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Πρόλογος 
 

Η παρούσα διπλωματική εργασία ασχολείται με την αεροδυναμική 
βελτιστοποίηση του εμπρόσθιου μέρους ενός μη αεροδυναμικού σώματος. Η 
διπλωματική ξεκινάει με μια βιβλιογραφική επισκόπηση προηγούμενων 
συγγραφέων και μια εισαγωγή στην επιστήμη της υπολογιστικής 
ρευστομηχανικής και των μεθόδων της. 3 διαφορετικές εμπρόσθιες γεωμετρίες 
εξετάστηκαν. Η επαλήθευση πειραματικών δεδομένων σε παρόμοια σώματα 
ήταν επιτυχής για μηδενική γωνία πρόσκρουσης του αέρα με το σώμα για 
πλήρως προσκολλημένη και πλήρως αποκολλημένη ροή. Η πρώτη από τις 3 
γεωμετρίες αναπαριστά ουσιαστικά ένα ορθογώνιο παραλληλεπίπεδο. Παρά 
την απλότητα της γεωμετρίας, τα αεροδυναμικά φαινόμενα που λαμβάνουν 
χώρα είναι εξαιρετικά ενδιαφέροντα καθώς η ροή είναι πλήρως 
αποκολλημένη και ισχυρές δίνες εμφανίζονται στην περιοχή απόρρους, ενώ η 
εμπρόσθια περιοχή κυριαρχείται από έντονες δυνάμεις πίεσης, αυξάνοντας 
σημαντικά τον αεροδυναμικό συντελεστή του σώματος. Το δεύτερο σώμα, το 
οποίο αναπαριστά στο περίπου ένα απλοϊκό φορτηγό αυτοκίνητο, 
παρουσιάζει μια πιο ομαλή ροή γύρω του και λιγότερο έντονες αποκολλήσεις 
φυσαλίδων αλλά εξ’ αιτίας έντονων δυνάμεων πίεσης και κάποιων 
ανακυκλοφοριών λόγω της πιο περίπλοκης γεωμετρίας του εξακολουθεί να 
έχει αυξημένο συντελεστή πίεσης για φορτηγό αυτοκίνητο. Το τρίτο μοντέλο, 
που έχει μια ελλειπτική μορφή εμπρός του σώματος και η ροή είναι πλήρως 
προσκολλημένη για μεγάλους αριθμούς Reynolds τουλάχιστον που 
αντιστοιχούν σε κανονικές ταχύτητες για φορτηγά αυτοκίνητα, παρουσιάζει 
αρκετά χαμηλό αεροδυναμικό συντελεστή και είναι αρκετά υποσχόμενο για 
μελλοντική εξέλιξη. 
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Abstract

The present thesis deals with the shape optimization of the frontal area of blunt bodies.
It starts with a literature review of previous authors and an introduction to the science
of CFD and its methods. 3 different frontal shapes were simulated of a specific blunt
body. Validation of experimental data was successful with similar geometries for no yaw
angle for fully separated as well as for fully attached flows. The first model represents
a rectangular box. Despite its simplicity the flow phenomena that occur around it are
significant because the flow is fully separated and strong vortices occur around it and the
frontal area is dominated by pressure forces, leading to an increased drag coefficient. The
second model which represents roughly a real truck shows a more smooth flow around it
with by far smaller in size bubble separations but due to some recirculations that occur at
the front of it as it has a more complex geometry, as well as significant pressure forces
at its frontal area, it has a significant drag coefficient. The last model has an elliptical
frontal shape and the flow is fully attached for high Reynolds numbers which correspond
to average velocities for real trucks, lead to a low drag coefficient and it is very promising
for future work.
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Chapter 1

Introduction and Objectives

1.1 Background and Motivation

The classical study and treatment of various scientific and technological problems is con-
ducted through experimental measurements and theoretical models. Most problems of
interest in engineering and physical sciences are multidimensional and nonlinear. Con-
sequently, analytical solutions exist only in rare cases. On the other hand, the usage of
experimental devices is often quite expensive and time consuming, while in many cases
the laboratory conditions differ from the actual ones to a great extent (e.g. scale prob-
lems). Therefore, the computational solution of the theoretical problems by using ap-
propriate numerical methods which solve approximately, but with a great accuracy under
the appropriate circumstances, the equations that describe the problem, is recommended.
There are many cases in engineering applications that cannot be solved analytically, like
airplane an automotive aerodynamics, combustion problems, physical and chemical pro-
cessing problems, weather forecast and climate change problems etc. In all the cases
above, the computational solutions leads to a better treatment of these problems as well
as to design processes with reduced energy consumption and therefore emissions, as long
as we refer to production processes.

Numerical methods analyze in depth the theoretical and mathematical framework
which needed to treat the problems mentioned above through techniques and methods
of solving the basic categories of partial differential equations which describe the general
conservation principles of mass, energy and momentum in a developing in time and space
physical or chemical system. The oldest and the simplest numerical method that is ap-
plied to solve partial differential equations by transforming them into algebraic equations
is the finite differences investigated extensively by Courant, Friedrich and Lewy. The
finite elements method was introduced a few years later and was applied in computing
forces and strains for materials from structural engineers. The problem with the finite

1



1. Introduction and Objectives

element method is that it does not treat the nonlinear term properly. The finite volume
method is one of the most ingenious methods for discretizing the differential equations
which describe a fluid flow field and was scrutinized by Patankar for fluid flows as well as
for heat transfer applications [1]. To be more precise, the Navier - Stokes equations along
with the continuity equation are discretized and solved numerically in order to describe
the physics of the problem and to quantity all of the unknown variables. This analysis,
which is more complex that it seems, is called Computational Fluid Dynamics (CFD).

CFD is a powerful tool based on the science of Fluid Mechanics which discretizes the
basic differential equations which describe the flow field, the continuity equation and the
Navier - Stokes equations, converts them to algebraic equations and a system of equations
is created and solved numerically. Additional equations may be introduced when the flow
is turbulent, which is the case most engineering applications and physical phenomena.
More details about the whole procedure will be given in chapter 3. CFD techniques and
in general numerical methods were developed many years ago. However, it was not until
a few years ago when they first started to be used in practice because the capability of the
computers regarding their frequency and memory were limited. They were used only for
academic purposes and in very rare cases for industrial applications, and engineers could
not rely on the results. Nevertheless, nowadays due to the rapid increase of available
computational resources, quick results from CFD packages can be obtained which is very
important for the industry because they need results as soon as possible. Consequently,
CFD is considered as a relatively new science which is very promising and it is likely
that it will be the predominant in the next decades, replacing the expensive experimental
investigation of various applications. Its main advantage is the decreased cost in relation
to the experimental process, a very important asset in the current increasingly demanding
and competitive environment. Unfortunately, its main drawback is the reliability of the
exported results, as when experimental results are not available the results obtained by
CFD software are questionable. There are many cases that CFD results are totally un-
reliable, so scientists and engineers earn no confidence to trust them. As a result, CFD
results can only be trusted on specific applications where a comparison with experimental
data of similar or even the same applications is successful. Even today, an expensive and
carefully designed experiment cannot be replaced by any numerical procedure regarding
the reliability of their results, or when it can be replaced, the required time to obtain the
results from the numerical procedure is considered as prohibitory for the industry.

