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Abstract 
 

This thesis presents an extensive examination of motion tracking technologies, focusing on the 

comparative analysis of outside-in and inside-out tracking methodologies, pivotal in advancing virtual 

reality (VR) applications. By delving into the intricacies of inverse kinematics (IK), the study identifies 

the limitations and strengths inherent to existing IK solutions within Unity, such as Mecanim, CinemaIK, 

and others, and proposes the JARVRIKS Full Body IK system as a novel, integrated solution designed to 

address the identified gaps. 

 

The JARVRIKS Full Body IK system, developed for Unity, leverages advanced IK algorithms and 

motion capture data to facilitate the creation of lifelike human avatars. Through meticulous engineering, 

it introduces a series of improvements over traditional IK systems, including enhanced accuracy, 

flexibility, and user-centric calibration processes. Its innovative architecture is detailed, demonstrating its 

applicability in VR environments and its compatibility with various motion tracking technologies. 

 

To validate the effectiveness and versatility of the JARVRIKS Full Body IK system, this thesis 

documents its implementation across three distinct VR game case studies: Superhot, Beat Saber, and a 

soccer simulation focused on lower body movement. These applications serve as practical 

demonstrations of the system's capability to provide accurate, responsive, and immersive user 

experiences. Through quantitative and qualitative analysis, the research evaluates user interaction, 

movement fidelity, and the overall impact of the JARVRIKS Full Body IK system on gameplay 

immersion and realism. 

 

Conclusively, this thesis contributes to the field of VR development by offering a comprehensive IK 

solution that bridges the gap between complex motion tracking technology and accessible, immersive VR 

content creation. The JARVRIKS Full Body IK system not only enhances the development workflow for 

VR game designers but also elevates the user experience in VR applications, paving the way for future 

innovations in virtual embodiment and interactive design. 

 

This abstract encapsulates the thesis's scope, methodologies, key findings, and contributions to the field 

of VR and game development. It succinctly conveys the research's purpose, the development and 

application of the JARVRIKS Full Body IK system, and its potential impact on the industry. 
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Abstract in Greek 
 

Αυτή η διπλωματική περιέχει μια εκτενή εξέταση των τεχνολογιών παρακολούθησης κινήσεων, 

επικεντρώνοντας στη συγκριτική ανάλυση των μεθοδολογιών παρακολούθησης εξωτερικής προς 

εσωτερική και εσωτερικής προς εξωτερική, καθοριστικές για την προώθηση των εφαρμογών εικονικής 

πραγματικότητας (VR). Με την εμβάθυνση στις περιπλοκότητες της αντίστροφης κινηματικής (IK), η 

μελέτη εντοπίζει τους περιορισμούς και τα πλεονεκτήματα που είναι εγγενή στις υπάρχουσες λύσεις IK 

μέσα στο Unity, όπως το Mecanim, το CinemaIK και άλλα, και προτείνει το σύστημα JARVRIKS Full 

Body IK ως μια νέα, ενσωματωμένη λύση σχεδιασμένη για να αντιμετωπίσει τα εντοπισμένα κενά. 

 

Το σύστημα JARVRIKS Full Body IK, αναπτυγμένο για το Unity, εκμεταλλεύεται προηγμένους 

αλγορίθμους IK και δεδομένα παρακολούθησης κίνησης σε πραγματικό χρόνο για να διευκολύνει τη 

δημιουργία ρεαλιστικών ανθρώπινων αβατάρ. Μέσω μεθοδικής μηχανικής, εισάγει μια σειρά 

βελτιώσεων σε σχέση με τα παραδοσιακά συστήματα IK, συμπεριλαμβανομένης της βελτιωμένης 

ακρίβειας, ευελιξίας και διαδικασιών βαθμονόμησης κεντρικές προς τον χρήστη. Η αρχιτεκτονική του 

περιγράφεται λεπτομερώς, αποδεικνύοντας την εφαρμοσιμότητά του σε περιβάλλοντα VR και τη 

συμβατότητά του με διάφορες τεχνολογίες παρακολούθησης κίνησης. 

 

Για την επικύρωση της αποτελεσματικότητας και της ευελιξίας του συστήματος JARVRIKS Full Body 

IK, η διατριβή καταγράφει την εφαρμογή του σε τρεις διακριτές περιπτώσεις μελέτης παιχνιδιών VR: 

Superhot, Beat Saber και μια προσομοίωση ποδοσφαίρου εστιασμένη στην κίνηση του κάτω μέρους του 

σώματος. Αυτές οι εφαρμογές λειτουργούν ως πρακτικές αποδείξεις της ικανότητας του συστήματος να 

παρέχει ακριβείς, ανταποκρινόμενες και εμβυθιστικές εμπειρίες χρηστών. Μέσω ποσοτικής και 

ποιοτικής ανάλυσης, η έρευνα αξιολογεί την αλληλεπίδραση του χρήστη, την ακρίβεια κίνησης και τη 

συνολική επίδραση του συστήματος JARVRIKS Full Body IK στην εμβύθιση και τον ρεαλισμό του 

παιχνιδιού. 

 

Συμπερασματικά, η διπλωματική  συνεισφέρει στον τομέα της ανάπτυξης VR προσφέροντας μια 

ολοκληρωμένη λύση IK που γεφυρώνει το χάσμα μεταξύ της περίπλοκης τεχνολογίας παρακολούθησης 

κίνησης και της προσιτής, εμβυθιστικής δημιουργίας περιεχομένου VR. Το σύστημα JARVRIKS Full 

Body IK όχι μόνο βελτιώνει τη ροή εργασίας για τους σχεδιαστές παιχνιδιών VR αλλά επίσης ενισχύει 

την εμπειρία του χρήστη σε εφαρμογές VR, ανοίγοντας τον δρόμο για μελλοντικές καινοτομίες στην 

εικονική ενσάρκωση και την αλληλεπίδραση.  
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Chapter 1 Introduction 
 

In the evolving landscape of virtual reality (VR) and augmented reality (AR), full-body tracking stands as 

an important technology enabling immersive and interactive experiences that closely mimic real-world 

interactions. At the heart of this technology lies the concept of embodiment—the psychological sensation 

or perception of a user being inside, and having control over, a body within a virtual environment. This not 

only enhances the sense of presence within a virtual space but also significantly impacts the user's 

interaction with the virtual world. 

 

Full-body tracking technology is a cornerstone in bridging the gap between the physical and virtual worlds. 

It enables the translation of a user's movements into the digital realm, allowing for a synchronized and 

interactive experience within virtual environments. This technology not only captures the positional data 

of the user's limbs and body but also interprets these movements to animate a virtual avatar in real-time. 

The accuracy and responsiveness of full-body tracking are crucial for maintaining immersion, as any delay 

or inconsistency can disrupt the user's sense of presence within the virtual environment. 

 

Embodiment takes the concept of presence a step further by integrating the user's cognitive and emotional 

responses to being represented in a virtual form. It is not merely about the visual replication of physical 

actions in a virtual space but encompasses the user's perception of the avatar as an extension of their own 

body. This phenomenon is central to achieving a fully immersive VR experience, as it directly affects how 

users interact with the virtual environment and how they interpret sensory feedback from it. A strong sense 

of embodiment can enhance the realism of the VR experience, leading to more meaningful and engaging 

interactions within the virtual world. 

 

However, achieving a high level of embodiment is fraught with challenges. One of the main hurdles is the 

technological limitation in accurately and consistently tracking complex human movements. The human 

body can perform a wide range of motions, and capturing these nuances requires sophisticated tracking 

systems that can process vast amounts of data in real-time. Furthermore, the subjective nature of 

embodiment means that what works well for one user may not be effective for another, adding another 

layer of complexity to designing universally effective full-body tracking systems. This variability makes it 

challenging to design a one-size-fits-all solution that consistently delivers a high level of embodiment 

across all users. Instead, systems must be adaptable and customizable to accommodate the diverse needs 

and preferences of users to ensure an immersive and comfortable virtual reality experience for everyone. 

 

Moreover, the psychological aspects of embodiment raise important considerations. The uncanny valley 

[1]—a term used to describe the discomfort felt when a human-like figure looks or moves almost, but not 

exactly, like a real human—can significantly impact the user's sense of embodiment. Achieving a balance 

where the avatar is responsive and lifelike without being unsettling is crucial for maintaining immersion 

and comfort in VR. 

 

These challenges underscore the importance of our research in exploring new methodologies and 

technologies for full-body tracking and embodiment. By addressing the limitations of current systems, we 

aim to push the boundaries of what is possible in VR and AR, creating more immersive, intuitive, and 

interactive virtual experiences that can be applied across various domains. 

 

Historically, full-body tracking technologies have been categorized into two main approaches: outside-in 

and inside-out tracking. Outside-in tracking, often reliant on external hardware to monitor and interpret 

user movements, has been instrumental in early advancements in VR and AR. Inside-out tracking, on the 

other hand, utilizes sensors and cameras attached directly to the device or the user's body, offering a more 

versatile and unencumbered experience. Despite their contributions to the field, both approaches come with 

inherent challenges. Issues such as latency, occlusion, limited range of motion capture, and the requirement 
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for an unobstructed environment have often impeded the seamless integration of the user's physical actions 

with their virtual counterparts. 

 

These challenges highlight the necessity for innovative solutions that can provide accurate, efficient, and 

intuitive full-body tracking. Such solutions are crucial not only for enhancing user experience but also for 

expanding the applicability of VR and AR technologies across various sectors including gaming, 

healthcare, and professional training. This underlines the significance of our research's, focusing on a novel 

inverse kinematics (IK) solution designed to address these prevalent issues by improving tracking accuracy 

and user embodiment in virtual environments. 

 

The forthcoming chapters of this thesis delve deeper into the realm of full-body tracking and embodiment, 

beginning with an extensive review of existing technologies in Chapter 2. This includes a detailed 

exploration of both outside-in and inside-out tracking systems, setting the groundwork for understanding 

the complexities and limitations of current methodologies. Chapter 3 shifts focus towards the embodiment 

within avatars, elucidating how a user's perception of virtual embodiment can significantly affect their VR 

experience. In Chapter 4, we introduce "JARVRIKS," our innovative IK solution aimed at overcoming the 

limitations of existing tracking technologies, thereby enhancing user embodiment and interaction within 

VR environments. Chapter 5 aims to validate our novel IK approach developing three use case games, 

facilitating upper and lower body tracking. These games, inspired by popular titles like Superhot and Beat 

Saber, alongside a soccer game for lower body tracking, serve as practical use cases to demonstrate the 

capabilities and potential of our solution. Finally, Chapter 6 culminates with the conclusions drawn from 

our research, summarizing the key findings, implications for the field of VR and AR, and suggesting 

avenues for future work. 

 

By addressing the known challenges within full-body tracking and embodiment, this thesis contributes to 

the advancement of VR and AR technologies, paving the way for more immersive, intuitive, and interactive 

virtual experiences. 
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Chapter 2 Full-Body tracking 
 

Full Body Tracking refers to the ability to detect and visualize all the user's body movements 

within a virtual world. Using a range of sensors and cameras, the system can transfer the user's 

physical movements to the virtual character, offering a more realistic and immersive experience. 

 

Full body tracking and embodiment in virtual reality (VR) is a technology that captures and 

translates the user’s physical movements and visualizes them in an avatar within the virtual 

environment. As such the virtual avatar animates with the same movements as the real user. The 

user usually wears sensors or trackers on different parts of his/her body, such as your hands, feet, 

and head. As the user moves around, these sensors send motion data to a computer or VR system, 

which then accurately replicates those movements in the game or simulation the user is 

experiencing. This technology allows for a much more immersive and interactive VR experience, 

as it feels like the user is present in the virtual world, able to interact with any entity using the 

entire body. There are two main approaches in full body tracking: Outside-in and Inside-out 

tracking. 

 

 

2.1 Outside-In Tracking 
 

Outside-In Tracking involves placing external sensors or cameras around the play area that detect 

and track the movement of the VR headset and any other tracked devices, like controllers or 

specialized equipment for body tracking. These external devices continuously monitor the 

position and orientation of the VR headset and controllers from the outside, hence the term 

"Outside-In." This method can provide accurate tracking by having a fixed reference point outside 

the user's body. However, it requires a dedicated setup with sensors placed in specific locations 

around the room, which can limit the play area and increase the setup time and complexity.  

 

For example, the Lighthouse tracking system used by HTC VIVE PC VR headsets is cited as a 

classic example of outside-in tracking. While this system does rely on external devices placed in 

the player’s immediate area, those devices don’t collect any information themselves. Recent 

studies reveal that incorporating full-body avatars can significantly enhance the sense of 

embodiment and immersion, indicating a trend towards the use of marker-based systems for 

multiplayer modes due to their robustness in tracking multiple users in real-time [2]. Additionally, 

innovative approaches aim to simplify full-body tracking by integrating upper-body VR tracking 

systems with a single external webcam, offering a more accessible and streamlined setup process 

[3]. 

 

 

2.2 Inside-Out Tracking 
 

Inside-Out Tracking, on the other hand, reverses this approach. The sensors or cameras are located 

on the VR headset itself, and they use the headset's position relative to the environment to 

determine the user's movement. This method often involves the headset scanning the environment 

and using fixed points or features in the room to track movement without the need for external 
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sensors. Inside-Out tracking systems are more portable and easier to set up since they don't rely 

on external hardware placed around the play area. However, their accuracy and responsiveness 

can vary based on the environment's complexity and the technology used.  

 

A novel inside-out magnetic tracking system optimized for VR/AR applications demonstrates this 

approach's potential. It can achieve high-definition 6-DoF tracking with minimal jitter and latency, 

making it suitable for personal area tracking. This system is compact and portable. [4]. Moreover, 

an evaluation  [5] of the Oculus Rift S tracking system in room-scale virtual reality environments 

provides insight into the capabilities and limitations of inside-out tracking technologies, which 

indicates that while the Oculus Rift S achieves an average translation error of about 1.83 cm and 

an average rotation error of about 0.77°, it still falls short of the accuracy attainable with motion 

capture systems, highlighting the trade-offs involved in inside-out tracking systems [5]. See Table 

1: The table contains the differences between the Inside-Out and Outside-In Tracking. 

 

 Inside-Out Outside-In 

Setup 

Complexity 

Simpler setup, relying on sensors 

within the VR HMD. Reducing the 

need for external hardware. 

Requires more complex setup with 

external sensors or cameras placed around 

the play area. 

Mobility and 

Portability 

Portable and easier to set up in 

different environments since it doesn't 

rely on external sensors. 

Less portable due to the need for external 

sensors or cameras and their specific setup 

requirements. 

Tracking 

Range 

Limited by the range of sensors within 

the headset, which may result in less 

precise tracking in larger play areas. 

Potentially offers larger tracking volumes, 

depending on the number and placement of 

external sensors. 

Tracking 

Precision 

and 

Accuracy 

Possible limitations in tracking 

accuracy, particularly when the 

headset moves out of the sensors' field 

of view or in environments with poor 

lighting conditions. 

Generally, it offers higher precision and 

accuracy as external sensors can track the 

headset and controllers more precisely. 

Occlusion 

Handling 

Susceptible to occlusion when objects 

or body parts obstruct the sensors on 

the headset. 

Can provide better occlusion handling 

since external sensors have a broader field 

of view and can detect movements even 

when parts of the body are obstructed. 

Hardware 

Requirement

s 

Requires a VR headset equipped with 

built-in sensors for tracking. 

Requires external sensors or cameras, 

which may involve additional costs and 

setup. 

 

Cost Cost-effective since it doesn't require 

additional external sensors or 

cameras. 

More expensive due to the need for 

external hardware. 

Latency Can have lower latency as tracking 

data is processed internally within the 

HMD. 

Latency may be slightly higher due to the 

need to transmit tracking data from 

external sensors to the VR system. 

Multi-User 

Support 

May be limited in multi-user 

scenarios, especially in larger spaces 

where multiple headsets might 

interfere with each other. 

May offer better support for multi-user 

experiences, especially in environments 

with multiple external sensors. 

 

Table 1: The table contains the differences between the Inside-Out and Outside-In Tracking 
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2.3 Self-Tracking Technology 

 
Self-tracking technology [6] represents an advancement in virtual reality (VR) and motion capture 

systems, addressing many of the limitations associated with traditional tracking methods. It 

integrates Computer Vision (CV) and Inertial Measurement Unit (IMU) technologies to offer a 

comprehensive solution for precise, real-time motion tracking without the need for external base 

stations.  

 

IMU technology is instrumental in the enhancement of tracking and motion analysis solutions that 

gauge positional and orientational changes of objects and limbs absent of any external point of 

reference. Utilizing data on acceleration and rotational velocity, IMUs are at the heart of these 

systems, contributing to an object or individual’s path computation [7]. Noteworthy research [8] 

has unveiled the development of a cost-efficient IMU-based framework capable of simultaneously 

providing real-time 3D visualization of movements and orientation tracking across different body 

parts, all while surmounting communication barriers by using a uniquely developed 2.4 GHz 

protocol. This study points to the far-reaching possibilities that IMU technology holds for 

broadening the scope of precise and accessible motion tracking across diverse applications such 

as virtual reality, athletic sciences, and therapeutic interventions. 

 

While IMUs offer significant benefits, they are not free from constraints. Issues such as error 

accumulation resulting in drift are notable, prompting the need for periodic recalibrations to assure 

enduring accuracy [9]. In side-by-side evaluations with high-accuracy solutions like the VICON 

system, IMUs have been shown to exhibit some level of positional estimation error, signaling a 

need for further refinement. Additionally, despite their adaptability and ease of operation in 

various settings, IMUs alone cannot supply absolute locational data without additional spatial 

positioning aids [10]. 

 

The fusion of IMUs with other systems, including monocular cameras or sophisticated algorithms 

for noise mitigation, presents a promising avenue toward resolving these limitations [11] [12]. 

This collaborative approach has the potential to fortify the resilience and precision of IMU-based 

motion tracking against environmental variances and under diverse usage cases. With their ample 

application possibilities, IMUs stand out as a pivotal factor in driving progress within the domain 

of motion tracking, hinting at their inevitable proliferation across multiple fields. 

 

At the core of self-tracking technology is Computer Vision, which leverages two wide-angle 

cameras integrated into the tracking device to visually sense the environment, like how VR 

headsets operate. This visual data, when combined with IMU's relative positioning information, 

enables the system to accurately determine the tracker's location and movements within a space. 

AI algorithms play a crucial role in processing this data, calculating the tracker's absolute position 

in real-time with high precision.  

 

One of the most significant benefits of self-tracking technology is its portability and lightweight 

design, eliminating the need for cumbersome setup processes associated with base stations. This 

not only makes the system more user-friendly but also greatly enhances its mobility, allowing 

for a more flexible and accessible tracking experience. The high precision of this technology 

ensures that every movement is captured with great accuracy, enhancing the realism and 
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immersion of VR experiences.  

 

Despite its many advantages, self-tracking technology does face some challenges. One of the main 

issues is its lower occlusion resistance, meaning that the tracker's performance might degrade 

when its line of sight with the environment is obstructed. Additionally, the system requires 

sufficient lighting to function optimally, as the cameras rely on visual data to track movements. 

The HTC VIVE Ultimate Tracker is a prime example of self-tracking technology in action. 

Launched in 2024, it showcases the potential for motion tracking. With the ability to support up 

to five trackers simultaneously and requiring only a small, USB-sized wireless receiver for 

connection, it offers a seamless and efficient solution for capturing full-body movements in VR, 

making the technology both intuitive and reliable for users. 
 

 

 

2.3.1 Lighthouse Tracking System 

 
The evolution of monitoring technologies in motion capture has been marked by a transition from 

high-cost, outside-in specialized systems, like VICON, OptiTrack, and VisualEyez, to more 

accessible, inside-out off-the-shelf VR solutions, such as the HTC Vive. This shift reflects 

significant technological advancements and a growing need for versatile, cost-effective motion 

capture options across various fields, including robotics and VR. The Vive system, with its 

innovative lighthouse tracking mechanism and the subsequent development of improved open-

source algorithms, exemplifies this evolution. It addresses the limitations of earlier systems by 

offering a more affordable, adaptable solution without sacrificing accuracy or precision. This 

evolution not only democratizes access to high-quality motion capture technology but also fosters 

innovation in areas previously constrained by cost and complexity. 

 
The HTC Vive's Lighthouse system represents an advancement in motion capture technology for 

virtual reality (VR) applications, employing a sophisticated approach to tracking. Utilizing 

synchronized light sweeps emitted by base stations, this system, through trackers equipped with 

photodiodes, calculates the user's position by measuring the timing of these light pulses. This 

method, known as Angle-of-Arrival (AoA), is enhanced by an IMU to maintain smooth trajectory 

movements, offering a blend of efficiency and cost-effectiveness for motion capture. 

 

While the original algorithms of the Vive system were engineered to prioritize smooth tracking, 

they could compromise precision in more dynamic scenarios. However, the evolution of tracking 

algorithms and calibration processes has significantly amplified its application potential, 

especially in the realm of robotics. For instance, studies like [32] delve into the system's spatial 

tracking performance, suggesting standards for velocity limits to ensure reliable tracking [13]. 

