\? EAAHNIKH AHMOKPATIA

N\Y 7/, MANEMIETHMIO AYTIKHE MAKEAONIAS
% MOAYTEXNIKH EXOAH

7, \"° TMHMA HAEKTPOAOTON MHXANIKQN
(;\ & MHXANIKQON YMNOAOTMIETQN

ce.uowm.gr

GPU-enabled rigged model
animation in Elements framework

Vlachos Elias

Supervisor: Dr. Antonis Protopsaltis

KOZANI/OCTOBER/2024






\? EAAHNIKH AHMOKPATIA

N\Y 7/, MANEMIETHMIO AYTIKHE MAKEAONIAS
M MOAYTEXNIKH EXOAH

7, \"° TMHMA HAEKTPOAOTON MHXANIKQN
(;\ & MHXANIKQON YMNOAOTMIETQN

ce.uowm.gr

AAyoplBpoL oxedlokivnonc 3A
HOVTEAWYV LLE OKEAETO, otn GPU, HE to
exkrtaldbeutiko Framework Elements

BAdyoc HAiag

EmBAEntwv: Ap. Avtwvnc NpwtoyaAtncg

KOZANH/OKTQBPIOX/2024



EAAHNIKH AHMOKPATIA

N ‘7o MANEMIZTHMIO AYTIKHE MAKEAONIAT
%Cé MOAYTEXNIKH EXOAH
/{ )\_ TMHMA HAEKTPOAQr QN MHXANIKQN
o

& MHXANIKON YIMOAOTMETON

ece.uowm.gr

AHAQXH MH AOIOKANAOIMHZ KAl ANAAHWHI MPOZOMIKHZ EYGYNHX

AnAwvw pnta ot cupgwva pe to apBpo 8 tou N. 1599/1986 kaL ta apBpa
2,4,6 map. 3 tou N. 1256/1982, n mapouoa AutAwpatiki Epyaoia pe titAo:
"GPU-enabled rigged model animation in Elements framework” kaBwc kat ta
NAEKTPOVLKA apXeia kaL nyaiol KwoLkec Ttou avartuxBnkav ) tpomoTmow)Bnkav
ota mAaiowa authg TNg €pyaciac kat avagEepovralr pnrtwe HEOQ OTO KELPEVO
TIou ouvodelouv, katL n omoia €xel ekmovnBel oto TpApa HAektpoAdywv
Mnxavikwyv kat Mnxavikwyv YmoAoywotwyv Ttou [Navermotnpiou AUTKig
Makeboviag, utto tnv eniBAePn tou pélouc tou TuApatog K. "Ap. Avtwviog
MpwtoPdaAtng” amoteAel aMOKAELOTLKA TIPOlOV TPOOWTILKAC €pyaciac Kat
bev mpooPalieL kaBe popgnc mveupatika owkalwpata tpitwv kat dev eivat
TpolOv PEPLKAC 1 OAWKAC aviypadnc, oL mnyeg 6 mou xpnaoipomoliBnkav
neplopidovtat ot PLBAoypadikéc avadopeg kal povov. Ta onueia omou
EXW XpNOLJoTIoLoeL LOEeC, KELPEVO, apxeia f/kal nyéc aAwv ouyypadewy,
avadépovtal €udLAKPLTO OTO KELPEVO HE TNV KATAAANAN TQpamopT Kat n
OXETLKN avagopa neplthapBavetal oto TenRpa twy BLpAtoypadikwy avadopuwyv
HE TIARPpN Teplypadr. Amayopevstal n aviwypadgn, anoBhikeuon kal diavopn
TNC mapouoac epyaciag, €€ OAOKAApoOU I THAMOTOC QUTAC, YLQ EMUTIOPLKO
okomo. Emutpémetal n avatunwon, anoBrikeuan kat diavopr yla gkomo pn
KEPDOOKOTILKO, EKTIALOEUTLIKAC R €PEUVNTLKAC GUONC, uTo tnv TpolmnoBean
va avadEepetaL n TNy TPOEAEUONC KalL va dlatnpeital To Tmapov prvupa.
Epwtnpata mou adgopouv TN xpnon tng epyaciag yia KepOOOKOTILKO OKOTIO
TipéTeL va aneuBuvovtal mpocg tov ouyypadéa. OLanoyeLg kaL Ta gupmepagpata
TIOU TIEPLEXOVTAL O€ auTO To éyypado ekdppadouv Tov guyypadea Kat pHovo.

Copyright (C) BAaxoc HAlag kat Avtwvnc NMpwtoyaAtng, 2024, Kocavn
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MepiAnyn

H mapoloa peAéTn ewoayel pla mpwrtomoplakn péBodo ywa tnv uAomoinan
tploblaotatng kivnong og pua gknvi HETW TNC EVOWRATWONC GwTLoOpoU Kat
upwv. H kawotopoc mpooéyylon PBaoidetal oto PoONYHEVO APXLTEKTOVLKO
mAaiowo Entity-Component-System (ECS) kat otov oxebLaopo ypadou oknvrc.
AUTEC OL TEXVLKEC alypnC ulomolwouvtat pe tn PorjBela tou emavaotatikou
ekmtalbeuTikoU epyaAeiou Elements, TO oOmMOi0 CUpTANpPWvETAL amo TLG
BLBAoBrkec pyECSS kat pyGLV, mou emiong mapéyxovtat amo to Elements.
H peAétn avaAuvel pe akpiPela kaBe poypappaTtloTIKn KAl HaBnpatikh Tuyn
™n¢ dLadkaoiag uAhomoinonc. MNeplthapPavetat emeEfynon ywa 1o TWC va
evowpatwBouv opaAd ta povteAa astroboy kau popmotikou Ppayxiova, va
dlayelplotouv amoteAegpaTika OL TIAPAPETPOL pwTLOpoU, va opyavwBouv
oL akoAouBiec kivnong kat, TéEAOC, va evappoviotouv autda ta moAudiaogtata
otolxeia wote va mapayBel to emBupnto omtiko amotéAeopa. O kwokac,
ypappévocg oe Python kat GLSL, alomolel Tt duvatotnteg twv BLBAtoBnkwv
Elements, kaBwcg kat tng PLpAoBrkng pyassimp yLa amodoTikh €Loaywyr)
HOVTEAWV. H guvépyeLa aQUTWYV TWV OTOLXELWV OXL LOVO amodelkvUeL Tnv eueALEia
TNC Tpotewvopevng peBoboAoyiag, aAa kal uttoypappidel T dBuvatoTnTeg TNC
yla tnv mpowBnon tou topéa Twv TpLodlacTatwy ypadLkwy Kat KOUHEVWV
oxebilwv.
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Abstract

This study introduces a pioneering method for realizing three-dimensional an-
imation within a scene through the integration of lighting and textures. The
innovative approach is anchored in the avant-garde architectural framewaork of
Entity-Component-System (ECS) and scene graph design. These cutting-edge
techniques areimplemented with the aid of the revolutionary educational toolkit,
Elements, complemented by the pyECSS and pyGLYV libraries also provided by EI-
ements. The study meticulously dissects each programming and mathematical
facet of the implementation process. This includes elucidation on how to seam-
lessly incorporate the astroboy and robot arm model, effectively manage light-
ing parameters, orchestrate animation sequences, and finally, harmonize these
multifaceted elements to produce the desired visual outcome. The codebase,
crafted in Python and GLSL, leverages the capabilities of the Elements libraries
mentioned earlier, as well as the pyassimp library for efficient model importa-
tion. The synergy of these components not only demonstrates the versatility of
the proposed methodology but also underscaores its potential for advancing the
field of three-dimensional graphics and animation.

Keywords: Three-dimensional animation, Phong lighting, Textures, Entity-
Component-System (ECS), Scene graph design, Elements educational toolkit,
PYECSS library, pyGLV library, pyassimp library, Model importation, Python,
GLSL, Animation sequences, Lighting parameters, Visual outcome, Graph-
ics and animation, Implementation process, Programming, Mathematical as-
pects, Three-dimensional graphics
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1 Introduction

In recent years, animation has evolved rapidly, offering immersive and realistic
experiences across various fields, such as entertainment, education, and sim-
ulation. Traditionally, animation systems were built using an approach where
each object in a scene was treated as an autonomous entity with tightly coupled
logic and data. While effective for simpler systems, these approaches struggle
to meet the growing demand for dynamic and interactive applications.

To address these limitations, the Entity Component System (ECS) model has
emerged as an efficient alternative. ECS separates an object’s identity (Entity),
its characteristics and behavior (Component), and its processing logic (System).
This decoupling not only enables a more modular and flexible design but also
enhances scalability and performance, making it ideal for handling real-time an-
imations.

In this context, Elements plays a significant role as an educational framework
for computer graphics. Elements combines the power of ECS with the flexi-
bility of scene graph architectures, offering students the ability to rapidly de-
velop complex 3D animations and simulations. Designed with education in mind,
it provides an accessible platform for teaching fundamental concepts of com-
puter graphics, while also offering advanced tools for creating professional-level
scenes.

The Elements framework provides us with a way to explore the integration of
GPU-enabled algorithms within the ECS framework to enhance the animation of
textured 3D objects in a radiance-transferred scene. This research seeks to lever-
age the strengths of ECS that Elements provides to improve the performance
and flexibility of animation systems, addressing the growing need for more dy-
namic and interactive 3D graphics in various applications. The primary purpose is
to demonstrate how ECS can be effectively utilized to create more efficient and
scalable animation systems. By incorporating GPU acceleration, the thesis aims
to achieve to make a tool for Elements so that there is an easy way for students
to make and understand animations.

The traditional approach to animation involves designing systems where each
object in the scene is self-contained, encapsulating both its data and behavior.
In this approach, each object typically has its own update and rendering methods,
which manage its state and appearance. While this can work well for simple
applications with a limited number of objects, it presents several challenges as
the complexity of the scene increases.

As the number of objects in the scene grows, the system becomes more difficult
to manage and scale. Each object must handle its own logic, leading to a prolifer-
ation of code that can be hard to maintain, extend and understand for students.
Additionally, interactions between objects can become increasingly complex, as
each object needs to be aware of the state and behavior of other objects.

Resource management is often less efficient in the traditional approach. Each
object may independently load and manage its resources, such as textures and
meshes, leading to potential duplication and wastage of memory. This can sig-

GPU-enabled rigged model animation in Elements framework 9



nificantly impact performance, especially in memory-constrained environments.

The traditional design tightly couples data and behavior, making it difficult to
reuse components across different objects. Modifying the behavior of an object
often requires changes to its core code, reducing flexibility and increasing the
risk of introducing bugs.

The ECS model addresses these issues by decoupling the components of an ani-
mation system, allowing for better management of resources and more straight-
forward implementation of complex behaviors. However, the integration of GPU-
enabled algorithms within ECS remains a relatively unexplored area, presenting
an opportunity to further enhance the capabilities of ECS-based animation sys-
tems. Solving this problem is crucial for several reasons.

The GPU acceleration can significantly enhance the performance of animation
systems, making real-time rendering of complex scenes possible. ECS-based
systems are inherently more scalable, as they allow for better management of
resources and parallel processing. The separation of concerns in ECS facilitates
easier maodification and extension of the system, which is essential for develop-
ing adaptable and reusable animation frameworks. By enhancing the Elements
educational toolkit with new tools and ideas, this research contributes to provid-
ing the best education for students in Computer Graphics, fostering innovation
and skill development in this field.

