
Πανεπιστήμιο Δυτικής Μακεδονίας
Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών

Υπολογιστών

Μελέτη και σύγκριση συναρτήσεων

ενεργοποίησης σε νευρωνικά δίκτυα

Ζαχαρής Γεώργιος (ΑΜ: 1323)

Επιβλέπων Καθηγητής: Νικόλαος Πλόσκας

Εργαστήριο Ευφυών Συστημάτων & Βελτιστοποίησης

February 28, 2024

University of Western Macedonia
Department of Electrical & Computer Engineering

Study and comparison of activation

functions for neural networks

Georgios Zacharis (AM: 1323)

Supervisor: Nikolaos Ploskas

Intelligent Systems & Optimization Laboratory

February 28, 2024

Δήλωση Πνευματικών Δικαιωμάτων

Δήλωση Πνευματικών Δικαιωμάτων Δηλώνω ρητά ότι, σύμφωνα με το άρθρο 8 του

Ν. 1599/1986 και τα άρθρα 2,4,6 παρ. 3 του Ν. 1256/1982, η παρούσα Διπλωματική

Εργασία με τίτλο ”Μελέτη και σύγκριση συναρτήσεων ενεργοποίησης σε νευρωνικά

δίκτυα” καθώς και τα ηλεκτρονικά αρχεία και πηγαίοι κώδικες που αναπτύχθηκαν

ή τροποποιήθηκαν στα πλαίσια αυτής της εργασίας και αναφέρονται ρητώς μέσα

στο κείμενο που συνοδεύουν, και η οποία έχει εκπονηθεί στο Τμήμα Ηλεκτρολόγων

Μηχανικών & Μηχανικών Υπολογιστών του Πανεπιστημίου Δυτικής Μακεδονίας,

υπό την επίβλεψη του μέλους του Τμήματος κ. Νικόλαου Πλόσκα αποτελεί αποκλει-

στικά προϊόν προσωπικής εργασίας και δεν προσβάλλει κάθε μορφής πνευματικά

δικαιώματα τρίτων και δεν είναι προϊόν μερικής ή ολικής αντιγραφής, οι πηγές

δε που χρησιμοποιήθηκαν περιορίζονται στις βιβλιογραφικές αναφορές και μόνον.

Τα σημεία όπου έχω χρησιμοποιήσει ιδέες, κείμενο, αρχεία ή / και πηγές άλλων

συγγραφέων, αναφέρονται ευδιάκριτα στο κείμενο με την κατάλληλη παραπομπή

και η σχετική αναφορά περιλαμβάνεται στο τμήμα των βιβλιογραφικών αναφορών

με πλήρη περιγραφή.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας,

εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το

παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό

σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. Οι απόψεις και τα συμπεράσμα-

τα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και μόνο.

Copyright (C) Ζαχαρής Γεώργιος & Νικόλαος Πλόσκας, 2024, Κοζάνη

1

Acknowledgement

Throughout the years in which I have completed the span of my degree studies, I have

faced many obstacles and challenges, experienced joyful, insightful, and unexpected

moments, and evolved not only in my field of study but also mentally. As this

pluridimensional, colorful, and insightful journey comes to an end I stand optimistic

in front of an unexplored future with a great desire to reach many more milestones

and evolve even further. In this long journey, I could not but appreciate, cherish,

and respect all the people who we of great company and support in both the darkest

and brightest moments. I find myself thankful to the Institution, the University

of Western Macedonia, and its faculty that guided me on this course. As such, I

would first like to thank my supervisor, Associate Professor Nikolaos Ploskas, for his

continuous support and insight he offered for this work and beyond. Secondly, I

would like to thank PhD Candidate Christos Krallis for his insights and comments in

this work. Finally, I would like to express my deepest gratitude to my mother and

brother and all my friends.

2

Abstract

The flourishing of Artificial Intelligence (AI) in recent years, mainly due to the techno-

logical advancements resulting in high-performing hardware that boosted the field’s

rise, has led to the research and development of many real-world applications. By

extension, since the field’s theoretical beginnings are now applied to solve real-world

problems, Machine Learning (ML), a subcategory of AI has been proven highly ad-

vantageous for computer vision tasks including image classification. This led to the

development of various high-performing image classification Neural Networks (NN),

each one with a different architectural approach. Through Transfer Learning (TL)

these networks can be used for the development of real-world applications. However,

such applications come with challenges that require an NN performing a task to be

highly efficient, accurate, fast, stable generalized, and as less computational power-

consuming as possible. There is constant research to improve models by designing

innovative architectures through various tools and techniques, including activation

functions. This work focuses on improving popular pre-trained image classification

NNs of high architecture and performance by altering the activation functions they

use in their core. The models are trained for five datasets, each time with a different

activation function in their entirety of architecture. Nine activation functions were

chosen for testing. The experiments show optimistic results as improvements in per-

formance in terms of accuracy or training time are possible and in many cases to a

high extent.

Keywords: Machine Learning, Neural Networks, Activation Functions, Deep

Learning, TensorFlow, Keras

3

Contents

1 Introduction 10

1.1 A short story on image classification . 10

1.2 Motivation . 11

1.3 Thesis structure . 11

2 Theoretical Background 12

2.1 Artificial Intelligence . 12

2.2 Machine Learning and categories . 12

2.3 Deep Learning . 13

2.4 Artificial Neural Networks and components 14

2.4.1 Activation functions . 15

2.4.2 Vanishing and exploding gradients 18

2.4.3 Convolutional layers . 18

2.5 Literature review on comparison of activation functions 19

3 Implementation 20

3.1 Tools, libraries, and frameworks . 20

3.2 Pretrained models . 25

3.3 Datasets . 31

3.4 Setting up the experiments . 33

4 Results 34

4.1 Performance results for each dataset . 35

4.1.1 Cifar-10 tests . 35

4.1.2 Cifar-100 tests . 39

4.1.3 STL-10 tests . 42

4

4.1.4 SVHN tests . 45

4.1.5 Improvements over the original models 48

4.1.6 The SMish problem . 49

5 Conclusions 50

5.1 Challenges . 50

5.2 Conclusions . 50

5.3 Future work . 51

5

List of Figures

2.1 The categories of Machine Learning [1] 13

3.1 Python logo . 21

3.2 TensorFlow logo . 21

3.3 Keras logo . 22

3.4 Anaconda logo . 23

3.5 Weights and Biases logo . 24

3.6 Xception architecture, Xception: deep learning with depthwise separable

convolutions [2] . 26

3.7 Inception architecture and blocks [3] . 27

3.8 ResNet architecture and the ResBlock [4] 28

3.9 DenseNet architecture [5] . 29

3.10 EfficientNet architecture [6] . 30

3.11 MobileNet architecture [7] . 31

3.12 Datasets preview . 31

4.1 CIFAR-10 Xception performance . 37

4.2 CIFAR-10 InceptionV3 performance . 37

4.3 CIFAR-10 DenseNet121 performance . 37

4.4 CIFAR-10 EfficientNetV2 performance 38

4.5 CIFAR-10 MobileNetV2 performance . 38

4.6 CIFAR-10 ResNet50V2 performance . 38

4.7 CIFAR-100 Xception performance . 40

4.8 CIFAR-100 InceptionV3 performance 40

4.9 CIFAR-100 DenseNet121 performance 40

4.10 CIFAR-100 EfficientNetV2 performance 41

6

4.11 CIFAR-100 MobileNetV2 performance 41

4.12 CIFAR-100 ResNet50V2 performance 41

4.13 STL-10 Xception performance . 43

4.14 STL-10 InceptionV3 performance . 43

4.15 STL-10 DenseNet121 performance . 43

4.16 STL-10 EfficientNetV2 performance . 44

4.17 STL-10 MobileNetV2 performance . 44

4.18 STL-10 ResNet50V2 performance . 44

4.19 SVHN Xception performance . 46

4.20 SVHN InceptionV3 performance . 46

4.21 SVHN DenseNet121 performance . 46

4.22 SVHN EfficientNetV2 performance . 47

4.23 SVHN MobileNetV2 performance . 47

4.24 SVHN ResNet50V2 performance . 47

4.25 Power usage graph of the activation functions that improved the orig-

inal models . 48

7

List of Tables

3.1 Input requirements of networks . 33

4.1 CIFAR-10 Xception results . 37

4.2 CIFAR-10 InceptionV3 results . 37

4.3 CIFAR-10 DenseNet121 results . 37

4.4 CIFAR-10 EfficientNetV2 results . 38

4.5 CIFAR-10 MobileNetV2 results . 38

4.6 CIFAR-10 ResNet50V2 results . 38

4.7 CIFAR-100 Xception Results . 40

4.8 CIFAR-100 InceptionV3 Results . 40

4.9 CIFAR-100 DenseNet121 Results . 40

4.10 CIFAR-100 EfficientNetV2 Results . 41

4.11 CIFAR-100 MobileNetV2 Results . 41

4.12 CIFAR-100 ResNet50V2 Results . 41

4.13 STL-10 Xception Results . 43

4.14 STL-10 InceptionV3 Results . 43

4.15 STL-10 DenseNet121 Results . 43

4.16 STL-10 EfficientNetV2 Results . 44

4.17 STL-10 MobileNetV2 Results . 44

4.18 STL-10 ResNet50V2 Results . 44

4.19 SVHN Xception Results . 46

4.20 SVHN InceptionV3 Results . 46

4.21 SVHN DenseNet121 Results . 46

4.22 SVHN EfficientNetV2 Results . 47

4.23 SVHN MobileNetV2 Results . 47

8

4.24 SVHN ResNet50V2 Results . 47

9

Chapter 1

Introduction

1.1 A short story on image classification

There can be no doubt that image classification is one of the most researched topics

of study in the field of computer vision. It is the process of classifying images

into different classes based on their content. As a subject computer vision and by

extension image classification are not state-of-the-art concepts as they have already

been successfully tested and applied practically since the last decade.

