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Abstract

This thesis examines the potential of employing photorealistic synthetic data
for training neural networks to achieve collision-free autonomous driving in
highway environments. Centered around a case study of a highway accident
involving a Tesla Model 3, the research utilizes Unreal Engine 5 to recon-
struct the event and explore the effectiveness of an End-to-End autopilot
system. The study innovatively applies Domain Structured Randomization
to generate varied driving scenarios, assessing the autopilot’s adaptability
and response. The absence of real-world domain access underscores the sig-
nificance of synthetic data in simulating and analyzing the incident, aiming
to enhance the safety features of autonomous driving technologies.

Keywords: photorealistic synthetic data, neural networks, autonomous driv-
ing, highway environments.
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Περίληψη

Η παρούσα διπλωματική εργασία εξετάζει τις δυνατότητες χρήσης φωτορεαλι-

στικών συνθετικών δεδομένων για την εκπαίδευση νευρωνικών δικτύων,ώστε

να επιτευχθεί αυτόνομη οδήγηση χωρίς συγκρούσεις σε περιβάλλοντα αυτοκι-

νητοδρόμων. Με επίκεντρο τη μελέτη περίπτωσης ενός ατυχήματος σε αυτο-

κινητόδρομο,στο οποίο ενεπλάκη ένα Tesla Model 3, η έρευνα χρησιμοποιεί
την Unreal Engine 5 για την ανακατασκευή του συμβάντος και τη διερεύνηση
της αποτελεσματικότητας ενός συστήματος αυτόματου πιλότου End-to-End.
Η διπλωματική εργασία εφαρμόζει καινοτόμες μεθόδους Domain Structured
Randomization για τη δημιουργία ποικίλων σεναρίων οδήγησης, αξιολογώντας
την προσαρμοστικότητα και την απόκριση του αυτόματου πιλότου.Η έλλειψη

πρόσβασης στον πραγματικό κόσμο υπογραμμίζει τη σημασία των συνθετικών

δεδομένων για την προσομοίωση και την ανάλυση του συμβάντος, με στόχο την

ενίσχυση των χαρακτηριστικών ασφαλείας των τεχνολογιών αυτόνομης οδήγη-

σης.

Λέξεις κλειδιά: φωτορεαλιστικά συνθετικά δεδομένα, νευρωνικά δίκτυα, αυ-

τόνομη οδήγηση, περιβάλλοντα αυτοκινητοδρόμων.
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Chapter 1

Introduction

1.1 Motivation and background

Since the inception of the modern automotive era, vehicle safety has under-
gone a significant evolution. Innovations, such as safety belts, airbag sensing
systems, and crash testing, have been instrumental. The information gained
in these crash tests [6] has always played and continues to play a critical
role in the design of new vehicles. Despite these enhancements, global road
accidents still claim approximately 1.3 million lives annually, with human
error being the leading cause [8]. In response, the intersection of rapidly
advancing technology and the integration of machine learning algorithms in
the automotive sector has paved the way for the development of autonomous
driving. However, the journey towards entirely safe autonomous vehicles has
its challenges. Incidents involving autonomous vehicles persist. Since repli-
cating every potential real-world situation, such as accidents, is unfeasible,
contemporary vehicle simulations can be used as a bridge to reality. Modern
vehicle simulations are able to represent complete road environments with a
realistic, graphical, and physical representation. Therefore, the primary con-
cern of this thesis revolves around the effective implementation of a network,
based on the End-to-End approach, that has been trained on synthetic data
to function optimally within a recreation of a highway environment.
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1.2 Problem statement

In this thesis, we focus on a highway self-driving car accident on Taiwan
Highway 1 in 2020 with a Tesla Model 3 [7]. The sequence of events unfolds
as follows: the collision occurred in the morning hours on National Highway
1, specifically at the 268.4-kilometer mark in the southbound lanes. The
County Fire Bureau was alerted to the traffic incident involving the truck
and a sedan at approximately 6:40 am. Findings by the Highway Police
Bureau revealed that the driver of the Tesla, traveling at an estimated speed
of 110 kilometers per hour, was allegedly on complete autopilot and couldn’t
prevent the collision with the roof of the overturned truck. Figure 1.1 depicts
the the described crash phenomenon showcases. The primary visual evidence
available consists of footage from security cameras. Therefore, without access
to the real-world target domain [18], by using Unreal Engine 5, this thesis
aims to provide an immersive and detailed driver’s perspective of the events
leading up to the crash.
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Figure 1.1: Tesla Model 3 in the highway accident
https://www.whichcar.com.au/car-news/tesla-model-3-drives-straight-into-

a-truck

1.3 Aim and objectives

This thesis investigates if the creation of photo-realistic synthetic data in
the context of highway driving can be used effectively. The research aims
to assess the practicality of using neural networks, which have been trained
and tested on synthetic data, to facilitate collision-free driving. A significant
aspect of this study is the implementation of a TensorFlow NVIDIA au-
topilot that follows the End-to-End approach in the context of collision-free
autonomous driving [1]. Additionally, the thesis extends the application of
Structured Domain Randomization techniques [11] to create specific alterna-
tive driving scenarios. This is done to analyze the response of the autopilot
system in varied and randomized environments. More precisely, the study
generates a spectrum of alternative scenarios to evaluate the responsiveness
and effectiveness of the autopilot in these diverse conditions. Through this
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approach, the thesis aims to contribute significantly to developing and en-
hancing autonomous driving technologies, particularly in ensuring safer driv-
ing experiences.