1.1 Overview of chapters

The second chapter provides a detailed analysis of various educational frame-
works relevant to teaching computer graphics. It reviews their strengths and
weaknesses, with a focus on how they facilitate learning shader-based program-
ming and real-time rendering. This chapter lays the groundwork for understand-
ing the educational value of the Elements framewaork, which is discussed later.

The third chapter introduces the Entity-Component-System (ECS) architecture
and its integration within the Elements framework. It explains the structure
and functionality of ECS and scene graphs, along with their use in managing 3D
scenes and real-time animations.

The fourth chapter delves into the practical aspects of the project, covering top-
ics such as skinning/rigging, model data extraction, and the overall design and
implementation process.

The fifth chapter presents the results of the research, analyzing the performance
improvements achieved through the integration of GPU-enabled algorithms in
ECS, while including code examples and discusses the challenges encountered
during development.

The final chapter summarizes the key contributions of the thesis, reflecting on
the research objectives and outcomes. It also outlines potential directions for fu-
ture research, suggesting ways to further enhance the capabilities of ECS-based
animation systems.

By addressing these aspects, this thesis aims to contribute to the field of com-
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puter graphics by demonstrating the benefits of integrating GPU-enabled algo-
rithms within the ECS framework, ultimately paving the way for more efficient
and scalable animation systems.
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2 Educational frameworks

This chapter will provide an analysis of various educational framewaorks relevant
to teaching computer graphics, with a particular focus on shader-based pro-
gramming and real-time rendering techniques. We will review several frame-
waorks, evaluating their strengths and weaknesses, and compare how they fa-
cilitate learning and practical applications in computer graphics. By examining
these frameworks, we aim to establish a foundation for understanding the edu-
cational role and significance of the Elements framework, which will be explored
in detail later in this thesis.

2.1 Describing the educational frameworks

2.1.1 GL-Socket

The first framework we are going to discuss is the GL-Socket Andujar Gran et al.
(2018), it has several key strengths and weaknesses. One of its primary strengths
is its ability to foster independent learning by providing students with struc-
tured tasks they can work on autonomously. The plugin-based design promotes
reusability and modular organization, allowing educators to create reusable,
modular tasks that build upon each other. Moreover, the framewaork includes
self-assessment tools, which allow students to test their work against refer-
ence solutions. This encourages active learning and immediate feedback. The
framework is also multi-platform compatible, making it adaptable for different
environments, including exams, where it automates the assessment process.

However, there are some challenges associated with the framework. The initial
setup can be complex, particularly for students who are not familiar with OpenGL
or GLSL, leading to a steep learning curve. Additionally, the framework does not
fully support modern shader types and OpenGL features, which may limit its ap-
plication in more cutting-edge topics within computer graphics education. Fur-
thermore, instructors are required to develop custom tasks, which can be time-
consuming and resource-intensive.

Overall, this framework offers a balance between flexibility in teaching and tech-
nical challenges, with its strengths in promoting independent learning, reusabil-
ity, and feedback, though it requires careful management to address its setup
complexity and shader limitations.

2.1.2 Shader-Based OpenGL

The Shader-Based OpenGL Miller; (2014) framework aids in teaching shader-
based OpenGL using a simplified version of the Model-View-Controller (MVC)
pattern. The framework allows students to incrementally grasp key concepts
such as GPU-CPU interaction and object-oriented programming in a structured
way. It is particularly helpful in guiding students through the complexities
of shader programming, offering practical, hands-on experience that prepares
them for large-scale applications, both in terms of code management and data
handling.
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Despite its strengths, the framework presents certain challenges, particularly
for students new to graphics programming. Shader-based OpenGL has a steep
learning curve, which was evident in the early implementations of the course,
where students struggled with the complexity of the content. The paper ac-
knowledges that while the framework provides clear instructional value, the ini-
tial version required significant restructuring to improve the clarity and pacing of
the material. Even with these improvements, students are expected to dedicate
considerable time to fully understand the underlying concepts.

Moreover, the framework exposes students to intermediate and advanced
object-oriented programming concepts within a real-world context, which helps
them understand design patterns such as MVC. The course also includes CPU-
GPU coordination, which gives students valuable experience in GPU program-
ming and prepares them to deal with real-time rendering and large-scale inter-
active applications.

However, working with established code bases, as required by the framewaork,
can be a challenge for students who are accustomed to building projects from
scratch, making it a double-edged sword for teaching advanced graphics tech-
niques.

In summary, the framework enhances learning by providing structured, incre-
mental exposure to shader-based OpenGL, but its complexity demands signif-
icant effort from students, especially those without prior experience, requiring
careful instructional design to mitigate challenges.

2.1.3 gIGA

The glGA Papagiannakis et all (2014) framework was developed to simplify the
teaching of complex graphics principles, offering students the tools to create
interactive 3D applications across multiple platforms such as Windows, Linux,
macOS, and i0OS.

One of its major advantages is the balance it strikes between providing students
with hands-on experience in real-time graphics programming and minimizing the
overwhelming complexities of OpenGL, C++ and GLSL programming, which al-
lows students to focus on core graphics concepts rather than unrelated software
engineering tasks. The framework includes a range of examples and assign-
ments that cover topics like window initialization, geometric transformations,
Blinn-Phong lighting, texture mapping, and skinned character animation. This
helps students build from basic examples to more sophisticated, shader-based
applications.

A key feature of glGA is its cross-platform compatibility, with minimal modifi-
cations the students can develop their projects across various platforms, even
including mobile environments like i0S. The examples and assignments which
are included in the framework make it easier for students to grasp the founda-
tional concepts of shader-based programming, while the inclusion of GUI-based
scene manipulation through AntTweakBar further enhances their understanding
by allowing real-time parameter adjustment.
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However, we need to acknowledges some challenges. For instance, novice stu-
dents, particularly those with limited exposure to third-party open-source li-
braries, initially faced difficulties in setting up the build environment. To address
this, the framewaork developers included a support system with online forums,
video tutorials, and real-time QA sessions during lectures. Additionally, while
the glGA framework is designed to simplify shader programming, students still
need to invest significant effort to fully grasp its advanced applications.

The results of using glGA in the Computer Science Department at the University
of Crete over three semesters have been positive. Students, even those with-
out prior experience in OpenGL, C++ and GLSL, were able to create moderately
complex CG applications using shaders by the middle of the course. Despite
some early difficulties, student feedback was generally positive, and the frame-
work was instrumental in providing a more hands-on, project-based learning en-
vironment for graphics programming. Its simplicity, combined with the power
of shader programming, allows students to learn complex GPU-based develop-
ment while avoiding the steep learning curve typically associated with advanced
graphics frameworks. The framework continues to evolve, with plans to expand
its capabilities to include geometry and tessellation shaders, further broadening
its scope in CG education.

2.1.4 CodeRunnerGL

The CodeRunnerGL Wiinsche et all (2019) is a system built on the CodeRunner
platform designed to enhance the teaching of computer graphics, particularly
OpenGL programming. The tool allows for automatic assessment of OpenGL
code, providing a highly interactive web-based environment where students can
visualize and manipulate 3D renderings.

One of the key strengths of CodeRunnerGL is its ability to offer interactive 3D
output and real-time feedback on code submissions. This allows students to
experiment with OpenGL programming in a more engaging way. The tool pro-
vides sandboxes for experimenting with different graphics concepts such as ge-
ometric primitives, transformations, and illumination models. By offering this
hands-on experimentation space, students can modify parameters and imme-
diately see the impact of their changes, which improves understanding of core
concepts. Additionally, CodeRunnerGL incorporates multiple test cases and au-
tomated feedback. The system compares students’ 3D outputs and underlying
OpenGL states with reference solutions, providing both visual and textual feed-
back. This helps students understand complex transformations and rendering
steps in a practical context. Furthermore, the tool supports automated grading
by analyzing student solutions based on the correctness of transformations and
rendered scenes, making it an effective tool for large classes.

There are some limitations that have to be noted. One challenge is that creating
effective test cases and generating meaningful automated feedback can be diffi-
cult, particularly for more complex programming tasks. While the interactive 3D
window improves understanding, users have suggested improvements, such as
alarger OpenGL window, automated updates without needing to press a “check”
button, and animating solutions to show intermediate results of complex trans-
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formations. A collaborative mode for peer programming and assessment was
also suggested. Additionally, the current system reverts to default views after
each re-evaluation, which can confuse students when tracking changes made in
their solutions.

CodeRunnerGL provides a powerful platform for teaching and assessing OpenGL
in a highly interactive and automated way. Its features help students to actively
engage with and better understand computer graphics concepts, although im-
provements in feedback mechanisms and user interaction are needed to fully
maximize its potential.

2.1.5 ShaderLabFramework

ShaderLabFramework Toisoul et al. (2017) is an educational tool designed to
simplify learning GLSL shader programming. This framework, used at Impe-
rial College London, provides an accessible interface for students to work with
OpenGL4 in a structured and interactive environment. It bridges the gap be-
tween highly complex graphics APIs and game engines, focusing on shader-
based programming. The framework includes features such as a two-pass ren-
dering pipeline, allowing students to learn essential concepts like illumination,
transformations, texture mapping, and simple GPU-based ray tracing.

The main strength of ShaderLabFramework lies in its user-friendly interface and
simplified programming environment, which makes it accessible even to stu-
dents with limited prior experience in computer graphics or OpenGL program-
ming. It incorporates a range of lab exercises aligned with the course syllabus,
covering key topics like vertex and fragment shaders, geometry processing, and
advanced techniques like bump mapping and Monte-Carlo path tracing. The
structured design helps students progressively learn through hands-on exer-
cises, building up their understanding of shader programming concepts while
eliminating the need to grapple with complex setup procedures.

The framework’s ability to save entire shader pipelines and configurations as
XML files also simplifies grading and feedback for instructors. Students can ex-
periment with various shader techniques and submit their work for evaluation,
while the framework’s integration into a standardized lab infrastructure ensures
consistency in student experiences across different machines.

However, while ShaderLabFramework is highly effective for shader-based pro-
gramming, it does not cover more complex graphics frameworks used in pro-
fessional game development, and it is somewhat limited to the scope of teach-
ing fundamental concepts. The framework also doesn’'t support broader game
development elements like physics engines or extensive real-time rendering ef-
fects.

Overall, ShaderLabFramework provides a solid foundation for teaching modern
shader programming, offering a streamlined and accessible learning environ-
ment for undergraduate computer graphics students. The open-source nature
of the tool encourages further development and adaptation, making it a valuable
resource for both students and educators.
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2.1.6 Rayground

Rayground Vitsas et all (2020) is a web-based educational platform aimed at
teaching ray tracing in an accessible and interactive way. The platform allows
students to experiment with ray tracing concepts without the complexity of set-
ting up extensive codebases, focusing instead on the core principles of ray trac-
ing. Rayground provides a WebGL-based development environment where stu-
dents can write shader programs for different stages of ray tracing, such as ray
generation, hit/miss handling, and post-processing.