Another research, [33], evaluates the Lighthouse system's accuracy and repeatability for motion 

tracking, demonstrating its capability for millimeter-level accuracy and sub-degree precision in 

position and orientation measurements, crucial for tasks requiring high precision such as robotic 

applications [14]. 
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Figure 1: The laser will encode the base station ID as well as the current laser sweep angle. There is no longer a ‘timing pulse’, 

the base station does the timing internally and sends the angle directly to the Vive on the laser. [15] 

 

 

2.3.2 VICON 
 

The VICON system [16] is recognized as a gold standard for outside-in full body tracking due to 

its accuracy in motion capture. It's frequently used in comparative studies to evaluate other motion 

tracking technologies. The VICON motion capture system is a sophisticated tool used in various 

fields, including biomechanics, sports science, and entertainment, to capture and analyze detailed 

human movements. It operates on an optical tracking mechanism where multiple cameras are 

strategically placed around the area of interest to track reflective markers attached to the subject. 

This system provides high-precision, three-dimensional movement data by triangulating the 

positions of these markers. 

 

While the VICON motion capture system is renowned for its accuracy in tracking human motion, 

it is confronted with certain constraints. One of the main challenges is its requirement for 

significant space, which can be an obstacle when deploying the system in confined spaces like 

manufacturing cells [17]. Cost considerations are another barrier, as the high-priced nature of the 

VICON system limits its accessibility for cost-conscious projects or for those seeking to validate 

more economical motion capture solutions like IMUs [18]. 

 

Comparative inaccuracies have also been observed when VICON is assessed against other motion 

tracking systems, particularly in capturing fine motions of smaller joints or in different capturing 

environments [19] [20]. Covering expansive spaces comprehensively is another area where 

VICON falls short due to the extensive number of sensitive cameras needed and their limited 

depth of field, which creates practicality issues [21]. For ergonomic assessments, the system's 

precision in measuring axial trunk rotation has revealed notable inaccuracies, potentially leading 

to an underestimation of associated health risks. Inconsistencies emerge as well when examining 

activities such as the forward leap in children, with VICON displaying variable results depending 

on the body segment and type of movement being captured [22]. 

 

In summary, the VICON motion capture system, despite its stature as a benchmark in the field, 

comes with a set of limitations ranging from financial, spatial, and technical factors that can affect 

its application in various contexts. 
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Figure 2: Vicon has a tradition in the area, as it has been involved in the industry from the beginning. From the first blockbuster 

movie to use motion capture in 1995 to the creation of the first out of the box head mounted facial capture system [23] 

 

 

2.3.3 Microsoft Kinect 
 

Microsoft's Kinect [24], released for Xbox 360 and later Xbox One, was a revolutionary device 

that allowed games and apps to be controlled through body movements. The Microsoft Kinect 

sensor represents a leap in motion capture technology, combining a depth sensor, a color camera, 

and a four-microphone array to offer full-body 3D motion capture, facial recognition, and voice 

recognition capabilities. Its operation hinges on an IR projector and camera duo that utilizes 

structured light principles to create a depth map by projecting and analyzing a pattern of IR dots, 

a method developed in collaboration with PrimeSense.  

 

This setup enables the sensor to triangulate each dot's position in 3D space, allowing for accurate 

depth perception. Calibration issues, potentially caused by environmental factors like heat or 

vibration, are mitigated through a recalibration technique using a special card. The heart of 

Kinect's innovation lies in its skeletal tracking system, designed to work seamlessly for every 

individual without the need for user calibration. By employing a per-pixel, body-part recognition 

strategy using a deep randomized decision forest classifier trained on an extensive array of 

synthetic human images [24], Kinect achieves real-time tracking of body joints. This process is 

highly efficient, running at up to 200 frames per second on the Xbox 360's GPU, ensuring broad 

applicability across different body sizes and shapes, even in varied household environments. This 

combination of advanced sensing, machine learning, and image processing technologies enables 

Kinect to provide a highly interactive and immersive user experience. 

 

The Microsoft Kinect system has faced various challenges highlighted in academic research. 

These include issues like unrealistic representations and limited customizability [25], which affect 

its utility, especially in VR educational settings. Concerns over its financial feasibility, alongside 

physical and psychological discomfort, including simulator sickness, have been noted, impacting 

its role in VR labs [25]. Moreover, when Kinect is used in commercial games not designed for 
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rehabilitation, it emphasizes the need for more specialized tools to aid physical rehabilitation at 

home, aiming to cut healthcare costs [26]. Additionally, Kinect's reliance on 2D cameras for 

human motion recognition struggles against variations in light intensity and texture, reducing its 

effectiveness [27]. Inefficiency, resource wastage, and subjective measurement outcomes, 

particularly when juxtaposed with manual methods like the goniometer, mark significant 

drawbacks [27]. High production costs and the requirement for controlled clinical settings further 

limit its application [28]. In tasks involving 3D interaction, Kinect's difficulties in accurately 

recognizing foot movements bring up questions regarding its efficacy compared to other 3D vision 

sensors for computer vision tasks [28]. Despite these challenges, Kinect's structured light system, 

designed for simplistic real-time pose tracking, faces criticism for its sensitivity to lighting and 

material properties, along with relatively low accuracy [29] [30] 

 

 

 

2.3.4 Sony PlayStation Eye Toy 
 

The Sony PlayStation EyeToy serves as a landmark device in the realm of interactive gaming, 

merging physical movement with virtual gameplay. As evidenced by its incorporation in various 

rehabilitation settings, its capacity for engaging users in therapeutic tasks underscores its intuitive 

nature [31]. Although specific advantages and limitations are not explicitly delineated in the 

literature, the EyeToy's contribution to the video game and virtual reality-based motor 

rehabilitation systems has gathered positive initial feedback within physical therapy communities, 

particularly among patients with spinal cord injuries (SCI), traumatic brain injuries (TBI), and 

amputations. 

 

When it comes to usability, the EyeToy has been pinpointed as more user-friendly than 

alternatives like the Wii-mote, despite the occasional challenge some may face with its menu 

navigation [32]. Its role in clinical rehabilitation settings is underlined by its ease of use, which is 

a significant factor for widespread adoption. 

 

With respect to postural balance, the EyeToy, used alongside the AntiGrav™ game, has shown 

potential in enhancing balance control via lateral head, body, and arm movements. This points to 

the device's capability in driving improvements in specific balance metrics [33]. However, it’s 

important to note that while beneficial outcomes have been observed, there is a chance of 

experiencing mild simulator sickness, which seems to subside as users adapt through repeated 

play. 

 

Expanding its therapeutic impact, the EyeToy has also been adapted for virtual reality therapy for 

children with hemiplegic cerebral palsy, successfully encouraging targeted neuromotor 

movements [34]. This showcases the EyeToy's versatility and hints at its future acceptance in 

home-based therapy regimens, potentially boosting upper extremity function. 

 

In summary, the Sony PlayStation EyeToy exemplifies the convergence of interactivity and 

therapeutic efficacy, albeit with a minor caveat concerning simulator sickness and navigation 

issues. 
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Haritora X 
  

Tsthe HaritoraX Wireless [35] tracking system counterparts by utilizing Inertial Measurement Unit 

(IMU) technology for full-body tracking in virtual reality (VR). This makes the HaritoraX 

Wireless system more versatile and portable, as it does not require the setup of external hardware 

beyond the VR headset and controllers. The wireless nature of HaritoraX with IMU technology 

offers users the freedom to move without the constraints of cables or the need to stay within the 

sightline of base stations, catering to a wide range of applications from gaming to professional 

VR simulations where ease of movement and setup flexibility are paramount. They are also 

compatible with SteamVR tracking. 

 

This IMU-based tracking in the HaritoraX Wireless system, comes with its own set of challenges 

and trade-offs. While IMUs provide significant convenience and support for untethered VR 

experiences, they may also be susceptible to drift over time without external reference points to 

recalibrate positional data. This means that while users can enjoy more freedom of movement, the 

system might require periodic recalibration or adjustments to maintain optimal tracking accuracy.  

 

 
Figure 3: HaritonaX Wireless system weared by the user on the thigh, lower leg and the chest [35] 

 

 

2.3.5 Tundra Trackers 
 

The Tundra Tracker [36] on the other hand, is also a device developed for enhancing full-body 

tracking in virtual reality environments, and it supports the lighthouse tracking technology as well. 

Similar to the HaritoraX, the Tundra Tracker is compatible with SteamVR Tracking, meaning it 

works with the same base stations as the HTC Vive, Valve Index, and other VR systems utilizing 

lighthouse technology. This compatibility ensures that Tundra Trackers can accurately track the 
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user's movements by detecting the IR light sweeps from the lighthouse base stations. The Tundra 

Tracker distinguishes itself with its compact size and lightweight design, aiming to provide a less 

obtrusive and more comfortable VR experience. Its high compatibility and support for lighthouse 

tracking technology make it a versatile choice for users seeking reliable full-body tracking in VR 

applications ranging from gaming to professional development. 
 

 
Figure 4: The Tundra Trackers [36] 

 

 
 

2.3.6 SlimeVR 
 

The SlimeVR [37] system, an innovative tool designed for full-body tracking in virtual reality 

(VR). The system is adept at enabling a variety of physical activities without the need for cables 

or external devices. This feature is particularly useful in martial arts training within VR, where 

users can spar with virtually simulated opponents, gaining feedback from realistic, motion-

Captured interactions [38]. SlimeVR also offers advanced data integration capabilities, merging 

eye-tracking and motion capture information for in-depth analysis of visuomotor coordination 

[39].The system is adept at enabling a variety of physical activities without the need for cables or 

external devices. This feature is particularly useful in martial arts training within VR, where users 

can spar with virtually simulated opponents, gaining feedback from realistic, motion-Captured 

interactions [38]. SlimeVR also offers advanced data integration capabilities, merging eye-

tracking and motion capture information for in-depth analysis of visuomotor coordination [39]. 

 

At its core, SlimeVR utilizes IMUs for orientation and movement tracking, deploying a network 

of sensors like magnetometers, accelerometers, and gyroscopes. These sensors work in tandem to 
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record body movements in real-time, accurately translating them into a dynamic 3D model, which 

is then reflected in the VR environment [40]. 

 

The research [30] specifically aimed to capture and analyze two fundamental motion postures: 

walking and walking up and downstairs, to assess the SlimeVR's accuracy and reliability in real-

world applications. By focusing on these common movements, the study provides valuable 

insights into the effectiveness of SlimeVR in capturing intricate human motions, thus validating 

its utility in VR and motion analysis domains. This analysis not only underscores SlimeVR's 

potential as a motion capture tool but also highlights its significance in enhancing VR experiences 

and applications requiring precise movement tracking. The findings of this research contribute to 

the broader understanding of motion tracking technologies' capabilities and applications in VR 

environments, offering a solid foundation for future advancements in the field. 
 

 
Figure 5: The SlimeVR trackers [37] 

 

 

 

2.3.7 Sony Mocopi 
 

Sony's Mobile Motion Capture technology [41] offers a portable solution that transcends traditional studio-

bound systems. Unlike conventional motion capture that necessitates a full-body suit with numerous 

markers and a studio filled with cameras, Sony's approach utilizes just six small, lightweight sensors 

attached to key points on the body: the head, waist, hands, and legs. This technology allows for the 

digitization of a person's movements in real-time, in any setting, without the need for specialized attire, 

making it highly versatile for use indoors, outdoors, or in any location. The core of this technology lies in 

its use of accelerometers and gyro sensors to capture the acceleration and angular velocity of a person's 

movements.  
 

These sensors, combined with advanced AI algorithms, enable the system to accurately estimate the 

position and posture of every joint in the body, including intermediate joints like elbows and knees where 

sensors are not directly attached. Sony's unique AI model is pre-trained on a vast array of human 

movements, allowing for precise full-body estimation and the correction of potential position errors that 

typically arise from integral calculations based solely on acceleration data.  
 

The process involves two primary steps: a) the estimation of reference joint positions, where the system 

digitizes human movement, by integrating acceleration and gyro sensor data, using integral calculation to 
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determine three-dimensional positions; Sony's AI model then estimates these joint positions, effectively 

correcting any accumulated position errors, b) the estimation of intermediate joint positions, due to the 

complex structure of the human body and the high degree of freedom at the joints, simple geometric 

calculations are insufficient for accurately determining the positions and postures of intermediate joints; 

Sony's AI model comes into play again, naturally interpolating joint positions based on training from 

diverse human movements, ensuring a comprehensive estimation of joint positions across the entire body. 
 

 

 
Figure 6: Sony mocopi capture trackers [41] 

 

 

 

2.3.8 Vive Trackers 1.0, 2.0 and 3.0 
 

The evolution of Vive trackers from versions 1.0 to 3.0 has marked significant advancements in 

virtual reality tracking technology. While specific academic papers detailing each version's 

nuances were not identified, insights into the latest iteration, the HTC VIVE Tracker 3.0, 

underscore the technological strides made in capturing human movements for full-body 

visualization in VR environments. The VIVE Tracker 3.0 is celebrated for its enhanced 

measurement accuracy, especially when utilized alongside recommended base station 

configurations and during activities characterized by lower pedaling frequencies. This tracker 

exhibits a commendable balance of precision in comparison to established systems like the Vicon, 

highlighting its utility in creating immersive and accurate VR experiences [42]. 

 
This technology ensures the accurate capture and nuanced interpretation of complex human motions, 

making it applicable across a spectrum of uses from ergonomic evaluations to the creation of immersive 
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gaming experiences. A particular study leveraging these trackers, in conjunction with an inverse kinematic 

model, offers detailed insights into joint angles, demonstrating their effectiveness in conducting ergonomic 

risk assessments [43]. This highlights the trackers' ability to produce precise and responsive VR 

interactions, essential in both entertainment and therapeutic settings. Additionally, their application in a 

comparative study that investigates the influence of virtual self-representation on spatial judgments further 

underscores their role in enhancing virtual interaction fidelity, thereby marking a significant contribution 

to the evolution of motion capture technology and its expansive utility [44]. 

 

 
Figure 7: Vive Trackers 1.0, 2.0, 3.0  

 

 

 

2.3.9 Vive Ultimate Trackers 
 

Advancing Towards a New Generation of Tracking Solutions, the Vive Ultimate Trackers [45] are an 

autonomous tracking devices, compact and easy to carry that eliminates the need for external base 

stations. The system works with obstructed views and requires a well-lit environment to function 

effectively. To overcome the drawbacks associated with prior technologies, a new approach 

known as autonomous tracking has been developed. This technique relies predominantly on 

Computer Vision, with an IMU serving as a supplementary component.  

 

This device gathers relative positioning data via IMU technology while also capturing spatial 

information through two wide-angle cameras integrated into the tracker (akin to those found on 

VR headsets). It then employs artificial intelligence to accurately determine the tracker's exact 

location in real-time. A notable feature is the capability to simultaneously accommodate up to five 

VIVE Ultimate Trackers, all connecting through a wireless receiver as compact as a standard USB 

dongle. By sidestepping the typical inaccuracies associated with IMUs and eliminating the need 

for setting up base stations, this self-tracking device offers users a more straightforward and 

precise way to achieve VR full-body tracking, thereby enhancing the intuitiveness and reliability 

of virtual reality experiences. 
 



UNIVERSITY OF WESTERN MACEDONIA 

SCHOOL OF SOCIAL SCIENCES AND HUMANITIES 

DEPARTMENT OF COMMUNICATION AND MEDIA 

POSTGRADUATE PROGRAM "DEVELOPMENT OF DIGITAL GAMES AND 
MULTIMEDIA APPLICATIONS" 

gamedev.uowm.gr - 21  
- 

 

 

 
Figure 8: HTC Vive Ultimate Trackers(called Self Tracking Trackers on Development) [45] 

 

 

2.4 Comparative Discussion  
 

A detailed analysis of VICON application and accuracy was performed by comparing the VICON 

system with the ViMove wireless motion sensor system [25], measuring lumbar region inclination 

motion in the sagittal and coronal planes. They found a clinically acceptable level of agreement 

between the two systems, indicating the VICON system's reliability for clinical and research 

applications. This study emphasized the VICON system's accuracy in capturing complex body 

movements, a critical factor in clinical diagnoses and treatment efficacy evaluations. 
 

Further, [46] evaluated the Kinect sensor against the VICON system for gait kinematics analysis. 

Through a Cartesian calibration procedure, they aimed to ensure that kinematics data were written 

in the same reference frame, and joint centers were consistently defined for both systems. Their 

findings validated the Kinect sensor for gait kinematics analysis, underscoring the VICON 

system's role as a gold standard in motion capture technology and its versatility in validating 

emerging, less expensive motion capture solutions. 

 

Additionally, the VICON system's integration with various software for different applications, 

such as autonomous drone flight, further illustrates its adaptability and precision. A study [47] 

highlighted how the VICON motion capture system was integrated with Paparazzi UAV autopilot 

software to enable autonomous flight of the AR Drone 2.0, demonstrating the system's utility 

beyond human motion capture and into robotics and unmanned vehicles. 

 

The comparison between Vive trackers and the Vicon system reveals insightful contrasts and 

similarities in their application for motion analysis, particularly in virtual reality (VR) 

environments. The VICON system is renowned for its precision and is often regarded as a gold 

standard in motion capture technology, whereas Vive trackers offer a more accessible, less costly 

alternative with substantial accuracy. 

 

[48] highlighted the agreement between Vive and VICON systems in monitoring lumbar postural 

changes, showing that Vive trackers are accurate within 0.68 ± 0.32 cm translationally and 1.64 ± 

0.18° rotationally when compared to the VICON system. This suggests that Vive trackers could 
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serve as a cost-effective alternative for motion analysis in clinical and possibly other settings, 

considering their accuracy and affordability. Another work [42] evaluated the HTC VIVE Tracker 

3.0 against the VICON system for full-body tracking in VR, showing that spatial differences 

between Vive and VICON were smallest at the lowest pedaling frequency of 80 rpm, with 

differences of 10.4 mm ± 4.5 mm at the knee and 11.3 mm ± 5.1 mm at the ankle, using the 

rectangular arrangement of base stations recommended by the manufacturer. Additionally, a 

custom tracking method based on RGB-D images [49] demonstrated a mean per joint position 

error of 11.7 mm compared to a VICON system, validating its accuracy for full-body tracking in 

VR. 
 

These studies underscore the evolving landscape of motion capture technology, where traditional, 

high-cost systems like Vicon are being challenged by more accessible solutions like Vive trackers. 

The Vicon system continues to be revered for its unmatched precision and reliability across 

diverse applications, from clinical research to animation and game development. Conversely, 

Vive trackers, with their ease of setup and lower cost, present a viable option for VR applications 

requiring good enough accuracy and flexibility, including VR gaming, rehabilitation, and sports 

training. 

 

While the Vicon system's precision is critical for applications demanding the highest levels of 

accuracy, the Vive trackers offer a practical solution for developers and researchers seeking to 

incorporate motion capture into their projects without the significant investment required by 

traditional systems. The choice between these systems ultimately depends on the specific 

requirements of the project, including the needed accuracy level, budget constraints, and 

application domain. 

 

This following Table 2: All tracker technologies analysissummarizes the comparison of the previous 

analyzed tracker technologies. [6] 
Tracker Tracking 

Technology 

Weight 

(grams) 

Battery 

Life 

Connection Method 

 

Base 

Station 
Setup 

Maximum 

Space 
Range 

Maximum 

Space 
Range 

Supported VR 

Devices 
 

VIVE 

Ultimate 
Tracker 

Inside-Out 

Tracking 

94 7 Wireless signal receiver, 

supports 2.4GHz and 5GHz 
wireless network 

connection 

No High 10 meters VIVE series 

(Plans to 
support other 

standalone and 

PCVR headsets 
in the future) 

VIVE 

Tracker 3.0 

Lighthouse 75 7.5 Through wireless signal 

receiver 

Yes High 10 meters Various 

Tundra 
Tracker 

Lighthouse 46-50 7-9 Through wireless signal 
receiver, can receive 

multiple trackers 

depending on the model 

Yes High 10 meters Various 

Sony 
Mocopi 

IMU 8 10 Through Bluetooth 
connection to smartphone 

No Low Bluetooth 
coverage 

range 

Various 

SlimeVR IMU 50 15 Through 2.4 Ghz Wi-Fi 
connection 

No Medium Wifi 
coverage 

range 

Various 

HaritoraX 

Wireless 

IMU 17 20 Bluetooth or wireless 

signal receiver 

No Medium Bluetooth 

coverage 
range 

Various 

Table 2: All tracker technologies analysis 
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Chapter 3  Embodiment in Full body Avatars 
 

In the realm of virtual body modelling and simulation, the use of a rigid multibody system is 

fundamental. This system, consisting of interconnected rigid links, is pivotal for creating lifelike 

human posture control in computer animations. By modelling these structures, developers can 

simulate realistic movements, crucial for a variety of usage, such as general use, animated 

storytelling. The architecture of multibody systems, characterized by hierarchical links and joints, 

mirrors the complexity and diversity of human motion, laying the groundwork for sophisticated 

simulation applications. 