1.4 Research overview

The thesis structure is as follows. Chapter 2 reviews the technical and theo-
retical foundations for understanding the relevant content from the areas of
autonomous driving cars, the end-to-end approach, and the help of synthetic
data. In Chapter 3, the guiding question of this thesis is clearly addressed
once again, and the experiment design takes place. In addition, the complete
process and execution of synthetic data generation training of the neural net-
work are described. Chapter 4 analyzes the definition of evaluation metrics
and presents the final results. Finally, Chapter 5 summarizes the scientific
work, gives an outlook on the topic, and suggests future updates.
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Chapter 2

Theoretical and Technical
Analysis

2.1 Automation levels for self-driving cars

The driver’s primary responsibility is to maintain control over the vehicle,
thereby facilitating its operation. Driver assistance technologies, including
Adaptive Cruise Control (ACC), lane departure warning, and advanced park-
ing capabilities, assume partial responsibility for both the lateral and longitu-
dinal guiding of the vehicle, effectively reducing the need for complete driver
control. This demonstrates that the responsibility for vehicle guiding and
the vehicle’s direction is a crucial component of automation, as outlined by
the SAE J3016 standard [9]. In the initial stage of automation levels, it is
presumed that there is a single driver who possesses complete control and
accountability for guiding the vehicle. Throughout the various stages, the
transfer of control and responsibility to the driver assistance systems is a
continual process. Initially, the driver is given a supervisory role (stages 2-
3), in which intervention is required if necessary. In the final stages (4-5),
an active driver is no longer needed, and all vehicle occupants become pas-
sengers. Automated driving is achieved from level 4. A driver is no longer
required in the active vehicle control loop from this level.
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2.2 Autonomous driving approaches

2.2.1 Modular approach

The most classical approach that is used in the context of autonomous driv-
ing is the modular pipeline approach [14]. The modular approach divides the
world system into three independent modules. The perception model takes
the raw sensor information as input and tries to perceive the surrounding
environment. The second module is the Planning module, which takes as
input the representation of the scene and tries to compute the best trajecto-
ries for the vehicle while trying to avoid collisions. Finally, the last module
is the Control module, which commands the steering wheel, the brake, and
the accelerator pedal to follow the computed trajectory. Figure 2.1 depicts
an overview of the described Modular Pipeline approach. In more detail, the
perception [12] of the environment in the context of autonomous driving as-
sistance systems refers to the electrical detection of the vehicle environment
with the aid of corresponding sensor technology. The sensor data creates an
image of the vehicle environment for route planning and decision-making.
The data of several sensor types are combined for the most accurate rep-
resentation of the vehicle environment. This is referred to as sensor data
fusion. Four sensors for environment perception have become established in
the automotive industry. Each sensor has advantages and disadvantages and,
therefore, a specific application area. These sensors are the camera, the radar,
the lidar, and the sonar. At the same time, path planning algorithms utilize
optimization techniques to determine the most efficient trajectory, consider-
ing dynamic barriers, traffic conditions, and vehicle dynamics. The ability to
predict the actions and movements of various road participants, such as auto-
mobiles, bicycles, and pedestrians, is essential in ensuring safety and effective-
ness of autonomous driving systems. Using predictive modeling approaches,
frequently based on machine learning examples, becomes necessary in this
context. Recurrent neural networks (RNNs) and Long Short-Term Mem-
ory (LSTM) networks have been recognized as powerful tools for modeling
temporal dependencies and predicting future trajectories of dynamic objects.
By integrating contextual data obtained from sensors, the autonomous sys-
tem can thoroughly comprehend the intentions and trajectories of nearby
entities. The integration of independent actions with established regulations
and expectations is a fundamental element of the decision-making process.
To ensure safe and predictable interactions with cars controlled by humans,
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it is vital for autonomous vehicles to demonstrate compliance with regula-
tory norms.This involves thoroughly incorporating traffic legal rules into the
decision-making algorithms and the capacity to comprehend and react to
traffic signs, signals, and right-of-way protocols.

Figure 2.1: Modular Pipeline approach
https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-

fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-
vision/lectures/self-driving-cars/

2.2.2 End-to-End approach

In the modular autonomous driving pipeline, as described before, some indi-
vidual models function as distinct components, each dedicated to a special-
ized task. This modular architecture affords the benefit of simplified trou-
bleshooting. Nonetheless, the optimization objectives are disparate across
these modules. For instance, the perception module may focus on maximiz-
ing mean average precision (mAP), whereas the planning module prioritizes
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the safety and comfort of the driving experience. Consequently, this dis-
jointed framework may not converge towards a cohesive goal. Specifically,
the overarching objective of effective planning and control. Moreover, as
the process unfolds in sequence, errors may cascade from one module to the
next, culminating in a degradation of information for the driving system.
Additionally, deploying multiple models to address various tasks increases
the computational load, which could result in a sub-optimal allocation of
processing resources. In contrast, an end-to-end (E2E) autonomous driving
system presents several advantages over the modular approach. The most
important benefit is the system’s streamlined nature, which integrates per-
ception, prediction, and planning within a singular model architecture that is
easy to concurrent training. This holistic system is optimized to fulfill the ul-
timate driving task, with intermediate representations aligned with this end
goal. Shared structural elements within the model enhance computational
efficiency. Furthermore, the system’s reliance on data-driven optimization
promises to uncover innovative solutions that may surpass the capabilities of
traditionally engineered systems. The category of End to End approach that
was utilized in this research is Imitation learning. This approach is predicated
on the concept of behavioral acquisition from expert demonstrators, whereby
an autonomous vehicle’s control policy is shaped by mimicking human driv-
ing behavior. The central idea of the imitation learning approach is the use
of advanced machine learning techniques, typically neural networks, to inter-
pret and learn from high-dimensional input data. These networks are trained
on datasets of real-world driving scenarios, capturing the dynamic nature of
the driving environment. The appeal of imitation learning within the End-
to-end context lies in its potential to simplify the traditionally multi-layered
architecture of autonomous systems. By directly correlating input data with
expert responses, the system aims to develop a comprehensive driving policy
that is both adaptable and resilient to the unpredictable variables present
in real-world driving conditions. Figure 2.2 is a general showcase of the de-
scribed End-to-End approach. The mathematical notations and types that
Imitation learning follows are described further:

• The state s ∈ S - The state s is an element of the state space S.