One of the main strengths of Rayground is its user-friendly, shader-based ap-
proach, which allows students to explore the intricacies of ray tracing without
needing to learn complex APIs like Vulkan or DirectX. The platform emphasizes
a gradual introduction to ray tracing, making it suitable for both undergradu-
ate and graduate courses. It supports the practical application of theoretical
lessons, helping students understand key concepts such as ray-object intersec-
tions, shading models, and light transport in a visually interactive manner.

Moreover, Rayground supports multiple programming stages and provides live
feedback, allowing students to see the results of their changes immediately,
which enhances engagement and understanding. The platform is designed to
be accessible across various devices and operating systems, as it only requires
a WebGL-compliant browser, eliminating the need for specialized hardware or
software setups.

However, Rayground does not yet support certain advanced ray tracing tech-
niques like bidirectional path tracing or photon mapping, and it lacks support for
animations and more complex, real-time interactions, which are important for
advanced image synthesis. These limitations are partly due to the constraints of
current web-based graphics technology.

In conclusion, Rayground provides an effective platform for introducing ray trac-
ing to students, offering a simplified, interactive approach to understanding fun-
damental concepts. While it has some limitations in terms of advanced features,
its accessibility and ease of use make it a valuable tool for computer graphics ed-
ucation.

2.1.7 pyGANDALF

The pyGANDALF Petropoulos et al/ (2024) framework introduces an educational
tool designed to modernize the teaching of computer graphics by combining the
Entity-Component-System (ECS) architecture with dual support for both legacy
and modern APIs—OpenGL and WebGPU. The framework aims to simplify learn-
ing by offering a Python-based environment where students can explore a range
of techniques, from basic rendering to advanced topics like Physically Based Ren-
dering (PBR) and tessellation. pyGANDALF is designed for both teaching and re-
search, making it suitable for real-world applications while maintaining a focus
on accessibility.

The primary strength of pyGANDALF lies in its WebGPU integration, which pro-
vides students with access to cutting-edge graphics technologies like compute
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shaders and ray tracing pipelines. This sets the framework apart from others
by preparing students for the future of graphics programming, where APIs like
WebGPU are expected to replace older ones like OpenGL. The dual API support
allows students to seamlessly explore both WebGPU and OpenGL, gaining a bet-
ter understanding of the differences between legacy and modern graphics APIs.
Furthermore, the framework’s use of Entity-Component-System (ECS) architec-
ture helps manage complex scenes efficiently, reflecting real-world game devel-
opment practices. By combining modern APl access with the simplicity of Python,
pYGANDALF strikes a balance between accessibility and advanced functionality,
making it an ideal tool for teaching computer graphics.

On the downside, WebGPU's immaturity poses challenges. Since the APl is rela-
tively new, some features may be unstable, and ongoing changes to the API could
disrupt the learning process. Additionally, the framework’s editor, which signifi-
cantly enhances the user experience for OpenGL users, does not yet support We-
bGPU, limiting the interactivity and learning experience for students focused on
WebGPU. Another significant limitation is that pyGANDALF has not undergone
a full in-class evaluation. Without comprehensive testing in an educational envi-
ronment, it is difficult to fully assess its effectiveness in teaching, as well as its
ease of use and integration into a structured curriculum.

In conclusion, pyGANDALF represents an exciting step forward for computer
graphics education, particularly with its focus on WebGPU and modern APl inte-
gration. The framework offers a flexible and accessible environment for explor-
ing both legacy and cutting-edge graphics technologies. However, its reliance on
arelatively new APl and the absence of full classroom testing are areas that need
further development to fully realize its potential in education.

2.1.8 The Value of Elements

The Elements framework Papagiannakis et all (2023) offers a unique approach
to teaching computer graphics by combining an Entity-Component-System (ECS)
architecture with a scene graph structure. This combination facilitates better
management of large, complex scenes and allows for parallel processing, which
is crucial for rendering millions of objects in real time. One of the main ad-
vantages of Elements is its ability to provide both a high-level, conceptual un-
derstanding and hands-on practical experience for students. Unlike traditional
frameworks that often present parts of the graphics pipeline as black-boxes, El-
ements encourages exploration by exposing all stages of the rendering pipeline.
This white-box approach empowers students to understand and manipulate the
core components of the pipeline, such as lighting, shading, and texture mapping.

Furthermore, Elements is built with educational needs in mind. It is a
lightweight, open-source tool that is accessible to students with varying levels
of experience in computer graphics. Through its integration with Python, the
framework allows for rapid prototyping, helping students focus on core concepts
without being overwhelmed by low-level implementation details. By offering
structured, progressively challenging assignments, Elements enables students
to build foundational skills in 3D rendering, animation, and GPU programming,
while also providing room for advanced exploration, such as geometric algebra
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and neural computing.

The framework’s modular design ensures extensibility, allowing students and
educators to introduce new components and systems easily. This feature makes
Elements not only suitable for classroom teaching but also for research and rapid
prototyping in areas like geometric deep learning and real-time scientific visu-
alization. Its unit-tested libraries, including pyECSS, pyGLV, and pyEEL, offer a
range of applications that extend beyond traditional graphics teaching and into
fields like machine learning and immersive analytics.

In summary, the value of Elements lies in its ability to provide a holistic, flexible,
and scalable learning environment that adapts to the evolving needs of computer
graphics education. By integrating modern graphics concepts with educational
tools, Elements effectively bridges the gap between theoretical knowledge and
practical application, making it an essential resource for both students and edu-
cators.

As we move forward to Chapter 3, where the implementation of ECS in Elements
is discussed in greater detail. We will delve into the specifics of the ECS architec-
ture and its use in 3D animations, providing a closer look at the technical aspects
of Elements and how it facilitates complex, real-time rendering in educational
and research settings.
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3 Elements framework: ECS in a Scene Graph

In this chapter we will focus on the Entity-Component-System (ECS) architecture
and its implementation within the Elements framework. We will explore how
ECS, combined with scene graphs, manages complex 3D scenes and real-time
animations. The chapter will provide detailed explanations of the technical as-
pects of ECS, including its structure, functionality, and how it interacts with the
Elements framework’s key components, such as pyECSS and pyGLV, to enhance
rendering, transformations, and scalability in 3D computer graphics.

3.1 Understanding ECS

The Entity Component System (ECS) Harkdnen (2019) is a software architec-
tural model primarily used in 3D applications and game development. This model
decouples data from behavior, significantly simplifying the application develop-
ment process.

Based on the principle of data-oriented design and compaosition, the ECS ap-
proach assigns components independently to entities. This contrasts with
object-oriented design, where components are typically inherited from classes.
The ECS approach, however, leads to better performance, especially in applica-
tions involving numerous objects, such as those used in physics-based simula-
tions, while also offering enhanced maintainability and understanding of the ap-
plication’s objects.

More specifically, in an Entity Component System:

Entity: An entity refers to a versatile object used for general purposes. It stands
forindividual "things” in your game or application. An entity has neither behavior
nor data; systems provide the behavior, and components store the data. Instead,
it identifies which pieces of data belong together. Typically, it consists of only a
unique identifier (unique ID).

Component: A component defines a particular attribute of an entity and holds
the data required to represent that attribute. It is typically implemented using
structures, classes, or associative arrays.

System: A system is a process that operates on all entities possessing the rele-
vant components. It contains the logic or behavior that acts on the components
stored in entities. Systems operate independently and can be specialized for spe-
cific tasks (e.g., rendering system, physics system).

It is important to note that, throughout this project, when referring to "Entity,”
"Component,” or "System,” we are specifically referencing the definitions out-
lined earlier in the thesis, rather than other potential interpretations of these
terms.
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Figure 1: A system reads Translation and Rotation components, multiplies them,
and then updates the corresponding LocalToWorld components (L2W = T*R)
docs.unity3d.com (2024).

3.2 Graphics Programming with Scene Graphs

In modern game engines and graphics systems, we organize scenes using a
Scene Graph, it is based on a hierarchical data structure, which is a non-circular
one-way graph that is traversed to generate each frame. It holds data such as
camera settings, materials, geometry and lighting details, which is necessary for
creating the scene. Each node in the graph inherits attributes from its parent
nodes, while the mesh data for an object is stored in the leaf nodes.

In most game engines, these nodes are commonly called gameobjects, actors
or objects and the data associated with them are represented as Components.
The Scene Graph edges define the relationships and hierarchy, while different
traversals handle the initialization, updates, culling, and rendering processes.

In figure [B] we have a scene graph example to help us understand. The scene
graph depicted follows the Entity-Component-System (ECS) architecture, illus-
trating the hierarchical structure and relationships between entities within a vir-
tual environment. At the top of this hierarchy is the "World,” which serves as the
parent entity encompassing all other objects and components within the scene.
Each object, such as the camera, light source, table, plate, and food, is repre-
sented as an entity with its own set of associated components that define its
behavior and appearance.

"TRS” (Translation, Rotation, and Scaling) determine an entity’s position, orien-
tation, and size within the scene. "Shader” define how the entity interacts with
light, determining its visual appearance, while "Mesh” represents the geomet-
rical shape or structure of the object. These components allow the entity’'s be-
havior and properties to be modified or extended without altering the underlying
system.

The scene graph also visually represents the parent-child relationships between
entities, highlighting how transformations and properties are inherited through
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the hierarchy. For instance, the plate is placed on the table, inheriting its spa-
tial relationship, and the food, in turn, is positioned on the plate, following its
transformations. This structure ensures that changes to parent entities, such
as moving the table, automatically propagate to their children, maintaining rela-
tive positioning and coherence within the scene.

The design follows the principles of ECS by decoupling data and behavior into
discrete, reusable components, ensuring each entity is defined by its specific set
of components. This approach fosters a highly modular system, where compo-
nents can be easily interchanged or extended, making the system adaptable to
complex scene structures. The scene graph, therefore, serves as an effective
means of organizing and rendering the objects within the virtual world, while
maintaining clarity and modularity in how objects and their attributes are man-
aged.

‘ Legend

‘ World

| Camera | ‘Lightsource.‘ 4{ Table |

TRS |Mesh TRS |Mesh|| TRS |Mesh | =
. Pl‘ft ‘ l Parent to child
4{ ate
v v 1

TRS ‘Mesh |

‘_. Food ‘

l‘ v

TRS ‘Mesh ‘

Figure 2: Example of a Scene Graph using ECS.

3.3 The Benefits of ECS

One of the main advantages of using ECS over other software design patterns is
the improved scalability and flexibility it offers. Traditional object-oriented pro-
gramming approaches can become increasingly complex and difficult to manage
as a system grows and more features are added. In contrast, ECS separates the
data and behavior of entities, allowing for easier modification and addition of
new objects without the need to alter existing code. This facilitates the main-
tenance and expansion of the system, especially for large and complex applica-
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tions.

Another advantage of ECS is the potential for performance improvements in
certain types of applications. Because ECS stores data in contiguous mem-
ory blocks, it can be more cache-friendly, thus reducing memory fragmentation,
leading to faster access times and improved performance.

Additionally, ECS can facilitate parallel processing and multithreading, allowing
for better utilization of modern hardware and faster execution times. However,
it should be noted that performance gains from ECS are not always guaranteed
and depend on the specific application and implementation.

data-oriented design object-oriented programming

main main
data tightly packed and closer to cache memory memory unoptimized data layout uses main memory memory

Figure 3: Example of data storage in ECS and object-oriented programming Lin
(2020).

