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real 0m0.017s 

user 0m0.012s 

sys 0m0.004s 

$ time ./run_matmulforcsense_50x50 

Execution returned:  0 

 

real 0m0.018s 

user 0m0.014s 

sys 0m0.003s 

$ time ./run_matmulforcsense_50x50_ouil 

Execution returned:  0 

 

real 0m0.018s 

user 0m0.011s 

sys 0m0.005s 

$ time ./run_matmulforcsense_50x50_ouil 

Execution returned:  0 

 

real 0m0.016s 

user 0m0.010s 

sys 0m0.005s 

$ time ./run_matmulforcsense_50x50_ouil 

Execution returned:  0 

 

real 0m0.029s 

user 0m0.012s 

sys 0m0.004s 

$ time ./run_matmulforcsense_50x50_ofuil 

Execution returned:  0 
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real 0m0.018s 

user 0m0.014s 

sys 0m0.002s 

$ time ./run_matmulforcsense_50x50_ofuil 

Execution returned:  0 

 

real 0m0.017s 

user 0m0.013s 

sys 0m0.004s 

$ time ./run_matmulforcsense_50x50_ofuil 

Execution returned:  0 

 

real 0m0.022s 

user 0m0.010s 

sys 0m0.007s 

" 

Table 17. Benchmark results (50x50 matrix multiplication running times in seconds) 

 No optimization Unrolled 4 times Unrolled 10 times 

Run 1 0.020 0.018 0.018 

Run 2 0.017 0.016 0.017 

Run 3 0.018 0.029 0.022 

Average 0.018 0.021 0.019 

Πηγή: (None) 

 

 

The results do not seem to suggest an improvement in execution time from the 
optimizations performed on the code running on this hardware. It is expected that the 
results would be different for a VLIW system, however. 
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Παράρτημα Κώδικα (Code Appendix) 

If you want the code shown in this paper (excluding the appendices), please ask for the 
accompanying .zip file that was provided to the library along with this document. 
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