However, radical advancements in the field of Artificial Intelligence (AI) and, by

extension Machine Learning (ML), in recent years have significantly boosted every

field of computer science including computer vision and image classification. Through

ML and Deep Learning (DL), a wide variety of Convolutional Neural Networks (CNN)

were developed for image classification tasks, each one with a different architecture

and approach, in a constant attempt to develop image classification models as efficient,

fast and accurate as possible so as to be implemented to applications for real-world

solutions. Through these advancements, there have been developed many tools for

machine learning and image classification such as different Neural Network (NN)

architectures, various activation functions, various tools for development, etc.

Despite the flourishing of all the fields mentioned above, there is a constant need

for improvement and better and faster performances in order to tackle real-world

problems that require high and dynamic performance. For this reason, there is

constant research to test different combinations of tools, architectures, and tunings

for image classification models [8].

10

1.2 Motivation

Activation functions, which will be analyzed in detail in this work, play a big role in

the function and performance of image classification models. In an attempt to im-

prove established image classification models through experimenting with different

activation functions inside the layers of the models, this work aims to provide not

only a comprehensive analysis of the theoretical background of DL for image clas-

sification tasks but also optimistic results for further research. In this work, various

established image classification networks are tested on their performance on various

datasets, having their original activation functions altered to find out if there are any

improvements. There are nine different activation functions tested in each network.

1.3 Thesis structure

This work consists of five chapters. Chapter 2 provides a detailed overview of the

theoretical background of this work. In Chapter 3, there are discussed and analyzed

the components of the experiments of this work and the tools and frameworks used.

In Chapter 4 the results of the experiments are presented and discussed in detail as

well as the improvements that were observed. Finally, Chapter 5 concludes this work

and presents possible future extensions.

11

Chapter 2

Theoretical Background

2.1 Artificial Intelligence

Artificial intelligence is a field of computer science that focuses on the development

of intelligent machines through studying data, planning, and learning in order to

make decisions based on logic. Throughout the long history of the field, there have

been given many definitions of AI thus there is no universal one. John McCarthy

in 2004 stated that AI is “the science and engineering of making intelligent machines,

especially intelligent computer programs. It is related to the similar task of using computers

to understand human intelligence, but AI does not have to confine itself to methods that are

biologically observable”.

2.2 Machine Learning and categories

Machine Learning is a subfield of AI that attempts for machines to learn automati-

cally meaningful patterns and relationships from examples and observations so that

they can give predictions based on the data it was trained. Since its theoretical be-

ginnings, the field has known radical advancements over recent years leading to its

vast expansion of subfields and applications [9]. The field of ML and its applications

are divided into four primary categories, as illustrated in Figure 2.1.

12

Figure 2.1: The categories of Machine Learning [1]

• Supervised Learning: Supervised Learning is the process of learning the way

to correlate a possible input to an output based on a previously seen sample of

labeled data. It is considered the most common ML category and is usually ap-

plied to practical tasks such as data classification (including image classification)

and regression.

• Semi‐supervised Learning: It is considered a hybrid of Supervised and Un-

supervised Learning as it operates on both labeled and unlabeled data. There

may be many possible outputs.

• Unsupervised Learning: Unsupervised Learning attempts to recognize and

group unlabeled input data without the need for human supervision. It is

widely used for feature extraction, identification of unknown patterns, and ex-

ploratory purposes. The most common unsupervised learning tasks are clus-

tering, dimensionality reduction, feature learning, etc.

• Reinforcement Learning: It enables a machine to learn and improve itself

through penalties or rewards so that it can evaluate the optimal process to

carry out a task. In other words, the machine learns automatically by itself

through experience. Reinforcement Learning is a powerful tool for increasing

efficiency in tasks such as robotics, autonomous driving, and logistics.

2.3 Deep Learning

In the early years of ML and image classification, the traditional ML methods re-

quired a lot of human supervision and manual work so that the image classification

13

networks function up to a sufficient extent but by no means satisfactory. With the

great advances in the field of ML, Deep Learning boosted the computer vision field.

DL is a subset of machine learning that aims to teach machines to process, train,

and understand patterns and make predictions mimicking the human brain. Deep

learning essentially is a neural network of three or more layers in its architecture. It

can be implemented in cases of both supervised and unsupervised learning. In the

field of image classification, contrary to the traditional ML methods, it only requires

raw data so that it can be analyzed by the network itself. Deep Learning gave a

great boost and enabled many advancements in the field of image classification and

nowadays it is almost entirely the way image classification networks are developed

[10]. This is the field on which this thesis is focused on. Deep Learning networks

consist of the following components:

• Input Layer: several nodes in the beginning of the architecture of the network

that input the data into it.

• Hidden Layer: The hidden layer of an NN may consist of many layers. This is

where the data is processed through different levels so the network can analyze

it and learn patterns in order to give an output. There are many different types

of layers in the hidden layer, which are explained further below.

• Output Layer: This layer consists of the nodes that output the data. This

output may be True/False answer, the class of an image (e.g. cat/dog), etc.

2.4 Artificial Neural Networks and components

Artificial Neural Networks or NNs are mathematical-based artificial adaptive systems

that, by mimicking the human brain and the way neurons work, are used for machine

learning tasks. The way they work is that they consist of interconnected layers of

neurons, each one containing given weights. Each layer modifies the layer and passes

them to the other layers. The weights are essentially the knowledge the model has

at that particular phase of the training the values of which are produced through the

mathematical processes of each layer. The network contains a set of hyperparameters

that basically define the way the network needs to function and play a crucial role

14

in its performance [11]. Examples of the hyperparameters a neural network contains

are:

• Learning Rate: the rate at which the network updates estimates.

• Epochs: the number of times the network will process the entire datasets given

as input.

• Batch Size: the size of the data each time the network processes in each epoch.

2.4.1 Activation functions

Activation functions are mathematical functions that add non-linearity to the network

and affect the output of a neuron. They play a crucial role in the functionality

and performance of the network. Depending on the input the function is given, it

decides which neuron to activate or not so that the weights are updated with the

new knowledge the model has gained at that particular stage of training. Depending

on its architecture and task, a neural network usually uses many different activation

functions in its layers.

Since their contribution to the network is of high significance it is only natural

that there have been explored, improved, and developed various activation functions.

It is worth mentioning that through years of testing and research, it seems that there

is not a one-fits-all solution for sure, but it has been observed that many functions

perform better for specific tasks than others. Choosing the right activation function

requires testing to see its performance in a network since it does not only need to

add non-linearity but also to not hamper the gradient flow during training [12]. For

the experiments of this work there were gathered 9 activation functions popular for

image classification tasks both traditional and state-of-the-art:

• ReLU: The most popular activation function is the Rectified Linear Unit or ReLU

activation function. It is a simple calculation that returns the value provided as

input directly or 0 if the value is 0 or less. It is mathematically represented as:

F (x) = max(0, x)

15

• Sigmoid: The logistic activation function, commonly known as Sigmoid, is a

non-linear activation function and takes any real value as input and outputs

values within the range of 0 to 1. The higher the input value is the closer to 1.0

the output value will be. Because of this, it is commonly used for prediction

models, since a probability value exists between the range of 0 and 1. However,

it is vulnerable to the gradient decent problem, because as the input values

recede from 0 the gradient value approaches zero, making a model unstable

[13]. It is mathematically represented as:

F (x) =
1

1 + e−x

• Tanh: Similar to the Sigmoid function, the hyperbolic tangent activation func-

tion, commonly known as Tanh, also has an S-shape form. It differs in the

output value range as its output values range from -1 to 1, and the larger the

input, the closer the output to 1.0. It is usually used in the hidden layers of

the models as it helps centering the data which makes learning for the next

layers easier. However, it also faces the vanishing gradients problem [14]. It is

mathematically represented as:

F (x) =
ex − e−x

ex + e−x

• ELU: The Exponential Linear Unit (ELU) is one of the many variants of the

ReLU activation function. It performs better than ReLU as it avoids the dead

ReLU problem but increases the computational time of the model because of

the exponential operation included [12]. It is mathematically represented as:

f(x) =

 α(e−x) for x < 0

x for x ≥ 0

where α is a constant value initialized to 1

• GELU: The Gaussian Error Linear Unit (GELU) activation function is a smooth

approximation of the ReLU function that is mainly used for NLP models al-

16

though it is also used for image classification [15]. It uses the cumulative

distribution function (CDF) of the standard normal distribution, denoted Φ(x).