• The action a ∈ A - The action a is an element of the action space A.

• The policy πθ : S → A - The policy π is a function mapping from the
state space S to the action space A, parameterized by θ.
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• The optimal action a∗ ∈ A - The optimal action a∗ is an element of the
action space A.

• The optimal policy π∗ : S → A - The optimal policy π∗ is a function
mapping from the state space S to the action space A.

• The state dynamics P (si+1|si, ai) - The state dynamics P is a proba-
bility distribution over the next state si+1, given the current state si
and action ai.

• Often deterministic: si+1 = T (si, ai) - The deterministic mapping of
state dynamics where the next state si+1 is determined by a transition
function T , given the current state si and action ai.

• Rollout: Given s0, τ = (s0, a0, s1, a1, . . .) - A rollout is a sequence or
trajectory τ consisting of states and actions starting from the initial
state s0.

• Loss function: L(a∗, a) - The loss function L quantifies the loss of an
action a given the optimal action a∗.

18



Figure 2.2: End-to-End approach
https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-

fakultaet/fachbereiche/informatik/lehrstuehle/autonomous-
vision/lectures/self-driving-cars/

2.3 Synthetic data

Synthetic data that mirrors real-world scenarios offers a lot of advantages.
Firstly, it enables the simulation of diverse and complex driving environ-
ments impractical to replicate in reality. This feature is crucial for training
and validating autonomous driving algorithms, where exposure to a wide
range of scenarios is essential for robust performance. Moreover, synthetic
data allows the exploration of alternative edge cases and the assessment of
system responses under various conditions, thereby ensuring a comprehen-
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sive evaluation of autonomous driving systems. An important aspect is the
optimization and validation of driver assistance systems during system inte-
gration into a vehicle. Real vehicle tests are still essential to the optimization
and validation process of Engine control unit functions. They cover the en-
tire vehicle and the Engine control unit network and include the driver and
his driving behavior in these tests. However, the complexity of testing Ve-
hicle Assistance Systems (VAS) functions on actual vehicles is increasing.
These tests must account for the vehicle and a dynamic and challenging en-
vironment. Constructing such an environment in reality is a challenging and
coordination-intensive task. It necessitates a setting that mirrors real-world
traffic conditions, complete with its real-world unpredictability. This process
often leads to substantial increases in personnel, materials, and costs. A
simulated environment is used instead to reduce the effort required to cre-
ate this real environment. In this approach, a real vehicle that drives in a
simulated world is called a vehicle-in-the-loop (VIL). Various companies are
considering implementing a simulation to create a development or validation
environment [4].

2.4 Reality gap

Synthetic data generation has many advantages; however, a set of challenges
need to be addressed for it to be effective. Synthetic data sets are generated
using simulation; hence, we must close the gap between the simulation and
the real world. This gap is called the domain gap, which can be divided into
two parts: The appearance gap is the set of pixel-level differences between
real and synthetic images. These differences can result from differences in
object detail, materials, or, in the case of synthetic data, differences in the
capabilities of the rendering system used. The content gap refers to the
difference between the domains. This includes factors like the number of ob-
jects in the scene, the diversity in type and placement, and similar contextual
information. The issue of transferring models from simulated environments
to the physical world is often referred to as the ’reality gap’ in the context
of autonomous driving. The reality gap is primarily attributed to dispari-
ties in physical parameters and the inaccuracies in physical modeling, like
the interaction between surfaces and assets.System identification is a famous
approach in approaching the reality gap context. It involves constructing a
mathematical representation of a physical system, with the simulator em-
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bodying this representation. However, accurately calibrating these simula-
tors can be cost-prohibitive and complicated by varying physical parameters
influenced by external conditions like temperature. Another approach is Do-
main Adaptation(DA) [3] [10], which entails updating the data distribution
in a simulator to better align with the real world. This strategy, often imple-
mented through adversarial loss or Generative Adversarial Networks (GAN),
aims to bridge the gap between simulated and real environments. Domain
Randomization (DR) [16] [15] is a particularly noteworthy technique in this
regard. It involves generating many simulated scenarios with varying prop-
erties and training models to function effectively across this diverse range of
conditions. This method increases the likelihood of the model adapting to
the real-world environment, as it is anticipated to fall within the spectrum of
the simulated scenarios. In summary, bridging the reality gap in autonomous
driving through methods like System Identification, Domain Adaptation, and
Domain Randomization is pivotal. These approaches enhance the realism of
simulations, thereby facilitating the transfer of robust, adaptable models to
the physical world, a critical step in advancing autonomous driving technolo-
gies.
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Chapter 3

Methodology

3.1 Overview

The fundamental question of this scientific study will now be investigated by
examining an experiment. The first main objective is to realistically recreate
a digital twin of the car accident and produce alternative scenarios based
on theoretical scientific assumptions about the cause of the accident. Then,
the next objective is to implement and use an End-to-End approach for the
navigation of the ego-car to see how it reacts in the original and alterna-
tive scenarios. The Nvidia PilotNet will be utilized for this objective. The
version of PilotNet used in this work is a reconstruction of the CNN ar-
chitecture capable of outputting steering angles. The NVIDIA team uses a
complex learning procedure with a large amount of data, which is heavily
preprocessed. This process is private and is difficult to implement in the
context of this scientific work. Therefore, for an accurate analysis, the as-
sumption was made that the processing of the CNN architecture must be
fundamentally like that of the real PilotNet model [2]. The model will first
be trained on synthetic data generated from the Car Udacity Simulator [17]
(Domain 0). The dataset contains images of a video sequence with the re-
spective steering angles executed at that moment of recording. The learned
context is formed from features within the images and the output of corre-
sponding steering angles based on these features. Then, the trained models
will be evaluated in the digital twin of the car accident scene (Domain 1).
Finally, the same model will be used for evaluation in 15 different scenar-
ios where the Structured Domain Randomization process has been examined
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(Domain 2).