1.2 Problem Statement

During the last decades the cost of various types of fossil fuel have increased significantly
in most countries, especially in European union where it lacks oil production. Conse-

2
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quently, the cost of transportation has increased dramatically, more than the annual infla-
tion rate of each country. As a result, there have been developed many methods toward
decreasing fuel consumption. Another positive impact of reducing fuel consumption is
the reduced emissions of CO2 which is the main responsible gas of global warming, as
well as other toxic gases like CO, NOx, SOx, particulate matter etc which is of paramount
importance regarding the public health as well as the environment. Finally, European
union has specified strict limits regarding the emissions mentioned above for power gen-
eration and transportation which become stricter year by year and applies penalties when
companies do not conform with it. Taking all the above into consideration, it is obvious
that energy saving, in general, is of vital importance in any case. Some of the most impor-
tant and prevalent innovations that have been developed over the last years for reducing
the fuel consumption of the vehicles are the optimization of internal combustion engines
with higher thermal efficiency and compression ratios, hybrid electric vehicles, other fuel
internal combustion engines such as bio diesel or hydrogen, three way catalytic convert-
ers with almost zero pressure drop, various types of automatic transmission, vehicles with
lower drag coefficients etc.

The present thesis is specialized in the aerodynamic optimization of the front of a
bluff body. In particular, 3 different frontal shapes of a bluff body are examined nu-
merically. Bluff bodies can represent very roughly trucks, which are the main means of
transportation of basic products like food, furniture, computers, or even smaller in size
vehicles. Due to their big size and heavy load, fuel consumption of trucks is high and
needs to be reduced as much as possible. Taking into account that the aerodynamic force
may account up to 50% of the total fuel consumption on special operating conditions, it
is obvious that even small amends on the aerodynamic drag may lead to considerable re-
ductions to fuel consumption, thus a considerable reduction in operating cost of the trucks
may be attained.

1.3 Structure of the M.Sc. Thesis

The present thesis starts with a literature survey for bluff bodies in general, but extraor-
dinary consideration was given to the previous studies of DAF Ltd company. Unfortu-
nately, the available literature regarding bluff bodies is rather limited because the topic is
somewhat specific. Chapter 3 is exclusively dedicated to the mathematical nature of the
problem, describing the governing equations and computational methods that were used,
which are almost the same in any CFD application.

As it was stated above, results obtained from CFD commercial packages or even in-
house codes are not always reliable. Consequently, validation of CFD results to a similar
or even the same geometry with experimental data is of vital importance in order to gain

3
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confidence to investigate numerically theses 3 different frontal shapes of a bluff body.
Validation of experimental data was done with Cooper’s experiments for bluff bodies in
a wind tunnel. The validation process was successful for the fully attached as well as
the separated flow around the bluff body. However, it should be kept in mind that these
experiments performed by Cooper were held in a wind tunnel while the geometries given
by the company was supposed to be held in the free field. In the results and discussion
chapter, the optimized geometries are scrutinized from an aerodynamic point of view.

As far as the software are concerned that was used throughout this dissertation, all the
simulations were performed with Ansys Fluent v.6, the post processing with Ansys CFX
- POST v.14, the grid generation and CAD with Ansys ICEM v.14, the digitization of the
graphs with the software Engauge and the graphs with the software Ms Excel. Finally,
one of the optimized geometries was created in the software CATIA v.5 since in ICEM
elliptical curves cannot be created. The optimization models were given by the company
DAF Trucks Ltd.

4



Chapter 2

Literature Review

Despite the limited literature, there are some scientists who investigated experimentally
or numerically the flow around automobiles and proposed ideas for reducing the aerody-
namic drag. Cooper has investigated experimentally various types of automobiles starting
from bluff bodies to racing cars. He took into account many details like the wind mag-
nitude and direction and he performed his experiments in both stationary and moving
ground as well as in open and closed channels for various yaw angles of the vehicle. Af-
ter various experiments, he found out that for radius ratios over 5% there is no separation
and the flow is completely attached for certain Reynolds numbers regardless of the frontal
area of the vehicle which is very important because boundary layer separation leads to in-
creased drag. The following image illustrates the bluff body that Cooper used from a 3D
point of view. It should be stated that this model was designed by Filip Baillien who
investigated this model numerically and validated Cooper’s results.
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2. Literature Review

Figure 2.1: Cooper’s bluff body and wind tunnel from a 3D point of view.

The following graph shows the drag coefficient of a blunt body for no yaw angle for
various front edge radii depending on the Reynolds number.

Figure 2.2: Drag coefficient of Cooper’s bluff body depending on Reynolds number for
various radii for no yaw angle.
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Filip Baillien [2] studied numerically the aerodynamic behavior of a simplified truck.
He performed RANS steady state simulations and validated Cooper’s results for for 7.5%
rounding. The following graph shows the results of Cooper’s experiment and his numeri-
cal results.

Figure 2.3: Digitized version of Cooper’s graph for drag coefficient for radius radii of
7.5% and 10% with some values of Baillien’s numerical studies for specific Reynolds
numbers.

As seen in the figure above, the differences between transient and steady RANS sim-
ulations as well as the results between compressible and incompressible solvers are neg-
ligible. As a result, he was relied on the results of steady state simulations and he made
a comparison between various turbulent models. A comparative diagram of all turbulent
models he used of the pressure coefficient against the vertical centerline of the front of
the vehicle.
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Figure 2.4: Pressure coefficient of the centerline of the front of Cooper’s bluff body for
various turbulence models.

Also, he managed to reduce, to a small extent, the drag coefficient by making some
modifications on the front of the truck. The modifications were based on elliptical curves
because other kinds of curves may lead to separation much easier than the elliptical
curves. After trying 7 different optimization models he found small differences regarding
the drag coefficient. Finally, he proved that the main contribution of the aerodynamic drag
is the rear of the truck, not the front because of the separation of the flow and the strong
vortices that occur.