Thus it provides much better non-linearity than ReLU and ELU in theory. It

is mathematically represented as:

f(x) = xP (X ≤ x) = xΦ(x) =

= 0.5x

1 + tanh
√

2

π

(
x+ 0.044715x3

)
• SELU: The Scaled Exponential Linear Unit (SELU), also a variant of the ReLu

function, provides the model with internal normalization. This means that each

one of the layers preserves the mean and variance from the previous layers.

This makes the network converge faster and reduces training time. [16]. It is

mathematically represented as:

f(x) = λ

 α(ex − 1) for x < 0

x for x ≥ 0

where λ ≈ 1.0507009 and α ≈ 1.6732632

• Swish: The Swish activation function is a state-of-the-art highly performing

activation function especially used when dealing with large datasets. It is a

smooth, non-monotonic function and avoids significantly the problems of other

activation functions like the gradient decent problem. Its development focuses

on improving models for image classification tasks [17]. It is mathematically

represented as:

f(x) = x ∗ sigmoid(x)

• Mish: Motivated by the work performed by Swish, Mish is a self-regularized

non-monotonic activation function that shares the beneficial properties of Swish

and GELU. Mish outperforms the latter but also avoids the dying ReLU phe-

nomenon due to the better optimization and stability it provides to the model

17

[18]. It is mathematically represented as:

f(x) = x ∗ tanh(ln(1 + ex))

• SMish: Smish is a state-of-the-art activation function that offers the model good

gradient-based optimization improving its performance. Basically, it computes

the input using the sigmoid and tanh functions mentioned earlier. Although it

is costly in terms of computational resources, making its use less practical for

large-scale applications, the fact that it outperforms in theory many activation

functions has led many researchers to explore its potential improvements [19].

It is mathematically represented as [18]:

f(x) = x ∗ tanh(ln(1 + 1

1 + e−x
))

2.4.2 Vanishing and exploding gradients

In many cases, the gradients, which are the derivatives of a function that has more

than one outputs, get more and more low and approach zero which eventually leads

to the weights of the initial or lower layers being nearly unchanged or unchanged

at all. This is known as the vanishing gradients or the gradient decent problem. In

some other cases, the gradients keep on getting larger and larger causing very large

weight updates and thus the gradient descent to diverge. This is commonly known

as the exploding gradients problem. These two problems are the ones that a network

needs to avoid in order to function or else there will be training issues [20].

2.4.3 Convolutional layers

Convolutional layers are used for detecting features within an input, commonly an

image. As the name suggests, they use they perform a convolution to an input and

then pass the result to the next layer. In this procedure, they use filters also known

as kernels. The most common type of convolutional layer is the 2D convolutional

layer, in which the kernel processes the 2D array of the pixels of an image, sums up

the multiplication of the elements and then transforms it to a single output pixel [21].

18

2.5 Literature review on comparison of activation func‐

tions

It is worth noting that other researchers have attempted to carry out experiments

of a similar nature by testing different combinations of datasets, activation functions,

and image classification NNs. Dubey et al. [12] in 2021 made a comprehensive

survey of different activation functions and their effect on image classification NNs.The

experiments were mainly on the ReLU variations and showed optimistic results for

the Mish, ELU, and GELU functions amongst others used with MobileNet, VGG-16,

GoogleNet, ResNet50, SENet18, and DesneNEt121. The tests were conducted on the

CIFAR-10 and CIFAR-100 datasets.

In 2023, in a work published by Verma et al. [22] various activation functions

were tested in different NNs with different datasets to observe their impact and high-

light the significance of choosing the right activation function. The experiments

showed that the SwAT activation function outperformed the others tested. The ex-

periments were conducted on ReLu, ELU, Swish, SELU, LReLU, Tanh, DSiLU, TSiLU,

ATSiLU, and SwAT functions, used with the VGG-19, ResNet50, DenseNEt121, and

InceptionV3 on the CIFAR-10, CIFAR-100, and MNIST datasets.

In 2021, Zhang et al. [23] made a similar study. The Swish, GELU, ReLU,

Sigmoid, and SELU activation functions were tested on different types of NNs to test

their performance. The tests were carried out on the MNIST and Fashion MNIST

datasets.

19

Chapter 3

Implementation

This section provides detailed coverage of each step of the implementation process.

To begin with, there will be complete coverage of the tools, libraries, and frameworks

used for conducting the experiments. Later, there will be discussed in detail the pre-

trained models, the datasets, and the activation functions chosen for the experiments

of this work. Finally, there will be a detailed analysis of the code and the conducting

of the experiments.

3.1 Tools, libraries, and frameworks

In order for these experiments to be implemented efficiently but also with high accu-

racy so that they can provide a clear and comprehensive view of the results, several

environments, and frameworks are used, the nature and use of which are explained

in detail below. By understanding the tools used, we can have a clearer understand-

ing of the process and stages of the implementation and the way the experiment was

carried out. There is a plethora of good tools and frameworks for ML applications.

The tools described in this section are the ones chosen that fit the needs of this work

and are highly recommended for image classification.

20

Figure 3.1: Python logo

• Python: Python is one of the oldest and most popular programming languages

that are used to date and was created by Guido van Rossum and was first

released in 1991. Due to its easy-to-learn and user-friendly syntax and struc-

ture, it became radically popular amongst new and experienced programmers,

which led to the development of many tools, libraries, and applications of var-

ious natures due to the ever-growing and diverse community of programmers.

However, its high popularity is not only due to the simplicity of its syntax rel-

ative to other programming languages but also due to its efficient approach to

object-oriented programming, its fast and powerful capabilities, and its compat-

ibility with many platforms, APIs, and other programming languages. Needless

to say, Python is constantly updated, improved, and implemented in various

tasks. In recent years it has become a go-to programming language for ma-

chine learning programming, especially for beginners, but also provides many

powerful tools to accommodate its experienced users [24][25].

Figure 3.2: TensorFlow logo

• TensorFlow: In 2017 Google released the initial version of TensorFlow, a free,

open-source software library aiming to improve, but also make more accessi-

ble and user-friendly the development of data analysis, machine learning, and

artificial intelligence applications at large scale. TensorFlow has a particular

focus on the training and inference of deep neural networks. It provides an

end-to-end platform as well as tools to consolidate, clean, and preprocess data

at scale. Furthermore, it provides datasets for training machine learning models

21

for many tasks like natural language processing (NLP), image classification, au-

dio processing, etc with TensorFlow Datasets (TFDS) as mentioned later. It also

supports GPU acceleration for heavy computations across clusters with CUDA

support, which is an important feature, especially for ML tasks. At the time

of writing this thesis, TensorFlow is one of the most popular machine-learning

frameworks due to its wide range of capabilities, ease of use, strong commu-

nity support, and compatibility with many programming languages such as

JavaScript, C++, Java, and, in this particular case, Python. Evidently, it is more

than suitable to be of assistance in the implementation of this thesis. How-

ever, depending on the nature of the research and its needs, there may be

other frameworks that match a particular case or application like PyTorch and

scikit-learn [26].

• TensorFlowDatasets (TFDS): TensorFlow Datasets (TFDS) is a library of the

TensorFlow platform that provides a collection of ready-to-use datasets for ML

and handles downloading and preparing the data deterministically. This is

highly useful as the user only needs to install this library and load a dataset

without using third-party software or downloading and uploading a dataset

for training manually as it is barely efficient and highly time-consuming. For

the needs of the experiments of this work, the CIFAR-10, CIFAR-100, SVHN,

STL-10, and Food 101 datasets are used which are analyzed later [27].