Figure 3.1: Flowchart of methodology.

3.2 Domain 0

The Car Udacity Simulator developed the training and validation domain
(domain 0) in this thesis. This simulator provides the capability to emulate
vehicle movement in both manual and autonomous modes.

Figure 3.2: Overview of the lake environment inside the Udacity Simulator.
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Based on the adaptable nature of the simulator, modifications were made
to the pre-existing Lake environment, including the adjustment of rocks as
obstacles. These changes were intended to introduce more complex naviga-
tional challenges. Approximately 25 minutes of driving were simulated in
various styles under manual control. The primary objective of these simula-
tions was to navigate the vehicle without colliding with obstacles or moving
down from the track.

Figure 3.3: Overview of the lake environment.

3.2.1 Preparation for the training

The Car Udacity Simulator was employed for the development of the training
and validation domain (domain 0) in this thesis. This simulator provides the
capability to emulate vehicular movement in both manual and autonomous
modes. After that, a series of image augmentation techniques were applied to
the generated images to expand the dataset. These augmentation methods
included zoom manipulation, panning adjustments, alteration of brightness
levels, and flipping operations. These techniques were strategically employed
to enhance the diversity of the dataset.

24



Figure 3.4: Left camera view

Figure 3.5: Center camera view

Figure 3.6: Right camera view
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Figure 3.7: Zoom technique

Figure 3.8: Panning technique
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Figure 3.9: Brightness changing technique

Figure 3.10: Flipping image technique

3.3 Domain 1

Proceeding to Domain 1, this thesis reconstructs the car accident scenario
utilizing Unreal Engine 5. This recreation serves as an evaluative testing
environment, providing a sophisticated platform for detailed analysis and
assessment within the research framework. With its advanced simulation
capabilities, the use of Unreal Engine 5 is essential in modeling the accident
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case, thereby enhancing the validity of the study’s findings. In the absence
of direct access to the target domain (the real-world environment of the
highway), this research necessitated the formulation of certain assumptions.
These were based on the available sources of information. This approach was
adopted to bridge the gap between the simulated conditions and the actual
real-world scenario, ensuring the study’s findings’ relevance and applicability
within the constraints of the available resources. Figure 3.11 and Figure 3.12
showcase the two different angles of the source videos.

Figure 3.11: Source 1
https://www.dailymail.co.uk/sciencetech/article-8377461/Shocking-

moment-Telsa-Model-3-Autopilot-mode-crashes-truck-Taiwan-highway.html
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Figure 3.12: Source 2
https://www.dailymail.co.uk/sciencetech/article-8377461/Shocking-

moment-Telsa-Model-3-Autopilot-mode-crashes-truck-Taiwan-highway.html

3.3.1 Procedural way

The two main assets in this scene that interact directly or indirectly with
the ego car are the road and the bridge. Therefore, the creation of these
two happened procedurally. The procedural creation of these two assets is
pivotal in achieving a high degree of realism and accuracy for the digital twin
of the scene.

• For the procedural creation of the highway bridge, the advanced 3D
modeling software Blender was used. The process commenced with
establishing a foundational geometry representative of the bridge’s in-
tended dimensions and spatial orientation within a virtual highway
environment. Particular attention was directed towards the design
of voids in the bridge’s vertical structure. These voids, integral to
the architectural integrity of the model, were calibrated to cast real-
istic shadows onto the road below, mirroring real-world physics. The
mirror modifier was employed to ensure symmetrical geometry during
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the modeling process, achieving the ability to replicate one side of the
bridge to the other across the specified axis easily. Also, the Bevel
modifier was applied to the bridge’s edges to create rounded corners.
This is crucial for creating a more lifelike appearance to the bridge, as
in the real world, edges are rarely perfectly sharp, contributing to a
more detailed rendering of the bridge within the software environment.

Figure 3.13: Wire edges of the Bridge
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Figure 3.14: Solid depiction of the Bridge

In the next stage of designing the bridge, texturing was applied to
impart surface details. They attached the model with material charac-
teristics such as concrete, steel, and glass finishes, thereby completing
the visual fidelity of the model in its simulated environment. After
the export of the synthetic model from Blender to Unreal Engine 5,
the interplay between light and shadow was carefully monitored. En-
suring that the resulting shadow patterns were accurate and dynamic,
responding appropriately to simulated environmental lighting condi-
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tions.

Figure 3.15: Blender implementation of the bridge
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Figure 3.16: Final form of the Bridge
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• For the procedural creation of the highway road, Blender software was
used again. The main source of information about road design was
the documentation of Asian Highway Design Standards [5]. Emphasis
was placed on several key aspects of road design to enhance realism
and functionality. Firstly, the road length was carefully calibrated to
reflect typical highway proportions. Secondly, the color and spacing of
road markings were precisely replicated, adhering to standard highway
specifications.

Figure 3.17: Road

Attention was also given to the curvy way of the road, ensuring that it
mimicked realistic highway bends and turns. In addition to these elements,
safety features such as barriers were added on both sides of the road. All
these components were integrated into the Blender model with precision,
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ensuring that the final render would be visually accurate and representative
of real-world highway engineering principles. After the export of the synthetic
model from Blender to Unreal Engine 5, the precise placement of the road
with the bridge happened.