J.M.M. Luijten [3] made a more extensive analysis on the truck taking into account
many details. More specifically, he found out that the aerodynamic drag accounts for
approximately 30% of the total fuel consumption which can arise up to 50% if the truck
is empty. This is indicative of the consideration that has to be given on the aerodynamic
optimization of the trucks. He also examined a more realistic model of a typical truck
without so many simplifications like the previous authors. In detail, he examined 3 differ-
ent designs of trucks. The first truck model has a gap between the tractor and the trailer,
the second is the same model as the first one without the gap and the third model is the
Cooper’s model. These 3 models are illustrated in the following figures.
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Figure 2.5: The 3 models that were investigated numerically by Luijten.

As seen in the first two images above, he also took into account the effects of roof
deflectors and side extenders. In addition, he tried 2 types of roof deflectors, one long
and one short, for the first 2 models. He was based on steady state simulations, however,
he also performed some transient RANS simulations to check any discrepancies on the
results. Like Filip Baillien, he found out that the results between steady and unsteady
simulations did not differ much. He made many parametric studies on the velocity of the
truck for various leading edge radii ratio for various yaw angles. More specifically, he
performed simulations for a velocity of 90 km/h, 45 km/h and 22.5 km/h, however, he was
focused mainly on the velocity of 90 km/h because this is the speed of the truck in most of
its lifespan. He also performed his simulations for yaw angles varying from 0 to 10º for
leading edge radii from 5% to 7.5%. Finally, he made a parametric study on turbulence
intensity for 0.5% and 5% at the inlet of the computational domain. The following images
represent the drag coefficient for the closed truck model for long and short roof deflectors.
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Figure 2.6: Drag coefficient for the long and short roof deflector for the closed truck
model for various grids.

Figure 2.7: Drag coefficient for the long and short roof deflector for the simplified truck
model for various grids.

It is clear that the more the yaw angle is the higher the drag coefficient is. This happens
because in non zero yaw angles the boundary layer separation is reinforced because the
bubble separations are bigger as seen in the figure below.

Figure 2.8: Isosurfaces of negative x velocity component for yaw angles of 0◦, 5◦and10◦
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The following image illustrates the differences in drag coefficient between the simpli-
fied and closed truck models with a long roof deflector for various yaw angles.

Figure 2.9: Drag coefficients for the closed and simplified truck model for yaw angles of
0◦, 5◦and10◦

As seen in figure 11 above, the closed truck has smaller drag coefficient values for any
yaw angle.

The difference in drag coefficient for the long and short roof deflector comes mainly
from the separation bubble as seen in figure 12 below. The long roof deflector leads to a
decreased separation bubble which reduces the overall drag coefficient.

Figure 2.10: Streamline distribution of the front of the simplified truck for a long and a
short roof deflector respectively.

The following graph represents the differences in drag coefficient for various yaw
angles for the simplified truck model for small and wide side extenders.
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Figure 2.11: Drag coefficient for the simplified truck for various yaw angles with the wide
and small side extenders.

As seen in figure 13 above, for very small values of yaw angle the drag coefficient is
slightly smaller for wide extenders but it bigger for high yaw angles.

Finally, regarding Cooper’s model he found some non negligible variations in drag
coefficient with Cooper’s model. The following graph represents the comparison in drag
coefficient over the leading edge radii of his results and Cooper’s results.
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Figure 2.12: Differences in drag coefficient between Cooper’s experiments and Luijten’s
simulations.

One possible explanation for this is that his results were not grid independent and he
found some variations between different grid sizes. The following figure shows the bubble
separation of the front of Cooper’s model according to his results, for various leading edge
radius ratio and Re = 6.4 ·106.

Figure 2.13: Isosurfaces of negative x velocity component for leading radius ratio of 5%,
6.3% and 7.5%.

It is clear from the figure above that even for a leading edge radius ratio of 7.5%
boundary layer separation occurs which contradicts Cooper’s results.

Bjorn Henneman [4] was focused more on the separation of the boundary layer on
the front of a blunt body because, as it was shown above, it plays a dominant role on
the calculation of the drag coefficient. Unfortunately, commercial CFD packages do not
predict accurately the separation and reattachment point of rounded edges, so unreliable
results may be exported by the software regarding the drag coefficient. In order to simplify
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the problem, instead of Cooper’s model, he used a rounded cylinder (figure 16) because
the flow phenomena are the same in both geometries.

Figure 2.14: Geometry of Henneman’s work.

He performed initially some 2D simulations using RANS modeling and showed that
for the case of a turbulent flow, the separation point is moving downstream and the reat-
tachment point is moving upstream of the flow as the Reynolds number increases making
the separation bubble essentially smaller. Velocity values over the transcritical Reynolds
numbers eliminate the separation and the flow becomes fully attached validating essen-
tially Cooper’s experiments. He also performed an experiment to double check his results.
The following image illustrates the behavior of the separation bubble of a laminar and tur-
bulent boundary layer as the velocity increases.
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Figure 2.15: Separation bubble behavior for a laminar and turbulent boundary layer as the
velocity increases.

Unfortunately, all turbulence models he used were proved insufficient in calculating
the exact location of the separation point when he compared them with his experiments.
More specifically, they tend to underestimate the separation bubble. The following table
shows whether or not separation occurs for the Spalart Allmaras model for Re = 1.2 ·106

for various edge radii and compares them with Cooper’s results.

r/D[%]
Separated flow
S - A Cooper

2.5 yes yes
4 no yes
5 no yes

7.5 no yes
10 no no

Table 2.1: Separation for Re = 1.2 ·106 for Spalart Allmaras model and Cooper’s experi-
ments.

As seen in the table above, RANS modeling under predicts the separation. Similar or
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even worse results were obtained from other turbulence models. This failure of RANS
modeling is due to the transitional nature of the flow from laminar to turbulent. How-
ever, commercial CFD packages do not include any transitional modeling, so additional
modeling is required.

One remedy to this problem lies in the zonal modeling approach. The zonal modeling
requires the exact point where the transition occurs which is not known a priori. The
position where the separation occurs, can be calculated via an appropriate software such
as XFOIL. Once the point where separation occurs, the computational domain is split
in laminar and turbulent zone and then they are modeled accordingly by the commercial
CFD code. He tried many turbulent models and he concluded that the most favorable is
Spalart Allmaras. The following graphs illustrate the difference in drag coefficient for the
fully turbulent solution by commercial CFD software and the zonal modeling approach
compared with Cooper’s results as well as his experimental results for Re = 1.2 ·106.