In general, the ECS model has gained significant attention in various game en-
gines. Unity is currently restructuring its core game engine architecture towards
adopting the DOTS (Data Oriented Technology Stack) system, which features
ECS architecture. This shift aims to address violations caused by previous data-
oriented programming principles and achieve better FPS performance in complex
scenes.

3.4 Elements Framework Explained

Elements aims to combine the power of the Entity Component System (ECS)
with the flexibility of Scene Graphs within the context of Computer Graphics. It
also seeks to provide fundamental tools for anyone interested in topics related
to Computer Graphics, such as Machine Learning, Geometric Algebra, and many
more.

Following an educational approach accessible to individuals with minimal devel-
opment experience, all related packages are available in Python.

The Elements project consists of three main Python libraries:

At the heart of the Elements project is the pyECSS library. This library serves as
the foundation for the project by implementing the core aspects of the Entity-
Component-System (ECS) model. Itintroduces the Scene Graph structure, which
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is responsible for organizing and maintaining the various components within a
3D scene. The pyECSS library also employs a Geometric Algebra engine to handle
complex transformations efficiently.
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Figure 4: pyECSS class diagram Papagiannakis et al. (2023).

The pyGLV library complements pyECSS by offering graphical demonstrations of
ECS within the Scene Graph. It contains numerous examples that illustrate how
the ECS model can be applied to real-time rendering using OpenGL. This library
is designed with a focus on cross-platform compatibility and applies sound soft-
ware design principles. Through its integration with pyECSS, pyGLV showcases
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how ECS can be utilized for both scientific visualization and advanced fields like
geometric deep learning [[].

Within the pyECSS package, a variety of built-in components are provided to fa-
cilitate the construction of 3D scene graphs. Some of the key components [A]
include:

BasicTransform: A component that manages an object’s coordinate system rel-
ative to its parent entity. It combines translation, rotation, and scaling into a
single matrix.

Camera: This component stores information about the camera’s settings in the
form of a view matrix. It can generate these matrices using orthogonal or per-
spective projection methods available in the pyECSS utilities.

RenderMesh: A component that handles the geometry of an entity, including
vertex positions, face indices, and optionally, vertex colors and normals.

VertexArray: This component manages the vertex array object (VAO) and vertex
buffer object (VBO), which are passed to the vertex shader for rendering.

Shader: A component that stores data required for OpenGL-GLSL shaders, in-
cluding both vertex and fragment shaders.

In addition to these components, pyGLV includes several systems [B] that are
crucial for handling different tasks in the computer graphics pipeline. These sys-
tems ensure the effective traversal and management of the scene graph, includ-
ing the calculation of important transformation matrices such as model-to-world
and root-to-camera matrices.

TransformSystem: This system traverses the scene graph and calculates the
local-to-world matrix for each entity. It does this by multiplying the transfor-
mation matrices of all components in the scene graph, starting from individual
entities and moving upward to the root node. This matrix multiplication order is
consistent with what is typically taught in computer graphics courses.

CameraSystem: This system calculates the root-to-camera matrix, which is es-
sential for the computer graphics rendering pipeline. It identifies the node with
the camera component and returns the inverse of the model-to-world matrix for
that entity.

InitGLShaderSystem: This system is responsible for initializing shader data and
setting up the GPU for rendering, functioning outside of the main rendering loop.

RenderGLShaderSystem: This system handles the actual GPU rendering pro-
cess. When an entity has both a VertexArray and Shader component, the system
sends the vertex data to the GPU and renders it on the screen.
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Figure 5: pyGLV class diagram Papagiannakis et al. (2023).

The pyEEL library promotes cutting-edge technology in neural networks, ma-
chine learning, and deep learning. It provides examples of how users can use
ECS in a scene for deep learning.

In the thesis we present, we mainly use the pyECSS and pyGLYV libraries as they
contain the functionalities we need, such as ECS and various examples.

3.5 Singleton Design Pattern

The Singleton is a popular creational design pattern that ensures a class has only
oneinstance, offering a global access pointtoit. Itis used when just one instance
of a class is needed to manage operations across a system. It achieves this by
limiting the class to a single instantiation and providing a method for other parts
of the application to access that instance universally. The key advantage of the
patternis thatit maintains a single object instance, ensuring consistent behavior
and efficient resource management throughout the system.

The Singleton pattern also facilitates the efficient management of shared re-
sources. For example, in systems that require shared access to objects like
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databases, configuration settings, or GPU resources, the Singleton pattern can
centralize control, reduce memory usage, and prevent conflicting states from
arising due to multiple instances of the same resource. Some of the key advan-
tages of the Singleton pattern include global access, controlled resource man-
agement, and reduced memory footprint, especially in resource-intensive appli-
cations such as computer graphics or large-scale systems Gamma (11995).

class Singleton:
_instance = None # Class attribute to store the single instance

def __mew__(cls):
if cls._instance is None:
cls._instance = super(Singleton, cls).__new__(cls)

return cls._instance

def init__(self):

self.data = "This is a Singleton instance"
# Usage
singletonl = Singleton()
singleton2 = Singleton()

print (singletonl.data) # Output: This is a Singleton instance
print (singletonl is singleton2) # Output: True, both are the same instance

Listing 1: Python example of how a Singleton can be implemented.

In this []] example, when the Singleton class is instantiated, it checks if an in-
stance already exists. If not, it creates a new one; otherwise, it returns the ex-
isting instance. This pattern ensures that only one instance of the class can ever
be created, regardless of how many times it's instantiated. This is highly effec-
tive for managing global states like resources or configuration settings in large
systems, like the ones in the Elements framewaork.

In the Elements framewaork, the Singleton pattern plays a vital role in manag-
ing GPU resources, such as shaders, textures, and models. A single instance
of the Singleton manages these resources, ensuring that they are loaded and
used consistently throughout the application. This guarantees that GPU mem-
ory is optimized, preventing duplication of resource data, which can cause per-
formance bottlenecks. By using the Singleton pattern, the Elements framework
avoids conflicts that might arise from multiple instances attempting to access
or modify the same resources.

Moreover, the Singleton pattern in Elements is responsible for managing global
settings, including lighting parameters, rendering options, and ECS configura-
tions. These global settings are crucial for maintaining uniform behavior across
all components and systems in the application. Having a centralized point of
control for these parameters ensures consistency and simplifies the process of
synchronizing updates, rendering operations, and other system-wide processes
in a complex 3D scene.

The use of the Singleton pattern in Elements also brings additional benefits, such
as easier debugging and maintenance. With a single point of control, manag-
ing configurations, logging, and resource usage becomes maore straightforward,
contributing to a more robust and stable application. By preventing the duplica-
tion of resources and offering a centralized interface for managing these assets,
the Singleton pattern enhances both the performance and maintainability of the
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4 Theoretical Foundations of ECS-Based Animation
and GPU Acceleration

This section explores the key theoretical concepts that underpin the design and
implementation of this project. We will delve into the principles of skinning and
rigging, which are essential for animating 3D models, followed by an examina-
tion of textures and lighting, which play a critical role in creating visually rich and
realistic scenes. Finally, we will explore the concept of animation itself, detail-
ing the methods used to bring 3D models to life within the Entity-Component-
System (ECS) framewaork, utilizing GPU acceleration to optimize performance and
enhance realism.

4.1 Understanding Skinning and Rigging

Rigging refers to the process of creating a digital skeleton (rig) for a 3D model.
The purpose of the rig is to provide a structure to control the model’'s movement,
particularly for animation. The rig consists of joints, also known as bones, which
are connected to form a skeletal structure. Each joint is assigned specific char-
acteristics, such as rotation limits and hierarchical relationships.

Here [B] we illustrate a rigged 3D hand model, where the digital skeleton, is vis-
ible through highlighted joint structures. These joints, marked with green lines
and nodes, represent the bones of the hand model, showing the interconnected
system that enables controlled movement and animation. The joints are respon-
sible for limiting and guiding the range of motion for each finger, as demon-
strated by their placement along the fingers and knuckles. This setup exempli-
fies how a rig allows for precise manipulation of individual parts of the model,
crucial for realistic animation and character articulation.

Figure 6: Rigged hand model Bundiuk (2023).
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Skinning refers to the process of attaching a 3D model’'s mesh to a skeleton or
set of bones. The purpose of skinning is to create realistic movement and defor-
mation of the 3D model during animation. In this context, “skin” refers to the
outer surface or mesh of the 3D model. The skinning process involves associat-
ing each vertex of the 3D mesh with one or more bones from the skeleton. This
association is often expressed through a set of weights, which determine the
influence of each bone on a particular vertex. When the skeleton moves, the ver-
tices of the mesh move according to the transformations applied to the related
bones, creating the illusion of realistic movement.

The image [IZ] demonstrates the process of skinning in a 3D model, where the
mesh of lower body is visually attached to its underlying skeleton. The mesh,
shown as a grid of green lines, represents the outer surface of the model.
The bones, visible within the leg, are connected to the mesh vertices through
weighted assaociations, which dictate how each section of the mesh will deform
when the skeleton moves. As the bones shift, the corresponding parts of the
mesh stretch and contract, simulating realistic movement. This depiction high-
lights how skinning links the visual mesh to the bones, creating dynamic and
natural motion in animations.

Figure 7: Low body with skin weights (2019).
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4.2 Textures

Texture refers to the visual appearance or surface quality of an object in a vir-
tual 3D environment. Textures are used to add detail, realism, and complexity to
the surfaces of 3D models. They simulate different materials when applied to
objects.

Textures can have one to three dimensions, although two-dimensional textures
are the most common. Textures are mapped onto the three-dimensional sur-
faces of objects. The process of applying these two-dimensional images to 3D
models is known as texture mapping. The texture coordinates of the 3D model’'s
surface are used to determine how the pixels of the texture image should be
mapped onto the model.

The image [E] illustrates the process of texture mapping in 3D modeling, where
a two-dimensional texture is applied to a 3D house model. In the top left, the
model is depicted as a wireframe, showing its geometric structure without any
textures. Next to it, the model is displayed in its basic, untextured form, demon-
strating its plain appearance. Below, two-dimensional textures are shown as flat
images, representing various surfaces (such as the roof and walls) that will be ap-
plied to the model. Finally, the fully textured 3D model is presented, where the
2D images wrap around the surfaces of the house, giving it a detailed, realistic
look.

Figure 8: Mapping two-dimensional texture onto a 3D model of a house

Wikipedia (2024b).
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4.3 Phong Lighting Algorithm

Lighting refers to the simulation of how light interacts with objects in a virtual
environment. Proper lighting is essential for creating realistic and visually ap-
pealing images. Lighting affects how colors, shadows, and highlights appear on
the surfaces of 3D models. It plays a crucial role in conveying the shape, depth,
and texture of objects in a scene.

In our code, we use the Phong lighting algorithm, which consists of three main
components: ambient, diffuse, and specular reflection.

Ambient reflection represents the light that is scattered in all directions, provid-
ing a base level of illumination to a surface regardless of its orientation. Itis a
constant term applied uniformly to all points on a surface, independent of the
direction of incoming light.

Diffuse reflection simulates the matte, non-glossy appearance of surfaces. It
depends on the angle between the incoming light and the surface normal. The
intensity of diffuse reflection is calculated using Lambert’s cosine law, which
states that the intensity is proportional to the cosine of the angle between the
light direction and the normal vector.