Figure 3.18: Curvy Way of the Road

3.3.2 Unreal Engine 5 packages

Moving on, all the scene assets were created using different Unreal Engine
packages. Ego-car, Truck: The “City Samples” package facilitates a realistic
movement and interaction of the vehicle within the virtual space. Biome: The
surrounding biome was introduced from the “Megascans Tree” packages, pre-
cisely designed using Unreal Engine 5’s advanced rendering capabilities and
the new feature of spline creation. Traffic Sign: The placement and design
of traffic signs are integral to the authenticity of the highway environment.
The package of “Traffic signs” was used.
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3.3.3 Combining all the assets in Unreal Engine 5

The final step towards the recreation of the car accident scene inside Unreal
Engine 5 was the combination of all the assets. Knowing the unavailability
of specific camera details such as width, height, and focal length from the
Tesla car involved in the accident, recourse was taken from the comma2k19
dataset [13]. This dataset, widely recognized and utilized in numerous pub-
lications in the autonomous driving space, provides real-world data captured
from a car’s perspective. The fSpy software extracted the necessary camera
parameters from the images. These parameters were then replicated in the
camera settings within Unreal Engine 5, ensuring an accurate simulation of
the accident’s visual perspective.

Figure 3.19: FSPY software

Therefore, after adding all the assets together, the attachment of the car
with a Camera in a Film sequencer came next.
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Figure 3.20: Camera attached to the car ready for the filmsequencer

Figure 3.21: Overview of the Original Scenario from the perspective of the
car
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3.4 Domain 2

Moving on to analyzing the car accident scenario, this thesis takes a step
to formulate assumptions grounded in specific observational facts. These in-
clude the scarcity of computer vision systems encountering a truck roof on
the road, the impact of the shadow cast by the bridge on autopilot reac-
tion, the challenges posed by a curvy road as opposed to a straight path,
and the distinct color of the truck, noting the difficulties autopilot systems
face in detecting stationary objects. To test these assumptions, alternative
scenarios were created, generating various combinations of these elements.
These scenarios will be elaborated upon later in the thesis, comprehensively
examining their potential impact on the accident.The principle of Structured
Domain Randomization underpinned the methodology adopted for creating
alternative scenarios. Initially, a set of parameters considered influential to
the scene’s dynamics and the model’s potential response to their modification
was identified. Subsequently, fifteen alternative scenarios of the original scene
were constructed, predicated on the presence or absence of four specific pa-
rameters: (#no bridge, #alternate color of the truck(black), #not curvy ,
(straight road), #not overturned truck(upright truck) . Figure 3.22 presents
a comprehensive schematic of the described approach. In the next figures of
the subsection, they will be presented in detail with the representation of
each scenario.
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Figure 3.22: Overview of the methodology for the creation of Domain 2
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• Scenario1:#no bridge

Figure 3.23: Frame from Scenario 1

• Scenario2::#alternate color of the truck(black)

Figure 3.24: Frame from Scenario 2
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• Scenario3:#not curvy road(straight road)

Figure 3.25: Frame from Scenario 3

• Scenario4:#not overturned truck(upright truck)

Figure 3.26: Frame from Scenario 4
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• Scenario5:#no bridge and #alternate color of the truck(black)

Figure 3.27: Frame from Scenario 5

• Scenario6:#no bridge and #not curvy road(straight road)

Figure 3.28: Frame from Scenario 6
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• Scenario7:#no bridge and #not overturned truck(upright truck)

Figure 3.29: Frame from Scenario 7

• Scenario8:#alternate color of the truck(black) and #not curvy road(straight road)

Figure 3.30: Frame from Scenario 8
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• Scenario9:#alternate color of the truck(black) and #not overturned truck(upright truck)

Figure 3.31: Frame from Scenario 9

• Scenario10:#not curvy road(straight road) and #not overturned truck(upright truck)

Figure 3.32: Frame from Scenario 10
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• Scenario11:#no bridge and #not curvy road(straight road) and #not overturned truck
(upright truck)

Figure 3.33: Frame from Scenario 11

• Scenario12:#no bridge and #alternate color of the truck(black) and #not curvy road
(straight road)

Figure 3.34: Frame from Scenario 12
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• Scenario13:#no bridge and #alternate color of the truck(black) and #not overturned truck
(upright truck)

Figure 3.35: Frame from Scenario 13

• Scenario14:#alternate color of the truck(black) and #not curvy road(straight road)
and #not overturned truck(upright truck)

Figure 3.36: Frame from Scenario 14
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• Scenario15:#no bridge and #alternate color of the truck(black) and #not curvy road
(straight road) and #not overturned truck(upright truck)

Figure 3.37: Frame from Scenario 15

3.5 Model

The model used in this thesis is a convolutional neural network (CNN) in-
spired by NVIDIA’s architecture. The input to the network is an image of size
66x200 pixels with three channels (RGB). Before being fed into the network,
images undergo preprocessing, including normalization and other transfor-
mations to enhance features relevant to driving. In the feature extraction
through the convolutional layers part of the network, the first layer applies
24 filters of size 5x5 to the input image. Then, each filter convolves over the
image to extract specific features. The stride of 2 reduces the spatial dimen-
sions of the output, focusing on more prominent features and reducing com-
putational load. Regarding the depth of Filters, subsequent convolutional
layers with 36, 48, and 64 filters increase the depth of the network, allowing
it to capture more complex and abstract features. These layers can recog-
nize patterns such as lane markings, other vehicles, and road signs. Moving
on, the Exponential Linear Unit (ELU) activation function introduces non-
linearity, enabling the network to model complex relationships in the data.
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ELU helps in learning faster and reduces the problem of vanishing gradients.
After extracting spatial hierarchies of features, the data is flattened into a
one-dimensional vector. This transformation prepares the data for the fully
connected dense layers. With decreasing numbers of neurons (100, 50, and
10), these layers integrate the extracted features to form a high-level un-
derstanding of the current driving scenario. The final layer(output layer),
a single neuron, indicates that the network outputs a continuous variable.
The steering angle directly correlates the image data with a specific driving
action.
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Figure 3.38: NVIDIAs-PilotNet-architecture
https://syncedreview.com/2017/05/28/how-a-deep-neural-network-trained-

with-end-to-end-learning-steers-a-car/
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3.5.1 Training Process