.

Figure 2.16: Comparative diagrams of drag coefficient among fully turbulent, zonal mod-
eling approach and Cooper’s experimental results for a subcritical Reynolds number for
various radii ratios.

As seen in figures above, the fully turbulent solution shows an attach behavior for
small edge radii ratios which is not true according to Cooper’s results. The zonal modeling
approach shows the same trend as Cooper’s results. However, it should be noted that the
zonal approach is appropriate only for the subcritical Reynolds range because a laminar
boundary layer separation occurs.

RANS steady state modeling with commercial CFD software was proven adequate
for the fully separated or the fully attached region for this application. On the other
hand, commercial CFD software does not export reliable results for the transitional region
without introducing user defined functions. Due to the fact that the transitional region
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appears for law leading edge radii and for low speed magnitude, where the aerodynamic
force is relatively small and does not contribute significantly in the fuel consumption of
the truck, it is the authors opinion that the thesis should be specialized in the fully attached
or fully separated region because, as it will be shown later in this thesis, the flow around
the optimized geometries will be fully separated of fully attached, and the rear of the
truck which is the main source of the aerodynamic drag, and if possible, to study more
complicated models.
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Chapter 3

Governing Equations and
Computational Methods

3.1 General

The basic equations that describe a flow field are the continuity equation, the 3 Navier -
Stokes equations, the energy equation as well as 2 equations of state for a 3D compressible
case.

∂ρ

∂ t
+div(ρ~u) = 0 (3.1)

∂ (ρu)
∂ t

= div(ρu~u) =−∂P
∂x

+div(µ ·gradu)+SMx (3.2)

∂ (ρv)
∂ t

= div(ρv~u) =−∂P
∂y

+div(µ ·gradv)+SMy (3.3)

∂ (ρw)
∂ t

= div(ρw~u) =−∂P
∂ z

+div(µ ·gradw)+SMz (3.4)

∂ (ρi)
∂ t

+div(ρi~u) =−Pdiv~u+div(k ·gradT )+Φ+Si (3.5)

P = P(ρ,T ) (3.6)
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i = i(ρ,T ) (3.7)

In this problem the operating fluid is air and considering it as an ideal gas, the last 2
equations are transformed as follows.

P = ρRT (3.8)

i =CvT (3.9)

The equations above make a total of 7 equations with 7 unknowns, so a system of
7× 7 is created and can be solved as long as is it provided with initial and boundary
conditions. For reasons that will be explained later in this dissertation, the flow is con-
sidered incompressible while heat transfer phenomena do not take place since the flow is
incompressible and there are no temperature differences or heat sources anywhere in the
domain. Also, there are no chemical reactions and the gravity can be neglected since the
density of air is very small. Taking into account all the previous assumptions, the flow
field of this specific problem is described by the following equations.

div~u = 0 (3.10)

ρ

[
∂u
∂ t

+div(u~u)
]
=−∂P

∂x
+µ ·div(gradu) (3.11)

ρ

[
∂v
∂ t

+div(v~u)
]
=−∂P

∂y
+µ ·div(gradv) (3.12)

ρ

[
∂w
∂ t

+div(w~u)
]
=−∂P

∂ z
+µ ·div(gradw) (3.13)

For clarity, by doing some math, the equations above take the following form.
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∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0 (3.14)

ρ

[
∂u
∂ t

+
∂ (uu)

∂x
+

∂ (uv)
∂y

+
∂ (uw)

∂ z

]
=−∂P

∂x
+µ

(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
(3.15)

ρ

[
∂v
∂ t

+
∂ (vu)

∂x
+

∂ (vv)
∂y

+
∂ (vw)

∂ z

]
=−∂P

∂y
+µ

(
∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2v
∂ z2

)
(3.16)

ρ

[
∂w
∂ t

+
∂ (wu)

∂x
+

∂ (wv)
∂y

+
∂ (ww)

∂ z

]
=−∂P

∂ z
+µ

(
∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2w
∂ z2

)
(3.17)

The equations above are the continuity equation and the Navier - Stokes equations
which describe fully an unsteady incompressible flow without any chemical reactions
or heat transfer phenomena. In the case of a turbulent flow, no analytical functions of
the primitive variables exist to solve the Navier - Stokes equations analytically; this can
be seen in figure 1 where the fluctuations of the velocity components are abrupt. In
Navier - Stokes equations, the term ∂uiu j

∂x j
is called convective term and the term ∂ 2ui

∂x2
j

is

called diffusive term. In theory, no more information or equations are needed to solve
the problem the problem numerically, apart from the initial and boundary conditions.
All is needed is the discretization of the equations in order to convert these differential
equations to algebraic ones, and an appropriate solver to solve the system of equations
that is yielded. However, this procedure would require an extremely refined numerical
grid and a very small time step which practically means that it would require years of
simulations even at the most powerful clusters, especially for high turbulent flows, which
is not practical even for academic purposes, let alone for the industry. This procedure is
called Direct Numerical Simulation (DNS), a very accurate method which is used only
by researchers for very low Reynolds numbers and it does not seem that it will be used
in the near future for industrial purposes. The problem arises with the turbulence because
according to this process, it is fully resolved. That is the reason why an extremely refined
numerical grid as well as a very small time step are required to yield accurate results from
this method.

A remedy to this problem lies in Reynolds Averaged Navier Stokes (RANS) approach
firstly introduced by Osborne Reynolds[5]. It is generally known that turbulence is char-
acterized by random and rapid fluctuations of the primitive variables u,v,w and P of the
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time and space. Reynolds, instead of the instantaneous values of these variables, he intro-
duced the mean values of them over the time domain. The following figure represents the
fluctuations of the u velocity component of a turbulent flow over the time domain.

Figure 3.1: Definition of mean and fluctuating turbulent velocity.