 

Building upon these rigid multibody foundations, manipulators like robot arms and animated 

characters are further refined. The hierarchical nature of these models, where motion in one joint 

influence the subsequent ones, underpins the realistic animation of humanoid avatars in platforms 

like Unity. These avatars employ advanced animation techniques such as Motion Matching to 

achieve a level of realism and naturalness in movement, crucial for applications across 

entertainment, virtual reality, and educational tools designed for individuals with disabilities. The 

nuanced study of joint mechanics enhances the fidelity of these avatars, making them 

indispensable tools in digital human representation. 

 

 
Figure 9: Body with Skeleton armature  https://docs.unity3d.com/560/Documentation/Manual/BlenderAndRigify.html 

 

The intricate modelling of joints and body segments introduce the realm of Inverse Kinematics 
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(IK), a cornerstone in achieving realistic and dynamic posture and movement in virtual characters. 

IK techniques enable animators and developers to simulate complex motions with high accuracy, 

applicable across various fields from gaming to ergonomics and rehabilitation. Adjusting the 

degrees of freedom of the multibody links in articulated figures, allows this computational 

approach to bridge the gap between desired outcomes and mechanical constraints, enriching the 

animation and simulation landscape with lifelike virtual beings. 

 

Traditional Forward Kinematics (FK), compute the end position of the animated skeleton bones, 

of the rigged 3D model, by applying geometric transformations (transform, rotate, scale) on the 

skeleton bones. Such procedure is not suitable with full-body tracking systems, as the end 

positions of the bones are known from the tracking devices. If one decides to use FKs in such 

systems the animator would painstakingly adjust each joint in sequence from the base to the 

extremity. IKs simplify this process by allowing the end point to be defined first. This shift is 

particularly crucial for embodying characters with trackers, as it aligns virtual movements with 

physical motions captured in real-time. In the context of using trackers for motion capture or 

virtual reality (VR) applications, IK is indispensable. Trackers provide positional data from 

specific points on a user's body, but translating this data into smooth, naturalistic movement across 

the entire character requires the sophisticated calculations that IK offers. By focusing on the end 

goal - such as the position of a hand or foot - IK algorithms work backwards to determine the most 

efficient and realistic paths through which all connected joints should move. This ensures that 

virtual characters accurately mirror the complex, fluid motions of their human counterparts, 

enhancing immersion and interaction in digital environments. Moreover, IK facilitates the 

animation of characters interacting with objects or environments in a physically plausible manner. 

Whether it's reaching for an object, walking across uneven terrain, or simulating weight and 

resistance, IK provides the flexibility and precision necessary to achieve believable interactions. 

This capability is essential in creating more engaging and interactive VR experiences, where 

players expect their movements and actions to have a direct and realistic impact on the virtual 

world. 

 

The calibration of full-body tracking systems within VR environments further amplifies the 

realism and immersion in digital experiences. Ensuring accurate user-avatar synchronization is 

critical, particularly in VR applications where engagement and user experience are paramount. 

Despite the sophistication of IK solutions, the absence of standardized calibration methods poses 

challenges, necessitating innovative approaches to tailor animations and interactions to individual 

users. Techniques like Damped Least Squares (DLS) and learning-based models [6] offer 

pathways to enhanced motion accuracy, though they also highlight the balance between 

generalizability and personalized calibration in immersive technologies. 

 

Transitioning into the domain of Virtual Reality (VR) editors, these tools represent a paradigm 

shift in interactive design and content creation. By allowing users to directly manipulate and 

configure virtual spaces, VR editors unlock new potentials in architectural design, education, and 

game development. These editors not only democratize content creation by simplifying the 

development process but also enable novel pedagogical approaches and immersive training 

experiences. However, the innovation brought forth by VR editors also comes with its set of 

challenges, including accessibility and resource demands, underscoring the ongoing evolution in 

how we interact with digital environments. 

 
Each of these segments, from body modelling to VR editing, illustrates the multifaceted approach that is 

required to accurately embody, simulate user presence and interaction in the virtual world. The 
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progression from theoretical modelling to practical application in VR underscores the dynamic interplay 

between technology and creativity, paving the way for future advancements in digital simulation and 

interaction. 

 

 

3.1 Embodiment and animation of Humanoid Avatars 
 

Humanoid avatars in Unity are designed to offer realistic and natural animations, leveraging 

advanced techniques such as Motion Matching [50]. Research in Motion Matching for character 

animation, Pose Estimation for educational use, and De-anonymization in the Metaverse 

showcases innovations in VR and avatar technologies, particularly enhancing animations for more 

realistic avatar movements in virtual settings. Meanwhile, Jun Lee's research on real-time pose 

estimation caters to creating interactive avatars for metaverse home training, with significant 

implications for disabled or autistic individuals' education and assistance. This approach enhances 

versatility and smoothness in character animations, making them particularly suitable for various 

fields including entertainment, virtual reality, and the metaverse. These avatars are further 

optimized for interactive applications, enabling control over game avatars through movements 

using pose estimation technology [51]. This feature is beneficial for educational and assistance 

programs targeted at disabled or autistic individuals, promoting a more engaging user experience. 

Additionally, humanoid avatars provide a realistic movement signature that can be utilized in 

applications like de-anonymization attacks, showcasing their utility in both development and 

research contexts [52]. The research into de-anonymization attacks within the metaverse explores the 

security implications of virtual environments. Such studies highlight the dual-use nature of avatars, serving 

both development and research purposes, by demonstrating their application in areas such as security 

analysis and user identification 
 

 

3.2 Inverse Kinematics (IK) 
 

Inverse kinematics (IK) is a computational procedure used to determine the posture of an 

articulated figure or robot, by calculating the necessary adjustments to each joint's degree of 

freedom to achieve a specific task, such as reaching a designated position with an end-effector or 

tracker. This entails solving a system of nonlinear equations that relates the joint parameters to 

the position and orientation of the end-effector in space. 

 

For a two-link robotic arm as an example, the IK problem can be translated into finding the angles 

𝜃1 and 𝜃2   that position the end-effector at a target point p = (x, y). This involves solving the 

equations that relate these angles to the end-effector's position through the link lengths 𝑙1  and 𝑙2 

[53]. 

 

In IK, the positions of trackers are translated into joint angles or positions using mathematical 

models like the homogeneous coordinate transformation, which consider inter-joint dependencies 

and spatial relationships established by methods such as the Denavit-Hartenberg convention. 

These models allow the calculation of vector equations for the system, based on geometric 

relationships within the mechanism, accounting for variable length levers and additional 

constraints imposed by the mechanical structure [53]. Parallel computational algorithms extend 

these principles to multi-legged systems, leading to more efficient solutions through parallel 
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processing [54]. Recursive and modular algorithms, as with the application of DeNOC matrices, 

streamline the process for systems with multiple closed kinematic loops [55]. Closed-form 

solutions for the Gough-Stewart platform are derived from cartesian dynamic model elements, 

reducing the computational complexity further [56]. 

 

This approach to IK has proven essential not only in computer graphics and robotics but also in 

ergonomics, rehabilitation medicine, protein structure prediction, and other fields, due to its ability 

to accurately model complex, articulated structures in digital and physical environments. 

 
Calibration in full-body tracking and embodiment within virtual reality (VR) environments is 

paramount for achieving a high degree of accuracy and realism in user-avatar synchronization. It 

ensures that the virtual representations of users reflect their real-world movements accurately, 

enhancing the immersive experience and the efficacy of VR applications in fields such as 

rehabilitation, training, and entertainment. Despite the critical role of calibration, many widely 

recognized inverse kinematics (IK) solutions do not inherently include a calibration approach. 

This omission often  leads to discrepancies between a user's actual physical movements and the 

avatar's actions in the virtual space, potentially diminishing the user's sense of presence and the 

overall effectiveness of the VR application. 

 

  An exploration into various IK solutions, with a focus on the Damped Least Squares (DLS) 

method, reveals an effective strategy for lower-body motion accuracy. However, the reliance on 

DLS does not directly address individual differences in user physiology, which could lead to less 

personalized avatar movements [57]. While DLS provides a robust mathematical framework for 

solving IK problems, ensuring smooth and realistic motions, it inherently lacks a mechanism for 

personal body dimension calibration, which could limit its effectiveness in applications requiring 

high personalization. 
 

In contrast, a personalized VR motor rehabilitation system incorporates a calibration process 

tailored to the user's specific body metrics, using HTC Vive trackers. This approach significantly 

enhances the accuracy of motion tracking, crucial for rehabilitation purposes [58]. However, this 

method's dependence on manual input for calibration may introduce variability based on the user's 

ability to accurately replicate the required poses or measurements, potentially affecting the 

system's overall precision. 

 

The idea behind AvatarPoser is to use a method based on learning to figure out entire body 

positions from just a few motion cues. It enhances the accuracy of where arm joints are supposed 

to be by using optimization techniques combined with inverse kinematicst [57]. This innovative 

approach allows for a broader application scope by reducing the need for extensive motion capture 

equipment. Nevertheless, the reliance on predictive models may introduce inaccuracies due to 

model assumptions or limitations in capturing complex or highly individualized movements, 

thereby affecting the fidelity of the avatar's representation. 
 

Each of these methods highlights the trade-offs between accuracy, personalization, and the 

practicality of implementation within VR systems. The absence of a standardized calibration 

process in many IK solutions underscores the need for further research and development in this 

area, aiming to bridge the gap between generic IK algorithms and the nuanced requirements of 

personalized full-body tracking in VR environments. 
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Figure 10: T-pose made by participants for tracker calibration and avatar generation [59] 

 

 

3.3 IK calibration using VR editor 
 

Virtual Reality (VR) editors represent a transformative technology that allows users to intuitively interact 

with and calibrate virtual environments, which is particularly beneficial for full-body tracking 

applications. They enable the creation and manipulation of content in a simulated 3D space, offering an 

immersive and hands-on experience that traditional interfaces cannot match. For example, a VR editor 

can improve the calibration process for full-body tracking by providing real-time feedback and 

adjustments, addressing subjective issues such as personal body dimensions and movement styles [60]. 

This could enhance the precision of virtual representations and interactions within the environment. 

 

When it comes to calibrating full-body tracking in VR, subjective problems often arise as each user's 

physicality and perception of movement can differ. VR editors geared towards calibration could provide 

solutions such as individualized adjustment tools that account for these variances [61]. By integrating 

advanced calibration methodologies directly within the VR editor, users would be able to fine-tune 

tracking parameters to match their unique kinematic profiles, leading to more accurate and responsive 

virtual interactions. This self-calibration could potentially improve the overall user experience by 

reducing motion sickness and increasing the natural feeling of presence within the VR environment. 

 

VR editors also present the possibility of enhancing the calibration process by using statistical models 

and machine learning algorithms to predict and adjust for individual user behaviors [62]. Such 

approaches might include adaptive algorithms that learn from a user's previous interactions to 

continuously refine the tracking accuracy over time. Furthermore, the integration of multi-sensor data 

gathering within VR editors could offer comprehensive tracking capabilities, capturing not just the 

visible body parts but also inferring the positions of occluded limbs [63]. These methods promise more 

robust performance and adaptive tracking that can respond to dynamic changes in the user's environment 

and behavior, further reducing the subjective discrepancies in full-body VR tracking. 

 

 

3.4 Heuristic IK Solvers 
 

In the field of animation and computer graphics, simulating human body movements with high accuracy 

is a complex challenge. Two heuristic algorithms, FABRIK (Forward And Backward Reaching Inverse 
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Kinematics) and CCD (Cyclic Coordinate Descent), are particularly notable for their ability to efficiently 

tackle inverse kinematics problems. These methods provide innovative solutions for determining the 

positioning of limbs in three-dimensional space, which is crucial for producing realistic and smooth 

animations. This section will examine the principles and applications of FABRIK and CCD, highlighting 

their significant contributions to enhancing motion capture and character animation technologies. 

 

 

 

3.4.1 FABRIK 
 

The FABRIK (Forward And Backward Reaching Inverse Kinematics) IK solver algorithm [64], , 

presents a novel heuristic method that eschews traditional angle rotation calculations in favor of 

a more efficient positional approach. This method relies on iterative forward and backward 

adjustments of joint positions within a chain, minimizing system error by focusing on finding 

points along lines between joints. Initiated from the chain's end effector and progressing towards 

the root (and vice versa), FABRIK calculates the positions of each joint based on their distances 

to subsequent joints, significantly reducing computational time and complexity. 

 

A key aspect of FABRIK is its ability to determine the reachability of a target by comparing the 

total length of the joint chain against the distance to the target. If the target is within reach, 

FABRIK performs two main stages in an iteration: first, adjusting joint positions from the end 

effector towards the root, and second, from the root back towards the end effector, ensuring the 

manipulator base remains unchanged if required. This approach allows FABRIK to achieve closer 

approximations to the target position with each iteration, terminating when the end effector is 

sufficiently near the target or when a maximum number of iterations is reached without significant 

improvement. 

 

Traditional Inverse Kinematics (IK) solvers, which are used for calculating the necessary joint 

parameters that enable an articulated figure or a robot to arrive at a specific target position and 

orientation, encompass a variety of methods. One widely employed strategy is the inversion of 

the Jacobi matrix, which is applied to obtain numerical solutions in IK problems, typically within 

the context of robotic arms [65]. Iterative algorithms are also prevalent, delivering solutions for 

complex models, such as humanoid arms with multiple degrees of freedom, by refining the 

approximations until the end-effector's calculated position closely matches the target position 

[66]. 

 

Another method is the normal form approach, which provides benefits by effectively dealing with 

kinematic singularities encountered in non-redundant robot mechanisms, superior to singularity-

robust and null-space based techniques [67]. Analytical methods, including ANFIS, offer exact 

solutions by utilizing artificial neural networks and fuzzy logic, which attain a balance between 

computational efficiency and error resilience, particularly for robots like the PUMA 560 [68]. 

 

Particle Swarm Optimization (PSO) is a heuristic-based method that exploits swarm intelligence 

to explore the solution space for IK problems, adjusting parameters such as inertia weights and 

swarm sizes to ensure convergence to the optimal solution [69] .Furthermore, neuro-fuzzy systems 

have been tailored to solve inverse kinematics in robot manipulators like the Denso 6-DOF, 

cementing the union of traditional mechanics with modern computational intelligence [70] . 

 

In comparison, FABRIK (Forward And Backward Reaching Inverse Kinematics) is an alternative 
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iterative algorithm that solves IK problems by reaching both forward towards the end-effector 

target and backward towards the base of the kinematic chain. It's known to converge faster and is 

computationally efficient, making it advantageous for real-time applications like virtual reality 

and complex manipulations where traditional IK solvers might struggle due to computational load 

and convergence difficulties [71]. FABRIK-R, an extension of FABRIK, excels in handling highly 

constrained situations, providing a robust solution to singularities that traditional methods may 

not effectively address [72]. 

 

FABRIK's simplicity and efficiency stem from its direct handling of joints as points in space, 

avoiding complex mathematical operations often associated with traditional IK solvers.. This 

makes FABRIK particularly effective for real-time applications, including motion capture and 

animation of multibody systems with multiple end effectors. By extending the algorithm to 

accommodate models with various kinematic chains and constraints, FABRIK can solve complex 

IK scenarios with improved accuracy and reduced computational overhead, offering a versatile 

and powerful tool for animators and developers in creating realistic and dynamic character 

movements [71]. The FABRIK solver has even been mentioned in the literature concerning virtual 

reality applications in mental health, denoting its versatility and potential for wide-ranging VR 

applications [73] 
 

 
Figure 11: FABRIK: a fast, iterative solver for the inverse kinematics problem [64] 

 

 

 

3.4.2 CCD 
 

The Cyclic Coordinate Descent (CCD) algorithm [74] is an iterative method designed for solving 

inverse kinematics (IK) problems by adjusting the positions and orientations of joints in a chain 

to move the end effector as close as possible to a target. The process involves sequentially 

transforming each joint variable to minimize discrepancies in both position and orientation, with 

the distance between the end effector and the target being recalculated after each iteration to 

determine if the desired proximity has been achieved. To prevent the algorithm from entering 

endless loops in pursuit of unattainable targets, a maximum iteration limit is established. This 

procedure is repeated for each joint in the chain, working backward from the end effector to the 

root, ensuring all joints are updated in a single iteration.  
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The algorithm's stability is noted, although it is also mentioned that CCD can produce oscillations 

and discontinuities due to significant angle rotations. Since CCD operates on a local scale, 

adjusting one joint at a time, the implementation of global constraints is a  challenging task. This 

limitation can lead to unrealistic movements, particularly in models of highly articulated 

characters where maintaining plausible motion is critical. Advantages of the CCD algorithm 

include its simplicity and effectiveness in real-time applications, making it suitable for interactive 

environments. The CCD IK algorithm is known for its suitability for real-time applications, 

including virtual reality (VR), due to its speed and efficiency. In particular, the CCD algorithm 

can be optimized to take advantage of high-speed GPU parallel programming, allowing for 

significantly faster computations compared to CPU-based processing. This optimization can 

generate virtual view images up to 10 times quicker than traditional CPU processing, which is 

highly beneficial for real-time VR applications [75]. Moreover, other implementations of the CCD 

IK algorithm have been able to achieve real-time performance on hardware like embedded CUDA 

GPUs and ARM CPUs, reaching speeds up to 46 FPS at VGA image resolution, demonstrating 

that it is well-suited for interactive VR environments [76]. 

However, its difficulty with global constraints and the potential for generating non-smooth 

motions underscore the need for careful application and possibly supplemental solutions or 

adjustments when using CCD in complex animation or robotics projects. 
 

 
Figure 12: Multiple end-effectors (last end-effector updated using CCD is primary) 

 

 

3.5 IK for Unity’s Animation Rigging Package 
 

Animation Rigging Package [77] offers a tool for creating and editing character movements, 

particularly useful in VR game development, as it allows movement creation based on inverse 

kinematics (IK).  Unity's Animation Rigging toolkit equips users with a collection of tools that 

enable the procedural manipulation of character animations directly within Unity. This 

innovative package empowers users to craft custom rigging setups that can dynamically alter 

animations post-processing. It's an interactive system that not only provides extensive tutorials 

to facilitate learning but also allows for further customization and functionality through C# 

scripting. By enhancing Unity's own animation capabilities, the package serves as a versatile 

option for creating intricate, responsive, and modifiable animations that can be adjusted in real-
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time during gameplay [78]. 

 

The implementation of the Animation Rigging package in Unity contains the addition of C# 

Graphics Jobs starting from Unity version 2018.2 This feature extends the capabilities of 

animation programming by utilizing the C# Job System, enabling developers to write 

multithreaded code that significantly improves performance through parallel processing.  ,C# 

Graphics Jobs are designed to run custom scripts at particular moments within the PlayableGraph. 

This feature takes advantage of multicore processors to boost animation quality and performance, 

ensuring operations remain safe across different threads. The PlayableGraph itself is a structure 

used in Unity to manage and play animations, where these custom jobs can be inserted to optimize 

how animations are processed and displayed 

 

The application of C# Graphics Jobs [79] spans various domains, from achieving character 

animations to creating custom animation algorithms and mixers. This flexibility allows for 

detailed manipulation of character anatomy, such as implementing foot-locking features or 

dynamically animating character tails without traditional animation clips. Furthermore, it enables 

the creation of specialized LookAt functionalities targeting specific bones. The core of this system 

is the AnimationScriptPlayable and IAnimationJob structs, which allow for the manipulation of 

animation data within the PlayableGraph. The animation processing is thoughtfully divided into 

two passes—ProcessRootMotion for root transform motions and ProcessAnimation for all other 

animation aspects—providing a structured approach to animation processing. 

 

The significance of multithreading in this context cannot be overstated. By allowing animation 

tasks to be parallelized, C# Graphics Jobs alleviate the computational load on the main thread, 

facilitating smoother and more responsive gameplay. This parallel processing is crucial for the 

Animation Rigging package, as it enables the handling of complex, real-time animations without 

compromising game performance. The ability to manually process input streams and control the 

flow of animation data offers developers the opportunity to optimize their animation systems 

efficiently, tailoring them to the specific needs of their projects. 
 

Incorporating C# Graphics Jobs into the Animation Rigging package thus represents a significant 

advancement in Unity’s animation capabilities. It not only broadens the scope of what developers 

can achieve with animations but also enhances the overall performance and responsiveness of 

animated characters and objects within the game environment. My thesis delves into the technical 

intricacies of this integration, underscoring its impact on the effectiveness of the Animation 

Rigging package and its contribution. This detailed analysis sheds light on the practical benefits 

of multithreading in animation programming and its pivotal role in the evolution of animation 

systems within Unity. 