The model is trained with a custom batch generator function, which dynam-
ically feeds batches of training data (X train, y train) into the model. The
training set comprises 300 steps per epoch, indicating the number of batches
processed in each training epoch. The model is trained for ten epochs, allow-
ing the neural network to iteratively adjust and improve its parameters based
on the provided data. Additionally, validation is performed using a separate
batch generator for validation data (X validation, y validation), with 200 val-
idation steps per epoch. This validation process is crucial for assessing the
model’s performance on data it has not seen during training. A parameter is
set to 1, enabling the output of training progress for each epoch and provid-
ing insights into the learning process. Another parameter ensures that the
training data is shuffled before each epoch, promoting the model’s ability to
generalize and preventing overfitting to the order of the data. This training
procedure is essential to optimize the model’s intended application within
the thesis.

Figure 3.39: Training process 1
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Figure 3.40: Training process 2
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Chapter 4

Results

The following chapter will analyze and explain the computational and qual-
itative results after explaining the general rules. From the observed correla-
tions, conclusions will be drawn about the driving behavior of our model in
every scenario. Furthermore, based on the comparison of the results, logical
assumptions will be made regarding the causes of a possible accident in this
highway environment.

4.1 General rules

To start the results analysis, the general rules should first be highlighted.
Figure 4.1 illustrates a road segment divided into six distinct zones. Each
zone is characterized by a specific range of steering angle values, providing
a framework for evaluating the vehicle’s steering behavior. This zoning ap-
proach facilitates a structured steering response analysis across different road
segments. More precisely:

• Zone 1: Steering angle value ≥ −0.166 and Steering angle value < 0

• Zone 2: Steering angle value ≥ 0 and Steering angle value < 0.166

• Zone 3: Steering angle value ≥ 0.166 and Steering angle value < 0.322

• Zone 4: Steering angle value ≥ 0.322 and Steering angle value < 0.498

• Zone 5: Steering angle value ≥ 0.498 and Steering angle value < 0.664

• Zone 6: Steering angle value ≥ 0.664 and Steering angle value < 0.833
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When the predicted steering angles fall below -0.166 or exceed 0.833, they are
classified as exhibiting unacceptable behavior. This classification is based on
the predefined operational parameters for the steering mechanism within the
Udacity environment. This intolerable behavior causes an off-road incident
or a crash with the barriers. In all scenarios, the ego-car’s starting point is
in the middle of Zone 1 and Zone 2. In the Original Scenario and all the
other scenarios where the #up right truck parameter is not included, for the
ego car to avoid the accident, the predicted steering angle in the last frame
should be equal and higher than 0.322(Inside Zone 4, Zone 5, Zone 6).On the
other hand, in scenario four and all the other scenarios where they include
the #up right truck parameter, the predicted steering angle in the last frame
should be equal and higher than 0.166 (Inside Zone 3, Zone 4, Zone 5, Zone
6).

Figure 4.1: The Zones
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4.2 Computational results

The evaluation metrics were established for the analysis after getting the
predicted steering angles for all 16 different scenarios. The mean of steer-
ing angles on every scenario provides a fundamental measure of the central
tendency in steering behavior, offering valuable insights into the system’s
overall performance and tendencies. The mean of steering angles metric is
essential for evaluating autonomous driving systems’ accuracy, safety, and
reliability. However, it should be interpreted in conjunction with other met-
rics. In this regard, the smoothness metric gives insights into the nature of
steering adjustments over time, necessary for steering control, while the stan-
dard deviation metric provides an understanding of the variability in steering
behavior, crucial for evaluating the vehicle’s adaptability and reliability in
different driving scenarios.

• Mean of Steering Angles = 1
N

∑N
i=1 θi

• Standard Deviation =
√

1
N−1

∑N
i=1(θi − µ)2

• Smoothness = 1
mean(|∆θ|)

Drawing from the results presented in Figure 4.2, the scenarios can be cate-
gorized according to their mean value similarities. This grouping facilitates
a more coherent analysis of the metric, offering valuable perspectives on the
performance of the autonomous driving model.
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Figure 4.2: Mean of average

Group 1: Moderate Right Bias

Original Scenario (0.4336), Scenario 1 (0.4059), Scenario 4 (0.4219), Sce-
nario 7 (0.4080) These scenarios have mean steering angles in close range,
indicating a moderate rightward steering bias. This might suggest driving
conditions with a fair mix of straight paths and some right-biased turns. The
driving model appears to perform consistently in these conditions. Regard-
ing the driving model performance, it indicates the model’s ability to handle
typical driving scenarios with a blend of straight and curved paths.
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Group 2: Slight Right Bias

Scenario 2 (0.3122), Scenario 5 (0.2865), Scenario 9 (0.3462), Scenario 12
(0.3584), Scenario 13 (0.3427) This group of scenarios has lower mean val-
ues, suggesting a slight rightward steering bias. This group could represent
scenarios with a balance of left and right turns but with little inclination to
turn toward the right. The driving model performance in this group shows
a balanced approach to steering, handling both left and right turns with a
slight preference for right.

Group 3: Strong Right Bias

Scenario 3 (0.6741), Scenario 6 (0.6468), Scenario 8 (0.5604), Scenario 10
(0.6092), Scenario 11 (0.6018), Scenario 14 (0.5632), Scenario 15 (0.5491)
This group shows a robust rightward steering bias with significantly higher
mean values. Therefore, the driving model’s performance in these scenarios
suggests a strong tendency to make right turns.