The mean value of u velocity component is defined as:

u =
1
T

∫ T

0
udt (3.18)

where T is a time period which should last more than a period of the fluctuations. The
same formula is used for the rest of primitive variables. The fluctuation u

′
is determined

as the deviation of u velocity component from its average value:

u
′
= u−u (3.19)

Similarly, the rest fluctuating variables are defined:

v
′
= v− v (3.20)

w
′
= w−w (3.21)

P
′
= P−P (3.22)

21



3. Governing Equations and Computational Methods

The mean value of a fluctuating property is equal to zero:

u′ =
1
T

∫ T

0
(u−u)dt = u−u = 0 (3.23)

Substituting the relations 19 - 21 into the continuity equation, the last reduces to:

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

(3.24)

Substituting these relations also into the Navier - Stokes equations and time averaging
them, the Navier - Stokes equations take the following form:

ρ

(
∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

+
∂u′2

∂x
+

∂u′v′

∂y
+

∂u′w′

∂ z

)
=−∂P

∂x
+µ

(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
(3.25)

ρ

(
∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂ z

+
∂u′v′

∂x
+

∂v′2

∂y
+

∂v′w′

∂ z

)
=−∂P

∂y
+µ

(
∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2v
∂ z2

)
(3.26)

ρ

(
∂w
∂ t

+u
∂w
∂x

+ v
∂w
∂y

+w
∂w
∂ z

+
∂u′w′

∂x
+

∂v′w′

∂y
+

∂w′2

∂ z

)
=−∂P

∂ z
+µ

(
∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2w
∂ z2

)
(3.27)

The terms u′iu
′
j are called Reynolds stresses or turbulent stresses and they are unknown

at this point, so the system of equations is not yet closed. Boussinesq [6] after performing
some experiments, correlated the Reynolds stresses to the rate of deformation of the fluid
by the following formula for incompressible flows:

τi j =−ρu′iu
′
j = µt

(
∂ui

∂x j
+

∂u j

∂xi

)
(3.28)
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The relation above is called Boussinesq approximation or eddy viscosity assumption
and is used by many turbulent models of commercial CFD codes. Substituting Boussinesq
relation to the equations 25 - 27, and after doing some math, the latter are transformed as
follows:

ρ

(
∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

)
=−∂P

∂x
+(µ +µt)

(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
(3.29)

ρ

(
∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂ z

)
=−∂P

∂y
+(µ +µt)

(
∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2v
∂ z2

)
(3.30)

ρ

(
∂w
∂ t

+u
∂w
∂x

+ v
∂w
∂y

+w
∂w
∂ z

)
=−∂P

∂ z
+(µ +µt)

(
∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2w
∂ z2

)
(3.31)

As it was stated earlier, the turbulence is not resolved but it is modeled according
to some turbulence models. Over the years many scientists were involved in turbulence
modeling and they created some turbulent models which all of them have pros and cons
and there is no right or wrong turbulence model. Each model may perform reasonably for
some applications but for some other applications may not be reliable.

3.2 Turbulence models

The most common turbulent model and perhaps the oldest among the 2 equation turbu-
lence models is the standard k - ε model. It is a semi empirical based on the turbulent
kinetic energy and dissipation rate. Regarding to its advantages, it is easy to implement,
robust and converges relatively easy, and it seems to be reliable for free shear flows. How-
ever, it seems to perform poorly for not that high turbulent flows, when strong pressure
gradients occur, for rotating flows and it needs a wall function implementation at com-
mercial CFD software. The standard k - ε model consists of the following 2 equations for
turbulent kinetic energy and dissipation rate for incompressible flows:

∂k
∂ t

+u j
∂k
∂x j

= τi j
∂ui

∂x j
− ε +

∂

∂x j

(
ν +νt

σk

∂k
∂x j

)
(3.32)
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∂ε

∂ t
+u j

∂ε

∂x j
=Cε1

ε

k
τi j

∂ui

∂x j
−Cε2

ε2

k
+

∂

∂x j

(
ν +νt

σε

∂ε

∂x j

)
(3.33)

In this model, the kinematic eddy viscosity is defined as:

νt =Cµ

k2

ε
(3.34)

The system is closed by the following relations and closure coefficients:

ω =
ε

Cµk
(3.35)

l =Cµ

k1.5

ε
(3.36)

Cε1 = 1.44 (3.37)

Cε2 = 1.92 (3.38)

Cµ = 0.09 (3.39)

σk = 1 (3.40)

σε = 1.3 (3.41)

Taking into account all the drawbacks of the standard k - ε model, some amends
were performed in order to improve its performance. One variation of the standard k -
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ε model is the RNG k - ε , developed by Yakhot and Orszag. It uses the same equations
for turbulent kinetic energy, eddy dissipation rate and kinematic eddy viscosity but it uses
different closure coefficients.

Cε2 = C̃ε2 +
Cµλ 3

(
1− λ

λ0

)
1+βλ 3 (3.42)

λ =
k
ε

√
2Si jS ji (3.43)

Cε1 = 1.42 (3.44)

C̃ε2 = 1.68 (3.45)

Cµ = 0.085 (3.46)

σk = 0.72 (3.47)

σε = 0.72 (3.48)

β = 0.012 (3.49)

λ0 = 4.38 (3.50)

The RNG k - ε model seem to perform better for transitional and separated flows as
well as when heat and mass transfer phenomena occur.
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Another variation of the standard k - ε model is the realizable k - ε model. It uses the
same equation for turbulent kinetic energy but a slightly different equation for the eddy
dissipation rate. In particular, the dissipation rate is calculated by the following relation:

∂ε

∂ t
+u j

∂ε

∂x j
=Cε1

ε

k
τi j

∂ui

∂x j
−Cε2

ε2

k+
√

νε
+

∂

∂x j

(
ν +νt

σε

∂ε

∂x j

)
(3.51)

Another difference is that realizable k - ε model uses a function for the variable Cµ

instead of constant.

Cµ =
1

A0 +AS
ku∗
ε

(3.52)

u∗ =
√

Si jSi j + Ω̃i jΩ̃i j (3.53)

Ω̃i j = Ωi j−2εi jkωk (3.54)

Ωi j = Ωi j− εi jkωk (3.55)

A0 = 4.04 (3.56)

AS =
√

6cosφ (3.57)

φ = cos−1
(√

6W
)

(3.58)

W =
Si jS jkSki

S̃3
(3.59)
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S̃ =
√

Si jSi j (3.60)

Si j = 0.5
(

∂u j

∂xi
+

∂ui

∂x j

)
(3.61)

Finally, the closure coefficients are:

Cε1 = 1.44 (3.62)

Cε2 = 1.9 (3.63)

σk = 1 (3.64)

σε1.2 (3.65)

All models described above belong to the family of k - ε turbulence models. Another
family of 2 equation turbulence models is the k - ω models. The Wilcox standard k -
ω model [6] uses one equation for the turbulent kinetic energy like the family of k - ε

models and a transport equation for the specific dissipation rate.