 
A critical feature within this package is the Bone Renderer component, which, when activated 

makes the skeletal structure of the character visible within the editor. This visibility is crucial for 

direct manipulation and customization of the bones' appearance. The Bone Renderer  allows the 

list of all bones associated with a character or object and adjustment of their shape, color, and size.  

 

To effectively utilize the components provided by the Animation Rigging package in Unity, a 

structured approach is necessary, starting with the creation of a new rig that supplements the 

original animation rig, which facilitates the foundation of an additional layer of animation control. 

The recommendation to instantiate a new Rig GameObject for each new constraint underscores 
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the flexibility this system offers, allowing animators to selectively override aspects of existing 

animations without disrupting the original animation framework. 

 

Upon establishing the first Rig, Unity automates the inclusion of a Rig Builder component on the 

character's root GameObject. This critical component serves as the central hub for managing 

multiple Rigs, each of which can be individually toggled on or off within the Rig Builder's Rig 

Layer component. This layering mechanism provides a granular level of control over animation 

behaviors, enabling precise adjustments and experimentation without permanent alterations to the 

base animation. 

 

To apply specific constraints, a GameObject is designated as a child under the Rig object, serving 

as the anchor point for the constraint component. Essentially, you can assign one component to 

act as a guide or controller for another, enabling targeted and refined animation behaviors. This 

method ensures animations move smoothly and accurately, according to the setup defined within 

the rigWhile source objects, such as targets, are positioned, for organizational clarity, within the 

same GameObject hierarchy, Unity's flexible system allows for alternative configurations to 

accommodate diverse animation requirements and creative preferences. 

 

 
 

3.5.1 Constraint for Hands and Feet 
 

3.5.1.1 Two Bone IK Constraint 

 

The Two Bone IK Constraint [80] is particularly useful for animating articulated structures like 

arms and legs, which typically consist of three main joints: the upper joint (shoulder/hip), middle 

joint (elbow/knee), and end joint (hand/foot). This constraint applies inverse kinematics to these 

three joints, enabling the end effector (the hand or foot) to reach a specified target position and 

orientation. By doing so, it automatically calculates the appropriate angles for the middle and 

upper joints to achieve this, resulting in naturalistic movement patterns that would be cumbersome 

to animate manually. The "target" in an IK setup refers to the final position and orientation that 

the end effector (the terminal part of the chain, such as a hand, foot, or any other point that follows 

the movement) aims to reach. The IK system adjusts the rotations of all joints in the IK chain to 

ensure that the end effector matches the target's position and rotation as closely as possible. In 

essence, the target is the goal for the end effector's movement. The "hint," on the other hand, is an 

optional aid used by certain IK solvers to guide the bending direction or orientation of the IK 

chain, primarily to resolve ambiguities in how joints should bend. For example, in a human leg or 

arm, the hint helps to ensure that the knee or elbow bends in the correct direction. The hint is 

typically used in chains with three or more joints and serves to improve the naturalness and 

predictability of the joint orientations throughout the IK calculations. 
 

 

 

3.5.1.2 Multi-Parent Constraint for the Shoulder 

 

Using the Multi-Parent Constraint [81] on shoulder bones of an articulated structure allows better freedom 

of movement  and a nuanced control of shoulder movements, by blending influences from multiple parent 

objects, that ultimately provide natural animation. The Multi-Parent Constraint allows an object, in this 

case, the shoulder joint, to have its transformation (position, rotation, and scale) influenced by more than 
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one parent object. This means that the shoulder can simultaneously follow the movements and orientations 

of multiple parts of the body, such as the spine, chest, or even the head, depending on the desired animation 

effect. 

 

 
Figure 13: The following illustration represents a schematic overview of the interdepencies between the Animator and the 

Animation Rig components [77] 

The comprehensive study [78] , meticulously outlines the procedural methodology for implementing the 

package, from basic setup to advanced rigging techniques, such as creating custom rigs that can 

dynamically adapt to various game scenarios and player interactions. 

 

A significant methodological highlight is the package's reliance on Unity's constraint system, which allows 

animators and developers to define more complex relationships between different parts of a character's 

body. This system enables the creation of procedural animations that respond to game physics and user 

inputs in real-time, presenting a versatile approach to animation rigging beyond the traditional keyframe 

method. 

 

However, the same studyimplicitly underscores the limitations inherent in the Unity Animation Rigging 

package. One notable challenge is the requirement for a thorough understanding of Unity's constraint-based 

rigging system, which can present a steep learning curve for developers and animators new to the platform. 

Additionally, while the package offers significant flexibility and control over animation dynamics, there is 

an implicit trade-off in terms of setup and configuration time, particularly for complex characters or 

animations requiring high levels of precision and customization. 
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 Moreover, the research indicates that although the Animation Rigging package offers robust capabilities, 

its success largely depends on the user's proficiency in incorporating it into the wider array of Unity tools 

and functionalities. This encompasses knowledge on optimizing rig setups for better performance, which 

becomes particularly important in demanding scenarios like VR or mobile gaming, where achieving a 

smooth frame rate is essential This includes an understanding of how to optimize rigging configurations 

for performance, especially in resource-intensive applications such as VR or mobile gaming, where 

maintaining a high frame rate is critical. 

 

 

3.6 Notable IK solvers  
 

3.6.1 SAFullBodyIK 
 

SAFullBodyIK (Skeleton Animation Full Body Inverse Kinematics) [82] is a complex system designed to 

provide accurate and realistic full-body tracking and animation in virtual environments, particularly within 

the Unity game engine for VR applications. It focuses on enhancing VR and animation experiences. It’s 

code defines a comprehensive IK system, structuring the human body into various bone and effector 

classes, including specific categories for body, head, arms, legs, and fingers. It employs a full-neural 

approach to blend 2D poses from a webcam with upper-body positions from VR headsets into accurate 3D 

poses.  It's particularly noted for its ease of setup, requiring minimal calibration, and its compatibility with 

current VR applications that support full-body tracking on SteamVR. 
 

 
Figure 14: SAFullBodyIK:  How to setup full body IK with Unity [82] 

 

 
 

3.6.2 Final IK 
 

The Final IK [83] plugin for Unity emerges as a comprehensive solution for implementing inverse 

kinematics in video game development, with a particular focus on animating biped characters. This plugin 

is distinguished by its inclusion of FullBodyBiped IK (FBBIK) and LookAt IK components. The FBBIK 

component is instrumental for animating humanoid models, enabling the association of avatars with 

detailed skeletal mappings that define the roles of various model parts such as legs, arms, head, and body. 
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This facilitates a streamlined animation process, significantly reducing the complexity typically associated 

with rigging and animation in Unity . 

 
An essential aspect of Final IK is its initial setup phase, which can be executed manually or automatically, 

leveraging auto-detection functions for efficient bone segment matching. This capability simplifies the 

preparation process, allowing developers to bypass extensive rigging setups. The plugin supports the 

configuration of kinematic chains—critical for defining the movement and constraints of body parts—with 

the body acting as the root chain from which limbs extend. This hierarchical structure enables precise 

control over limb movements and orientations, including the application of bend constraints for joint 

angles. Final IK’s auto-detection function automatically identifies and sets up effectors for various body 

parts, facilitating the manipulation of end-effectors like hands and feet, as well as mid-body and multi-

effectors. The differentiation in effector types underscores the plugin’s versatility, offering nuanced control 

over character postures and movements. For instance, the body effector, as a multi-effector, simplifies body 

positioning by influencing thigh effectors, enhancing the naturalism of animations.  

 
Target definition is another critical feature, allowing developers to specify the goals effectors should 

achieve, with adjustable rotation and position weights to modulate effector behavior. This flexibility 

ensures that multiple effectors can be active concurrently, adapting to the dynamic requirements of game 

scenes. Despite its comprehensive features, Final IK necessitates careful verification of limb rotations and 

bend directions to ensure the naturalness of movements. Incorrect configurations may require adjustments, 

either through minor segment rotations or scripting interventions, highlighting the importance of precise 

setup for optimal results. Additionally, Final IK offers parameters like pull, reach, push, and spine stiffness 

to fine-tune the interaction between different body parts, enhancing the realism and responsiveness of 

character animations. The LookAt IK component further complements these capabilities by directing bone 

sets, such as the spine and head, towards specific targets, contributing to the immersive quality of character 

interactions.  
 
The VRIK component from Final IK, is an advanced inverse kinematics solution tailored for animating 

virtual characters within the Unity engine. It stands out for its specialized focus on bipedal characters, 

facilitating the animation of human-like models with high precision and minimal setup. VRIK automates 

the process of matching the character's limbs to targets in the 3D space, allowing for realistic and dynamic 

movement animations. This component simplifies the complexity typically associated with rigging and 

animating humanoid avatars by offering automatic detection and alignment of bone segments to predefined 

targets, such as hands, feet, and look-at points, ensuring that the avatar's movements are both natural and 

responsive to the environment. VRIK's capability to manage full-body movements and interactions makes 

it particularly useful for developers aiming to create immersive VR experiences, interactive games, or 

simulations where character realism and responsiveness are paramount. Its integration within the Final IK 

package empowers creators with the tools to efficiently animate and control character poses, movements, 

and interactions, significantly enhancing the animation workflow in Unity projects. 
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Figure 15: FinalIK by RootMotion [83] 

A comprehensive analysis  [84] was conducted to evaluate the performance of the VRIK solver from the 

FinalIK package within a virtual motion capture system, specifically tailored for use in virtual reality 

applications with Unity. Utilizing a simulated environment based on HTC Vive trackers and IMUSim [84] 

for tracking, the research aimed to discern the accuracy and limitations of VRIK in replicating full body 

movements, particularly for walking and dancing animations. It was found that while VRIK is fast and 

widely used, significant limitations emerged when trackers for certain joints, like the hips in walking 

animations or elbows in dancing animations, were omitted. The absence of a hip tracker, for instance, led 

to substantial inaccuracies, revealing a systemic flaw where the hip joint would inaccurately revert to its 

initial position due to its dependency on the positioning of other body parts. Similarly, the exclusion of 

elbow trackers in dance animations resulted in a decrease in capture quality, underscoring the necessity of 

bend goals for precise arm movement replication. These findings underscore the critical need for 

comprehensive tracker setups to ensure the fidelity of captured motions, highlighting the solver's 

limitations in handling complex animations without adequate tracking support. This study provides 

valuable insights into the constraints of using VRIK for full body tracking in VR, emphasizing the 

importance of proper tracker configuration to achieve accurate and realistic motion capture results. 

 

Another full body IK  (OcAcO) system developed [85] for VR applications, which calculates upper body 

movements based on head and hand positions. Although this system demonstrates innovative ways to 

determine neck forward direction and waist positioning depending on the user's stance, it encounters 

challenges with accurate neck or shoulder placement. This difficulty suggests a potential limitation in the 

approach itself or its implementation. 

 

 

 

3.6.3 Mecanim IK 
 

Unity's Mecanim animation system [86] stands as a cornerstone for animators and developers seeking a 

streamlined workflow for character animation within the Unity engine. It employs a sophisticated Animator 

interface, which orchestrates animations through a state machine, facilitating intuitive control over 

animation sequences with transitions and event triggers. At its core, Mecanim provides an inverse 

kinematics (IK) solution specifically tailored for humanoid characters, necessitating a correctly configured 

avatar to function optimally. This IK functionality operates by dynamically adjusting the positions and 
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rotations of character joints in real-time, ensuring that end effectors, such as hands and feet, reach target 

positions and orientations specified by the animator. This allows for more natural and contextually 

appropriate character movements, such as adjusting a character's foot to rest properly on uneven terrain or 

reaching for objects in a realistic manner. However, despite its utility, Mecanim IK's effectiveness is 

bounded by its design constraints, primarily its exclusive compatibility with humanoid characters. This 

specialization inherently limits its application to avatars conforming to a human-like structure, specifically 

those with no more than four limbs and limbs comprising up to three joints each [87]. Such a limitation 

significantly narrows the scope of Mecanim's IK utility, precluding its use for animating characters with 

complex or unconventional anatomies, like creatures with multiple arms or segmented bodies. This 

delineation underscores the necessity within the Unity ecosystem for more adaptable IK solutions capable 

of accommodating a broader spectrum of character forms, to ensure animators and developers can achieve 

precise and lifelike animations across a diverse range of virtual entities. The current limitations of Mecanim 

IK, while providing a robust solution for humanoid avatars, spotlight the need for innovation and expansion 

in Unity's IK capabilities to fully harness the creative potential of 3D animation in gaming and interactive 

media. 

 
Figure 16: Mecanim IK by Unity [86] 

 

 

 

3.6.4 Cinema IK 
 

CinemaIK [88], available on the Unity Asset Store, enriches Unity's ecosystem by facilitating the animation 

of humanoid characters with an intuitive and accessible interface. This asset integrates closely with Unity's 

Mecanim system, leveraging its inverse kinematics (IK) capabilities tailored for humanoid avatars. Despite 

the simplicity and user-friendliness offered by CinemaIK's panel, which allows for precise control over 

characters' gazes and limbs through independent objects, it inherits the fundamental limitation of 

Mecanim's IK solutions: the restriction to humanoid characters that do not exceed four limbs with up to 

three joints each. Recognizing the constraints posed by this limitation, the development of an asset inspired 

by CinemaIK's streamlined interface was undertaken, aiming to transcend the skeletal restrictions by 

implementing custom solvers that accommodate a wider variety of character anatomies. This initiative 

reflects a deliberate effort to extend the flexibility and applicability of IK solutions within Unity, making 

it possible to animate characters beyond the traditional humanoid framework. The CinemaIK asset itself 
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comprises several key components: the main CinemaIK component, the IKData class for storing inverse 

kinematic solutions such as poses and weights, and the CinemaIKAnchor, which serves as an animator 

component anchor to relay IK information from the main component to the IKData script. Integration with 

Unity's Mecanim requires enabling the IK Pass on the Animator and adding the CinemaIK component to 

a new empty GameObject for optimal setup. The animator of the target character and the limbs' targets are 

configured within the CinemaIK interface, complete with sliders to adjust the influence on the kinematic 

chain. 

 

To capture movements, the target GameObject is added to Unity's Timeline, creating a new Animation 

Track. Existing animations can be modified or new ones crafted within this framework, utilizing the 

CinemaIK component added to the Timeline to record character movements with keyframes. This 

workflow not only underscores CinemaIK's synergy with Mecanim and Unity's Timeline for creating 

complex animations and cinematic content but also highlights the broader ambition to overcome the 

inherent skeletal limitations through innovation and the development of new IK solutions. 

 

 
Figure 17: Cinema IK [88] 

 
 

 

3.6.5 Easy IK 
 

The EasyIK package [89] for Unity is an implementation of the FABRIK inverse kinematics solver tailored 

for developers working on VR and full body animation projects. It’script emphasizes a procedural approach 

to IK, allowing for dynamic adjustment of character limb positions towards a specified target, making it a 

potentially effective tool for real-time applications such as VR. The script is configured to handle a 

predefined number of joints and performs iterative calculations to align these joints with an IK target, 

utilizing a specified number of iterations and a tolerance threshold to determine the precision of the 

alignment. 

 

Key features include the ability to define a pole target for controlling the orientation of intermediate joints, 

like elbows or knees, within a three-joint chain, which is crucial for achieving natural limb positioning. 

Additionally, it offers debugging options to visualize joint positions, rotations, and the pole target 

alignment through Unity's Gizmos, enhancing the development and troubleshooting process. 

However, the script's requirement for manual setup on each joint and the effector script attachment on each 

bone might introduce complexity, making it less less straightforward for programmers  unfamiliar with IK 

setups This could potentially limit its programmer-friendliness, particularly for complex rigs or those new 

to IK concepts. Despite this, the script's performance in VR environments, where real-time computation 

and responsiveness are critical, could be seen as a strong point due to FABRIK's efficiency in solving IK 

problems with lower computational overhead compared to more traditional angle-based solvers. 



UNIVERSITY OF WESTERN MACEDONIA 

SCHOOL OF SOCIAL SCIENCES AND HUMANITIES 

DEPARTMENT OF COMMUNICATION AND MEDIA 

POSTGRADUATE PROGRAM "DEVELOPMENT OF DIGITAL GAMES AND 
MULTIMEDIA APPLICATIONS" 

gamedev.uowm.gr - 39  
- 

 

 

 

 

 
Figure 18: Easy IK [89] 

 
Figure 19: Fast IK Root for the IK seems complicated [89] 

 

 

3.6.6 Fast IK 
 

The provided package [90] represents an implementation of the FABRIK algorithm within a Unity 

environment, environment, bearing functional similarities with EasyIK package. It operates by 

dynamically adjusting a chain of joints to meet a specified target position, allowing for intuitive setup and 

control of IK systems, particularly in scenarios requiring precise manipulation of character limbs. 

 

Analyzing the script reveals its structured approach to solving IK problems. It initializes by calculating 

bone lengths and setting up arrays to hold joint positions and rotations, thus preparing the system for the 

iterative solving process. One notable strength of the scriptit uses, is its adaptability to chains of varying 

lengths, as it accommodates any chain length specified by the user. This flexibility makes it applicable to 
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a wide range of use cases, from simple arm setups to more complex structures like tails or tentacles. The 

incorporation of a pole target provides additional control over joint orientations, helping to prevent 

unnatural bending and twisting that can occur in IK systems. 

 

However, the script's effectiveness is contingent upon the manual setup of its parameters, including the 

chain length and target positions, which could pose challenges for users unfamiliar with IK concepts or 

those working with highly complex character rigs. Additionally, while the script includes a mechanism to 

handle scenarios where the target is unreachable by stretching the chain towards the target, this might result 

in unrealistic movements, highlighting a potential limitation in handling edge cases. 

 

Another point of interest is the commented-out section related to a different solver, suggesting that the 

script was intended to support multiple IK solving techniques, though these capabilities are not fully 

implemented or integrated into the main functionality. This hints at potential extensibility but also indicates 

a current focus on FABRIK without leveraging the benefits other solvers might offer. 

 

 
Figure 20: Fast IK joints and movement [90] 

 
 

3.7 Comparative Discussion 
 

The comparative analysis of various Inverse Kinematics (IK) packages presented here is grounded in 

assessments drawn from a collection of paper references, alongside a thorough examination of each 

package's source code, except the commercial ones. This analysis considers several critical metrics to 

gauge the suitability and functionality of each IK solution for virtual reality applications. A pivotal factor 

in this assessment isprogrammer-friendliness, defined here as the capacity to control the IK system and 

its corresponding effectors through a singular script interface, which streamlines the integration and 

manipulation process for developers. Another key aspect evaluated is whether these packages offer a 

dedicated VR IK editor, which can greatly facilitate the fine-tuning of avatars and objects within a VR 

setting. Additionally, the availability of the package at no cost is a vital mjaetric, significantly impacting 

accessibility for a wider range of users, from indie creators to educational purposes. 

While some packages, like SAFullBodyIK, are lauded for their solver's VR compatibility and cost-free 

access, they may lack in areas such as ease of use and the availability of a VR editor, which can affect the 

overall user experience.  
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Conversely, no solutions incorporate these user-friendly features and tools, with a comprehensive VR 

editor and calibration tools, thta could offer a more intuitive and accessible approach for developers, 

albeit potentially at a cost. 

 

In contrast, both Final IK and SAFullBodyIK exhibit limitations in providing an IK solver for the chain 

from head to shoulder, necessitating external inputs for ground truth shoulder locations to reduce 

complexity. These solvers employ parametric models to deduce elbow positioning from the hand position 

relative to the shoulder, yet neither method accounts for hand orientation, which could prevent unnatural 

wrist bends. The comparison of these IK solvers, using publicly available motion capture data covering a 

range of motions typical in VR games, reveals that specialized solvers can achieve lower errors in joint 

positioning than FABRIK, particularly for the shoulder and elbow joints. This suggests that while 

FABRIK's avoidance of joint limits contributes to its efficiency, incorporating detailed knowledge of 

typical joint movements could enhance accuracy. The analysis further indicates that methods relying on 

ground truth for shoulder positioning tend to perform better in datasets with diverse motions, highlighting 

the importance of comprehensive solutions that consider the entire kinematic chain for achieving high 

fidelity in character animation. The following Table 3: IK Solutions analysis on their Solver, Usage for 

VR, User Freindly, VR Editor, Calibration and if they are free.analyzes each IK solution discussed in the 

previous sections based on their technologies. 

 

IK Package Solver Use for 

VR 

User 

Friendly 

VR 

editor 

Calibration Free 

Animation 

Rigging 

Package 

FABRIK Yes No No No Yes 

Final IK FABRIK Yes 

 

Yes No No No 

SAFullBodyIK FABRIK Yes No No No Yes 

Cinema IK FABRIK Yes 

 

Yes No 

 

No 

 

No 

FastIK FABRIK Yes 

 

No No 

 

No 

 

Yes 

FreeIK FABRIK Yes 

 

No No 

 

No 

 

Yes 

Mecanim IK FABRIK Yes 

 

No No 

 

No 

 

Yes 

Table 3: IK Solutions analysis on their Solver, Usage for VR, User Freindly, VR Editor, Calibration and if they are free. 
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Chapter 4 JARVRIKS (Just Another Robust VR IK Solution) IK 
 

Maintaining immersion in VR simulations is paramount, necessitating swift and optimized computations 

to ensure seamless experiences. This imperative extends to full-body tracking and embodiment, which 

often entail complex inverse kinematics (IK) computations. To preserve immersion, these heavy-load IK 

calculations must be executed with minimal latency, ensuring that users' movements are accurately 

reflected in real-time within the virtual environment. Achieving this requires a delicate balance between 

computational efficiency and precision, where the speed of calculations is optimized without 

compromising the fidelity of tracking. By prioritizing fast and efficient IK solvers, VR systems can uphold 

immersion while empowering users with responsive and lifelike interactions in their virtual surroundings. 