Figure 4.3: Box-plot of Mean of steering angles

After the grouping and analysis of the mean average of steering angles, it is
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clear the model’s ability to adapt to varying driving conditions also reveals
a general tendency towards right-biased steering. Another evaluation met-
ric, standard deviation, measures the amount of variability or spread in the
steering angles from their mean value. A higher standard deviation indicates
more significant variability, while a lower standard deviation suggests more
consistency in the steering behavior.

Grouping Based on Similar Standard Deviation:
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Figure 4.4: Standard Deviation Steering Angles table

Group 1: High Variability

Original Scenario (0.2665), Scenario 2 (0.2515), Scenario 8 (0.2592), Sce-
nario 9 (0.2427), Scenario 10 (0.2342), Scenario 14 (0.2661). These scenarios
exhibit a higher standard deviation, indicating a wide range of steering an-
gles. High variability suggests the model can have a wide range of steering
responses.
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Group 2: Moderate Variability

Scenario 3 (0.2022), Scenario 4 (0.2192), Scenario 15 (0.1517). This group
shows a moderate level of variability. Indicates good adaptability to varied
driving conditions.

Group 3: Low Variability

Scenario 1 (0.1278), Scenario 5 (0.1223), Scenario 6 (0.0527), Scenario 7
(0.0601), Scenario 11 (0.0681), Scenario 12 (0.1026), Scenario 13 (0.0753).
Scenarios in this group have the lowest standard deviation, suggesting con-
sistent steering behavior. This means that the model in this group is oper-
ating in more predictable and stable conditions, with less need for frequent
or significant steering adjustments.

Figure 4.5: Box-plot of Standard deviation

Another metric, smoothness, is defined here as the inverse of the average
rate of change of steering angles. Higher smoothness values indicate more
gradual changes in steering angles, suggesting smoother driving behavior.
Conversely, lower smoothness values suggest more frequent or abrupt changes
in steering.
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Grouping Based on Similar Smoothness values :

Figure 4.6: Smoothness of Steering angles

Group 1: High Smoothness

• Scenario 1 (63.8740)
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• Scenario 5 (62.4320)

• Scenario 6 (67.1193)

• Scenario 7 (68.9936)

• Scenario 11 (68.2582)

• Scenario 12 (74.0506)

• Scenario 13 (71.8037)

• Scenario 15 (56.5178)

These scenarios exhibit very high smoothness, indicating that the steering
changes are gradual and smooth. Indicates the model’s capability to make
smooth, gradual steering adjustments. This is indicative of a stable and
comfortable driving experience.

Group 2: Moderate Smoothness

• Original Scenario (21.0375)

• Scenario 2 (20.0586)

• Scenario 3 (22.8890)

• Scenario 4 (21.1353)

• Scenario 8 (22.3229)

• Scenario 9 (21.3061)

• Scenario 10 (22.1323)

• Scenario 14 (20.8115)

This group shows moderate levels of smoothness, indicating a balance be-
tween straight and curved driving paths. Reflects a more varied steering
behavior, combining rapid and gradual steering adjustments.
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Figure 4.7: Box-plot of smoothness

Finally, another critical evaluation metric is accuracy, defined by the type:

accuracy =

(
number of images with acceptable trajectory

total number of images

)
× 100
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Figure 4.8: Smoothness of Steering angles

In all the scenarios, the model achieves accuracy higher or equal to 90%.
The highest accuracy(100%) has been achieved in Scenario 7,11,15, wherein
all of them the parameters #no bridge and #up right truck were included.
On the other hand, the accuracy table reveals that scenarios 3, 8, and 14
manifest the lowest accuracy percentages for the model’s responses. Upon
examining the results of Scenario 3 in relation to Scenarios 8 and 14, which
all share the #straight road parameter, it can be concluded that this param-

63



eter creates a setting in which the model is prone to generating a significant
number of unacceptable predicted steering angles. Although these predic-
tions are directed correctly (to the right), their values exceed the established
acceptable threshold.

4.3 Qualitative results

Figure 4.9: Safety table
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Grouping based on Safety Metric: Group 1: The car avoids the crash with
the truck Original Scenario, Scenario 1, Scenario 3, Scenario 4, Scenario 6,
Scenario 7, Scenario 8, Scenario 11, Scenario 14, Scenario 15

Group 2: The car does not avoid the crash with the truck Scenario 2,
Scenario 9, Scenario 5, Scenario 10, Scenario 12, Scenario 13.

An analysis of the Safety table indicates that scenarios 2, 5, 9, 10, 12,
and 13 result in a collision with the truck. A further investigation into these
scenarios reveals that five of the six incorporate the #black truck parame-
ter. This observation leads to the assumption that the black color of the
truck may be confusing within the system, leading to the prediction of un-
acceptable steering angles. Additionally, three of these six scenarios involve
the combined parameters of the #no bridge and #black truck parameters,
suggesting a potential interaction effect between these factors.

Upon evaluating the Accuracy and Safety table, it becomes evident that
scenarios 7, 11, and 15 are where the model demonstrates perfect accuracy
and maintains complete safety, as indicated by the metrics. These scenarios
all share the inclusion of #no bridge and #up right truck parameters, lead-
ing to the inference that their combination creates a safer operational context
for the model. However, Scenario 13, despite sharing those two parameters,
shows a slightly reduced accuracy of 99% Finally, upon examination of both
the Accuracy and Safety tables, it is observed that Scenario 9 exhibits the
lowest accuracy rate amongst the six scenarios categorized as unsafe.