Figure 3.3: Keras logo

• Keras: Keras is a free, open-source library that was designed to enable fast ex-

perimentation with artificial neural networks and hence deep learning models.

It contains numerous implementations of commonly used neural network build-

ing blocks such as dense layers, convolutional layers, dropout layers, pooling

layers, optimizers, and activation functions. Moreover, it provides users with the

most popular and highest-performing pre-trained networks, such as the ones

22

used in this thesis, for experimentation and development of machine learning

applications. Since the release of its 2.4 version, Keras has acted as a high-level

API exclusively for the TensorFlow platform and the two of them are highly

compatible together and provide an approachable, highly productive interface

for solving machine learning problems. Furthermore, it provides many pop-

ular pre-trained deep-learning networks for the user to easily utilize such as

Xception, InceptionV3, ResNet, DenseNet, EfficientNet, and MobileNEt that are

used in this work. The models and their architecture are further analyzed later

in this thesis [28][29].

Figure 3.4: Anaconda logo

• Anaconda: The development of machine learning applications can be tricky,

incomprehensible, and time-consuming for beginners both in theory and in

practice. The tools mentioned prior are no exception and the common factor

is that they attempt to make machine learning programming not only better

but also more and more user-friendly and accessible. Hence, Anaconda is no

exception as well. Like other environments, frameworks, and libraries, Tensor-

Flow and Keras can be tricky to install and set up manually, especially in Linux

environments as they require the user to have more than a novice hands-on

experience, or else they may encounter many obstacles and functionality issues.

Anaconda is a free, research-focused integrated development environment (IDE)

that provides the user with many tools that ease the development of code, es-

pecially for ML and data analysis tasks in either Python or R. It is a simple,

well-supported graphical user interface (GUI) that includes the most popular

and important software, libraries and IDEs in its installation and is a popular

IDE, especially for ML due to the tools provided for such purposes like Jupiter

Notebook, Jupiter Lab, Spyder etc. Furthermore, it spares the user of the diffi-

23

cult manual installation process of each tool, which is an important feature as

all software and libraries have specific dependencies in terms of compatibility

and software versions that must be met in order to be functional and efficient.

Likewise, for the needs of this thesis, Anaconda provides an easy way to install

TensorFlow, TFDS, and Keras[30].

Figure 3.5: Weights and Biases logo

• Weights and Biases (Wandb): Weights and Biases (Wandb) is a free API for

data visualization providing the user with a wide range of tools to graphically

represent performance, accuracy, power consumption, and much other useful

information for research purposes. It is a useful tool as it is not only a user-

friendly and easy-to-use GUI but also it provides high-quality data visualization

which is vital not only for testing and improving the performance of a model

but also for having a clear and comprehensive depiction of it for presentation

or research purposes. Furthermore, an also useful feature is that it provides

real-time monitoring of a model’s performance as well as a simple way of

configuring the hyperparameters of the training process. The way it works

is that after installation the user only needs to create a repository in Wandb

and then include a line of code in his code that specifies the repository where

the data is sent for visualization and monitoring and the hyperparameters for

training [31].

24

3.2 Pretrained models

In practice, in very few particular cases there is a need to develop and train an entire

convolutional neural network from scratch as it is a complicated, time-consuming, and

costly process. Furthermore, to train a highly efficient and generalized model there is

a need for an extreme amount of data and computational resources that in most cases

is simply unachievable. Entities of research who can afford the implementation, but

also the research for the development of highly efficient, accurate, generalized models

have introduced many pre-trained models over the years. Each model provides a

different architecture and approach for specific tasks like NLP, Image classification,

audio processing, and object tracking. In addition, the weights of its training can be

loaded so they can be used for implementation on unseen data.

In the case of this thesis, over the years there have been developed a plethora of

pre-trained models that have been established for image classification tasks. These

networks have been trained on the largest dataset, the ImageNet dataset, which con-

tains 1,000 object classes and contains 1,281,167 training images, 50,000 validation

images, and 100,000 test images. ImageNet is the established benchmark for large-

scale image classification models. Each model requires inputs of specific size and

scale as explained in the Implementation chapter of this work [32][33]. In order to

test the effectiveness of changing the activation functions of a model, the following

popular image classification pre-trained models are used:

• Xception: Xception is a convolutional neural network, and it is built on the

concept of depthwise separable convolutional layers. This means that instead

of using convolutional filters that alter the depth of an image, the filter is ap-

plied to each channel separately, which significantly improves the efficiency and

effectiveness of the model.Its architecture consists of three types of layers, each

one having a specific role in its functionality. To begin with, there is the entry

flow, where the image given as input is resized and preprocessed in prepara-

tion for the main architecture. The entry flow contains different layers such as

convolutional, batch normalization, activation, and pooling layers all of which

are involved in processing the input image.The second part of the Xception ar-

chitecture is the middle flow, which also contains multiple convolutional layers,

25

.
Figure 3.6: Xception architecture, Xception: deep learning with depthwise separable convolutions [2]

batch normalization, and activation functions. It is designed to maintain the

resolution of the image in order to prevent loss of information. Finally, the exit

flow reduces the image resolution and channels through a set of convolution

layers and pooling. By this process, the network dimensions are reduced which

is crucial in the reduction of the computational requirements and memory foot-

print of the network, making it highly efficient and effective [34]. Figure 3.6

illustrates the architecture of the Xception Network.

• InceptionV3: The Inception Network got its name due to its Inception module,

an innovative architecture that was introduced in the first version of this model.

The motivation for its development was to increase the capability of a deep

neural network but also with efficient use of computational resources.

The Inception module uses multiple filters of different sizes on the same level

thus making the network wider but not deeper, so that overfitting of the data

is avoided. The inception module consists of four parallel layers: 1x1,3x3 and

5x5 convolution layers and one 3x3 max pooling layer. At the end of the

Inception module, the output of all these kernels is stacked together. Although

the first version of the Inception Network had a high performance, modifications

26

.
Figure 3.7: Inception architecture and blocks [3]

needed to be made in its next versions so that it could be more power efficient.

Such modification resulted in the architecture of InceptionV3, by factorizing the

convolutions of the model into smaller convolutions, adding auxiliary classifiers

to combat the vanishing gradient problem, and adding max and average pooling

layers in order to reduce the grid size of the feature maps. The Inception V3

model consists of 42 layers and is illustrated in Figure 3.7 [3].

• ResNet: The Residual Network (ResNet) is a convolutional neural network de-

signed to support hundreds or thousands of convolutional layers. As explained

before, the more the layers in a convolutional neural network the more the

chances for the vanishing gradient problem to appear.However, the model uses

the many convolutional layers in its favor. In order to avoid the vanishing gra-

dient problem, the Residual block (ResBlock) is introduced, otherwise known

as “skip connections”. In this block, multiple convolutional layers that do noth-

ing at first (called identity mappings) are stacked, then skipped, and then the

activations of the layer before are reused. This process speeds up the initial

training by compressing the network into fewer layers. An example of the

residual block as well as the architecture of ResNet are illustrated in Figure

27

.
Figure 3.8: ResNet architecture and the ResBlock [4]

3.8. Since its innovative release, there have been many variations of the ResNet

model, including DenseNet, which is discussed later [4]

• DenseNet: As previously mentioned, the DenseNet model is a popular varia-

tion of the ResNet model. It attempts to resolve the vanishing gradient problem

by creating more connections and ensuring the maximum flow of information

between the network layers by connecting each layer directly to all the others.

This implementation is parameter efficient and allows the network to reuse fea-

tures, with every layer behaving as a separate state, reading from one preceding

state and writing to one subsequent layer. This feed-forward capability reduces

feature redundancy and provides an efficient information flow. However, the

model distinguishes the difference between preserved and newly added infor-

mation. With a final classifier layer, all the network’s feature maps are used to

make decisions [5]. It is depicted in further detail in Figure 3.9.

28

.
Figure 3.9: DenseNet architecture [5]

• EfficientNet: EfficientNet is a convolutional neural network that is built upon a

concept called compound scaling. Compound scaling attempts to bring a balance

to a model in terms of size, accuracy, and reduced computational requirements.

To achieve this, it uses Mobile Inverted Bottleneck (MBConv) layers, which are a

combination of depth-wise separable convolutions and inverted residual blocks.

These layers are fundamental to the model’s architecture.

The MBConv layer begins with a depth-wise convolution and then is followed

by a point-wise convolution expanding the number of channels, and finally,

another convolution reducing the channels back to their original number. This

bottleneck design allows the model to have a highly efficient learning process

while still maintaining a high degree of representational power. Furthermore, in

order for the model to filter the essential features a Squeeze-and-Excitation (SE)

optimization block is used. This block uses global average pooling to reduce

the spatial dimensions of the feature map to a single channel, followed by two

fully connected layers, as seen in Figure 3.10 [35].