∂k
∂ t

+u j
∂k
∂x j

= τi j
∂ui

∂x j
−β

∗kω +
∂

∂x j

[(
ν +σ

∗ k
ω

)
∂k
∂x j

]
(3.66)

∂ω

∂ t
+u j

∂ω

∂x j
= α

ω

k
τi j

∂ui

∂x j
−βω

2 +
σd

ω

∂k
∂x j

∂ω

∂x j
+

∂

∂x j

[(
ν +σ

k
ω

)
∂ω

∂x j

]
(3.67)

The system of equations is closed with the following auxiliary relations and closure
coefficients:
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α =
13
25

(3.68)

β = β0 fβ (3.69)

β
∗ = 0.09 (3.70)

σ = 0.5 (3.71)

σ
∗ = 0.6 (3.72)

σdo =
1
8

(3.73)

σ =

0, ∂k
∂x j

∂ω

∂x j
≤ 0

σdo,
∂k
∂x j

∂ω

∂x j
> 0

(3.74)

β0 = 0.0708 (3.75)

fβ =
1+85χω

1+100χω

(3.76)

χω =

∣∣∣∣∣Ωi jΩ jkSki

(β ∗ω)3

∣∣∣∣∣ (3.77)
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Its main advantage is that it performs well when adverse pressure gradient occurs as
well as for transitional flows and it is also stable and robust like the standard k - ε model.
A variation of the standard k - ω model is the k - ω Shear Stress Transport (SST) model.
Theoretically, it performs better that than the standard k - ε and k - ω models because
it combines the advantages of these 2 models. In particular, inside the boundary layer
it performs like the k - ω model where it has the advantage of predicting any adverse
pressure gradients and in the free field it performs like the standard k - ε model. The SST
model comprises the following equations:

∂k
∂ t

+u j
∂k
∂x j

=
∂

∂x j

[(
µ +

µt

σk

)
∂k
∂x j

]
−ρβ

∗kω +min(Gk,10ρβ
∗kω) (3.78)

∂ω

∂ t
+u j

∂ω

∂x j
=

[(
µ +

µt

σω

)
∂ω

∂x j

]
+

α

νt
Gk−ρβω

2+2(1−F1)ρσω2
1
ω

∂k
∂x j

∂ω

∂x j
(3.79)

µt =
ρk
ω

1

max
[

1
α∗ ,

SF2
α1ω

] (3.80)

σk =
1

F1
σk1

+ 1−F1
σk2

(3.81)

σω =
1

F1
σω1

+ 1−F1
σω2

(3.82)

F1 = tanh
(
Φ

4
1
)

(3.83)

Φ1 = min

[
max

( √
k

0.09ωy
,

500µ

ρy2ω

)
,

4ρk
σω2D+

ω y2

]
(3.84)

D+
ω = max

[
2ρ

1
σω2

1
ω

∂k
∂x j

∂ω

∂x j
,10−10

]
(3.85)
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F2 = tanh
(
Φ

2
2
)

(3.86)

Φ2 = max

[
2

√
k

0.09ωy
,

500µ

ρωy2

]
(3.87)

Gk = µt
√

2Si jSi j (3.88)

σk1 = 1.176 (3.89)

σk2 = 1 (3.90)

σω1 = 2 (3.91)

σω2 = 1.168 (3.92)

The last turbulence model that was used throughout this dissertation was the one equa-
tion model Spalart Allmaras [7]. It was proven the best of all for aerospace applications
and gives good results when adverse pressure gradients occur. Another advantage of this
model is that it is not that sensitive in grid resolution and y+ which practically means that
even a relatively coarse numerical grid for a high y+ value may give better results, in re-
lation to other models. This one equation model does not solve an equation for turbulent
kinetic energy, but it solves an equation for the kinematic eddy viscosity. The equations
and closure coefficients of Spalart Allmaras model are the following:

∂ ν̃

∂ t
+u j

∂ ν̃

∂x j
=Cb1S̃ν̃ +

1
σ

∂

∂xk

[
(ν + ν̃)

∂ ν̃

∂xk

]
+

Cb2

σ

∂ 2ν̃

∂x2
k
−Cω1 fω

(
ν̃

d

)2

(3.93)
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Cω1 =
Cb1

κ2 +
1+Cb2

σ
(3.94)

S̃ = S+
ν̃ fυ2

κ2d2 (3.95)

S =
√

2Ωi jΩi j (3.96)

Ωi j = 0.5
(

∂ui

∂x j
−

∂u j

∂xi

)
(3.97)

fυ1 =
χ3

χ3 +C3
υ1

(3.98)

fυ2 = 1− χ

1+χ fυ1
(3.99)

νt = ν̃ fυ1 (3.100)

χ =
ν̃

ν
(3.101)

fω = g

[
1+C6

ω3

g6 +C6
ω3

] 1
6

(3.102)

g = r+Cω2

(
r6− r

)
(3.103)
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r =
ν̃

S̃κ2d2
(3.104)

κ = 0.41 (3.105)

σ =
2
3

(3.106)

Cb1 = 0.1355 (3.107)

Cb2 = 0.622 (3.108)

Cυ1 = 7.1 (3.109)

Cω2 = 0.3 (3.110)

Cω3 = 2 (3.111)

3.3 Discretization

All the discussion above was about the equations of fluid flow. These equations need to
be discretized in order to enable a numerical solver to solve them. This subsection is
involved in the discretization process of the Navier - Stokes equations and the numerical
solver of the algebraic system of equations that appears. For simplicity, the analysis that
follows is for a case of a 2D laminar flow. The finite volume method is employed to
discretize the equations on a staggered grid in order to avoid a possible checkerboard
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pressure field. For example, consider a 2D numerical grid like the one illustrated in figure
. The discretization of the pressure term in Navier - Stokes equation would yield [8]:

∂P
∂x

=
Pe−Pw

∆x
=

PE+PP
2 − PP+PW

2
∆x

=
PE −PW

2∆x
(3.112)

As it is seen from the equation above, the central point of the finite volume is missing.
This may lead to a checkerboard pressure field which is obviously non realistic. These
problems are typical when numerical methods are employed.

Figure 3.2: Possible pressure profile on a non staggered grid.

A remedy to this problem lies in the idea of the staggered grid. Instead of the original
control volume, a half cell toward the west of the original control volume is selected for
the discretization of the Navier - Stokes equation in the x direction and a half cell toward
the south of the original control volume is selected for the Navier - Stokes equation in the
y direction. Figures show these staggered control volumes.
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Figure 3.3: The u control volume for the x Navier - Stokes equation.

Figure 3.4: The v control volume for the y Navier - Stokes equation.