4.4 Comparing scenarios

4.4.1 Original Scenario-Scenario 1

Because only one parameter changed, it is safe to say that this parameter
change is responsible for the differences. In both scenarios, the model avoids
a crash with the truck. But one difference is that when the car enters the area
down the bridge in the original scenario, two off-road incidents are created,
unlike in scenario 1, where the bridge parameter does not exist. These two
off-road incidents in these frames don’t exist.
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Figure 4.10: Original Scenario frame

Figure 4.11: Scenario 1 frame

66



Figure 4.12: Original Scenario frame

Figure 4.13: Scenario 1 frame
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4.4.2 Original Scenario-Scenario 2

Again, because only one parameter changed, it is safe to assume that this
parameter change is responsible for the differences we have. In the original
scenario, the accident is avoided, unlike the case of the actual Scenario. This
leads us to assume that the change of the color to black causes this crash in
the last frame. Looking more precisely at our predicted steering angles, it is
clear that in the original scenario, our model predicts taking a far-right turn
to avoid the truck, unlike in Scenario 2, where the model predicts going left.

Figure 4.14: Original Scenario frame
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Figure 4.15: Scenario 2 frame

4.4.3 Original Scenario-Scenario 3

Similar to the previous comparisons, because only one parameter changed,
it is safe to claim that this parameter change is responsible for the different
results. In both scenarios, the model avoids a crash with the truck. But in
scenario three, many far-right predicted steering angles were produced, caus-
ing eight collisions with the barriers and six off-road incidents. For example,
the following figures show frames that the model predicted steering angle 1,
leading to collisions with the obstacles.
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Figure 4.16: Frame from Scenario 3

Figure 4.17: Frame from Scenario 3
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Figure 4.18: Frame from Scenario 3

Figure 4.19: Frame from Scenario 3
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Figure 4.20: Frame from Scenario 3

Figure 4.21: Frame from Scenario 3
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Figure 4.22: Frame from Scenario 3

Figure 4.23: Frame from Scenario 3
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4.4.4 Original Scenario-Scenario 4

Finally, in this comparison, because only one parameter changed, it is safe to
say that this parameter change is responsible for the differences we observe in
those two scenarios. Despite the model avoiding the truck in both scenarios,
the last predicted steering angle in the Original Scenario causes an off-road
incident, unlike the case of Scenario 4, where the predicted steering angle is
much smoother.

Figure 4.24: Scenario 4 frame
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Figure 4.25: Original Scenario frame
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Chapter 5

Summary

This thesis successfully generated high-precision, photorealistic synthetic data
using Unreal Engine 5 (UE5) despite lacking direct access to target domain
data. In this way, it created an evaluation environment to examine the End-
to-End process in autonomous driving through the lens of imitation learning
in a highway accident. Based on these simulations, the thesis provided in-
sightful assumptions about the highway accident, contributing to the under-
standing and patterning of autonomous vehicle behavior in various driving
scenarios. In more detail, the influence of the environment parameters like
#no bridge and #alternate color of the truck(black) and #not curvy road
(straight road) and #not overturned truck(upright truck) in the reaction of
the driving model, has been investigated. The following are the most repre-
sentative findings that are derived from this thesis:

• A detailed examination uncovers that 5 out of 6 scenarios where the
model does not prevent the truck crash involve the #black color param-
eter. This correlation leads to the hypothesis that the black color of the
truck creates frustration within the system, resulting in the prediction
of unacceptable steering angles.

• The scenarios that stand out in both the Accuracy and Safety table
with full accuracy and complete safety share the common parameters
of #no bridge and #up right truck. The assumption drawn is that the
combination of these two parameters creates a safer operational context
for the model.

• All the scenarios that exhibit the lowest accuracy percentages include
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the #straight road parameter.

• The autonomous driving model that is used during the 15 scenarios
experiments achieved 60% on safety measurement, and in all of the
fifteen scenarios achieved 90% accuracy as defined in the thesis.These
percentages indicate that the experimental imitation learning approach
that has been followed is reliable for scientific work.

For future updates, it is clear that the variety of parameters that can be
changed with the help of Unreal Engine 5 is unlimited. Therefore, the spec-
trum of alternative scenarios that can be created is an exciting research
domain. As far as the model is concerned, a more sophisticated model can
separate some of the responsibilities of the autonomous driving process. In
the concluding phase of this thesis, an experimental add-on was introduced
to the existing model by integrating computer vision techniques for lane de-
tection. After a series of processes, including converting images to grayscale,
applying Gaussian blur for image smoothing, utilizing Canny edge detection
for identifying edges, implementing region of interest masking, and employ-
ing the Hough transform for line detection. An experimental outcome of this
upgrade was the successful elimination of off-road behaviors, and the reduc-
tion of high-value predicted steering angles in scenario 3, which previously
exhibited the highest incidence of such issues.
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Figure 5.1: Example from Scenario 3

Figure 5.2: Example from Scenario 3
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Figure 5.3: Example from Scenario 3

Figure 5.4: Example from Scenario 3

79



Bibliography

[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba.
End to end learning for self-driving cars, 2016.

[2] Mariusz Bojarski, Philip Yeres, Anna Choromanska, Krzysztof Choro-
manski, Bernhard Firner, Lawrence Jackel, and Urs Muller. Explaining
how a deep neural network trained with end-to-end learning steers a car,
2017.

[3] Lixin Duan, Dong Xu, and Ivor Tsang. Learning with augmented fea-
tures for heterogeneous domain adaptation, 2012.

[4] IPG Automotive. Vehicle-in-the-loop — ipg automotive. https://www.
ipg-automotive.com/, 2023.

[5] f Mr. Ishtiaque Ahmed Julian T.H. Kwong. Asian Highway Design
Standard for Road Safety: Design Guidelines. Korean Expressway Cor-
poration (KEC), 2017.
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