29

.
Figure 3.10: EfficientNet architecture [6]

• MobileNet: MobileNet is a lightweight but highly efficient convolutional neural

network developed for use on devices with limited computational resources,

such as smartphones. It uses simplified architectures in order to reduce the

calculations and parameters. This is achieved using primarily depth-wise and

point-wise convolution techniques. In addition, the model introduces two in-

novative global hyperparameters that enable the model’s tuning to be flexible in

trading off latency or accuracy for speed and lower computational requirements

depending on the requirements of its use. The convolution is essentially divided

into two layers where the first layer is used to filter the input channels while

the second layer combines the generated result and creates a new feature. Then

another additional layer computes the linear combination of the output from the

depth-wise convolution. A visual representation of the MobileNet architecture is

provided in Figure 3.11. Since its release, there have been many revisions to the

architecture of the model. For this work, the MobileNetV2 model is used, which

through some significant changes in its architecture achieves higher accuracy

scores than its predecessor [36].

30

.
Figure 3.11: MobileNet architecture [7]

3.3 Datasets

This section covers the datasets used in this work for the experiments. Figure 3.12

shows a preview of the images each dataset contains.

Figure 3.12: Datasets preview

• CIFAR‐10: The CIFAR-10 dataset is one of the most famous datasets for ma-

chine learning image classification consists of 60,000 32x32 color images in 10

classes, with 6,000 images per class. There are 50,000 training images and

31

10,000 test images. The 10 classes of the dataset are the following: airplane,

automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The dataset’s size

is 163 MB. It is divided into five training batches and one test batch, each one

with 10,000 images. The test batch contains exactly 1,000 randomly selected

images from each class. The training batches contain the remaining images

in random order, although some training batches may not contain an equal

number of images as others [37].

• CIFAR‐100: This dataset is just like the CIFAR-10, except it has 100 classes

containing 600 images each. The images’ dimensions and specs are the same

as the CIFAR-10 dataset. There are 500 training images and 100 testing images

per class. The 100 classes in the CIFAR-100 are grouped into 20 super classes.

Each image comes with a label indicating the class to which it belongs and a

second label indicating the superclass to which it belongs. The dataset’s size is

161 MB.

• Street View House Numbers (SVHN): The SVHNdataset is an image dataset

consisting of over 600,000 real-world images of digits and numbers in natural

scenes. The images were obtained from house numbers in Google Street View

images. The detection and classification of images in real-world conditions is a

much harder task for models to carry out than images of high resolution. The

dataset has 10 classes, one for each digit from 0 to 9. The size of the dataset is

approximately 1.47GB [38].

• STL‐10: Inspired by the CIFAR-10 dataset, the STL-10 dataset is also an image

recognition dataset consisting of 10 classes, similar to the CIFAR-10 dataset, of

96x96 100.000 unlabeled images. Contrary to its predecessor, STL-10 contains

much more images and fewer labeled training examples. The primary challenge

is for the models to attempt to classify the unlabeled data, which increases the

difficulty of the task the model has to carry out. The size of the dataset is 2.46

GB [39].

• Food 101: The Food-101 dataset is a challenging dataset consisting of 10,100

images of food and dishes images of 101 categories. Each class contains 250

manually reviewed images. The dataset images purposefully contain noise and

32

Input Specifications of Models
Model Input Shape Input pixels
Xception 71,71,3 - 299,299,3 [-1,1]
InceptionV3 75,75,3 - 299,299,3 [-1,1]
DenseNet121 32,32,3 - 224,224,3 [0,1]
EfficientNetV2B0 32,32,3 - 224,224,3 [-1,1]
MobileNetV2 32,32,3 - 224,224,3 [-1,1]
ResNet50V2 32,32,3 - 224,224,3 [0,1]

Table 3.1: Input requirements of networks

some of them are wrongly labeled, so it can be challenging for a model to

classify them. The size of the dataset is 5GB [40].

3.4 Setting up the experiments

Using Tensorflow, the process of loading a pre-trained model only requires a few lines

of code as in the example given in the images below. The model is initialized without

loading its pre-trained weights since the aim of this work is to see how well these

models can be trained by changing the activation functions in its architecture. As

previously mentioned, each pre-trained model accepts inputs with specifications as

minimum and maximum size and input pixels. Table 3.1 specifies the requirements

of the inputs of each pre-trained model. That is why the dataset after being loaded

to the model is preprocessed using the function below before training. Finally, the

models are trained for each dataset, each time with a different activation function in

their entirety of architecture. It is important to note that the models are trained also

with their original architecture for reference. This means that each model is trained

10 times for each dataset. The experiments of this work consist of 300 runs in total.

33

Chapter 4

Results

The results of the experiments were interesting and surely optimistic since there were

many cases of improved performance. As discussed further in this section, there

were many notable cases and thus many conclusions to extract. To begin with, it is

necessary to address the performance of the models on each one of the datasets. As

explained in the last section, for each dataset each pre-trained model is trained 10

times (no pre-trained weights included), each time with a different activation function

in its entirety (original model included for reference).

Since many of the datasets are made from images from the ImageNet dataset and

the pre-trained models have been trained to the ImageNet dataset it is natural that

the general performance in most cases will be high. The main focus is to gather the

tests and data to find out if any changes in the activation functions will result in

better performance relative to the original model. Although this work’s experiments

can be labeled as small-scale image classification, any improvements, even if minor,

might be of vital importance when it comes to large-scale tasks. Better performance

can be in terms of accuracy, training time, or reduced power efficiency. Graphical

depictions for accuracy and GPU usage as well as training time data are included in

this section for a more comprehensive analysis.

Before analyzing the results of the experimentations, it is vital to note the activation

functions that are used in the original architectures of the NNs.

• Xception uses primarily the ReLU activation function in its architecture.

• InceptionV3 and DenseNet121 primarily use the ReLU function as a backbone

34

but also use the ReLU6, the Sigmoid and LReLU functions for the internal needs

of their architectures.

• EfficientNetV2 primarily uses the Swish activation function.

• MobileNetV2 primarily uses the ReLU6 activation function.

• ResNEt50V2 primarily uses the ReLU activation function.

4.1 Performance results for each dataset

4.1.1 Cifar‐10 tests

The accuracy of the Xception model was improved significantly, in comparison to the

original performance, with the Swish, Mish, GELU, and ELU activation functions,

as seen in Figure and Table 4.1. The highest accuracy of 0.967 was achieved with

Swish. The original model achieved a lower accuracy of 0.87 but had the fastest

runtime with a difference of more than 2 minutes from the top-performing activation

functions.

The InceptionV3 model saw also an improvement in both accuracy and training

time using the Sigmoid function, outperforming the original model. Figure and Table

4.2 depicts in detail the performance of the model. Using sigmoid, InceptionV3 had

a 0.7941 accuracy in 9.12 minutes whereas the InceptionV3 model did not fall much

behind in terms of accuracy with a score of 0.7894 and a runtime of only 10 seconds

more than sigmoid. This is obviously a minor improvement but can be proven

significant in large-scale applications. However, the rest of the activation functions

could not outperform the original model.

The DenseNet121 also performed better using the SMish and Mish activation func-

tions, outweighing the original model’s 0.9279 accuracy by scoring 0.9411 and 0.934

respectively. However, the Smish and Mish had the worst runtimes among all the

other runs, including the original. This can be seen in more detail in Figure and

Table 4.3.

Finally, in Figure and Table 4.4 it can be seen that EfficientNetV2B0 was the model

that was improved the most using the Sigmoid function significantly outperforming

35

the original model’s performance in both accuracy and runtime. For the rest of

the models, MobileNet and ResNEt, as seen in Figures and Tables 4.5 and 4.6, the

activation functions did not improve or outperform the originals.