Specular reflection represents the shininess or glossiness of a surface. It de-
pends on the angle between the reflected light direction and the viewer’s line
of sight. The intensity of specular reflection is higher when the viewer is aligned
with the reflection direction, creating highlights.

Ambient Diffuse Specular = Phong Reflection

Figure 9: Visual representation of the Phong equation Wikipedia (2024a).
Specifically, our work uses the following Phong algorithm:

Ambient = ambientStr x ambientColor (1)

Diffuse = max(dot(norm, lightDir), 0.0) x lightColor (2)

Specular = shininess x (max(dot(viewDir, reflectDir), 0.0))** x tex.xyz  (3)

OutputColor = (Ambient + (Diffuse + Specular) x lightintensity) x tex.xyz (4)
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Where:
e ambientStr: Intensity of ambient light.
e ambientColor: Color of ambient light.
e norm: Normalized normal vector.
e lightDir: Normalized vector for the direction of the light.
e viewDir: Normalized vector for the viewing direction.
e reflectDir: Normalized reflection direction vector.
e lightPos: Position of the light source.
e lightColor: Color of the light source.
e lightintensity: Intensity of the light source.
e shininess: Material shininess.

o tex: Texture.

4.4 Animation

Animation is the process of creating the illusion of motion by displaying a se-
quence of images or frames. In computer graphics, this involves manipulating
objects, characters, or scenes to create movement or change over time. Anima-
tion is crucial in fields such as film, video games, simulations, and education,
enhancing interactive experiences, visual storytelling, and real-time simulations.

Key principles, initially developed for traditional animation, ensure that move-
ments appear natural and believable, and they have been adapted for digital me-
dia, including 3D animation. For example, "squash and stretch” gives objects
flexibility and weight, making motion dynamic. Anticipation sets up actions by
preparing the audience for movement (e.g., winding up before a jump). Timing
and spacing control movement speed, while follow-through and overlapping ac-
tion account for inertia, ensuring realistic physics. Exaggeration highlights key
actions, making them more dramatic or noticeable.

Figure 10: Keyframes of animation Academy (2021).
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In keyframe animation, keyframes [[10] define the object’s position, rotation, and
scale at specific points in time. Between these, smooth transitions are achieved
using interpolation techniques like linear interpolation (LERP) and spherical lin-
ear interpolation (SLERP).

LERP is a method for linear transitions between two points, calculated as:

Lit)y=(1—-t)-A+t-B (5)

where AA and BB are the start and end points, and tt is the interpolation factor
between 0 and 1. It is ideal for moving objects along straight paths or gradually
changing values like position or scale.

SLERP is used to interpolate between rotations, especially useful for smooth
transitions in 3D space. Given two arientations represented as quaternions q0qO0
and q1q1, the SLERP equation is:

_sin(1—1)0 sintf
- sinf © Ging

S(t) "1 (6)
where 8 is the angle between the quaternions. SLERP ensures smooth and real-
istic rotational movements.

In 3D computer graphics, animation is achieved through transformations—
translation, rotation, and scaling. Each object in a scene has a transformation
matrix that encapsulates these operations:

T= Ttranslation X Trotation X Tscaling (7)

During animation, this matrix changes over time, resulting in the object’s move-
ment or deformation. The Entity-Component-System (ECS) architecture used in
this project helps manage these transformations efficiently by separating the
data (e.g., position, velocity) from the logic (e.g., how keyframes are updated).

With modern 3D animation’s increasing complexity, GPU acceleration is essential
for real-time performance. By offloading heavy computations, like rendering and
physics simulations, to the GPU, the system can handle complex scenes while
maintaining smooth animations and high visual fidelity. This is crucial in appli-
cations like video games and simulations, where performance and visual quality
must be balanced.
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5 Project Implementation

In this chapter, we will discuss how we designed and implemented the thesis
programmatically. We will explore how we created new functions, classes, and
new components, entities, and systems, and how we combined them with the
existing Elements objects to produce a scene with an animated, lit, and textured
model.

In more details, the main focus of the project is on animating two 3D models: a
robotic arm and an AstroBoy figure, both of which are rigged to allow for realistic
movement. The animation is controlled through a sequence of keyframes, each
representing a snapshot of the model’s position, rotation, and scaling at a partic-
ular point in time. By interpolating between these keyframes using techniques
like Linear Interpolation (LERP) and Spherical Linear Interpolation (SLERP), the
system produces smooth transitions, resulting in lifelike motion for the models.
These animations are further enhanced by the use of Phong lighting, a shading
model that combines ambient, diffuse, and specular reflection to simulate real-
istic lighting effects.

Additionally, the project makes extensive use of GPU acceleration to handle
the computationally expensive tasks of rendering and animation. By offloading
these tasks to the GPU, the system is able to maintain high frame rates and visual
fidelity, even when animating complex scenes with detailed textures and lighting
effects. This is particularly importantin real-time applications, where any drop in
performance could negatively impact the user experience. The ECS framework’s
inherent ability to separate data (components), behavior (systems), and entities
(identity) allows for easier optimization and parallelization of these processes.

The integration of these technologies—ECS architecture, GPU acceleration, and
the Elements toolkit—demonstrates a modern approach to 3D animation sys-
tems. The project provides valuable insights into how modular design and effi-
cient resource management can be used to create scalable, flexible, and perfor-
mant systems. More importantly, it underscores the potential of the Elements
framework as both an educational platform and a tool for rapid prototyping,
giving students and developers the opportunity to explore advanced computer
graphics concepts in a practical and interactive way.

5.1 Project overview

This section describes the specificimplementation aspects of the project that we
developed. The project is based on the Entity-Component-System (ECS) frame-
work, but focuses primarily on the coding and integration of various components
within a graphical environment. The main goal was to create a functional scene
that showcases different graphical elements, including a rigged model, camera,
lighting, and a variety of objects.

Inthe scene, the user can interact with the models, specifically the roboticarm or
the Astroboy figure, by modifying their Translation, Rotation, and Scaling (TRS)
properties or altering their animation sequences. Additionally, the user can inter-
act with various elements of the environment, such as the floor, camera, skybox,
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and lighting. This level of control allows users to experiment and gain a deeper
understanding of how graphics operate, and maore specifically, how animation
functions within the context of this project. All of these interactions are facili-
tated through a graphical user interface (GUI).

Mesh —] ‘ cam | Gradient
e ) Floor
| TRS [« | TRS v
Keyirame €—— Mesh
=h e Skybox
Animation €——' | TRS l«— !
Point
Mesh ——— Light
| TR —— Y
Ambient
Mesh €—— Light

| TRS «—

Mesh ——
| TRS |«

Figure 11: ECS Project graphical enviroment.

In the diagram [[11], the hierarchical structure of entities and their associated
components is shown. Each entity, represented by circles (such as the Camera,
Gradient Floor, Skybox, Point Light, and Ambient Light), is composed of differ-
ent components. These components, displayed as colored rectangles, include
TRS (Transformation), Mesh, Camera settings (Cam), Keyframes, and Anima-
tion. The Root entity serves as the parent node, with its child entities like the
Rigged Model, Camera, and various lights arranged in a hierarchical manner. This
setup demonstrates how the scene graph is managed, and how different graph-
ical components interact to form the overall visual representation of the project.

The key part of my project was to code the functionalities of these entities, en-
suring that they are properly rendered and animated within the ECS framewaork.
By using GPU acceleration, | was able to optimize the rendering pipeline, allow-
ing for smooth real-time visual feedback. The rigged model, for instance, is ani-
mated by applying keyframe transformations to its skeletal structure, while the
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lighting entities (Point Light and Ambient Light) dynamically illuminate the scene
based on their positions and properties.

5.2 Installation of Elements and Prerequisites

For the proper functioning of Elements and its libraries, the installation of certain
specific applications is required.

It is important to note that this entire thesis was conducted on a Windows 10
environment. Although we have not performed tests on any Linux distributions
or macOs, all the packages and libraries utilized in this thesis are compatible with
these operating systems and can be installed accordingly.

We need to install the programming language Python on which the Elements
code is based. Next, we need Anaconda as Elements uses several of its libraries.
For editing, writing, and general management of our code, we use Visual Studio
Code as it is modular and open-source.

Once the prerequisites have been installed, we can proceed with the installation
of Elements. Detailed installation instructions for Elements can be found here.

5.2.1 Installation of pyassimp

For the installation of pyassimp, we must first have installed the prerequisites
and Elements. Once these steps are completed, we should be in the anaconda
environment we created—how to create and open an anaconda environment is
detailed in the Elements installation instructions. Then, we need to run the com-
mand "pip install pyassimp==4.1.3"in the terminal.

We use version 4.1.3 because it has been extensively tested during the develop-
ment of the thesis and works without errors.

Next, we need to check if the versions of assimp and numpy are compatible with
pyassimp. Running the command "conda 1list" in the terminal will display all
installed packages in the current environment. The versions should be assimp
= 4.1.0 and numpy = 1.24.4. If they are not, we need to install the correct ver-
sions with the commands "pip install numpy==1.24.4" and "conda install
assimp=4.1.0=h0536686_2"

5.3 Model Data Extraction

In our application, we utilize two models: the AstroBoy model, which we did not
design, and a robotic arm model, which we designed ourselves. Using pyassimp,
we extract the data (mesh, vertices, indices, bones) from both models.

As shown in the code snippet below[ ], in the first line, we use the loadfunction,
which is a pyassimp function that extracts all the data from the file containing
our model. The str(file) essentially represents the location of our file in the com-
puter’s storage.

In the fifth line, we load the model into the variable mesh. Themesh_id is needed
to extract the correct model from the file, as there may be other models in the
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same file. The remaining lines are used to extract the vertices, faces/indices, and
bones of the model.

figure = load(str(file))
mesh_id = 3

mesh = figure.meshes[mesh_id]
v mesh.vertices

£ mesh.faces

b mesh.bones

Listing 2: Code for extracting data from our model.

In the following code snippet[B3] we initialize the vertex_weight class, which is a
class from the Elements library, in order to distribute the vertex weights to the
bones.

Then, from lines six to eleven, we change the color of the vertices so that their
color changes based on their y-coordinate.

Inline thirteen, we flatten the array f to make it easier to use later. The transform
variable is used later and is always set to True, as it selects between different
codes in Elements.

vw = vertex_weight (len(v))

vw.populate (b)

v2 = np.concatenate((v, np.ones((v.shapel[0], 1))), axis=1)

c =1

min_y = min(v, key=lambda v: v[1]) [1]

max_y = max(v, key=lambda v: v[1]) [1]

for i in range(len(v)):
color_y = (v[il[1] - min_y) / (max_y - min_y)
c.append ([0, color_y, 1-color_y , 1])

f2 = f.flatten()

transform = True

Listing 3: Code forextracting data from our model.

In the code snippet[@]], we have the initialize_M function, which initializes a list of
4x4 identity matrices. The length of this list is the number of bones in our model.
Inlines 8, 17, 18, 28, and 29, we initialize the initial poses that each keyframe will
have.

Inline 37, we initialize BB, which consists of 4x4 matrices, where each 4x4 matrix
has the initial Translation Rotation Scale (TRS) from each bane.

In line 41, we reshape BB so that it can be used later.

The remaining lines of code will be analyzed in the appropriate chapter.