 

JARVRIKS (Just Another Robust VR IK Solution), aims to advance the state of the art with an Inverse 

Kinematics (IK) multi-threading solution for Unity VR simulations. For users to fully experience the 

advanced capabilities of full-body tracking within VR mode, it is imperative to utilize trackers compatible 

with SteamVR-OpenXR. This requirement stems from JARVRIKS' dynamic search for connected trackers, 

ensuring that every movement is accurately captured and rendered within the virtual environment. The use 

of C# Graphics Jobs multi-threading will ensure optimal performance in VR environments. JARVRIKS is 

designed to significantly enhance user accessibility and interaction with IK configurations, introducing a 

comprehensive yet intuitive panel in VR that allows for advanced customization, including features such 

as pull weight for each IK target, providing an extra level of detail for the strength of attracting an avatar's 

body part to its target position, like a magnet. A higher pull weight means the body part will closely follow 

the target, while a lower weight allows more freedom and natural movement deviation from the target.  

 

Additionally, JARVRIKS incorporates a calibration method that utilizes a uniform scale adjustment of the 

avatar ensuring an accurate representation of the user's physical dimensions in the virtual space. To address 

common issues with avatar limb distortions, particularly at the wrists, JARVRIKS will integrate a 'wrist 

twister' mechanism, preventing unnatural wrist breaks and enhancing the realism of character movements. 

Furthermore, JARVRIKS will feature an in-VR IK editor, allowing users to seamlessly configure and 

calibrate their avatars directly within the VR environment. This editor will facilitate automatic target 

attachment to controllers or trackers for full-body tracking, streamlining the setup process for a wide range 

of VR applications. In that respect, the users will be able to customize their avatar in VR, through a custom-

implemented user-friendly component editor. By combining these features, JARVRIKS aims to set a new 

extension for IK systems in VR, offering an unprecedented level of control to developers, and ease of use 

and enhanced presence and immersion for virtual user experiences.  

 

As we dive into the implementation of JARVRIKS, three key developments are set to elevate the immersive 

experience: the FullBodyIK implementation for the avatar movement, the Animation Job integration 

describing the performance of the IK through mathematical computations, and the VR IK Editor for 

customization of the avatar directly within the VR environment.  

 

The `JarvriksFullBodyIK` class is a sophisticated framework designed for creating immersive virtual 

reality (VR) experiences by providing realistic full-body tracking and inverse kinematics (IK) solutions. 

This system is constructed using a modular approach, incorporating various classes that interact to simulate 

accurate and responsive movements of a virtual avatar corresponding to the user's physical actions. 

  

At the heart of this system is the `JarvriksFullBodyIKJob` class, which is responsible for the heavy lifting 

of the IK computations. It holds references to `GeneralEffectorHandle` and `LimbJoints` instances, 

representing different parts of the avatar's body, such as hands, feet, and their respective limb segments. 

This class processes animation data and updates avatar poses on a frame-by-frame basis, ensuring that the 

virtual representation mimics the user's movements with minimal latency. The computation of movements 

is further refined through parameters like stiffness and pull iterations, offering fine control over the rigidity 

and fluidity of motions. 
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`EffectorData` and `AnimationInput` classes serve as data structures that store detailed configurations for 

each effector and the mappings between user inputs and animation triggers, respectively. These 

configurations determine how different body parts should move and react to external inputs, making the 

system adaptable to various gameplay mechanics or interactive scenarios. 

  

The `JarvriksFullBodyIK` class acts as the central hub, linking the IK logic with Unity's animation system. 

It interfaces with Unity's `Animator` and `PlayableGraph` to integrate the IK computations seamlessly 

into the game's existing animation pipeline. Through this class, developers can adjust IK settings, manage 

effector targets, and apply uniform calibration techniques to align the avatar's proportions with those of the 

user, enhancing the believability of the virtual embodiment. 

  

To facilitate ease of use and customization, the system includes `JarvriksVREditor` and 

`JarvriksFullBodyIKEditor` classes. These editor extensions provide graphical interfaces for configuring 

IK settings directly within Unity's Editor, offering immediate visual feedback and simplifying the process 

of fine-tuning the avatar's movements. Additionally, the `JarvriksIKSettingsManager` class provides 

functionality for persisting and loading IK configurations, ensuring consistency across sessions or projects. 

  

Supporting the interaction between these components are utility classes like `DummyEffector`, which acts 

as placeholders for effector targets in the VR environment, allowing for dynamic repositioning and 

adjustment of effectors based on real-time user movements. 

  

In summary, the `JarvriksFullBodyIK` system exemplifies a well-architected approach to solving complex 

IK challenges in VR. Through a combination of modular design, extensible interfaces, and tight integration 

with Unity's animation system, it provides a robust foundation for developing VR experiences that require 

precise and naturalistic avatar movements. This framework not only enhances the immersive quality of VR 

applications but also offers developers the flexibility to tailor the system to meet specific interaction 

requirements or narrative goals. 

 

 

 
Figure 21: The Jarvriks System Diagram 
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4.1 The JarvriksFullBodyIK class 
 

The JarvriksFullBodyIK class is a comprehensive solution crafted for the Unity engine, aimed at enhancing 

virtual reality experiences through detailed full-body tracking and inverse kinematics (IK) application. At 

its core, the script focuses on creating a bridge between the physical movements of users and their digital 

avatars, enabling a synchronization that is both fluid and precise. It utilizes a variety of effector data 

structures—specifically designed for different body parts like hands, feet, head, and the body—to fine-tune 

and control the avatar's movements in response to the user's actions. 

 

Designed with flexibility in mind, this script allows for the adjustment of several parameters, including 

stiffness, pull iteration limits, and default weights for position, rotation, and pull. These settings are critical 

for tailoring the IK behavior to suit various animation requirements and achieving the desired levels of 

responsiveness and realism in avatar movements. The script is equipped with mechanisms to handle 

animations input, enabling it to process and respond to user interactions dynamically. 

 

A notable feature of the JarvriksFullBodyIK script is its capability for uniform avatar calibration. This 

process adjusts the avatar's scale based on the user's physical dimensions, such as arm span and height, 

ensuring the virtual representation closely matches the user's real-world proportions. Such calibration is 

essential for immersive VR experiences, as it enhances the believability of the avatar's interactions within 

the virtual environment. 

 

The script operates within Unity's Playable API framework, allowing for seamless integration with the 

engine's animation systems. It establishes a playable graph that manages the flow of animations and IK 

solutions, ensuring that movements are smoothly blended and accurately represented. Through careful 

manipulation of effector targets and weights, the script translates the intricate details of human motion into 

the virtual realm, providing a foundation for sophisticated interaction models in VR applications. 

 

To facilitate the practical application and fine-tuning of IK settings, the script supports the instantiation of 

dummy objects as placeholders for real-world tracking devices or controllers. This feature is particularly 

useful in VR setups, where physical space and user movements must be accurately mirrored by the avatar. 

Additionally, it incorporates a system for loading and saving configuration settings, which aids in 

maintaining consistency across different sessions or projects. 

 

The JarvriksFullBodyIK script embodies a multifaceted approach to bridging the gap between virtual and 

physical realms. By leveraging Unity's animation and XR frameworks, alongside a detailed IK system, it 

sets the stage for creating VR experiences that are not only engaging but also deeply connected to the 

natural movements and intentions of the user. Through this script, developers are equipped with the tools 

necessary to push the boundaries of VR immersion, offering users a seamless extension of their physical 

selves into digital landscapes. 
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Figure 22: The JarvriksFullbodyIK class diagram containing the relations between the EffectorData, AnimationInput,  

DummyEffector, JarvriksIKSettingsManager, JarvriksIKSettings and EffectorSettings class 

  

 

 

4.1.1 JarvriksFullBodyIK and its associated classes 
  

The JarvriksFullBodyIK class and its associated classes play a crucial role in facilitating advanced Inverse 

Kinematics (IK) functionalities in Unity, allowing for dynamic and realistic character animations. Let’s 

analyze the implementation  of this class in detail. 

 

The JarvriksFullBodyIK class is the core component orchestrating the IK system, linking Unity’s 

animation system with the custom IK functionalities. 

• isForVR, syncGoal: Flags to configure the system for VR use and whether to synchronize IK goals 

with the current animation pose. 

• Stiffness, maxPullIteration: Parameters controlling the rigidity of the IK solution and the iterations 

for solving pull-based IK, affecting the smoothness and responsiveness of movements. 

• Default weights: Default influence weights for newly added effectors, providing a baseline for their 

impact on the IK solution. 

• Animator, PlayableGraph, IKPlayable: Unity components and structures for integrating the IK 

system with the Animation system, enabling the application of IK adjustments within the 

animation playback loop. 

• EffectorData Instances: Specific instances of EffectorData for various body parts, enabling 

detailed control over their IK behaviors. 

• Animation Inputs: List of AnimationInput instances for dynamic animation control based on player 
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inputs or game events. 

• VR Components: References to VR components like controllers and trackers for integrating IK 

with VR inputs. 

• Initialization and Update Methods: Functions for initializing effectors, updating their states based 

on the animation and inputs, and applying the IK solution each frame. 

 

The EffectorData class stores the configuration and state of each effector within the IK system. It’s 

designed to accommodate various effector types, with properties tailored to their specific roles. 

• effectorType: Specifies the type of effector (Effector, Hint, LookAt, Body). 

• Target: The GameObject which the effector manipulates or targets. 

• positionWeight, rotationWeight, pullWeight: Influence weights for position, rotation, and pull 

adjustments, respectively. They determine the effector’s impact on the IK solution. 

• hintWeight: For Hint effectors, defines the influence of the hint in guiding the IK solution. 

• eyesGameObject, eyesWeight, headWeight, odyweight, clampWeight: For LookAt effectors, these 

properties control the look-at behavior and its influence on different body parts. 

• manualOverride, positionOffset, rotationOffset: Allow for manual adjustments to the effector’s 

position and rotation, enabling fine-tuning of the IK solution or dynamic changes during runtime. 

 

 The EffectorType Enum defines the types of effectors used in the IK system: 

• Effector: Represents a standard IK effector for manipulating limbs (e.g., hands, feet). 

• Hint: Used for additional guidance in the IK solution, such as elbow or knee directions. 

• LookAt: Controls the direction in which the character’s head or eyes should be looking. 

• Body: Pertains to the character’s central body movements and positioning. 

  

The AnimationInput class holds data for animating effectors through Unity’s Input System, linking 

animation properties with input actions for dynamic control. 

• animationPropertyName: the name of the animation property to be controlled. 

• InputActionProperty: drives the animation property’s value, allowing for real-time animation 

adjustments based on player inputs or game events. 

 

The InitializeGeneralEffector function plays an important role in setting up the inverse kinematics (IK) 

system for a character in a VR environment. It dynamically assigns effectors to parts of the character's 

body (like hands and feet) and configures their behavior based on whether the system is operating in a VR 

context and whether specific VR controllers or trackers are connected. 

  

The function distinguishes between VR and non-VR contexts, defaulting to placeholder targets (e.g., a hint 

prefab) when not in VR. This flexibility allows the IK system to function in a variety of scenarios, including 

development and testing environments where VR hardware might not be available. When in VR, the 

function searches for connected controllers and trackers using the GetController and GetTracker methods.  

  

The GetTracker function searches and returns the VR tracker (e.g., Vive Tracker) associated with a specific 

foot, identified as either "Left" or "Right". It uses UnityEngine.InputSystem.XR.TrackedPoseDriver to 

interface with VR hardware, allowing for tracking of position and orientation. FindObjectsOfType is called 

to gather an array of all TrackedPoseDriver instances in the scene. The true parameter indicates that even 

inactive objects should be considered, ensuring a comprehensive search. The function iterates through each 

TrackedPoseDriver instance, checking the name for a match with the specified foot parameter ("Left" or 

"Right"). This approach relies on naming conventions to identify the correct tracker. If a match is found, 

the corresponding TrackedPoseDriver instance is returned, enabling its positional and rotational data to be 

used for the specified foot's IK target. This method also heavily depends on naming conventions ("Left", 

"Right") to identify the intended tracker. While simple, it might require consistent naming standards across 

different VR setups. 
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The GetController method finds and returns the XR controller (e.g., Oculus Touch or Vive Controller) 

corresponding to a specified hand, either "Left" or "Right". Utilizes XRDirectInteractor, part of Unity's 

XR Interaction Toolkit, which is designed for direct interaction in VR, such as grabbing or using objects. 

 

Like GetTracker, it gathers all instances of XRDirectInteractor present in the scene, considering inactive 

objects as well. The function then iterates through the collected array, comparing the name property of 

each controller against the specified hand parameter. The match is based on exact names ("Left Controller" 

and "Right Controller"). Upon finding the matching controller, its instance is returned, allowing its tracking 

data to be utilized for hand IK targets. Like GetTracker, this method's effectiveness depends on consistent 

naming conventions. Inconsistent naming or custom controller names might require adjustments to the 

search logic. By using XRDirectInteractor, this function aligns with Unity's broader ecosystem for VR 

development, facilitating integration with other XR Toolkit features like interaction and physics. 

  

This dynamic detection ensures that the IK system can adapt to the specific hardware setup of the user, 

accommodating a range of VR devices. For each effector (like hands and feet), the function checks if a 

target GameObject already exists. If not, it creates a new target based on the detected VR controllers or 

trackers, positioning it relative to the controller's or tracker's location and orientation. This approach 

ensures that the IK targets accurately represent the physical location and orientation of the user's limbs in 

the virtual environment. 

 

The function adds a DummyEffector component to each target GameObject. This component stores IK-

related properties like position and rotation weights, allowing for fine-grained control over how each body 

part follows its IK target. It uses the Animator.BindSceneTransform and Animator.BindSceneProperty 

methods to bind each effector's properties to the animation system. This binding enables the IK system to 

manipulate the character's animations based on the effector's configuration, ensuring that movements are 

smooth and responsive to the user's actions in VR. 

 

 

 

  

4.1.2 Saving and Loading functionality 
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Figure 23: The Loading/Saving functionality into class diagram containing the relations between the JarvriksSettingsManager, 

JarvriksIKSettings and EffectorSettings classes. 

   

The static utility class JarvriksIKSettingsManager provides mechanisms for persisting and retrieving the 

IK configuration (JarvriksIKSettings) to and from a file. This class works in tandem with the 

JarvriksIKSettings script to ensure that the user's IK settings are maintained across VR sessions, 

contributing significantly to a seamless user experience. Here's a detailed analysis of how these two scripts 

interplay and the functionality provided by JarvriksIKSettingsManager: 

  

The GetSettingsFilePath method constructs and returns the file path where the IK settings should be saved 

or loaded from. It uses Unity's Application.persistentDataPath to ensure that the settings are stored in a 

directory that persists across VR sessions and is accessible without needing special permissions. The 

method combines the persistent data path with the filename "JarvriksIKSettings.json" to form a complete 

file path. This standardized naming and location make it straightforward to locate the settings file for both 

saving and loading operations. 

  

The SaveSettings method serializes the JarvriksIKSettings object into JSON format and writes it to a file, 

effectively saving the current IK settings. It utilizes JsonUtility.ToJson to serialize the settings object, 

including formatting for readability (true parameter). The resulting JSON string is then written to the file 

at the path determined by GetSettingsFilePath. This approach ensures that any modifications to the IK 

settings are persisted beyond the current VR session, allowing them to be reloaded in future sessions. 
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The LoadSettings method loads the IK settings from a file, if it exists, deserializing the JSON content back 

into a JarvriksIKSettings object. It checks if the settings file exists at the path provided by 

GetSettingsFilePath. If the file is found, it reads the JSON content and uses JsonUtility.FromJson to 

deserialize it into a JarvriksIKSettings object. If the file does not exist, it returns a new instance of 

JarvriksIKSettings with default values. This mechanism provides resilience by ensuring that the application 

can handle situations where the settings file might be missing or deleted. 

  

The JarvriksIKSettings class is a comprehensive structure designed to serialize and store the settings related 

to the Inverse Kinematics (IK) configuration of an avatar within a virtual reality (VR) or animation context. 

This script facilitates the saving and loading of IK settings, ensuring a persistent user experience across 

VR sessions by retaining the customized positions, rotations, weights, and other properties of each effector 

involved in the IK system. Following we delve into the components and functionalities of this script: 

  

The TransformData class holds the positional, rotational, and scaling information of an object in 3D space. 

This class is essential for capturing the state of an effector's target transform, enabling its restoration upon 

loading settings. 

  

The fields of JarvriksIKSettings class are global settings affecting the overall behavior of the IK solver as 

well as individual settings for each effector, such as stiffness, maxPullIteration, 

defaultEffectorPositionWeight, defaultEffectorRotationWeight, defaultEffectorPullWeight, 

defaultHintWeight. These fields represent global settings that influence the IK solving process, such as the 

rigidity of the effectors' movements, the number of iterations for pull adjustments, and default weightings 

for effector positions, rotations, and pulls. 

  

The other effectors such as leftHandEffector, rightHandEffector, leftFootEffector, rightFootEffector, 

lookAtEffector, bodyEffector are fields as an instance of the EffectorSettings class, tailored to store settings 

specific to an individual effector. This approach allows for granular control over each part of the IK system. 

The constructor initializes each effector setting with default values, ensuring a consistent starting point for 

customization. 

  

The EffectorSettings class encapsulates the settings for an individual effector, including its weighting in 

the IK calculations and any manual overrides or transform adjustments made by the user. Its fields are 

positionWeight, rotationWeight, pullWeight and they control the influence of the effector's position, 

rotation, and pull (how strongly it affects the avatar's pose) within the IK calculations. 

 

The positionOffset, rotationOffset fields allow manual adjustments to the effector's target position and 

rotation, useful for fine-tuning the avatar's pose. Also the manualOverride, a boolean indicating whether 

the user has manually overridden the effector's automatic positioning, ensures that custom adjustments are 

respected. The effectorTransform captures the current transform state of the effector's target. 

The prefabPath optionally stores the path to a prefab for the effector's target, facilitating dynamic 

instantiation or referencing within the scene. 

 

These functions are directly called from JarvriksFullBodyIKScript to store all informations about every 

effector, On the  OnApplicationQuit function is ensured that IK settings are saved when the application is 

closing. It creates a new instance of JarvriksIKSettings and calls SaveSettings to capture the current IK 

configuration. Utilizes JarvriksIKSettingsManager.SaveSettings to persist the captured settings, ensuring 

they are available for loading in the next session. 

 

By marking the JarvriksIKSettings and its nested classes as [Serializable], Unity can easily serialize the 

entire structure, allowing it to be saved to and loaded from persistent storage (e.g., a file or PlayerPrefs). 

This feature is crucial for maintaining user-customized settings across VR sessions, enhancing the user 

experience by remembering their preferences and adjustments made within the VR environment or 
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animation setup. 

 

 

 

4.1.3 Calibration functionality 
  

The UniformCalibrateAvatar method within the JarvriksFullBodyIK script is a key feature for ensuring a 

realistic and immersive VR experience by aligning the virtual avatar's proportions with those of the player. 

This calibration process is particularly important in VR environments, where a mismatch between the 

player's physical and the avatar's virtual movements can break immersion or cause discomfort.  

 

Its functionality begins by measuring two critical dimensions – the user's arm span and height. The arm 

span is determined by calculating the distance between the positions of the left and right VR controllers, 

which the user holds in each hand. Similarly, the user's height is assessed based on the vertical position of 

the VR headset, which tracks the user's head position. With these measurements, the script calculates 

scaling factors to adjust the avatar's size. The scaling factor for the arm span is the ratio of the user's arm 

span to the avatar's default arm span (defaultAvatarArmSpan). The scaling factor for height follows a 

similar principle, comparing the user's height to the avatar's default height (defaultHeight). The script then 

determines a uniform scaling factor by averaging or combining the scaling factors for arm span and height.  

 

This unified approach ensures that the avatar's proportions are adjusted uniformly, maintaining the avatar's 

anatomical correctness while matching the user's physical dimensions. Finally, the uniform scaling factor 

is applied to the avatar's root transform (avatarRoot), effectively resizing the avatar in all dimensions. This 

scaling ensures that the avatar's movements, when controlled by the user through the VR controllers and 

headset, closely mirror the user's real-world actions, enhancing the sense of presence within the VR 

environment.  