36

Figure 4.1: CIFAR-10 Xception performance

Xception Runtime Accuracy
swish 9m 23s 0.9676
mish 9m 11s 0.9642
gelu 9m 58s 0.9613
elu 7m 15s 0.9348
original 6m 48s 0.8704
sigmoid 7m 11s 0.8609
relu 7m 5s 0.8398
tanh 7m 12s 0.8131
selu 7m 20s 0.6275
smish 12m 5s 0.1

Table 4.1: CIFAR-10 Xception results

Figure 4.2: CIFAR-10 InceptionV3 performance

InceptionV3 Runtime Accuracy
sigmoid 9m 12s 0.7940
original 9m 22s 0.7894
mish 11m 17s 0.7052
gelu 12m 8s 0.4519
swish 12m 58s 0.4305
relu 9m 15s 0.4007
selu 9m 45s 0.2976
elu 9m 24s 0.1518
tanh 9m 12s 0.1218
smish 13m 48s 0.1

Table 4.2: CIFAR-10 InceptionV3 results

Figure 4.3: CIFAR-10 DenseNet121 performance

DenseNet121 Runtime Accuracy
smish 24m 27s 0.9410
mish 17m 41s 0.9339
original 17m 9s 0.9279
elu 15m 22s 0.8985
selu 15m 19s 0.8984
swish 20m 4s 0.8850
sigmoid 15m 5s 0.8733
gelu 19m 5s 0.8304
tanh 15m 2s 0.6623
relu 14m 57s 0.5847

Table 4.3: CIFAR-10 DenseNet121 results

37

Figure 4.4: CIFAR-10 EfficientNetV2 performance

EfficientNetV2 Runtime Accuracy
sigmoid 9m 22s 0.7231
original 10m 30s 0.4631
elu 9m 26s 0.4311
selu 9m 30s 0.2906
mish 10m 44s 0.2346
tanh 9m 22s 0.2036
relu 9m 17s 0.2014
gelu 11m 26s 0.1407
swish 11m 59s 0.1095
smish 12m 28s 0.1

Table 4.4: CIFAR-10 EfficientNetV2 results

Figure 4.5: CIFAR-10 MobileNetV2 performance

MobileNetV2 Runtime Accuracy
original 6m 23s 0.8367
sigmoid 6m 50s 0.8027
selu 5m 56s 0.6523
tanh 5m 53s 0.6309
elu 5m 58s 0.6078
gelu 6m 59s 0.5342
relu 6m 14s 0.4615
swish 7m 0.4569
mish 6m 39s 0.4445
smish 7m 50s 0.1

Table 4.5: CIFAR-10 MobileNetV2 results

Figure 4.6: CIFAR-10 ResNet50V2 performance

ResNet50V2 Runtime Accuracy
original 7m 20s 0.8489
sigmoid 7m 33s 0.7220
elu 7m 26s 0.7012
gelu 9m 50s 0.6363
selu 7m 26s 0.6209
swish 9m 40s 0.6133
mish 8m 59s 0.5176
relu 6m 59s 0.4117
tanh 7m 32s 0.2344
smish 11m 43s 0.1

Table 4.6: CIFAR-10 ResNet50V2 results

38

4.1.2 Cifar‐100 tests

When stressing the models by increasing the classes to 100 with the Cifar-100 dataset,

most models performed best in their original architectures. However, DenseNet’s

accuracy was improved from 0.8978 accuracy (original model) to 0.9135 with the

ELU function but with a slightly higher training time. This can be observed in

Figure and Table 4.9. Moreover, EfficientNet’s accuracy and runtime were improved

using the Sigmoid function in both terms of accuracy and runtime, as illustrated in

Figure and Table 4.10. In the same case, SELU and ELU managed to score higher

than the original as well. The other networks did not seem to improve with the

experiments as seen in Figures and Tables 4.7, 4.8, 4.11, 4.12. This can be due

to the increased number of classes and number of images, it seems that the large-

scale focused architecture of the originals performed better. However, it is worth

mentioning that in cases such as MobileNet, EfficientNet, and InceptionV3, although

the sigmoid function did not always manage to outperform the original’s accuracy, it

did achieve slightly less accuracy but significantly faster.

39

Figure 4.7: CIFAR-100 Xception performance

Xception Runtime Accuracy
original 8m 40s 0.9233
swish 9m 26s 0.9004
gelu 9m 58s 0.8985
elu 7m 3s 0.8109
relu 7m 5s 0.7993
selu 7m 15s 0.7004
sigmoid 7m 9s 0.6807
tanh 7m 4s 0.4961
mish 9m 12s 0.4106
smish 12m 4s 0.1

Table 4.7: CIFAR-100 Xception Results

Figure 4.8: CIFAR-100 InceptionV3 performance

InceptionV3 Runtime Accuracy
original 13m 13s 0.2829
sigmoid 9m 29s 0.2731
swish 12m 58s 0.1926
relu 9m 26s 0.1201
gelu 12m 15s 0.0744
elu 9m 28s 0.0619
mish 17m 16s 0.0524
selu 9m 39s 0.0270
tanh 9m 20s 0.0136
smish 13m 21s 0.1

Table 4.8: CIFAR-100 InceptionV3 Results

Figure 4.9: CIFAR-100 DenseNet121 performance

DenseNet121 Runtime Accuracy
elu 15m 17s 0.9135
original 14m 51s 0.8978
swish 20m 15s 0.8829
mish 52m 49s 0.8634
selu 15m 45s 0.7743
gelu 18m 59s 0.7562
sigmoid 14m 40s 0.7204
tanh 14m 57s 0.5775
relu 14m 56s 0.3486
smish 20m 42s 0.1

Table 4.9: CIFAR-100 DenseNet121 Results

40

Figure 4.10: CIFAR-100 EfficientNetV2 perfor-
mance

EfficientNetV2 Runtime Accuracy
sigmoid 9m 9s 0.3333
selu 9m 32s 0.2554
elu 9m 20s 0.2493
original 10m 0.1595
relu 9m 12s 0.0919
tanh 9m 6s 0.0305
mish 10m 37s 0.0162
gelu 11m 20s 0.0138
swish 11m 55s 0.0130
smish 12m 33s 0.1

Table 4.10: CIFAR-100 EfficientNetV2 Results

Figure 4.11: CIFAR-100 MobileNetV2 perfor-
mance

MobileNetV2 Runtime Accuracy
original 9m 14s 0.6246
sigmoid 6m 1s 0.5102
selu 5m 56s 0.4379
elu 6m 1s 0.3767
tanh 6m 3s 0.3148
mish 6m 43s 0.2813
swish 7m 0.2782
gelu 7m 7s 0.2393
relu 5m 57s 0.2175
smish 7m 46s 0.1

Table 4.11: CIFAR-100 MobileNetV2 Results

Figure 4.12: CIFAR-100 ResNet50V2 perfor-
mance

ResNet50V2 Runtime Accuracy
original 7m 24s 0.8492
mish 8m 56s 0.7497
selu 7m 27s 0.6414
elu 7m 29s 0.6031
gelu 9m 54s 0.5382
sigmoid 7m 29s 0.4895
swish 9m 34s 0.4661
relu 7m 25s 0.1789
tanh 7m 27s 0.0417
smish 11m 43s 0.1

Table 4.12: CIFAR-100 ResNet50V2 Results

41

4.1.3 STL‐10 tests

This time all the models performed better than with their original activations. Xcep-

tion’s accuracy was improved using the Smish, swish, and ELU activation func-

tions with scores of 0.8952, 0.8934, and 0.8844 respectively, contrary to the original

model’s score of 0.8768. However, only ELU had both better accuracy and runtime

than the original model since the other 2 were slower by 1 minute in comparison to

the original model’s runtime. The above can be observed in further detail in Figure

and Table 4.13.

Figure and Table 4.14 depict the InceptionV3 network’s performance. Incep-

tionV3 was significantly improved using other activation functions, since all except

ReLU and Tanh scored a higher accuracy than the original, with the highest scor-

ing being ELU, Smish, and Sigmoid with 0.7178, 0.6474 and 0.5738 accuracy scores

respectively. For a second time, ELU was the highest scoring with the lowest runtime.

A similar case was also the one of DenseNet,which is shown in Figure and Table

4.15, the accuracy of which was improved majorly using the Smish, ELU, and Swish

functions, with accuracy scores of 0.887, 0.8014, and 0.7701 respectively. The ELU

function also in this case was the one with the lowest runtime.

Furthermore, both EfficientNEt and MobileNEt were improved using the Sigmoid

function, the performance of which not only outpaced the original performances but

also with the lowest runtime in both cases. The above can be seen in further detail

in the Figures and Tables 4.16, 4.17.

Finally, ResNet’s performance was improved using the Mish, SELU, ELU, and

Sigmoid functions, with the highest being Mish with an accuracy of 0.6162. Except

for Mish, all the functions that outperformed the original also had a lower runtime

with the fastest being ELU, as analyzed in Figure and Table 4.18.