M = initialize_M(b)

WW = np.array([[np.eye(4)
for _ in range(len(M))]
for _ in range(3)]);
ww_9 = [[[0] = 6 + [1, 1, 1]
for _ in range(len(M))]
for _ in range(3)];

#Initialising first keyframe
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M[1] = np.dot(mp.diag([1,1,1,1]) ,M[1]);
keyframel.array_MM.append(read_tree(figure,mesh_id,M, transform));

for i in range(0,len(WW_9[0])):
WW_9[01[i]1[:3] = translation(keyframel.array MM[0][il])
WW_9[0]1[i]1[3:6] = (rotationEulerAngles(keyframel.array_MM[0][i])/180)*np.pi
Ww_9[0][il[6:9] scale(keyframel.array MM[0][i])

#Initialising second keyframe
M[1]1[0:3,0:3] = eulerAnglesToRotationMatrix([0.3,0.3,0.4])
M[1][0:3,3] = [0.5,0.5,0.5]

keyframe2.array_MM.append(read_tree(figure,mesh_id,M,transform))

for i in range(0,len(WW_9[0])):
WW_9[11[i][:3] = translation(keyframe2.array_MM[0][i])
WW_9[11[i]1[3:6] = (rotationEulerAngles(keyframe2.array_MM[0][i])/180)*np.pi
WW_9[11[i][6:9] = scale(keyframe2.array_MM[0][i])

if keyframe3 != None:
M[1]1[0:3,0:3] = eulerAnglesToRotationMatrix([-0.5,0.3,0.4]1)
M[1][0:3,3] = [0.5,0.5,0.5]
keyframe3.array_MM.append(read_tree(figure,mesh_id,M,transform))

for i in range(0,len(WW_9[0])):
WWw_9[2]1[i]1[:3] = translation(keyframe3.array_MM[0][i])
Ww_9[2][i][3:6]
ww_9[2]1[i] [6:9]

scale(keyframe3.array_MM[0][il)

#Initialising BB array
BB = [b[i].offsetmatrix for i in range(len(b))]

# Flattening BB array to pass as uniform variable
ac.bones.append(np.array (BB, dtype=np.float32).reshape((len(BB), 16)))

Listing 4: Code for extracting data from our model.

5.4 Implementation of Keyframe Component

(rotationEulerAngles (keyframe3.array_MM[0] [i])/180) *np.pi

For the implementation of animation, we will use the ECS architecture and the

Elements library extensively, as well as create new components and systems.

Starting with the keyframe component [[B], this is where the 4x4 matrices defin-

ing the TRS of each bone will be stored.

class Keyframe (Component) :

def __init__(self, name=None, type=None, id=None, array_MM=None):
super () .__init__(name, type, id)

self._parent = self

if not array_MM:
self._array_MM

else:
self._array_MM = array_MM

(1

@property
def array_MM(self):
return self._array_MM

Qarray_MM.setter
def array_MM(self, value):
self._array_MM = value

Listing 5: Code for the keyframe component.
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5.5 Implementation of Animation Component

In the following code, we have the AnimationComponents component cIass[E],
where we initialize the attributes of the animation. For keyframe and bones, we
pass the corresponding matrices. The MM is the final matrix that we will later
pass as a uniform variable to the shaders. The alpha is the interpolation factor
ranging from O to 1. The tempo dictates the rate of change of the alpha. The
time_add is for storing the current time. The animation_start dictates whether
the model starts/stops moving. The time is for the timeline of the keyframes.
The flag is used to have repetitive animation, and inter is the switch between
SLERP or LERP.

class AnimationComponents (Component):

def __init__(
self,
name=None,
type=None,
id=None,
keyframe=None,
bones=None,
MM=None,
alpha=0,
tempo=2,
time_add=0,
animation_start = True,
anim_keys = 2,
time = [0, 100, 200],
flag = True,
inter = 'SLERP'):

super () .__init__(name, type, id)
self._parent = self

self.alpha = alpha
self.tempo = tempo
self.time_add = time_add

self.anition_start = animation_start
self.animKeys = anim_keys

self.inter = inter

self.time = time

self.flag = flag

self .MM = []

if not keyframe:
self._keyframe = []

else:
self._keyframe = keyframe

if not bones:

self._bones = []
else:
self._bones = bones
@property

def bones(self):
return self._bones

@bones.setter
def bones(self, value):
self._bones = value

Listing 6: Code forinitializing attributes of the animation component.

Initially, the animation_loop[@] initializes a self.MM array with identity 4x4 ma-
trices, where the intermediate frame generated by interpolation will be stored.
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Then, it evaluates whether the motion should continue, taking into account
the current time (time_add) and the intervals between keyframes. It calls the
animation_for_loop method, facilitating interpolation between keyframes and
updating transformation matrices for each bone or joint in the animation.

The function handles timing issues and updates a flag for animation repetition.
If the animation is set to repeat, time progresses at a specified rate; otherwise, it
remains constant. This dynamic timing mechanism ensures smooth transitions
between key frames.

In conclusion, the function finalizes by flattening the self.MM array, converting
it into a format suitable for passing to a uniform variable. The animation_loop
plays a central role in orchestrating the animation process, enabling dynamic and
visually appealing sequences.

def animation_loop(self):
#Filling MM with 4x4 identity matrices
self .MM = [np.eye(4)
for _ in self.keyframe[0]]

if (self.time_add >= self.time[1]
and self.keyframe[2] is Nomne)
or (self.time_add >= self.time[2]):
self.flag = False

elif self.time_add <= self.time[0]:
self.flag = True

if self.time_add >= self.time[O0]
and self.time_add <= self.timel[1]:
self.animation_for_loop(self.keyframe[0],
self .keyframe [1],
self.time[0],
self.time[1])

elif self.time_add > self.timel[1]
and self.time_add <= self.timel[2]
and self.keyframe[2] is not None:
self.animation_for_loop(self.keyframe[1],
self .keyframe[2],
self.time[1],
self.time[2])

#So we can have repeating animation
if self.flag == True:
if self.anition_start == True:
self.time_add += self.tempo
else:
self.time_add = self.time_add
else:
if self.anition_start == True:
self.time_add -= self.tempo
else:
self.time_add = self.time_add

# Flattening MM1 array to pass as uniform variable
self .MM = np.array(self.MM, dtype=np.float32).reshape((len(self.MM), 16))

return self .MM

Listing 7: The functionis responsible for managing the animation loop. It updates
the animation state, interpolates between keyframes and returns a flattened
array of 4x4 matrices representing the transformation foreach bonein the
animation.
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The function[[11]] calculates the alpha, taking into account the current time rela-

tive to the intervals between keyframes (8).

self.time_add — ¢,
|t1 — tol

self.alpha =

(8)

Then, the algorithm extracts translation [8], rotation[d], and scale[[1d] elements

from the provided keyframes.

def translation(matrix):
return matrix[:3,3];

Listing 8: Code that extracts translation.

def rotationEulerAngles(matrix):
# First get rotation matrix from trs. Divide by scale
rotationMatrix = matrix.copy();
sc = scale(matrix);
rotationMatrix = rotationMatrix @ util.scale(1/sc[0], 1/sc[1], 1/sc[2])
myR = rotationMatrix[:3,:3]
if myR[2,0] not in [-1,1]:

y = -np.arcsin(myR[2,0]);
x = np.arctan2(myR[2,1]/np.cos(y), myR[2,2]/np.cos(y));
z = np.arctan2(myR[1,0]/np.cos(y), myR[0,0]/np.cos(y));
else:

z = 0;
if myR[2,0] == -1:

y = np.pi/2;

x = z + np.arctan2(myR[0,1], myR[0,2]);
else:

-np.pi/2;

~<
o

-z + np.arctan2(-myR[0,1], -myR[0,2]);
return np.array([x,y,z])*180/np.pi;

Listing 9: Code that extracts rotation.

def scale(matrix):

m = matrix.copy()[:3,:3];

A = m.transpose() @ m

sx = np.sqrt(A[0,0])

sy = np.sqrt(A[1,1])

sz = np.sqrt(A[2,2])

return numpy.array([sx, sy, sz])

Listing 10: Code thatextracts scale.

5.5.1 Scale
The extraction of scale can be mathematically represented as follows:
We are given a matrix M where the top-leftis a 3 x 3 submatrix m,

mip Mmiz2 1Ma3

m= |mg Moy Mas| , (9)
m31 M3z 133
Then we have the matrix A, which is calculated as follows:
A=m"m. (10)
The matrix m is the Rotation(R) matrix multiplied with the Scale(S) matrix.
(RS)T(RS) = §2 (11)
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We get S? because the R is orthonormal matrix and the S is a diagonal matrix.

The scaling factors s,, s,, and s, are then determined as:
Sy =V A1, sy =VAw, s.=1+/Ass. (12)

The function returns a matrix containing these scaling factors:

Sz
scale(M) = |s,| . (13)
Sz

5.5.2 Rotation

The rotation matrix in Euler angles can be mathematically represented as fol-
lows.

Given a rotation matrix R, the function calculates the Euler angles z, y, and z as
follows:

1. We normalize the rotation matrix:

rotationMatrix = R
sc = scale(R)

1 1 1
rotationMatrix = rotationMatrix x util.scale , ,
sc[0] sc[1]” sc[2]

2. We extract the rotation submatrix:

myR = rotationMatrix(: 3, : 3]

3. We calculate the Euler angles:

y = —arcsin(myR[2, 0])

myR[2,1] myR[2, 2]
o =arcan (s ey )
myR[1,0] myR[0, 0]
== arcten (L0 ek )

4. Conversion to degrees:
180
Euler angles = [z,y,z] x —
™
5.5.3 Euler Angles

The Euler angles to quaternions conversion can be mathematically represented
as follows:

Given the Euler angles roll, pitch, and yaw, the function calculates the corre-
sponding quaternion (¢, ¢y, ¢, ¢w) as:
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roll
2.0
pitch

2.0
yaw < yaw
2.0

cy < cos(yaw)

roll <

pitch <

sy < sin(yaw)

cp + cos(pitch)

sp < sin(pitch)

cr < cos(roll)

sr < sin(roll)

quw <= cr-cp-cy -+ sr-sp-sy
qr <= Sr-cp-cy—cr-Ssp- sy
qQy<—cr-sp-cy—+sr-cp-sy
qz <—Ccr-cp-Sy— Sr-sp-cy

The resulting quaternion is (q., gy, 4=, qw)-

5.5.4 Translation
The extraction of translation can be mathematically represented as follows:

Given a transformation matrix M, the function calculates the translation vector
(tz,ty,t.)as

te
translation(M) = M[: 3,3] = |{,
t:

5.5.5 SLERP - Quaternions

For interpolation between rotations, quaternion interpolation is used (either

LERP(15) or SLERP(14))

quaternion_slerp(qi, g2, t) = { @2 t=1.0 (14)
q1 cos(f) + %{;ﬁw sin(6t)

Here, ¢; and ¢, are unit quaternions, ¢ is the angle between ¢, and ¢, t is the
interpolation fraction (¢ € [0, 1)), cos(#) is the dot product of ¢; and ¢, sin(d) is
the sine of the angle between ¢; and ¢, ¢; cos(0) represents the component of ¢;
parallel to ¢2, ¢ — ¢; cos(0) represents the component of ¢, perpendicular to ¢,
%(690)5(9) is the normalized perpendicular component, and sin(6t) represents the

rotation around the axis defined by the normalized perpendicular component.
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5.5.6 LERP