The diffusive term of the Navier - Stokes equation in the x direction is:

∫
V

µ
∂ 2u
∂x2 dV +

∫
V

µ
∂ 2u
∂y2 dV = µ

∫
A

n · ∂
2u

∂x2 dA+µ

∫
A

n · ∂
2u

∂y2 dA =
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µ

[
∂u
∂x

A
]

e
−µ

[
∂u
∂x

A
]

w
+µ

[
∂u
∂y

A
]

n
−µ

[
∂u
∂y

A
]

s
=

µ

[
uE −uP

∆xe

]
Ae−µ

[
uP−uW

∆xw

]
Aw +µ

[
uN−uP

∆yn

]
An−µ

[
uP−uS

∆xs

]
As (3.113)

Since the grid is 2D, the areas that appear in each term are not areas but essentially
lengths. Considering for simplicity that the grid is uniform in each direction, which prac-
tically means that the quantities ∆x and ∆y are stable throughout the domain, the term
above is simplified as follows:

µ

[
uE −uP

∆x

]
∆y−µ

[
uP−uW

∆x

]
∆y+µ

[
uN−uP

∆y

]
∆x−µ

[
uP−uS

∆y

]
∆x =

De (uE −uP)−Dw (uP−uW )+Dn (uN−uP)−Ds (uP−uS) (3.114)

where

De = Dw =
µ∆y
∆x

(3.115)

Dn = Ds =
µ∆x
∆y

(3.116)

The integration of the convective term is proceeded as follows:

ρ

∫
V

∂ (ūū)
∂x

dV +ρ

∫
V

∂ (ūv̄)
∂x

dV = ρ

∫
A

n · ūūdA+ρ

∫
A

n · ūv̄dA =

ρ (ūūA)e−ρ (ūūA)w +ρ (ūv̄A)n−ρ (ūv̄A)s =
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ui+1,J +ui,J

2
ρ∆yue−

ui−1,J +ui,J

2
ρ∆yuw+

ui,J+1 +ui,J

2
ρ∆xun−

ui,J−1 +ui,J

2
ρ∆xus =

Feue−Fwuw +Fnun−Fsus (3.117)

where

Fe =
ui+1,J +ui, j

2
ρ∆y (3.118)

Fw =
ui−1,J +ui, j

2
ρ∆y (3.119)

Fn =
ui,J+1 +ui, j

2
ρ∆x (3.120)

Fe =
ui,J−1 +ui, j

2
ρ∆x (3.121)

Finally, the integration of the pressure gradients yields:

−
∫
V

∂P
∂x

=−
PI,J−PI−1,J

∆x
∆V =

(
PI−1,J−PI,J

)
∆y (3.122)

Assembling all of these terms together, and assuming that the flow is steady state,
which practically means that the time derivative is equal to zero, the final form of the dis-
cretized Navier - Stokes equation in the x direction, following the notation of the figures
becomes:

Feue−Fwuw +Fnun−Fsus =
(
PI−1,J−PI,J

)
∆y+
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+De (ui+1,J−ui,J)−Dw (ui,J−ui−1.J)+Dn (ui,J+1−ui,J)−Ds (ui,J−ui,J−1) (3.123)

The assumption of steady state will be discussed in the next chapter. In a similar way,
the discretized Navier - Stokes equation in the y direction is:

Feve−Fwvw +Fnvn−Fsvs =
(
PI,J−PI,J−1

)
∆x+

De
(
vI+1, j− vI, j

)
−Dw

(
vI, j− vI−1, j

)
+Dn

(
vI, j+1− vI, j

)
−Ds

(
vI, j− vI, j−1

)
(3.124)

where

Fe =
ui+1,J +ui+1,J−1

2
(3.125)

Fw =
ui,J +ui,J−1

2
(3.126)

Fn =
vI, j+1 + vI, j

2
(3.127)

Fs =
vI, j + vI, j−1

2
(3.128)

The coefficients of D are the same as in Navier - Stokes equation in x direction. It
should be stated here that the velocity components which are inside the F and D coef-
ficients are calculated from the previous step, so they are known values. The Navier -
Stokes equations can be written in a more compact form for simplicity:

αi,Jui,J = ∑αnbunb− (PI,J−PI−1,J)∆y (3.129)
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αI, jvI, j = ∑αnbvnb− (PI,J−PI,J−1)∆x (3.130)

Discretization scheme
As it was seen in the previous subsector, the velocity values are not stored on the cell

faces, Consequently, the left part of the Navier - Stokes equations needs further treatment
in order to enable the user to solve them. The velocities on the cell faces are treated
according to the discretization scheme that is used. For better accuracy, the third order
MUSCL scheme was used throughout this project for the momentum equation. The third
order MUSCL scheme is given by the following formula [7]:

φ f = θ ·φ f ,CD +(1−θ)φ f ,SOU (3.131)

where

φ f ,SOU = φ +∇φ •−→r (3.132)

and

φ f ,CD = 0.5(φ0 +φ1)+0.5(∇φ0 •−→r0 +∇φ1 •−→r1 ) (3.133)

The variable φ is essentially the averaged velocity u. For clarity, the quantity φ f ,SOU

is analyzed below:

φ f ,SOU = φ +

(
∂φ

∂x
−→
i +

∂φ

∂y
−→
j
)
•
(

x
−→
i + y

−→
j
)
= φ + x

∂φ

∂x
+ y

∂φ

∂y
(3.134)

The computed variables are substituted in the equations 123 and 124.
The simplest and the oldest way for solving the discretized Navier - Stokes equations

is the Simple algorithm. The concept of this algorithm is explained below [8]. At first,
a pressure field is guessed. For simplicity, the dashes over the unknown variables are
omitted.

P∗ = P−P
′

(3.135)
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Now, the guessed pressure field is introduced into the two momentum equations and
the latter equations are solved to obtain the corresponded guessed velocity components
(u∗,v∗).

u∗ = u−u
′

(3.136)

v∗ = v− v
′

(3.137)

where P
′
,u
′
,v
′
are the deviations of the variables’ actual values.

The momentum equations with the guessed values are:

αi,Ju∗i,J = ∑αnbu∗nb−
(
P∗I,J−P∗I−1,J

)
∆y (3.138)

αI, jv∗I, j = ∑αnbv∗nb−
(
P∗I,J−P∗I,J−1

)
∆x (3.139)

The above equations are subtracted from the original Navier - Stokes equations (129)
and (130) which yields:

αi,J
(
ui,J−u∗i,J

)
=∑αnb (unb−u∗nb)+

[(
PI−1,J−P∗I−1,J

)
−
(
PI,J−P∗I,J

)]
∆y (3.140)

. . .