42

Figure 4.13: STL-10 Xception performance

Xception Runtime Accuracy
smish 3m 51s 0.8952
swish 3m 48s 0.8934
elu 2m 50s 0.8844
original 2m 51s 0.8768
mish 3m 9s 0.8694
gelu 3m 21s 0.8432
relu 2m 46s 0.8327
tanh 2m 51s 0.7009
sigmoid 2m 50s 0.5965
selu 2m 50 0.4927

Table 4.13: STL-10 Xception Results

Figure 4.14: STL-10 InceptionV3 performance

InceptionV3 Runtime Accuracy
elu 4m 30s 0.7178
smish 5m 59s 0.6474
sigmoid 4m 27s 0.5738
mish 4m 53s 0.5126
selu 4m 30s 0.5095
swish 6m 42s 0.4198
gelu 5m 10s 0.4059
original 4m 30s 0.3375
relu 4m 26s 0.1878
tanh 4m 28s 0.1217

Table 4.14: STL-10 InceptionV3 Results

Figure 4.15: STL-10 DenseNet121 performance

DenseNet121 Runtime Accuracy
smish 8m 45s 0.8870
elu 6m 59 0.8014
swish 10m 0.7710
original 7m 14s 0.7318
mish 7m 21s 0.7265
tanh 6m 56s 0.7080
selu 6m 44s 0.7059
gelu 7m 0.6628
sigmoid 7m 0.6093
relu 6m 55s 0.4063

Table 4.15: STL-10 DenseNet121 Results

43

Figure 4.16: STL-10 EfficientNetV2 performance

EfficientNetV2 Runtime Accuracy
sigmoid 4m 17s 0.4614
original 4m 55s 0.4589
elu 4m 22s 0.2763
mish 4m 38s 0.1465
selu 4m 22s 0.1324
relu 4m 22s 0.1154
swish 5m 47s 0.1150
gelu 4m 54s 0.1071
tanh 4m 22s 0.1048
smish 5m 12s 0.1

Table 4.16: STL-10 EfficientNetV2 Results

Figure 4.17: STL-10 MobileNetV2 performance

MobileNetV2 Runtime Accuracy
sigmoid 2m 48s 0.5368
selu 2m 53s 0.4699
original 2m 54s 0.4650
tanh 2m 52s 0.3756
elu 2m 52s 0.3479
mish 3m 3s 0.3341
smish 3m 14s 0.3328
swish 3m 25s 0.3124
gelu 3m 2s 0.2474
relu 2m 50s 0.1542

Table 4.17: STL-10 MobileNetV2 Results

Figure 4.18: STL-10 ResNet50V2 performance

ResNet50V2 Runtime Accuracy
mish 3m 31 0.6161
selu 3m 21 0.5992
elu 3m 16s 0.5297
sigmoid 3m 20s 0.4708
original 3m 26s 0.4499
swish 11m 27s 0.4097
gelu 3m 53s 0.3774
tanh 3m 17s 0.2515
relu 3m 20s 0.2443
smish 4m 12s 0.1

Table 4.18: STL-10 ResNet50V2 Results

44

4.1.4 SVHN tests

In the case of SVHN the original architectures of all the models, except Xception

and EfficientNet, performed the best, as seen more comprehensively in Figures and

Tables 4.20, 4.21, 4.23, 4.24. In Xception’s case, the Swish and GELU functions

performed the highest with accuracy scores of 0.9871 and 0.9841 respectively, and

managed faster runtimes than the original’s. Figure and Table 4.19 depicts Xception’s

performance. In EfficientNet’s case which is shown in Figure and Table 4.22, the

ELU function slightly outperformed the original but essentially their performance

was equal as well as their Runtimes. However, the Sigmoid function in most cases

came close to the original’s performance again.

45

Figure 4.19: SVHN Xception performance

Xception Runtime Accuracy
swish 13m 42s 0.9870
gelu 14m 46s 0.9841
original 15m 0.9775
mish 13m 42s 0.9711
elu 10m 2s 0.9518
sigmoid 9m 57s 0.9469
selu 10m 1a 0.9407
relu 11m 34s 0.9136
tanh 10m 0.8874
smish 17m 51s 0.1

Table 4.19: SVHN Xception Results

Figure 4.20: SVHN InceptionV3 performance

InceptionV3 Runtime Accuracy
original 12m 46s 0.9585
sigmoid 12m 45s 0.9325
selu 13m 20s 0.9015
mish 16m 39s 0.8538
swish 16m 29s 0.6143
elu 13m 14s 0.1847
gelu 16m 29s 0.1804
relu 12m 35s 0.1727
tanh 12m 44s 0.1522
smish 19m 22s 0.1

Table 4.20: SVHN InceptionV3 Results

Figure 4.21: SVHN DenseNet121 performance

DenseNet121 Runtime Accuracy
original 12m 46s 0.9718
sigmoid 12m 45s 0.9516
selu 13m 20s 0.9530
mish 16m 39s 0.9638
swish 16m 29 0.9645
elu 13m 14s 0.9663
gelu 16m 29s 0.9632
relu 12m 35s 0.8574
tanh 12m 44s 0.8968
smish 19m 22s 0.1

Table 4.21: SVHN DenseNet121 Results

46

Figure 4.22: SVHN EfficientNetV2 performance

EfficientNetV2 Runtime Accuracy
elu 13m 9s 0.8867
original 13m 8s 0.8826
relu 12m 35s 0.7294
selu 22m 31s 0.1884
tanh 12m 51s 0.1878
swish 15m 20s 0.1822
gelu 15m 6s 0.1816
mish 14m 56s 0.1812
sigmoid 12m 54s 0.1439
smish 16m 37s 0.1

Table 4.22: SVHN EfficientNetV2 Results

Figure 4.23: SVHN MobileNetV2 performance

MobileNetV2 Runtime Accuracy
original 8m 54s 0.9359
sigmoid 8m 43s 0.9340
selu 8m 25s 0.9255
swish 9m 20s 0.9221
elu 8m 13s 0.9209
mish 9m 29s 0.8970
gelu 11m 45s 0.8925
tanh 8m 28s 0.8838
relu 8m 49s 0.8643
smish 11m 15s 0.1

Table 4.23: SVHN MobileNetV2 Results

Figure 4.24: SVHN ResNet50V2 performance

ResNet50V2 Runtime Accuracy
original 9m 28s 0.9666
elu 10m 34s 0.9235
mish 13m 54s 0.9196
sigmoid 9m 53s 0.9167
swish 13m 51s 0.9106
selu 10m 48s 0.9091
gelu 15m 3s 0.9001
relu 10m 27s 0.4197
tanh 10m 42s 0.2013
smish 20m 58s 0.1

Table 4.24: SVHN ResNet50V2 Results

47

4.1.5 Improvements over the original models

Many models’ performance was improved in many cases to both low and high extents.

As is apparent from the results, Swish, Mish, GELU, ELU, Sigmoid, and SMish (only

in STL-10 and CIFAR-10) were the functions that were proven to be of great use in

this work. RELU and Tanh did not seem to be an improvement, which is expected

since they have many vulnerabilities as mentioned earlier in this work.

However, the ones that seemed to be the highest achieving of all were the Sigmoid

and ELU functions. The reason is that in most cases not only did they improve the

model’s accuracy but also when used the training time of the model was reduced.

The same cannot be said about most of the other activation functions. Although they

improved the model’s performance hardly could they reduce the original model’s

training time. This can be due to the fact that generally, the ReLU variations such

as the ones used in this work, are computationally expensive. This can also be

seen in Figure 4.25 which shows the Power Usage Graph of the Top functions that

were the most power costly. ELU certainly seems to be the exception to this rule

because although it is considered resource-costly, it does not require computationally

expensive batch normalization, thus resulting in faster training times.

Figure 4.25: Power usage graph of the activation functions that improved the original models

48

4.1.6 The SMish problem

The case of the performance of the Smish activation function was special. Despite

the fact that the function for most cases did not perform at all, as the model did not

train completely, thus the 0.1 accuracy, it did perform highly for the STL-10 and the

CIFAR-10 (only for the DenseNet model) datasets. Such cases can be attributed to

many causes such as:

• Initialization Issues, meaning that the initial weights and biases are not suited

or even applicable for the specific activation function.

• The learning rate might be not appropriate for the specific function.

• Model complexity, which in this case can be high. Since the architectures of the

pre-trained models are already of large scale and complex, the Smish function

in the entirety of the model may increase the complexity, thus leading to the

Vanishing Gradients Problem.

• Most models do not use the same activation function in the entirety of the

model. Rather, each layer may use different activation functions depending on

the architecture, the layer role, the flow of data, etc. This way many functional

problems or unwanted scenarios can be avoided such as the cases mentioned

above

The first possible explanation, the initialization issues, may not be apt to every

case of this work since in many cases the model using the SMish function performs

well during the first epoch of training and then fails. The other possible factors of

the problematic performance require further research as, at their core, suggest tuning

issues that might be resolved through testing different hyperparameters. However,

the root of the problematic performance can be accounted to tunning issues, such as

the ones suggested in the possible factors of the problem above, which can be tackled

through testing

49

Chapter 5

Conclusions

5.1 Challenges

The field of image classification, while practically yet in its early stages, has surely

been radically advanced in recent years providing optimistic results. However, there

are still challenges that need to be addressed in order for image classification to

become a powerful tool that can be applied to real-world solutions.