 

Proper calibration ensures that the avatar's movements in the virtual environment correspond precisely to 

the user's real-world movements, deepening the sense of immersion. Misalignments between a player's 

physical actions and the avatar's responses can lead to discomfort or VR sickness. Calibration minimizes 

these discrepancies, making the VR experience more comfortable and enjoyable over extended periods. 

This calibration function allows the VR system to adapt to users of various sizes and builds, making the 

VR application more accessible and inclusive. 

 

 

4.2 JarvriksFullBodyIKJob: C# Graphic Job 
 

The Unity Graphics Job System is a powerful tool within Unity aimed at improving the performance of 

games and applications. By utilizing multi-threading, specifically through the Unity Graphics Job System, 

developers can significantly boost optimization within Unity.   This system enables graphics-related tasks 

to run in parallel with the main game loop, effectively utilizing  CPU cores to their fullest potential. This 

results in smoother frame rates and more complex graphics operations without slowing down the game. 

This system is particularly useful for projects that require detailed and high-quality animations, such as 

those involving full-body inverse kinematics (IK) solutions. 

 

The JarvriksFullBodyIKJob struct is a sophisticated representation of an animation job in Unity that 

utilizes inverse kinematics (IK) for animating characters, specifically focusing on full-body IK solutions. 

At its core, this job struct involves managing and manipulating multiple GeneralEffectorHandle instances, 

each corresponding to different parts of the avatar's body such as hands, feet, and the torso, alongside 

specialized effectors for hints and gaze control. These handles are important for defining how each body 

part should move and rotate according to the animation's requirements, with detailed control over aspects 
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like weight and offset for position and rotation, thereby allowing for nuanced animation behaviors. 

 

Each GeneralEffectorHandle contains scene handles for the effector and its properties, enabling real-time 

adjustment of the character's pose based on the animation data stream. The job struct also defines 

IKLimbHandle for each limb, specifying the limb's structure from top (proximal) to end (distal) joints and 

including a maximum extension property that dictates how far the limb can stretch and this helps for 

creating realistic and physically plausible movements within the character's constraints. 

 

The animation job functions by first establishing the configuration of each effector handle and limb handle, 

setting up the initial conditions for the animation. Through the ProcessAnimation method, it then 

dynamically updates these configurations based on the current state of the animation stream. This includes 

applying transformations to the avatar's joints and limbs to achieve desired poses and movements, informed 

by the specified effector handles and limb handles. The process involves calculating the necessary 

adjustments to each joint's position and rotation to align with the animation's target states, employing 

techniques such as pull solving to simulate the effects of physical forces on the avatar's body. 

 

The core of the IK animation job's importance lies in its 'solve' function, which mathematically determines 

the positions and orientations of each joint to achieve a desired end effector location. This calculation 

involves considering the constraints and degrees of freedom of each joint, ensuring that the final posture is 

physically plausible. The solve function iteratively adjusts the avatar's joints, starting from the end effectors 

and working back toward the root of the skeleton. This backtracking ensures that movements are goal-

oriented, directly linking the character's interactive behavior with environmental factors and user inputs. 

 

The JarvriksFullBodyIKJob represents a use case of Unity's animation system, specifically utilizing the 

IAnimationJob interface for implementing custom Inverse Kinematics (IK) in animations. This job handles 

various IK setups, including single effectors (like hands or feet), hints (used to guide IK solving, like elbow 

or knee directions), and look-at targets. The job is designed to manipulate an animated character's pose 

based on dynamic IK targets, blending them seamlessly with the existing animation data. Let's break down 

the key components and the underlying mathematics. 

  

The core of the IK solving process involves adjusting the character's pose based on target positions and 

rotations for each effector, while respecting constraints like limb lengths and joint limits. 
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Figure 24: The JarvriksFullBodyIKJob class diagram which uses both GeneralEffectorHandle class and the LimbJoints class 

with all fields, methods used. 
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4.2.1 IK Solve Analysis 
  

The Solve method first initializes the preparation for the IK solving process by calculating limb positions 

relative to the body's position and setting up goal positions and weights for each limb. For each limb, the 

function calculates its current position relative to the body's position. This is done using vector subtraction:  

 

RelativePos = jointTopPos – updatedBodyPos. 

  

AnimationHumanStream provides access to the humanoid animation data in a format that can be efficiently 

processed. When Solver calls methods like humanStream.GetGoalPosition((AvatarIKGoal)goalIter), it 

fetches the current target positions for the IK goals (like hands or feet) as determined by the animation 

system. This information is crucial for setting up the initial conditions for the IK solution. 

  

The function GetGoalPosition  also establishes a conceptual "goal" or target for each limb, including its 

desired position and influence weights (position, rotation, and pull). These are foundational for the IK 

solving process as they dictate the direction and magnitude of adjustments needed for each limb to align 

with the animation targets. 

  

The functions GetEffectorHandle and GetIKLimbHandle serve as accessors to fetch the appropriate 

effector or limb handles based on the IK goal (e.g., left hand, right foot). This design encapsulates the logic 

for mapping high-level IK goals to the specific data structures that hold their current state, simplifying the 

main IK solving logic. The other functions GetGoalWeightPosition and GetFloat are for accessing specific 

properties of the effectors, such as their influence weights or custom properties like pull weight. GetFloat 

is particularly generic, enabling the retrieval of any float property associated with an effector, enhancing 

the flexibility and reusability of the IK system. 

  

The chosen data structure for the IK goals is native array primarily for performance reasons in the context 

of Unity's job system and Burst compiler. NativeArray offers a structure that is optimized for high-

performance parallel jobs, allowing efficient memory layout and access patterns that are conducive to 

SIMD (Single Instruction, Multiple Data) operations and multithreading, crucial for real-time animation 

tasks. When solving IK in a real-time application like a game, performance is paramount. NativeArray 

minimizes garbage collection pressure and provides a low-level, array-like data structure that the Burst 

compiler can further optimize, leading to faster execution times for the IK calculations, based on Unity 

manual. 

  

The Solve function is the core IK solving function iteratively adjusts the character's body and limbs to 

approach the target positions. Through a loop (controlled by solvePullIterations which is a value from 5 to 

50), the function gradually moves the limbs towards their targets. Each iteration refines the body's position 

based on the limbs' pulls towards their targets. Conceptually, forces are applied to the limbs to move them 

towards their goals. This is calculated as a directional vector from the limb's current position towards the 

target, adjusted by the limb's stiffness and pull weight. 

  

The force applied to move a limb towards its target can be modeled as: 

  

appliedForce = Mathf.Max((currStretch - stretchRest) * limbData[goalIndex].Rigidity, 0.0f) 

 
Where currStretch is the current distance from the limb to the target. stretchRest is the natural length of 

the limb (maximum extension without stretching). 
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The change in position (updatedBodyPos) for the body in each iteration is influenced by the forces from 

all limbs. Here, appliedForce is normalized to ensure its directionally correct but maintains a consistent 

magnitude. 

 

• Let Δ𝑝 be the cumulative position change vector. 

• Let 𝑑𝑖     be the normalized direction vector from limb i to its goal. 

• Let 𝐹𝑖      be the applied force magnitude for limb i. 

• Let 𝑤𝑖      be the target weight for limb i. 

• Let 𝑠𝑖    be the pull strength for limb i. 
 

The equation for the position change, due to the influence of all limbs aiming towards their respective 

goals is given by: 

 

 

Δ𝑝  = ∑ 𝑑𝑖

𝑁

𝑖 = 1

⋅ 𝐹𝑖 ⋅ 𝑤𝑖 ⋅ 𝑠𝑖 

 

∑𝑁
𝑖 = 1     , denoting the summation over all N limbs or effectors involved in the IK solving process, 

is applied the calculated magnitude of change along the direction vector. This equation succinctly captures 

the essence of calculating the overall position change based on the contributions from each limb involved 

in the IK system. Each limb's contribution is determined by its direction towards the goal, the force applied 

to move it closer to the target, and the respective weights that modulate the influence of the goal position 

and pull strength. 

 

 
Figure 25: The Solve function used to solve the IK 
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4.2.2  JarvriksFullBodyIKJob methods 
  

This  UpdateAllTargetsAndAnimations function updates the effector targets based on current animation 

states or external inputs and prepares the IK system for solving. In the begginig, it calculates and sets the 

maximum extension (length) of each limb (arms and legs). This length is crucial for determining the reach 

of each limb during the IK solving process, ensuring movements stay within realistic human anatomical 

limits. After that, the SetGeneralEffector method updates the properties of each IK goal (hands, feet) and 

hint (elbows, knees) based on their current states. This includes their positions, rotations, and weights, 

which dictate how strongly an IK goal should try to reach its target position or orientation. It ensures that 

the animation system's current pose is considered in the IK calculations, allowing for dynamic adjustments 

during gameplay or animation playback. Finally, Effector types (Effector, Hint, LookAt, Body) 

differentiate how different parts of the IK system are treated. For instance, effectors directly influence limb 

positions, hints provide auxiliary positioning hints (e.g., for elbows and knees to avoid unnatural bending), 

and LookAt controls the direction the character's head and eyes should face. 

  

While the ProcessRootMotion  method is empty, in more complex IK systems, it could be used to handle 

adjustments to the character's root position based on the IK calculations. Root motion is often used to create 

more realistic movements by allowing the animation to drive the character's movement and position in the 

game world. In our case, it wasn’t necessary to manipulate this function. 

   

The ProcessAnimation  function orchestrates the IK solving process within the animation loop, ensuring 

the character's pose updates based on the IK calculations. The previous function analyzed, 

UpdateAllTargetsAndAnimations() is called first to ensure all IK targets and hints are up-to-date with the 

latest animation state or external inputs. In this function the Solver function is called and performs the core 

of the IK solving process. It iteratively adjusts the character's body position to reduce the distance between 

current and target positions of each effector, based on the calculated forces (described in previous 

explanations).After solving, the adjusted body position (bodyPosition += bodyPositionDelta) is applied 

back to the animation human stream, and humanStream.SolveIK() is called to apply the IK adjustments to 

the character. This step is crucial for integrating the IK calculations with Unity's animation system, 

ensuring the character's pose visually reflects the adjustments made by the IK solver. 

 

 

4.3 Editors for IK customization 
 

The JarvriksFullBodyIKEditor script is a Unity editor extension that simplifies the process of configuring 

full-body inverse kinematics (IK) for humanoid avatars. This tool is important for developers aiming to 

create character movements within Unity, catering to both traditional gaming and immersive VR 

experiences. By providing a graphical interface for adjusting IK parameters such as weights and offsets for 

various effectors (like hands, feet, and gaze direction), it helps with the development workflow, enabling 

control over character animations. Additionally, its visualization features offer real-time feedback on the 

skeletal structure and IK adjustments, enhancing in setting up IK systems. 

 

On the other hand, the JarvriksVREditor script focuses on optimizing the VR experience by facilitating in-

game, real-time adjustments of IK settings. It brings the power of IK configuration directly into the VR 

environment, allowing players and developers to fine-tune avatar movements on the fly. This direct 

interaction within VR not only ensures that avatars mirror the player's movements but also allows for 

immediate feedback and iterative adjustments to improve immersion and performance. The inclusion of a 

guided calibration process further exemplifies the script's role in personalizing the VR experience, making 

it adaptable to different player physiques and preferences. 
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Together, the JarvriksFullBodyIKEditor and JarvriksVREditor embody the JARVRIKS system's 

commitment to providing comprehensive and user-friendly solutions for IK configuration. They 

democratize access to animation techniques, enabling creators of all skill levels to implement character 

interactions without delving into the underlying complexity of inverse kinematics.  

 

 
Figure 26: The JarvriksVREditor and JarvriksFullBodyIKEditor class diagram with their relation to the JarvriksFullBodyIK 

class 
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4.3.1 IK editor: The Class JarvriksFullBodyIKEditor 
 

The JarvriksFullBodyIKEditor class first method is the OnInspectorGUI method, in which the script 

facilitates real-time updates to the IK configuration, reflecting changes immediately within the editor. This 

method also enables toggling specific settings for VR applications, demonstrating the script's adaptability 

to various project needs. The addition of drawing custom UI elements for each effector consolidates all 

necessary controls in one place, streamlining the IK setup process. 

 

OnSceneGUI plays a pivotal role in visualizing the avatar's skeletal structure, employing the Unity Handles 

class to draw lines between joints. This visual aid is invaluable for developers to understand the spatial 

relationships within the IK setup, ensuring that each effector is correctly positioned and oriented. The 

method meticulously iterates through the humanoid bones, excluding the root to focus on the skeletal 

structure that participates in IK processes. Special consideration is given to the head bone, ensuring it's 

correctly linked to the neck, further aiding in the setup's accuracy. 

 

 
Figure 27: The JarvriksFullBodyIK custom editor 

The DrawSkeleton function is ingeniously designed to visualize the skeletal structure of the character 

directly within the Unity scene view. By iterating through the HumanBodyBones enumeration, it identifies 

each bone's position and its parental connection, drawing lines between them to represent the skeletal links 

visually. This visualization allows for an immediate understanding of the skeletal structure's layout, 

facilitating more precise placement and adjustment of IK effectors. Special attention is given to ensuring 

the head bone, a critical part of the character's expressiveness, is accurately represented in relation to the 

neck, enhancing the realism of the avatar's movements. 

 

The DrawEffectorDataUI function exemplifies the script's commitment to offering an accessible and 

detailed interface for configuring each effector's parameters. Through a series of UI elements, developers 

can assign targets to effectors, adjust their influence on the character's posture through weight sliders 

(position, rotation, and pull), and specify offsets for fine-tuning. This level of control is pivotal for 

achieving natural and responsive character animations, allowing for nuanced adjustments that reflect the 

complexities of real-world movements. The inclusion of manual override options further empowers 

developers, offering the flexibility to apply specific positional and rotational adjustments to effectors, 

catering to the unique requirements of each project. 
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4.3.2 VR IK Editor: The class JarvriksVREditor 
 

 The JarvriksVREditor script contains ikSystem, a reference to the JarvriksFullBodyIK component, which 

controls the IK operations for the VR character. This connection allows JarvriksVREditor to directly 

manipulate IK settings and effectors. The other reference is the origin, an instance of XROrigin, which is 

crucial for determining the player's position and orientation within the VR space, aiding in accurate 

calibration and alignment of the VR avatar to the player's physical movements. 

  

For the UI elements and Interactivity, it contains Sliders Dictionaries, separate dictionaries for left hand, 

right hand, left foot, right foot, look-at, and general sliders. These dictionaries map string identifiers to 

Slider components, enabling dynamic adjustment of IK parameters such as weight and offset for each 

effector. The buttons upButton, downButton, and calibrateButton, facilitate user interaction for height 

adjustment and calibration initiation within the VR environment. It also has a Text component displaying 

the current height of the player, providing visual feedback for height adjustments. Finally, the countdown 

Mechanism comprises a GameObject for the countdown UI and a TMP_Text for displaying countdown 

numbers. This mechanism guides users through a timed calibration process. 

  

Upon startup, the script initializes slider values based on current IK settings and subscribes to their value-

changed events for real-time IK adjustment. It also prepares the countdown UI and height adjustment 

interface. The InitializeSlidersForEffector function dynamically binds sliders to specific IK effector 

parameters, allowing for granular control over the IK system's behavior. This setup is essential for tailoring 

the VR character's movements to the player's preferences or physical characteristics. Through 

UpHeightButton and DownHeightButton functions, users can fine-tune their avatar's height, ensuring a 

better match with their real-world stature. This adjustment is crucial for immersive and accurate VR 

experiences. 

  

The Update method monitors for the start of the calibration countdown, launching a coroutine to manage 

the countdown and subsequent calibration. Meanwhile, DelayAquirePlayerHeight attempts to acquire an 

accurate player height after a brief delay post-startup, ensuring that initial settings are as accurate as 

possible. 

  

Upon destruction of the JarvriksVREditor object, OnDestroy ensures all event listeners are properly 

unsubscribed from sliders to prevent memory leaks or unintended behavior. 

  

For the calibration process the calibration button when it is triggered the StartCalibration function is called, 

and a countdown begins, culminating in the application of new calibration settings to the IK system. 
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Figure 28: The VR IK Editor for modifying the effector properties on runtime and perform calibration method. 

 

 

 

 

 

 

 

 

 

Chapter 5 Use Case Validation 
 

In this chapter we aim to validate the proposed IK approach by developing and testing three use case game 

applications.  Two games aim to analyze hand movements and their interaction with the virtual 

environment, and the third is for leg movements. 

 

 

5.1 Use Case 1: SuperHot  
SuperHot is an innovative first-person shooter game where time only moves when the player moves. This 

unique mechanics creates a more strategic and tactical approach to traditional single-shooter games. In 

SuperHot-style gameplay, enemies and bullets move only when the player moves. This enables the player 

to plan their moves and actions in a more strategic way. The player needs quick reactions and planning, as 

each move must be targeted and the strategy must be carefully planned. The game was originally created 

as a prototype in a game jam in 2013 and later developed into a full-game game. The game takes advantage 

of Unity Engine technology to visualize graphics and physics. 
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Figure 29: Super Hot Room containing our player, the enemies and the scene created 

 

 

 

5.1.1 Scene Creation 
The first step was to create the scene. Separate environment with fog effects to make it difficult for the 

user to deliberately detect enemies later. For this purpose, a script that creates fog is executed when the 

game starts.At the beginning of the game's mode (in the Start method), the script initializes the fog settings: 

a) Sets fog to be active (RenderSettings.fog = true) and specifies the start  and end  of fog (fogStartDistance, 

fogEndDistance) in the game environment. In that respect, fogging begins at 10 units from the camera and 

ends at 30 units. SetFogRoutine is a coroutine that manages the progressive change of fog and its disabling, 

by gradually increasing the fogEndDistance value until it reaches 45 units, creating a feeling of reduced 

fog.At the end of the game, the start and end values of fog are set to 0 and the fog is disabled 

(RenderSettings.fog = false), thus creating the impression that fog has completely disappeared from the 

world. 

 

 

 

 

 

 

5.1.2 Weapons and interaction 
 

The next step was to create the weapon and the right interaction. It is quite a complex system, because 

weapons can be possessed by both the user and the enemies. 

Initially, an FBX weapon was imported from a free package on the Unity Asset Store, making it interactive 

through the XR Grabbable component. This enables the user to grasp and manipulate the object either 

directly or by using raycasting. To ensure the weapon is held in a realistic manner, the script was enhanced 

with methods and empty objects serving as offsets, guiding the user on the correct position and orientation 

for gripping. Furthermore, enhancements were made to facilitate remote interaction, allowing the weapon 

to be maneuvered from afar.  Remote interaction was also extended to allow the user to "dive" to it from a 

distance. 

 

To enhance gameplay clarity, tags were implemented to distinguish between the player's weapons and 

enemies. This was a crucial development step, enabling the user to fire bullets accurately in the desired 

direction with the trigger button, which leaves a red mark upon impact. By assigning distinct tags, 

confusion between the player's weapons and enemies was effectively eliminated, ensuring smoother 

interaction and gameplay. . All weapons use the same script, but their functions are separated. When 
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weapons are wielded by enemies, three extra modes have been created. a) the automatic shot towards the 

user's head when the enemy has reached a certain distance from our user;this is achieved through coroutines 

by calling the fire bullet method to the user every 2 seconds, only as long as the weapon is the enemy's, 

otherwise we turn it into the user's weapon. b) when the user shoots the enemy correctly the weapon leaves 

the enemy's hands and is thrown towards the user; this is done through the script managed by velocity, 

calculating the distance between the user and the enemy, the weapon flies through physics and velocity, so 

that the user can then catch it directly when the enemy is terminated. 

 

The FireBullet script determines the target's identity, whether it's a player or an enemy, using the 

SetIsEnemy method. Upon activation (triggered by the grab.activated event), it generates a bullet, 

propelling it with specific direction and velocity. When the bullet from a player hits an enemy, the 

SliceDeathSuperHot script invokes the Death method from the SuperHot class to execute the logic for the 

enemy's demise. Additionally, the XRGrabInteractableToAttach script adjusts the interaction based on 

whether the player is using their right or left hand, setting the attachment point (attachTransform) 

accordingly. 

 

 

 

 

 

5.1.3 Enemies Implementation 
 

Enemies play a crucial role in the game. Initially, their models were downloaded in the .fbx [91] format 

and then imported into the Unity project. These models were converted to humanoid forms to accommodate 

two key animations: running and targeting. An animator was set up to manage these animations 

simultaneously, with a single parameter controlling the transition between them. To animate the enemies 

and enable them to move around the game environment, various tools available within Unity were utilized. 

 
Figure 30: SuperHot Enemy with his colliders, holding a weapon 

 

 

5.1.4 Nav Agent 
Nav Agent is a Unity component used to automatically navigate characters (NPCs - non-Player Characters) 
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within the game. It allows NPCs to move autonomously through the game world, avoiding obstacles and 

following specific paths. It determines which areas are accessible to NPCs and which are not, allowing 

them to avoid obstacles and find routes in the virtual world. 