While linear interpolation () is used for translation and scale.

lerp(a,b,t) =a+t-(b—a) (15)

Then, the algorithm proceeds to update the transformation matrix for each bone
by incorporating the interpolated values. The resulting transformation matrices
(16)(17) are stored in the self.MM array

Matrix transformation:
transformed_matrix = scale_matrix x rotation_matrix (16)
where the rotation matrix comes from the interpolated quaternion.

transformed_matrix[: 3, 3] = interpolated_translation 17)
def animation_for_loop(self, k_1, k_2, t0, tl):
self.alpha = (self.time_add - t0) / abs(tl - t0)

keyframel = Keyframe (array_MM=[k_1])
keyframe2 = Keyframe (array_MM=[k_2])

# print (keyframel.array_MM[0][1])
for i in range(len(k_1)):

translation_1 = translation(keyframel.array_MM[0][i])
translation_2 = translation(keyframe2.array_MM[0][i])

rotation_1
rotation_2

= rotationEulerAngles (keyframel.array_MM[0][il)
= rotationEulerAngles (keyframe2.array_MM[0][i])
rql = quat.Quaternion.
euler_to_quaternion(math.radians(rotation_1[0]),
math.radians (rotation_1[1]),
math.radians(rotation_1[2]))

rq2 = quat.Quaternion.
euler_to_quaternion(math.radians(rotation_2[0]),
math.radians(rotation_2[1]),
math.radians(rotation_21[2]))

rql
rq2

rql / rql.norm()
rq2 / rq2.norm()

scale_1 = scale(keyframel.array_MM[0][i])

scale_2 scale(keyframe2.array_MM[0] [i])
if(self.inter == "LERP"):

rl = quat.quaternion_lerp(rql, rq2, self.alpha)
else:

rl = quat.quaternion_slerp(rql, rq2, self.alpha)

sl = self.lerp(scale_1, scale_2, self.alpha)
sc = util.scale(sl1[0],s1[1],s1[2])
self .MM[i][:3, :3] = sc[:3, :3] @ quat.Quaternion.to_rotation_matrix(rl)

self .MM[i][:3, 3] = self.lerp(translation_1, translation_2, self.alpha)

Listing 11: The function performsinterpolation between two keyframes foreach
boneintheanimation
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To execute the animation_loop function, we need to invoke it through a system;
otherwise, we would violate the principles of ECS.

In the following code snippet [], we see the implementation of the system.

class SkinnedAnimationSystem(System):
def __init__(self, name=None, type=None, id=Nomne):
super () .__init__(name, type, id)

def apply2AnimationComponents(self, animationComponents: Elements.
features.
SkinnedAnimation.
SkinnedAnimation.AnimationComponents) :

animation_data = animationComponents.animation_loop ()

return animation_data

Listing 12: Class for the animation system.

Below is the code[[13] for the GUI that will appear in our program.

The variables WW and WW_9 were initialized in the code [d] on lines 3 and 5,
essentially used to store the changes we make to translation, rotation, and scale
through the GUI.

On line 6, a slider button labeled "Alpha Tempo” is created in the GUI. The value
of self.tempo is updated based on the user interaction, controlling the animation
speed.

On line 7, there is a checkbox labeled "Animation” that allows us to pause and
resume the animation.

The purpose of the loops is to create collapsible tree nodes for each keyframe
and articulation.

For each articulation, slider buttons are created for properties such as transla-
tion, rotation, and scale. The values are updated based on user interaction.

Online 30, if any articulation is modified, the code updates the WW variable, then
calls read_tree to make the necessary changes not only to the articulation we've
modified but also to its children from that articulation.

def drawSelfGui(self, imgui):
global WW
global WW_9

imgui.begin("Animation", True)
_, self.tempo = imgui.drag_float("Alpha Tempo", self.tempo, 0.01, O, 5)

_, self.anition_start = imgui.checkbox("Animation", self.anition_start)
i=0
for k in self.keyframe:
if imgui.tree_node("Keyframe " + str(i)):
j =0
for mm in k:
if imgui.tree_node("Joint " + str(j)):

imgui.text ("My Value: {}".format (mm))

tran_x, WW_9[il[jl1[0] = imgui.drag_float("Translate X",
ww_9[il[j]1[o],
0.1,
-10,
10)
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24 tran_y, WW_9[i]J[j]l[1] = imgui.drag_float("Translate Y",

25 ww_olil([j]1[1],
26 0.1,

27 -10,

28 10)

29 tran_z, WW_9[i][j]l[2] = imgui.drag_float("Translate Z",
30 ww_orlil[jIC[2],
31 0.1,

32 -10,

33 10)

34

35 rot_x, WW_9[i]J[j][3] = imgui.drag_float("Rotate X",

. ww_9[il[j1[3],
37 0.1,

38 =8,

39 3)

40 rot_y, WW_9[i]J[j]l[4] = imgui.drag_float("Rotate Y",

41 ww_o[lil[;]1[4],
42 0.1,

43 =8

44 3)

45 rot_z, WW_9[il[jl1[5] = imgui.drag_float("Rotate Z",

46 ww_oTlil[jI1[5],
47 0.1,

48 -3,

49 3)

50

51 sc_x, WW_9[il[jl[6] = imgui.drag_float("Scale X",

o ww_9[il[j1[6],
53 0.01,

54 0.1,

55 1)

56 sc_y, WW_9[il[jl[7] = imgui.drag_float("Scale Y",

. Ww_9Ulil[jI([7],
58 0.01,

59 0.1,

60 1)

61 sc_z, WW_9[il[jl[8] = imgui.drag_float("Scale Z",

62 ww_olil[jI([8],
63 0.01,

64 0.1,

65 1)

66

67 if tran_x or tran_y or tran_z

68 or rot_x or rot_y or rot_z

69 Or SC_X Or SC_y Or SC_z:

70 temp = util.scale(WW_9[i][j][6],

- Ww_9ril[jI1C[7],

72 ww_9[i][j][81)

73 @ eulerAnglesToRotationMatrix4(
74 ww_olil[jI[3],

- ww_9[il[j1[4],

76 Www_9[il[j1[51)

77 temp [0] [3] = Ww_9[il[j][0]

78 temp [1]1[3] = WW_9[i]l[j][1]

79 temp [2] [3] = WW_9[i]l[jI[2]

80

81 WW[il[j] = temp

82 self .keyframe[i] = read_tree(figure,3,WW[i], True)
83

84 imgui.tree_pop ()

85 j o+=1

86 imgui.tree_pop ()

87 i +=1

88 imgui.end()

Listing 13: Function fordisplaying GUI, with this GUl we adjust the rotation,
translation, and scale of our model for each keyframe and each bone

When running the above code, the result will look like the image shown in fig-

ure[].
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Figure 12: The GUI when the program is executed.

5.6 GPU Shaders

In the following shader, we have vPaosition, vColor, vNormal, vWeight, and vWID,
which are the corresponding variables from the code[21], Then, we define the
constants MAX_BONES and MAX_BONES_INF. BB, MM, modelViewProj, and
model are the variables from the code [22]. pos, color, and normal are the re-
sults produced by the shader to pass to the Phong algorithm.

For the main part of the code, we start by initializing the vector newv with
zero values. Then, we have the loop that iterates with a maximum of
MAX_BONES_INF(4) bones. Essentially, this means that a movement made to
one bone can influence up to 4 parent bones. The if statement checks if vWID
for the current bone is greater than or equal to zero. If true, the code inside the
block is executed.

The mat is the transformation matrix for the current bone, which is obtained by
multiplying the bone’s matrix BB and the MM matrix.

The temp is the result of multiplying the initial vertex position vPosition by the
mat.

The newv is updated by adding the weighted contribution of the transformed
position, where the weight is determined by vWeight.

The Normal is calculated by multiplying the normal vector by the inverse trans-
pose of the total model transformation matrix and the mat matrix.
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In pos, the transformed position is assigned by applying the model matrix to the

transformed new position of the vertex.

The color is defined as the original color vColor of the vertex.

It should be noted that to apply texture, we follow the same steps, just replacing

vColor with vTexCoord and color with fragmentTexCoord.

VERT_ANIMATION = """
#version 410

layout (location=0) in vec4 vPosition;
layout (location=1) in vec4 vColor;
layout (location=2) in vec4 vNormal;
layout (location=3) in vec4 vWeight;
layout (location=4) in vec4 vWID;

const int MAX_BONES = 100;
const int MAX_BONES_INF = 4;

uniform mat4 BB[MAX_BONES];
uniform mat4 MM[MAX_BONES];

uniform mat4 modelViewProj;
uniform mat4 model;

out vec4 pos;
out vec4 color;
out vec3 normal;

void main ()
{

vec4 newv = vec4(0.0f);

for (int i = 0; i < MAX_BONES_INF; i++)
{

if (int (vWID[i]) >= 0)

{

mat4 mat = BB[int(vWID[i])] * MM[int (vWID[i])]

vec4 temp = vPosition * mat;
newv += vWeight[i] * temp;

normal = mat3(transpose(inverse(model)))*mat3(mat) * vNormal

}

gl_Position = modelViewProj * newv;
pos = model * newv;
color = vColor;

}

Listing 14: Code for the Shader.

5.7 Main program implementation

.XyZ;

For the implementation of the program, we have a main function where we call
the necessary functions from the elements and the ones we have created.

Starting with the analysis of the main function, we have the variables Mshininess
and Mcolor with which we adjust the color and shininess of the material from our

model, where Mshininess takes values between 0 and 1, just like Mcolor.

#Material
Mshininess = 0.4
Mcolor = util.vec(0.8, 0.0, 0.8)

Listing 15: Variables for the color and shininess of the model’s material.
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Next, we initialize the systems of the elements and the scene graph.

# Initialize Systems used for this script
transUpdate = scene.world.createSystem(TransformSystem("transUpdate",
"TransformSystem",
||001||))
camUpdate = scene.world.createSystem(CameraSystem("camUpdate",
"CameraUpdate",
"200"))
renderUpdate = scene.world.createSystem(RenderGLShaderSystem())
initUpdate = scene.world.createSystem(InitGLShaderSystem())

# Scenegraph with Entities, Components
rootEntity = scene.world.createEntity (Entity(name = "Root"))

Listing 16: Initialization of the systems from the elements and the scene graph.

Next, we initialize the position of the camera in our scene.

# Spawn Camera

mainCamera = SimpleCamera("Simple Camera");

# Camera Settings

mainCamera.trans2.trs = util.translate(0, 0, 8) # VIEW
mainCamera.transl.trs = util.rotate((1, 0, 0), -45);

Listing 17: Initialization of camera parameters.

Below, we create the environmental and point light, set aninitial intensity for the
lighting, and adjust the light's position in space using util.translate and its size
using util.scale.

# Spawn Light

ambientLight = Light ("Ambient Light");

ambientLight.intensity = 0.1;
scene.world.addEntityChild(rootEntity, ambientLight);

pointLight = PointLight();

pointLight.trans.trs = util.translate(0.8, 1, 1) @ util.scale(0.2)
scene.world.addEntityChild (rootEntity, pointLight);

Listing 18: Initialization of lighting and ambient light.