There is a constant need for more and better datasets, especially for real-world

datasets that consist of images with noise, distortion, and more complexity so that

the models can be trained in more everyday scenarios instead of perfect conditions.

This can lead to more generalized models, thus more accurate and trustworthy.

On the software side, there is constant experimentation and research to develop

better and more efficient models, through innovative architectures, activation func-

tions, or better tuning. Improvements can also be made through testing different

combinations of the already existing tools such as the task of this work. This can

lead to models that can use the hardware resources more efficiently and perform

better and faster as required for real-world applications.

5.2 Conclusions

The development of more improved image classification models is a challenging task

that constantly is researched. The need for more efficient, accurate, fast, and gen-

eralized image classification models is higher than ever before. The technological

50

advances made it possible for the hardware to catch up with the requirements of

theoretical concepts. Nowadays when the requirements are met theoretical concepts

such as AI and ML can be practically researched and applied to innovative real-world

solutions. Image classification can be undoubtedly a powerful tool to be implemented

in many everyday applications. However, there are many challenges that need to be

tackled in order for it to reach its full potential.

In this work, different image classification neural networks were modified to use

a different activation function than their original to seek performance improvements.

The experiments were surely optimistic as in several cases using a different activation

function resulted in not only a better performance but also faster. In the overall 300

runs, the most outperforming functions were the ELU, Sigmoid, and Mish. Although

ELU and Sigmoid managed to improve the networks not only in accuracy but also in

execution time, Mish was one of the slowest-performing functions. There were also

some cases in which the original architecture was proven best.

5.3 Future work

For future research, more activation functions and different combinations of them

need to be tested in more pre-trained models in order to find out if more improve-

ments can be made to pre-trained models. Furthermore, more datasets need to be

tested in this process to find out if the current results are only in this work’s case

scenario or if there are similarities in performance with other datasets.

51

Bibliography

[1] I. Sarker, “Machine learning: Algorithms, real-world applications and research directions,” SN

Computer Science, vol. 2, 03 2021.

[2] F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” Apr. 2017.

[3] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture

for computer vision,” 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Dec. 2015.

[5] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convolutional networks,” CoRR,

vol. abs/1608.06993, 2016.

[6] T. Ahmed and N. H. N. Sabab, “Classification and understanding of cloud structures via satellite

images with efficientunet,” SN Comput. Sci., vol. 3, dec 2021.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and

H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,”

CoRR, vol. abs/1704.04861, 2017.

[8] Ò. Lorente, I. Riera, and A. Rana, “Image classification with classic and deep learning techniques,”

CoRR, vol. abs/2105.04895, 2021.

[9] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” CoRR,

vol. abs/2104.05314, 2021.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–44, 05 2015.

[11] E. Grossi and M. Buscema, “Introduction to artificial neural networks,” European journal of gas-

troenterology hepatology, vol. 19, pp. 1046–54, 01 2008.

[12] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “A comprehensive survey and performance

analysis of activation functions in deep learning,” CoRR, vol. abs/2109.14545, 2021.

[13] S. Narayan, “The generalized sigmoid activation function: Competitive supervised learning,”

Information Sciences, vol. 99, no. 1, pp. 69–82, 1997.

[14] A. Namin, K. Leboeuf, R. Muscedere, H. Wu, and M. Ahmadi, “Efficient hardware implementation

of the hyperbolic tangent sigmoid function,” pp. 2117 – 2120, 06 2009.

52

[15] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and stochastic regularizers with gaussian

error linear units,” CoRR, vol. abs/1606.08415, 2016.

[16] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing neural networks,”

CoRR, vol. abs/1706.02515, 2017.

[17] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” CoRR,

vol. abs/1710.05941, 2017.

[18] D. Misra, “Mish: A self regularized non-monotonic activation function,” 2020.

[19] X. Wang, H. Ren, and A. Wang, “Smish: A novel activation function for deep learning methods,”

Electronics, vol. 11, p. 540, 02 2022.

[20] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural nets and prob-

lem solutions,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6,

pp. 107–116, 04 1998.

[21] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” CoRR,

vol. abs/1511.08458, 2015.

[22] S. Verma, A. Chug, and A. P. Singh, “Revisiting activation functions: empirical evaluation for

image understanding and classification,” Multimedia Tools and Applications, vol. 83, pp. 18497–

18536, Feb 2024.

[23] X. Zhang, D. Chang, W. Qi, and Z. Zhan, “A study on different functionalities and performances

among different activation functions across different anns for image classification,” Journal of

Physics: Conference Series, vol. 1732, p. 012026, jan 2021.

[24] A. J. Dhruv, R. Patel, and N. Doshi, “Python: The Most Advanced Programming Language for

Computer Science Applications:,” in Proceedings of the International Conference on Culture Heritage,

Education, Sustainable Tourism, and Innovation Technologies, (Medan, Indonesia), pp. 292–299,

SCITEPRESS - Science and Technology Publications, 2020.

[25] J. Lakshmi, “Machine learning techniques using python for data analysis in performance evalu-

ation,” International Journal of Intelligent Systems Technologies and Applications, vol. 17, no. 1/2, p. 3,

2018.

[26] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,

V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system for large-scale

machine learning,” 2016.

[27] “TensorFlow Datasets, a collection of ready-to-use datasets.” https://www.tensorflow.org/

datasets.

[28] N. Ketkar, Introduction to Keras, pp. 97–111. Berkeley, CA: Apress, 2017.

53

https://www.tensorflow.org/datasets
https://www.tensorflow.org/datasets

[29] F. J. J. Joseph, S. Nonsiri, and A. Monsakul, “Keras and TensorFlow: A Hands-On Experience,”

in Advanced Deep Learning for Engineers and Scientists (K. B. Prakash, R. Kannan, S. Alexander,

and G. R. Kanagachidambaresan, eds.), pp. 85–111, Cham: Springer International Publishing,

2021.

[30] D. Rolon-Mérette, M. Ross, T. Rolon-Mérette, and K. Church, “Introduction to Anaconda and

Python: Installation and setup,” The Quantitative Methods for Psychology, vol. 16, pp. S3–S11, May

2020.

[31] L. Biewald, “Experiment tracking with weights and biases,” 2020. Software available from

wandb.com.

[32] X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, Y. Yao, A. Zhang, L. Zhang, W. Han,

M. Huang, Q. Jin, Y. Lan, Y. Liu, Z. Liu, Z. Lu, X. Qiu, R. Song, J. Tang, J.-R. Wen, J. Yuan,

W. X. Zhao, and J. Zhu, “Pre-trained models: Past, present and future,” 2021.

[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical

image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–

255, 2009.

[34] X. Wu, R. Liu, H. Yang, and Z. Chen, “An xception based convolutional neural network for scene

image classification with transfer learning,” in 2020 2nd International Conference on Information

Technology and Computer Application (ITCA), pp. 262–267, 2020.

[35] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” in

Proceedings of the 36th International Conference on Machine Learning (K. Chaudhuri and R. Salakhut-

dinov, eds.), vol. 97 of Proceedings of Machine Learning Research, pp. 6105–6114, PMLR, 09–15 Jun

2019.

[36] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted residuals and

linear bottlenecks: Mobile networks for classification, detection and segmentation,” CoRR,

vol. abs/1801.04381, 2018.

[37] A. Krizhevsky, “Learning multiple layers of features from tiny images,” tech. rep., 2009.

[38] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits in natural

images with unsupervised feature learning,” 2011.

[39] A. Coates, A. Ng, and H. Lee, “An Analysis of Single Layer Networks in Unsupervised Fea-

ture Learning,” in AISTATS, 2011. https://cs.stanford.edu/~acoates/papers/coatesleeng_

aistats_2011.pdf.

[40] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101 – mining discriminative components

with random forests,” in European Conference on Computer Vision, 2014.

54

https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf
https://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf

	Introduction
	A short story on image classification
	Motivation
	Thesis structure

	Theoretical Background
	Artificial Intelligence
	Machine Learning and categories
	Deep Learning
	Artificial Neural Networks and components
	Activation functions
	Vanishing and exploding gradients
	Convolutional layers

	Literature review on comparison of activation functions

	Implementation
	Tools, libraries, and frameworks
	Pretrained models
	Datasets
	Setting up the experiments

	Results
	Performance results for each dataset
	Cifar-10 tests
	Cifar-100 tests
	STL-10 tests
	SVHN tests
	Improvements over the original models
	The SMish problem

	Conclusions
	Challenges
	Conclusions
	Future work