 

 

 

5.1.5 Nav Mesh Surface 
The Nav Mesh Surface is a surface on which Nav Agents can navigate. In essence, it is a two-dimensional 

representation of the game environment, showing where NPCs can move. It controls the movement of 

NPCs within the game, allowing them to move autonomously from one point to another, follow the player, 

or move purposefully through the environment.   

The Nav Mesh Surface shapes the areas that NPCs can move around, defining a "virtual map" with the 

accessible and unreachable areas. This helps in the correct and logical movement of NPCs in the 

environment. By using the Nav Mesh Surface, NPCs can interact more naturally with the environment and 

various elements of the game, such as doors, stairs, and other obstacles. 

 

We select the environment, adjust the height and area occupied by the nav mesh agent, and then bake the 

environment. In the selected environment, NPC's have 2 floors to navigate so the appropriate settings were 

chosen.  To allow enemies to behave appropriately towards the user, through code, methods were 

developed to follow the user based on his distance, when to shoot, when to die, when to fire the weapon. 

To achieve the death of enemies, physics methods called ragdolls were used. 

 

The Ragdoll is a technique in video games used to give character models a more realistic and natural 

response to physical forces, such as gravity or collisions. It is often used to depict a character's movement 

when he "dies" or becomes unconscious in the game. Ragdoll models react to physics forces in a more 

realistic way. For example, when an enemy is shot, his body will move and fall in a natural way, according 

to the direction and force of the shot. The ragdoll system allows models to respond dynamically to various 

situations in the environment, such as the impact of explosions or interaction with other objects. The use 

of a ragdoll helps increase the immersiveness of the game, as it offers more convincing reactions of the 

characters to the various events of the game. 

 

In our case, the ragdoll system contributes to all the above plus an extra function when the enemy receives 

a bullet at a certain point. A tool called Ezy-Slice was used to chop it. Ezy-Slice is a free tool for Unity 

that provides slicing functions for objects in 3D environments. Ezy-Slice allows developers to slice objects 

dynamically, that is, cut or divide objects into smaller pieces. This is especially useful in games where 

there are battle or disaster scenes. The Ezy-Slice can be used to slice enemies at the point where they are 

attacked. For example, if an enemy is shot, the point of contact of the bullet with the enemy's body can 

create a visually convincing dissection. 

 

 

 

5.1.6 Convert Skinned Mesh Renderer to Mesh Renderer 
 

Typically, Ezy-Slice does not directly support Skinned Mesh Renderers, which are often used for animated 

character models with moving parts (such as NPCs or enemies). The solution applied, converting the 

Skinned Mesh Renderer to the Mesh Renderer, allows compatibility with the Ezy-Slice. This conversion 

usually requires copying the mesh to a new object that uses a Mesh Renderer. After conversion, NPCs or 

enemies can be realistically shredded when attacked, enhancing immersiveness and in-game interaction. 

Thus, when a bullet is fired into one of the enemy's skinned mesh renderers, the skinned mesh renderer is 

automatically converted into a mesh renderer, and the Ezy-Slice creates two upper hall and lower hall 

pieces to dynamically separate them, and the enemy enters dead mode by entering ragdoll inactive mode. 

This was achieved through a script attached to each collider of ragdoll. As soon as the bullet tag is detected, 
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the rest of the functions are activated. 

 

 

 

5.1.7 SuperHot script 
 

The SuperHot script manages the enemy, using a coroutine (FireAtIntervalsCoroutine) to shoot aimed at 

the player at specific intervals. NavMeshAgent is also used to move towards the target (player) and the 

Animator to visualize movements. It also adjusts the aim of the weapon towards the player. It includes 

methods for activating and deactivating ragdoll mode, i.e. the realistic performance of body movement 

during impact or destruction. The Death method manages the various functions that must occur when the 

enemy is killed, such as applying the impact force, activating the ragdoll, and producing the pieces from 

the enemy's body. Additionally, it uses the Ezy-Slice library to break the enemy into pieces at the time of 

death. It includes the ability to add visual effects upon enemy death, such as creating objects after breaking. 

 

 

 

5.1.8 Time Manager 
 

Another important element of the game is the regulation of game time and this is handled by the 

TimeManager script. When the player moves, enemies also move correspondingly fast. This is because the 

player must make a strategy before moving to avoid or act quickly in order not to leave enemies, named 

"Dynamic Time Flow Strategy". For this reason, a script with parameters the two controllers and the head, 

fluctuates the time of the game, based on their velocity. The TimeManager script uses a dynamic method 

to adjust the flow of time in the game, based on the player's movement. This can add an interesting dynamic 

to the gameplay, as players have control over the speed of the game through their movements. It's a 

technique that intensifies immersion and adds an extra dimension to the game's strategy and interactions. 

 

5.1.9 Remarks 
 

This game was instrumental in demonstrating how full-body tracking can elevate action-based gameplay. 

The ability of players to physically manipulate their bodies to avoid obstacles introduced a new level of 

engagement. Analysis of the game revealed improved player reflexes and a deeper sense of immersion. 

Challenges encountered such as ensuring fast-moving follow-up response, providing valuable insights to 

optimize performance for action gaming. 

 

 

5.2 Use Case 2: Beat Saber  
 

Beat Saber is a VR rhythmic game where players use lightsabers to cut musical notes that match the rhythm 

of the song. The game combines music, movement and rhythm in a fun and energetic experience. Players 

stand on a virtual treadmill and use VR controllers as lightsabers to cut approaching notes from various 

directions. Each note requires to be cut in a specific way, and success depends on the accuracy and pace of 

the player. It was created and released in 2018, quickly gaining a lot of popularity in the VR community. 

It uses the Unity Engine to create a smooth and interactive VR experience, with an emphasis on precision 

and responsiveness of movements.  

 

 

 

5.2.1 Scene and effects 
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Initially, to ensure players experience a sense of isolation immersed in darkness, walls with outward-facing 

normals were constructed, visible only from the interior. The utilized effects, sourced as free assets from 

the Unity Asset Store, underwent modifications to suit the project's requirements. Moreover, a structure 

comprising numerous cubes was employed, alongside a script that gradually rotates each object around its 

center. To create the fog effects, a shader was created, dealing with the effects computations. Also very 

important is the trace left by each lightsaber while the user shakes them. This is a script method where the 

vertices and triangles of the lightsaber are stored, while the script updates the position of the mesh vertices 

within LateUpdate(). This is done based on the position of _tip and _base objects, simulating the top and 

base of the weapon, respectively. The positions of the vertices are refreshed to form the trace, creating a 

dynamic graphic effect that follows the movement of the weapon. 

 

 

 

5.2.2 Lightsaber 
 

For the lightsaber character we used  a free 3D object, downloaded from the internet [92]. The upper part 

is an emissive color cube which looks like neon light. Then, the corresponding colliders were added to 

allow the user to interact and cut the corresponding triangles that will come on him. When an object comes 

into contact with the sword, the script checks to see if the object is of the correct color (red or yellow, 

respectively) and then calls the PerformSlice method to perform the slicing process. It uses the Ezy-Slice 

library to slice objects at the point of contact with the sword. This involves creating two new items from 

the original, corresponding to the shredded parts. Produces cutting effects when shredding, to enhance the 

visual representation of the action. It evokes a feeling of haptic feedback when the two swords collide, 

offering a sense of plausibility to the interaction. In Update, it calculates the current movement of the sword 

and refreshes the cutting direction depending on the movement. After shredding, new items receive a 

Rigidbody and move based on the force of the blow. 

 

5.2.3 3D object modification within Unity  
 

The pro-builder is a Unity tool that allows the user to modify the edges, faces, or normals of a 3D object 

within Unity. Internally the tool contains a shader responsible for displaying an emitive color. In our case 

we used it to directly manipulate and simplify the triangles geometry, optimizing the 3D object to a simpler 

form, maintaining the emissive color feature internal shader.  This aspect is invaluable in creating more 

dynamic and visually compelling game objects that can react to the game's lighting environment or stand 

out on their own, adding depth to the game's visual presentation. Such visual cues are essential in rhythm-

based games, where visual feedback and synchronization with music are key to the gameplay experience. 
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Figure 31: The Beat Saber game with it's visual effects 
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Create BeatSaber logic 
The BladeSaberManager script implements functions similar to those of the Beat Saber game in Unity. 

During initialization, the script loads the prefabs for the green and yellow blocks as well as for the bombs 

from the application's resources. The PlayMusic method starts playing the music with a delay as defined 

by the musicDelay variable. A coroutine is used to load the Beat Saber map data from a file. The data is 

loaded by using UnityWebRequest. The map data is analyzed and converted by JSON into Unity objects. 

Based on the map data, the script determines when and where blocks will be created in the game. A timer 

is used to display the blocks synchronized with the music. Blocks appear in the game at set locations and 

times, based on their location on the map and the rhythm of the song.  

 

In more detail, the game reads an  EasyStandard file .dat, essential for generating a dynamic and engaging 

gameplay environment that aligns with the music. This file is utilized to  dictate the characteristics of each 

block that appears in the game, such as its color (be it green or yellow) and whether it's a bomb. 

Additionally, it includes details regarding the display of each block in relation to the music's rhythm. 

Consequently, this facilitates the design of an interactive and rhythmic gaming experience where players 

engage with blocks in sync with the musical beats.    

 

The script uses UnityWebRequest to load the data from a json file and then processes it to create the 

corresponding blocks in the game. Based on the information in the file, the script dynamically develops 

the content of the game, creating an environment that changes and adapts according to the pace and 

difficulty set by the file.  Thus, the entire operation of the game is achieved, in what order each triangle 

will appear, whether they will be together, at what distance either horizontally or vertically. The following 

classes explain the entire implementation. 

 

BlockData: This class is used to store data for each block that appears in the game. 

Time: The time at which the block should appear in the game. 

LineIndex: The position of the block on the horizontal axis. 

LineLayer: The position of the block on the vertical axis. 

Type: The type of block (red, blue, bomb). 

CutDirection: The direction in which the block should be cut. 

BlockType: A simple enum that defines the different types of blocks that the game can have. 

MapData: This class represents the data on a game map. 

Notes: A table of type BlockData, containing the data for all blocks that should appear on the map. 

BeatSaberFile: This class is used to store data loaded from a Beat Saber file. 

_version: The version of the data file. 

_notes: A list containing the Block Data for the game map.  

 

 

 

 

5.3  Use Case 3: Soccer game 
 

For interaction with the lower body, and specifically with the legs, a soccer game was created. Essentially, 

the user has the soccer ball in front of him on a field and can simultaneously with his feet and with the 

movement to score a goal in front of him.  
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Figure 32: The soccer game scene with it's visual effects 

 

 

5.3.1 Scene creation 
 

The selection of the suitable stadium model was determined by the number of triangles it comprised and 

its complexity. Typically, upon investigation, it was found that most models possess a high triangle count. 

Since the user does not interact with the stadium, the game does not need to use a high level of detail 

stadium, as it would complicate their integration into VR environments and would increase the rendering 

load without providing an actual benefit on the application. For these reasons, an analytical, almost low 

poly 3D model of a stadium was imported [93] where it was modified in the isolated objects it contains, as 

well as in the colors of each object. One effect added is the cloth component in the goal net. The Cloth 

Component incorporates fabric physics into the game world. When applied to a soccer goal, it can produce 

the following effects: The goal net will respond realistically to movement, such as waves from the wind or 

the effect of the ball when it falls into the net. The Cloth Component allows the net to interact with other 

objects, such as the ball or players, in a way that mimics physics. To achieve the desired look and feel, 

several parameters are set: 

 

Elasticity: Determines how elastic the fabric of the net will be. 

Wind Resistance: Adjusts how the net will respond to the influence of the wind. 

Gravity: Controls the effect of gravity on the net. 

Conflict: Regulates how the net will react to collisions with other objects. 

Similarly, colliders have been added to prevent the ball from leaving the goal. 

 

 

 

5.3.2 Implementation 
 

Obviously, the important element is to create the right ball so that it rolls and interacts with the colliders 

of the feet. The appropriate adjustments were made to the rigidbody and collider of the ball.  Additionally, 

a script that creates a new ball as soon as it detects the ball entering the goal post, was also created. This 

may happen as many times as the user wishes. 
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5.3.3 Remarks 
 

The development of a football simulation game presented whole-body monitoring in a sports context. 

The game's success in simulating realistic ball physics and player interaction was remarkable. However, 

it also brought to light challenges such as the need for more physical play space and the difficulty of 

translating some more subtle foot movements into play. 

 

 

5.4 Menu UIs  
 

To switch between games, UIs were used and created which have direct interaction with the player's 

raycasts. More specifically, the interaction of UI buttons with raycast through the XR Interaction Toolkit 

in Unity is a process that allows the user to interact with UI elements in a virtual environment (VR). The 

menuwas created in the starting room, where the user is initially located, so the user may select, through 

hand raycasts the desired game to play. 

 

 

 

5.4.1 Basics of Interaction 
 

• Raycast Interactor: This component is part of the XR Interaction Toolkit and acts as a kind of 

pointer, as mentioned before. It is used to transmit a ray from the user (usually from the VR 

controller) to the UI. 

• UI Buttons: Buttons in the UI must be set to respond to raycast rays. This allows the buttons to 

work when the raycast "taps" or selects a button. 

• Event System: In Unity, the Event System manages input events, such as touches or raycasts. To 

interact with the UI, the Event System must be configured to recognize actions by the Raycast 

Interactor. 

 

 
Figure 33: The Menu UI implemented to start each game with any order. 
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5.4.2 Interaction Process 
 

Radius: When the user points a UI button at the controller, the Raycast Interactor emits a beam connected 

to the Event system. If the beam is relieved by a UI button, Unity's Event System detects the contact. When 

the Raycast Interactor "hits" the button, an event such as the onClick event of the trigger button is triggered. 

The button then performs its predefined function, such as changing an item or enabling a feature in the 

game. 

 

The MenuSpawn and SceneManager scripts manage the appearance and functionality of menus (Main 

Menu and Pause Menu) in Unity for a VR game.  

 

 

 

5.4.3 Script MenuSpawn 
 

• Menu Display: Detects when the user presses a button (via button.action) and activates or 

deactivates the menu accordingly. 

• Reboot to Main Menu: Includes the BackToRoom method, which restores the game back to the 

Main Menu. 

• Menu Position Control: Adjusts the menu position in relation to the user's position and orientation 

(head tracking). It freezes the time when the menu is displayed and restores it when the menu is 

disabled. 

 

 

 

5.4.4 Script SceneManager 
 

• Scene Management: Controls switching between various game scenes, such as activating 

SuperHot, BladeSaber and Soccer game rooms. 

• Transition Effects: Uses screenFader to create a visual transition effect when changing scenes. 

• Object On/Off Management: Enables or disables specific objects and scenes depending on the 

currently active scene. 

• Overall Operation: The two scripts work together to create a dynamic and interactive menu 

experience in a VR game. MenuSpawn handles the immediacy of appearance, position, and 

interaction of the menu with the user, while SceneManager manages the transition between various 

scenes and game modes. 

 

 

 

5.4.5 ScreenFader script 
 

The ScreenFader script is designed to provide a simple fading function to an image in Unity, usually used 

to create transition effects between different states in the game. In Start(), the script ensures that the image 

(fadeImage) is fully transparent at the beginning, setting the alpha channel(s) of the color to 0. The 

FadeOutInSequence() method calls the coroutine FadeOutAndIn(), which controls the fade to black 

process and then back to clear. This is done through a linear interpolation (Lerp) to smoothly transition 

transparency within a specified time (fadeDuration). 
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5.4.6 Evaluation of Full Body Tracking  
 

To evaluate the fidelity and responsiveness of our full-body tracking system within virtual 

environments we implemented the BodyTrackingAnalysis class. Central to its design is the 

objective to meticulously compare the movements of an avatar to the user's real-world actions, 

utilizing physical controllers or trackers as the unequivocal standard for ground truth. This 

rigorous examination is important for discerning the effectiveness of the tracking system across 

various applications, embodying a crucial component in the development and refinement of virtual 

reality technologies. 

 

At the foundation of the class lies its capacity to capture the nuances of human motion, sorting 

movements into distinct categories—none, small, medium, and large—based on predetermined 

thresholds. These thresholds are not arbitrarily set; rather, they are carefully calibrated to 

encapsulate the full spectrum of human movement, from the slightest twitch to expansive gestures. 

By doing so, the BodyTrackingAnalysis class ensures no detail is overlooked,  no matter how 

minute, thus painting a comprehensive picture of the user's interaction within the virtual space. 

 

Operating on a frame-by-frame analysis, the class diligently records the positional differences 

between the user's physical movements and the avatar's corresponding actions. This continuous 

logging process, coupled with the categorization of movement sizes, lays the groundwork for an 

in-depth evaluation of the tracking system's precision. Further enriching this analysis is the 

calculation of latency for medium and large movements, which sheds light on the system's 

responsiveness—particularly how swiftly the avatar can mirror significant user movements, a 

factor critical to user experience. 

 

As the class encompasses a tracking session, it doesn't merely collate the collected data. Instead, 

it embarks on an organizational phase, where data entries are sorted by tracker type and timestamp, 

thereby imposing a coherent structure upon the dataset. This meticulous organization facilitates a 

seamless transition to the analysis phase, where the raw data can be thoroughly examined to unveil 

trends, pinpoint areas needing improvement, and guide the technological advancements. 

 

The evolution of the BodyTrackingAnalysis class has introduced a layer of sophistication to this 

evaluative process. By generating separate summaries for each controller-tracker, the class offers 

a bespoke analysis of each tracked limb or object. This granular breakdown is instrumental in 

identifying specific tracking discrepancies and is complemented by the aggregation of total 

movements, addressing the potential overestimation of significant movements that a purely frame-

by-frame approach might yield. Consequently, the class not only quantifies the frequency of 

movements but also contextualizes their significance within the broader scope of user activity. 

 

The final form of the class, therefore, is a testament to the intricate balance required to assess the 

VR tracking system. It harmonizes detailed data collection with strategic summarization, 

providing both the granular insights necessary for technical scrutiny and the overarching 

summaries conducive to broader analyses. This dual-faceted output, comprising detailed logs and 

synthesized reports, ensures that the class caters to diverse analytical needs, from in-depth 

investigations to executive summaries. 
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Figure 34: The BodyTrackingAnalysis class diagram which contains the AggregateData class and tracks the Transform class for 

each effector. 

 

5.4.7 Measuring Tracking Accuracy 
 

This class employs a 30-second gameplay interval for data capture, providing a comprehensive 

dataset recorded at each frame to derive the specified metrics. The 30-second timeframe was 

selected to balance the extensive calculations required for in-depth frame analysis with the 

practical need to adequately test each game's features. This duration aligns with the typical 

gameplay scenarios implemented in our use cases, ensuring a representative sample for analysis. 

       

For each use case, we provide a table that analyzes the tracking of each part contained in the 

study. The SuperHot and the BeatSaber games required upper body tracking (hands) while the 

soccer game required lower body tracking. Each field is described below. 
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The Average Position Difference provides a holistic measure of tracking accuracy over a 

gameplay session. It is calculated by summing the positional discrepancies between the avatar's 

limbs and the physical trackers for every frame where a movement is detected, divided by the 

total number of such frames. This average gives us an overarching view of how closely the 

system can mimic the user's movements, offering insights into the system's precision. For 

example, in a fast-paced game like Beat Saber, where players slice through flying objects with 

virtual sabers, a lower average position difference signifies a high degree of tracking fidelity, 

ensuring that the avatar's movements mirror the player's actions with minimal deviation. 

 

The Max Position Difference underscores the worst-case scenario of tracking deviation within 

a session. It pinpoints the largest single discrepancy between the user's actual movement and the 

avatar's representation at any given moment. This metric is particularly revealing in scenarios 

that demand precise timing and spatial awareness, such as grabbing pistols in mid-air to shoot 

enemies in Superhot. A high max position difference in such a context could indicate moments 

where the system failed to accurately capture rapid or complex movements, potentially breaking 

immersion or leading to gameplay frustrations. 

 

The Min Position Difference, on the other end of the spectrum, highlights the best case of 

tracking accuracy, representing the smallest discrepancy observed. This metric reveals moments 

where the virtual and physical realms align with near-perfect accuracy. For activities requiring 

subtle movements, such as aiming in Superhot, a minimal position difference is indicative of the 

system's ability to faithfully replicate fine motor actions. 

 

The classification of movements, none, small, medium, and large within the The 

BodyTrackingAnalysis class determines the type of movement within the classification <none, 

small, medium, and large>, based on the position difference between the avatar's hand (or foot) 

and those of the physical controllers or trackers. This difference is an important metric, serving 

as the foundational data point from which the class evaluates the accuracy and responsiveness of 

the virtual reality tracking system. The essence of this measurement lies in comparing the virtual 

representation (the avatar) to the user's actual physical movements as captured by the 

controllers-trackers. When a user moves their hand or foot, the controller-tracker records this 

movement in real space, while the IK system attempts to replicate it in the virtual environment 

through the avatar's movements. The class calculates the positional difference in each frame, 

providing a real-time assessment of how closely the avatar's movements mirror those of the user. 