In the following code, we start by creating the entity for our model. Then, we
add it to the scene graph. After that, we add components for transformation,
keyframes, and animation.

node4 = scene.world.createEntity(Entity(name="0bject"))
scene.world.addEntityChild (rootEntity, node4)
trans4 = scene.world.addComponent (node4,
BasicTransform(name="0bject_TRS",
trs=util.scale(0.5)
@util.rotate((1,0,0),-90)
@util.translate(0,0,0)))
mesh4 = scene.world.addComponent (node4, RenderMesh(name="0Object_mesh"))
keyl = scene.world.addComponent (node4, Keyframe (name="Object_key_1"))
key2 = scene.world.addComponent (node4, Keyframe(name="Object_key_2"))
key3 = scene.world.addComponent (node4, Keyframe(name="Object_key_3"))

ac = scene.world.addComponent (node4,
AnimationComponents (name="Animation_Components"))

Listing 19: Initialization of the maodel.

We declare the address of our model in the variable and then pass it to ani-
mation_initialize along with keyframe and animation component. The anima-
tion_initialize is the code we analyzed in the Model Data Extraction chapter
[2I[B1[E]. we initialize the system for the animation, then place the keyframes
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in the animation component so that the appropriate calculations can be made in
the animation_loop. Finally, with generateNormals, we produce the necessary
normals for our model.

obj_to_import = MODEL_DIR / "astroBoy_walk.dae"

vertices, colors, boneWeight, boneID, faces = animation_initialize(obj_to_import,
ac,
keyl,
key2,
key3)
testAnim = SkinnedAnimationSystem()

ac.keyframe = [keyl.array_MM[O], key2.array MM[0], key3.array_MM[0]]

normals = generateNormals(vertices, faces)

Listing 20: Model address on the computer model import function initialization
of the animation system and creation of normal vectors

We import the vertices, colors, normals, boneWeight, and bonelD obtained from
the code above[2d] into the shaders. Similarly, when we want to use textures,
we import the texture coordinates we want instead of colors.

#Passing vertices, colors, normals, bone weights, bone ids to the Shader
mesh4.vertex_attributes.append(vertices)
#mesh4 .vertex_attributes.append (TEX_COORDINATES*int (len(i)/6))colors
mesh4.vertex_attributes.append(colors)
mesh4.vertex_attributes.append(normals)
mesh4.vertex_attributes.append(boneWeight)
mesh4.vertex_attributes.append(bonelD)
mesh4.vertex_index.append(faces)
vArray4 = scene.world.addComponent(node4, VertexArray())
#shaderDec4 = scene.world.addComponent (node4, ShaderGLDecorator (Shader (vertex_source
= Shader.ANIMATION_SIMPLE_TEXTURE_PHONG_VERT, fragment_source=Shader.
SIMPLE_TEXTURE_PHONG_FRAG)))
shaderDec4 = scene.world.addComponent (node4,
ShaderGLDecorator (
Shader (vertex_source = Shader.VERT_ANIMATION,
fragment_source=Shader.FRAG_PHONG)))

Listing 21: Code to pass basicvariables to the shader.

Finally, we have the code with which we import the variables ac.bones[0], MM,
trans4.l2cam, trans4.l2world as uniform variables into the shader[]. Since
ac.bones[0] does not change throughout the execution of the code, we leave it
outside the loop. The other uniform variables are for Phong lighting. We call the
system which gives us the result MM.

shaderDec4.setUniformVariable(key='BB', value=ac.bones[0], arraymat4=True)
shaderDec4.setUniformVariable (key="'ambientColor',
value=ambientLight.color,
float3=True);
shaderDec4.setUniformVariable (key='ambientStr',
value=ambientLight.intensity,
float1=True);

shaderDec4.setUniformVariable (key='1lightColor',
value=np.array(pointLight.color),
float3=True);

shaderDec4.setUniformVariable (key='lightIntensity"',
value=pointLight.intensity,
float1=True);

shaderDec4.setUniformVariable (key='shininess',value=Mshininess,floati=True)
shaderDec4.setUniformVariable (key='matColor',value=Mcolor,float3=True)

Listing 22: Finalloop forrendering the scene.
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while running:

scene.world.traverse_visit (transUpdate, scene.world.root)

scene.world.traverse_visit_pre_camera(camUpdate, mainCamera.camera)

scene.world.traverse_visit (camUpdate, scene.world.root)

viewPos = mainCamera.trans2.l12world[:3, 3].tolist();

lightPos = pointLight.trans.l2world[:3, 3].tolist();

pointLight.shaderDec.setUniformVariable (key='modelViewProj',
value=pointLight.trans.l2cam,
mat4=True)

MM = testAnim.apply2AnimationComponents (ac)

shaderDec4.setUniformVariable (key='modelViewProj',
value=trans4.1l2cam,
mat4=True) ;
shaderDec4.setUniformVariable (key='model',value=trans4.1l2world,mat4=True)

shaderDec4.setUniformVariable (key='MM', value=MM, arraymat4=True)

shaderDec4.setUniformVariable (key='viewPos', value=viewPos, float3=True);
shaderDec4.setUniformVariable (key='lightPos', value=lightPos, float3=True);

# call SDLWindow/ImGUI display() and ImGUI event input process
running = scene.render ()

# call the GL State render System
scene.world.traverse_visit (renderUpdate, scene.world.root)

# ImGUI post-display calls and SDLWindow swap
scene.render_post ()

scene.shutdown ()

Listing 23: Finalloop for rendering the scene.

Note that to add texture to our model, we need to add the following code at the
beginning of the code[22]

texturePath = TEXTURE_DIR / "dark_wood_texture.jpg"
texture = Texture(texturePath)
shaderDec4.setUniformVariable (key='ImageTexture', value=texture, texture=True)

Listing 24: Adding texture.

5.8 Results

This chapter presents the results produced by the animation project, showcasing
the performance and visual outcomes achieved through the implemented sys-
tem. The focus was on the animation of two models: the Astroboy and robotic
arm model. The figures [[13][[14] illustrate keyframes and interpolated frames
from these animations. Although, despite the inherent complexity of working
with rigged models—due to the need for incorporating skeletal structures—the
use of GPU acceleration significantly improved performance. Specifically, the use
of a for loop [] for processing each index in conjunction with the GPU allowed
forincreased control over the models and enhanced overall system performance.

The system’s efficiency was evident through the frame rate achieved. On a Nvidia
GTX 1050ti GPU, the system maintained an average frame rate of 74-75 fps,
matching the maximum refresh rate of the monitor used for testing[[15]. This re-
sultis particularly noteworthy given that Python, a relatively slower programming
language, was used in the development. This consistent performance demon-
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strates the effectiveness of the GPU-enabled architecture in handling the com-
putational demands of real-time animation.

(b) (@ (d) (e) (f) (@)

Figure 13: Astroboy animation keyframes (a)(d)(g) and in between frames

(b)(©)(e)(f).

(a) (b) (@ (d) (e) (f) (@)

Figure 14: Robot arm animation keyframes (a)(d)(g) and in between frames

(b)(©)(e)(f).
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Figure 15: Framerate and GPU used of the project.

In addition to performance optimization, efforts were made to improve the visual
fidelity of the models by incorporating textures. For the Astroboy model, the tex-
ture was successfully applied, resulting in a more realistic metal appearance due
to the appropriate distribution of polygons across the model []. However, for
the robotic arm, the applied texture did not have as pronounced an effect. This
discrepancy is attributed to the stretched nature of the polygons in the model,
which caused the texture to lose its distinctive characteristics [].
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Figure 16: (a) gradient color, (b) paper texture.

(a) (b)

Figure 17: (a) gradient color, (b) metal texture.

Lighting effects were also tested, with a light source placed to the right of the
models. As shown in figure [], the lighting behaved as expected, illuminating
the objects appropriately based on the position of the light source. These results
validate the integration of Phong lighting within the system and demonstrate
the overall effectiveness of the lighting model used in this project.
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Figure 18: (a) Astroboy lighting, (b) Robot arm lighting.

The results of this project demonstrate that the integration of GPU acceleration
in an Entity-Component-System (ECS) framewaork significantly improves the per-
formance and flexibility of real-time 3D animation. The system achieved high
frame rates, even with the added complexity of rigged models and realistic light-
ing. While some limitations were observed with texture mapping on certain mod-
els, the overall visual outcomes and system performance underscore the advan-
tages of using GPU-accelerated ECS frameworks for animation. These results
set a foundation for future work, which could involve further optimization of the
model importation process and the development of more interactive elements
within the graphical user interface. Future enhancements may also explore the
application of this framework in more complex simulations and virtual reality en-
vironments.
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6 Summary and Future Extensions

In this work, the animation of the AstroBoy model and a robotic arm model was
implemented, along with the application of Phong lighting in combination with
texture. To achieve the animations, three keyframes were used. The majority of
the code runs on the CPU, except for the shaders and lighting, which run on the
GPU and constitute the heaviest workload.

Looking ahead, there are several opportunities to extend this research. One
promising direction involves refining the model import process. While the cur-
rent implementation manages to import models such as the AstroBoy figure and
a robotic arm, more sophisticated mechanisms could be developed to automate
and streamline the process. By improving the adaptability of the system to dif-
ferent file formats and structures, the system could become even more versatile
and user-friendly.

Another area worth exploring is the enhancement of the graphical user interface
(GUI). The current version allows for animation through fixed keyframes, but fu-
ture versions could benefit from interactive elements that enable users to dy-
namically manipulate keyframes, adjust textures, or even replace models on the
fly. These enhancements would make the system more intuitive, offering a more
interactive and flexible environment for real-time animation and 3D rendering.

Additionally, there is significant potential to further optimize the system for
more computationally demanding tasks. Expanding the ECS framework to han-
dle more complex physical simulations, such as soft-body dynamics or fluid simu-
lations, would push the boundaries of what is possible in real-time graphics. This
could involve integrating machine learning algorithms to predict object behavior
or further developing GPU-accelerated techniques to maintain performance even
as scene complexity grows.

Moreover, this research opens up exciting possibilities for integration into virtual
and augmented reality (VR/AR) environments. By adapting the ECS framework
to these immersive platforms, the system could be used in interactive simula-
tions, gaming, and educational applications, offering users highly responsive and
realistic experiences. This would require refining object interaction capabilities
and ensuring that the system can handle the added complexity of real-time user
input and feedback.

From an educational standpoint, the project also lays the groundwork for further
development within the Elements toolkit. As the system continues to evolve, it
could serve as an invaluable teaching tool, helping students to understand both
GPU programming and real-time graphics. Expanding the toolkit with additional
learning modules and practical exercises would bridge the gap between theoret-
ical knowledge and hands-on experience, empowering students to experiment
with advanced graphics concepts in a structured and accessible way.

In conclusion, while the current project has successfully demonstrated the power
and flexibility of GPU-enabled ECS framewaorks for real-time animation, it also
highlights several avenues for future research and development. By improving
model import processes, enhancing the GUI, optimizing for more complex simu-
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lations, and exploring VR/AR applications, this system has the potential to push
the boundaries of 3D animation and real-time graphics even further.
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ECS Entity Component System
GLSL OpenGL Shading Language
OpenGl Open Graphics Library

CPU Central Processing Unit
GPU Graphics Processing Unit
3D Three Dimensional
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