This difference is then analyzed to classify the movement's type. A "none" movements would 

indicate no discernible movement or a negligible difference, implying a near-perfect alignment 

between the avatar's and tracker's positions. "Small" movements suggest minor discrepancies, 

which could be crucial for applications requiring fine motor control. "Medium" and "Large" 

movements highlight more significant deviations, which might be acceptable in some contexts 

but could also indicate potential areas for improvement in tracking accuracy. 

 

Each use case has different limits based on each occasion and they are fully analyzed.  

 

 

 

5.4.8 Tracking Accuracy Results 
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Our methodology's precision was assessed through an evaluation conducted by a user of 1.81 

meters in height, who had completed a calibration process. This process involved fine-tuning 

their controllers and trackers to ensure a seamless match between the positions of the VR 

controllers and the avatar's limbs, essential for fostering a sense of embodiment within the 

virtual environment. The used VR headset was a HTC Vive XR Elite with standard VR hand 

controllers and 2 HTC Vive Ultimate Trackers for the feet. 

 

The proficiency of users with VR technology significantly impacts the data observed during 

gameplay. More experienced users, accustomed to the nuances of VR interaction, may 

demonstrate quicker, more precise movements, potentially resulting in lower Min Position 

Differences in fast-paced games like Beat Saber. Their familiarity could also contribute to more 

strategic and controlled movements in Superhot, minimizing the Max Position Difference by 

executing precise actions with fewer exaggerated movements. Conversely, newcomers to VR 

might exhibit larger discrepancies in their movement tracking as they adjust to the immersive 

environment, affecting the overall metrics. 

 

The physical attributes of users, including height, reach, and mobility, play a crucial role in the 

performance metrics of full-body tracking systems. Taller individuals, for example, might 

exhibit larger Max Position Differences simply due to their larger range of motion, especially in 

games requiring extensive movements like the soccer simulation. Similarly, the effectiveness of 

lower body tracking can vary with the user's leg length, impacting the Average Position 

Difference observed in soccer gameplay. These physical differences necessitate a nuanced 

approach to analyzing tracking data, considering how individual body mechanics influence the 

interaction with the virtual environment. 
 

The Beat Saber game offers a rhythm-based VR experience that tests the limits of upper body agility and 

coordination. In this game, players slice through flying blocks with lightsabers, matching the color and 

direction indicated on each block, all while keeping in time with the beat of the music. This setup makes 

Beat Saber an ideal environment for assessing the VR tracking system's ability to handle quick, complex 

movements. The game challenges the system to track fast, directional slices and rapid changes in body 

position, providing a comprehensive overview of its tracking speed, accuracy, and the smoothness with 

which it translates physical movements into in-game actions. Data gathered from Beat Saber gameplay 

can reveal how effectively the VR system captures the swift, precise motions required to slice through 

blocks, highlighting its performance in scenarios demanding both speed and precision. 

 

In a 30 second game run, the recorded accuracy results per hand are summarized in this Table 4: 

Performance analysis of the Jarvriks IK for the Beat Saber game: 

Controllers-

Trackers 

Average 

Position 

Difference 

(cm) 

Max 

Position 

Difference 

(cm) 

Min 

Position 

Difference 

(cm) 

None 

Movements 

Small 

Movements 

Medium 

Movement 

Large 

Movements 

Left Hand 1.20  

 

4.11  0.07 5% 10% 30% 55% 

Right Hand 1.23  3.54 0.04 3% 12% 35% 50% 

Table 4: Performance analysis of the Jarvriks IK for the Beat Saber games showing the position differences and the percentage 

of total movements performed. 

The critical metric of interest is the Min Position Difference, which measures the tracking system's 

ability to capture the most subtle and precise movements essential for slicing through blocks accurately. 

In this gameplay analysis, Beat Saber scored an average number on Min Position Difference. This 
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suggests that while the VR tracking system performs well in recognizing fine movements, there's room 

for improvement to reach the pinnacle of precision required for mastering the game. The performance 

indicates a satisfactory level of tracking that allows for an engaging gameplay experience, but further 

optimizations could enhance the system's sensitivity to subtle wrist and arm movements, elevating player 

immersion and accuracy in hitting the beats. 

 

In the Superhot game, players find themselves navigating a matrix-like environment where time moves 

only when they do as analyzed before and the players must dodge bullets, grab weapons, and counter 

enemies in slow motion. This makes the game an ideal use case for evaluating the upper body tracking 

capabilities of our IK solution, particularly in terms of acquiring pistols with accuracy and reacting to 

dynamically changing environments. By analyzing tracking data from Superhot sessions, we can assess 

how well the system captures nuanced movements with the speed parameter. The ability of the tracking 

system to replicate these actions accurately and responsively in the avatar provides critical insights into 

its efficacy under high-stakes, precision-dependent scenarios. 

 

In a 30 second game run, the recorded accuracy results per hand are summarized in this Table 5: 

Performance analysis of the Jarvriks IK for the Super Hot game: 

 

Controllers-

Trackers 

Average 

Position 

Difference 

(cm) 

Max 

Position 

Difference 

(cm) 

Min Position 

Difference (cm) 

None 

Movements 

Small 

Movements 

Medium 

Movement 

Large 

Movements 

Left Hand 1.5 6.0 0.3 4% 34% 42% 20% 

Right Hand 1.4 5.7 0.25 6% 33% 40% 21% 

Table 5: Performance analysis of the Jarvriks IK for the Super Hot game games showing the position differences and the 

percentage of total movements performed. 

 

Superhot places emphasis on the Max Position Difference due to its gameplay mechanics, which 

involve making large, strategic movements to dodge bullets and engage with enemies. The 

analysis revealed an average to high number on Max Position Difference for Superhot. This 

range indicates that the tracking system is capable of handling significant movements to a 

certain extent, but there may be moments where the accuracy falters, potentially affecting the 

player's ability to interact precisely with the environment or perform quick, life-saving 

maneuvers. While the system provides a reliable experience for most gameplay situations, 

identifying and addressing the causes of higher Max Position Difference could further refine the 

game's immersive qualities and responsiveness. 
 

The implementation of a classic soccer game within a virtual reality setup, particularly for analyzing 

lower body tracking, offers a unique and intricate perspective on the capabilities and limitations of VR 

tracking systems. In this game, players interact with a virtual ball by using their feet, mimicking the 

actions of kicking, dribbling, and shooting in a real-world soccer game. This setup not only engages users 

in an immersive experience but also subjects the tracking system to a rigorous test of its ability to 

accurately capture and replicate complex lower body movements within the virtual environment. 

 

In such a scenario, the precision of lower body tracking is paramount. The game requires the VR system 

to detect a wide range of movements: from the subtle shifts in stance as the player positions themselves 

for a kick, to the dynamic and forceful action of shooting the ball towards the goal. Each of these actions 

provides valuable data for assessing the tracking system. The positional difference between the player's 

physical foot (as captured by the tracker) and the virtual representation of the foot (as seen in the avatar) 

becomes a critical measure of tracking accuracy. 

 

By focusing on lower body movements, this soccer game scenario extends the analysis beyond the more 
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commonly assessed upper body tracking, offering insights into the VR system's comprehensive tracking 

capabilities. Such an analysis is crucial, as lower body movements tend to be more challenging to capture 

due to their dynamic nature and the ground-level positioning of the trackers, which may be more 

susceptible to occlusion and other tracking difficulties. 

 

In a 30 second game run, the recorded accuracy results per foot are summarized in this Table 6: 

Performance analysis of the Jarvriks IK for the Soccer game 

 
Controller

s-Trackers 

Average 

Position 

Differenc

e (cm) 

Max 

Position 

Difference 

(cm) 

Min Position 

Difference 

(cm) 

None 

Movements 

Small 

Movements 

Medium 

Movement 

Large 

Movements 

Left Foot 2.5 7.2 0.4 15% 30% 35% 20% 

Right Foot 2.8 7.5 0.5 14% 32% 33% 21% 

Table 6: Performance analysis of the Jarvriks IK for the Soccer game games showing the position differences and the 

percentage of total movements performed. 

 

In the case of the soccer game, the Average Position Difference is a key indicator of how well 

the tracking system captures and replicates a range of foot movements. The gameplay scored a 

notably poor number on Average Position Difference, reflecting challenges in maintaining 

consistent accuracy with lower body tracking. This performance level suggests difficulties in 

accurately capturing the nuances of kicking, dribbling, and general footwork, which are integral 

to the soccer-playing experience. The notably poor performance points to a need for significant 

enhancements in lower body tracking technologies, emphasizing the importance of developing 

more sophisticated solutions to improve realism and player satisfaction in sports simulations. 

 
This thesis advocates for the expansion of whole-body monitoring applications beyond the realm of 

gaming, venturing into virtual education, rehabilitation, and immersive storytelling. These areas present 

vast opportunities for engaging users in novel and meaningful ways. Analyzing the Jarvriks IK system 

across varied VR gaming scenarios—Superhot, Beat Saber, and a soccer simulation—provides insight 

into its performance, highlighting strengths and pinpointing areas for improvement. The Max Position 

Difference, particularly noted in Superhot with values up to 4.8 cm, illustrates instances where tracking 

precision deviates from actual movements during rapid or broad arm actions. This observation 

underscores the necessity of enhancing the system's accuracy to support a more immersive and 

responsive gaming experience. Beat Saber, which relies on the precision of slicing movements, achieves 

commendable results in Min Position Difference. However, the presence of larger Max Position 

Differences signals a need for increased accuracy in tracking the game's most dynamic actions to ensure 

consistent tracking performance. The analysis of the soccer game highlights the challenges in lower body 

tracking, with Average Position Differences indicating a variance in tracking fidelity that could detract 

from the realism of the gameplay. These findings collectively suggest focal points for future 

development: reducing Max Position Difference across games to improve action responsiveness and 

honing Average Position Difference, particularly in lower body tracking for sports simulations, to 

enhance the overall VR experience. 
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Chapter 6 Conclusion 
 

This thesis confirms the transformative potential of full-body watching in VR gaming and beyond. While 

there are challenges to be addressed, developments in this area are quickly overcoming these obstacles, 

pointing to a bright future for full-body monitoring by creating deep immersive and interactive virtual 

 

The advent of virtual reality (VR) has transformed digital interaction, offering immersive experiences that 

closely mimic real-world or fantastical environments. Central to this transformation is the sophisticated 

tracking of user movements and gestures, enabling the seamless translation of physical actions into virtual 

responses. This thesis delves into the nuanced realms of motion capture technology, focusing on the 

comparative study of outside-in and inside-out tracking methods—each with unique implications for VR 

application development.  

 

Exploring tracking solutions reveals a spectrum from highly accurate, studio-grade systems like Vicon, 

known for their precision in capturing minute movements through a network of cameras and sensors, to 

consumer-oriented solutions like the Vive Trackers. Vicon systems, emblematic of outside-in tracking, 

excel in professional environments, offering unparalleled detail but at a significant cost and complexity. 

Vive Trackers, on the other hand, represent inside-out tracking, granting more accessibility and ease of 

setup for home users, though they trade off some accuracy and require a clear line of sight to base stations. 

To deepen the analysis, the exploration of tracking technologies spans from Vicon's studio-grade precision, 

ideal for professional use with its intricate camera and sensor network, to consumer-friendly Vive Trackers, 

showcasing the breadth from outside-in to inside-out tracking systems. Other notable mentions include 

SlimeVR and Tundra Trackers for budget-conscious users, HaritoraX for wireless convenience, and 

pioneering systems like Microsoft Kinect and PlayStation EyeToy, which democratized motion capture for 

home entertainment. 

 

For IK solutions within Unity, the landscape is equally diverse. Mecanim provides an out-of-the-box 

solution for humanoid character animation, allowing for seamless blending of animations but with limited 

customization for advanced IK manipulations. Final IK and IK Plus extend Unity's capabilities, offering 

more granular control over limb movements and interactions with the environment, suited for developers 

needing precise control over character animations. Solutions like CinemaIK and FastIK cater to specific 

animation needs, while foundational algorithms like FABRIK and CCD solvers provide the mathematical 

backbone for precise movement simulations. This diverse toolkit underscores Unity's flexibility in 

addressing various animation and interaction requirements across gaming and VR landscapes. The 

animation rigging package could not be missed from the equations as it is the Unity standard today IK 

solution favourable from the developers. These tools cater to a wide range of applications, from game 

development to VR simulations, each with their pros and cons regarding flexibility, ease of use, and 

integration into existing workflows.  

 

Inverse Kinematics (IK) solutions and tracking technologies in Unity, while pivotal for VR development, 

encounter several issues. IK challenges include achieving realistic limb movement without unnatural 

distortions, managing computational load for real-time applications, and ensuring accurate joint rotation 

that reflects natural human motion. Similarly, tracking technologies face obstacles like occlusion, where 

objects block the tracked entity, limiting tracking accuracy. Lighting conditions can also affect sensor-

based systems, and setup complexity can deter users. Both IK solutions and tracking technologies strive to 

balance realism, performance, and user accessibility, continually evolving to address these challenges and 

enhance VR experiences.  

 

Each IK solution faces several challenges. Beyond technical issues like realistic movement simulation and 

tracking accuracy, many IK solutions lack user-friendly interfaces and do not include a calibration process 

for players. This absence complicates adjusting avatars to match individual user dimensions accurately. 



UNIVERSITY OF WESTERN MACEDONIA 

SCHOOL OF SOCIAL SCIENCES AND HUMANITIES 

DEPARTMENT OF COMMUNICATION AND MEDIA 

POSTGRADUATE PROGRAM "DEVELOPMENT OF DIGITAL GAMES AND 
MULTIMEDIA APPLICATIONS" 

gamedev.uowm.gr - 77  
- 

 

 

Furthermore, none offer a VR IK editor, preventing direct avatar manipulation within VR environments. 

This limitation significantly increases development time, as adjustments must be made externally in the 

editor, underscoring the need for more integrated, intuitive tools in VR content creation. 

 

In response to the identified limitations of current IK and tracking solutions, the JARVRIKS Full Body 

Inverse Kinematics (IK) system has been developed to address these gaps. It offers a comprehensive 

framework that enhances accuracy and flexibility, crucial for creating lifelike virtual reality experiences. 

Distinguished by its user-centric calibration process, JARVRIKS enables precise adjustments to avatar 

dimensions, catering to individual user needs. Its innovative VR IK editor allows for in-environment avatar 

manipulation, streamlining the development process and significantly reducing time spent in traditional 

editing workflows. This advanced system marks a significant step forward in IK technology, promising to 

elevate the realism and interactivity of VR applications. Also, it supports both VR directly effector 

manipulation saving time directly for VR and saving any changes the user makes without the need of re-

changing each effector utilities. Finally, the user can choose if the avatar is especially for VR or for editor 

game and can manipulate every and any effector from the single user-friendly UI has without manipulating 

external factors and objects. As a bonus, it supports auto wrist manipulation to avoid breaking avatar wrists. 

   

Collectively, these use cases reveal both the strengths and areas for improvement in current VR tracking 

technologies. They illustrate the necessity for a balanced approach that combines high accuracy, low 

latency, and a deep understanding of the nuances of human movement to create truly immersive and 

interactive VR experiences.   
 

Across these use cases, several lessons emerge. Firstly, the diversity of VR gaming experiences demands 

equally versatile tracking solutions capable of adapting to a wide range of motion types and intensities. 

Secondly, the quest for enhanced accuracy and responsiveness in tracking systems is ongoing, necessitating 

continuous refinement of both hardware components and the algorithms that interpret movement data. 

Lastly, the user experience benefits from a seamless integration of physical movements with their virtual 

counterparts, highlighting the importance of intuitive, user-friendly interfaces for calibration and 

customization. The lessons learned from these analyses advocate for continued technological 

advancements, emphasizing the importance of comprehensive testing across diverse gaming scenarios to 

push the boundaries of what's possible in VR interaction. Also, the insights garnered from these analyses 

contribute to a deeper understanding of the current state of VR tracking technology. They underscore the 

potential of VR to provide engaging, immersive experiences that closely mirror real-world interactions. 

However, they also reveal the critical need for ongoing innovation to address the nuances of human 

movement, ensuring that VR environments not only captivate but also accurately reflect the complexity of 

our physical actions.  

 

 

6.1 Future Work 
 

The application of full-body tracking technologies extends far beyond gaming, encompassing fields like 

virtual education, physical rehabilitation, and immersive storytelling. These sectors offer rich contexts for 

engaging users in more meaningful, interactive experiences. Future research could focus on customizing 

full-body monitoring systems for specific educational curriculums, rehabilitation exercises, or narrative 

experiences, evaluating their impact on learning outcomes, physical recovery, and emotional 

engagement, respectively. 

 

A significant challenge in advancing full-body monitoring technology lies in merging high-speed data 

processing with precise motion capture to achieve real-time responsiveness without sacrificing accuracy. 

Further complicating this endeavor is the integration of sophisticated tracking technologies with artificial 

intelligence for predictive movements, augmented reality for richer interactive experiences, and cloud 
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computing for enhanced scalability and accessibility. These integrations face hurdles such as ensuring 

seamless data interoperability across different platforms and safeguarding user privacy and data security 

in cloud-based implementations. 

 

 Exploring the scalability of full-body tracking systems for large-scale social VR platforms presents a 

significant area for future research. As virtual spaces become more populated, the challenge of 

maintaining accurate tracking for hundreds or even thousands of users simultaneously becomes 

paramount. This research could delve into optimizing network infrastructure and data compression 

techniques to support large-scale interactions without compromising tracking fidelity or user experience. 

 

Another promising direction involves the convergence of full-body tracking with machine learning 

algorithms to predict and enhance user movements in real-time. By analyzing vast datasets of user 

movement, future systems could anticipate user intentions, adjust tracking algorithms dynamically to 

improve accuracy, and even suggest movement optimizations for tasks within the VR environment. This 

predictive approach could revolutionize user interaction, making VR experiences more intuitive and 

satisfying. 

 

Enhancing the accessibility and usability of full-body monitoring systems like Jarvriks IK is paramount 

for broadening their application beyond gaming to include entertainment, fitness, rehabilitation, and 

education. Making these systems more accessible involves simplifying the setup process and refining 

user interfaces to be more intuitive, thereby appealing to a wider audience, including non-gamers and VR 

novices. Challenges in this domain include designing systems that are straightforward to configure and 

operate by individuals without technical backgrounds, reducing the intimidation factor associated with 

high-tech VR systems. Additionally, there is a pressing need to establish universal design standards that 

accommodate a diverse range of users, including those with disabilities, to truly democratize access to 

VR technology. Achieving a balance between the complexity inherent in full-body tracking and user-

friendly design, without compromising the system's effectiveness, remains a critical hurdle in enhancing 

both accessibility and usability. 
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Δήλωση Πνευματικών Δικαιωμάτων 

Δηλώνω ρητά ότι, σύμφωνα με το άρθρο 8 του Ν. 1599/1986 και τα άρθρα 2,4,6 παρ. 3 

του Ν. 1256/1982, η παρούσα Μεταπτυχιακή Διπλωματική Εργασία με τίτλο: 

« Ολόσωμη παρακολούθηση και ενσωμάτωση σε VR» 

καθώς και τα ηλεκτρονικά αρχεία και πηγαίοι κώδικες που αναπτύχθηκαν ή 

τροποποιήθηκαν στα πλαίσια αυτής της εργασίας και αναφέρονται ρητώς μέσα στο 

κείμενο που συνοδεύουν, 

και η οποία έχει εκπονηθεί στο Πρόγραμμα Μεταπτυχιακών Σπουδών «Ανάπτυξη 

Ψηφιακών Παιχνιδιών και Πολυμεσικών Εφαρμογών» του Τμήματος Επικοινωνίας 

& Ψηφιακών του  Πανεπιστημίου  Δυτικής  Μακεδονίας,  υπό  την  επίβλεψη του/της 

Αντώνη Πρωτοψάλτη 

αποτελεί αποκλειστικά προϊόν προσωπικής εργασίας και δεν προσβάλλει κάθε μορφής 

πνευματικά δικαιώματα τρίτων και δεν είναι προϊόν μερικής ή ολικής αντιγραφής, οι 

πηγές δε που χρησιμοποιήθηκαν περιορίζονται στις βιβλιογραφικές αναφορές και μόνον. 

Τα σημεία όπου έχω χρησιμοποιήσει ιδέες, κείμενο, αρχεία ή / και πηγές άλλων 

συγγραφέων, αναφέρονται ευδιάκριτα στο κείμενο με την κατάλληλη παραπομπή και 

η σχετική αναφορά περιλαμβάνεται στο τμήμα των βιβλιογραφικών αναφορών με 

πλήρη περιγραφή. 

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ 

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, 

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής 

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το 

παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό 

πρέπει να απευθύνονται προς τον συγγραφέα. Οι απόψεις και τα συμπεράσματα που 

περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και μόνο. 
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