αI, j
(
vI, j− v∗I, j

)
= ∑αnb (vnb− v∗nb)+

[(
PI,J−1−P∗I,J−1

)
−
(
PI,J−P∗I,J

)]
∆x (3.141)

Using the correction formulas (135), (136) and (137) the above equations are trans-
formed to:

αi,Ju
′
i,J = ∑αnbu

′
nb−

(
P∗
′

I,J−P
′
I−1,J

)
∆y (3.142)

αI, jv
′
I, j = ∑αnbv

′
nb−

(
P
′
I,J−P

′
I,J−1

)
∆x (3.143)
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At this point, the terms ∑αnbu
′
nb and ∑αnbv

′
nb are omitted from the equations (142)

and (143). This is the main approximation of the Simple algorithm. In the end, this
approximation will not affect the results because, as the solution converges, the magnitude
of values u

′
and v

′
will be very small, so these terms will be close to zero. Consequently,

the momentum equations are simplified as follows:

u
′
i,J = di,J

(
P
′
I−1,J−P

′
I,J

)
(3.144)

v
′
I, j = dI, j

(
P
′
I,J−1−P

′
I,J

)
(3.145)

where

di,J =
∆y
αi,J

(3.146)

dI, j =
∆x
αI, j

(3.147)

The correction formulas for the two velocity components (136) and (137) are again
substituted in the formulas (144) and (145):

ui,J = u∗i,J +di,J

(
P
′
I−1,J−P

′
I,J

)
(3.148)

vI, j = v∗I, j +dI, j

(
P
′
I,J−1−P

′
I,J

)
(3.149)

The two equations above can be considered also for the points i+1, J and I,j+1:

ui+1,J = u∗i+1,J +di+1,J

(
P
′
I,J−P

′
I+1,J

)
(3.150)

vI, j+1 = v∗I, j+1 +dI, j+1

(
P
′
I,J−P

′
I,J+1

)
(3.151)
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The continuity equation is discretized throughout the original control volume (Figure
3.2) which yields:

(u∆y)i+1,J− (u∆y)i,J +(v∆x)I, j+1− (v∆x)I, j = 0 (3.152)

If the equations (148) – (151) are substitute in the equation (152) the only unknown
values are the P

′
values. So, the system of equations is solved to compute the P

′
values.

Once the P
′

values are known, the P values are calculated via the relation (135) and the
velocity components u,v are calculated via the the relations (136) and (137). The values
u,v,P obtained from this procedure will now be the new guessed values. The same pro-
cedure is continued until or if the convergence criteria are satisfied. In the present thesis,
the specified convergence criteria are 10−5. This practically means that the values from
one iteration to the next should not differ more than 10−5. The Simple algorithm does not
always reach a converged solution. It is susceptible to divergence which depends mainly
on the quality of the grid and the discretization scheme. Given these two parameters, a
method that helps the Simple algorithm to converge is the under - relaxation method. The
under - relaxation method lies on some coefficients on the correction formulas. These
coefficients take values between 0 and 1. In particular, instead of the formula (35) it can
be used the formula:

P = P∗+αPP
′

(3.153)

The under - relaxation methods can also be applied to velocities:

u = αuu
′
+(1−au)u∗ (3.154)

v = αuv
′
+(1−αu)v∗ (3.155)

If the under - relaxation factors are close to 1 and the initial guessed values are very far
from the actual ones, the algorithm is susceptible to divergence. If the under – relaxation
factors are close to 0 the algorithm will be very slow to converge because it will apply
almost no correction. In the present thesis, all under - relaxation coefficients were left to
their default values.

The last step of the Simple algorithm is the solution of the system of equations that
was produced during this procedure. The system of equations is a tridiagonal matrix and
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its general form is presented below:


b1 c1 0 0 0
a2 b2 c2 0 0
0 a3 b3 ... 0
0 0 ... ... cn

0 0 0 an bn

 ·


x1

x2

x3

...

xn

=


y1

y2

y3

...

yn

 (3.156)

where x are the unknown values, a,b,c are the coefficients of the unknowns and y are
known values as well. Based on the Gaussian elimination method, the unknown values of
x can be computed.

Summarizing the whole concept and techniques of CFD it can be observed that the
whole procedure contains a lot of errors. The errors are assembled and presented below
[9]:

• Discretization error

The computational domain cannot be discretized into infinite points. A sensible number
of elements should be chosen after performing a Grid Convergence Study. The concept
of Grid Convergence Study will be discussed and applied in the next chapter. To make
matters worse, experience with CFD showed that sometimes, extremely refined numerical
grids can lead to worse results in relation to medium sized grids. By discretizing the
domain, however, some information is lost which introduces an error to the final solution.

• Turbulence modeling

The overwhelming majority of flows in nature and engineering are turbulent. As it was
stated earlier, the turbulence is not resolved in RANS simulations as it would require a
very refined grid which is not practical. The turbulence is modeled by the approximations
showed earlier in this chapter which introduce an error. Depending on the application,
this error can be the largest error among all steps of the CFD concept.

• Truncation error

Computers cannot store infinite digits for the variables. Modern computers can store up
to 64 digits and the rest are truncated. This error can be significant when the simulation
requires a large number of iterations until convergence.

• Convergence criteria

Theoretically, the values of each variable should not differ at all from the previous it-
eration. However, it is not possible to specify the convergence criteria to the limits of

42



3. Governing Equations and Computational Methods

the computer’s storage capacity. Even if it was possible it would not be practical, as
the simulation would require millions or even billions of iterations. Also, in that case
the truncation error explained above would be high and the results would be by far from
reality.

• Compressibility effect

This is not the case for every CFD simulation because compressible solvers can be ap-
plied to commercial CFD software or in - house codes. However, in the present thesis, an
incompressible solver was applied for all simulations. The reasons for this selection will
be discussed in the next chapter. Also, experience with CFD showed that sometimes com-
pressible solvers do not perform properly for low velocity flows. However, applying an
incompressible solver for simulating a compressible fluid, e.g. air in this case, introduces
an extra error.

• Continuum hypothesis

The fluids in CFD simulations are considered to be continuous. From a macroscopic point
of view it seems to be true. However, from a microscopic point of view the all the fluids
consist of molecules, so the continuum hypothesis is not 100% accurate which contributes
also to a minor error in the final results.

• Viscous term

The viscous term in the momentum equations is treated by the assumption made by Navier
and Stokes. This assumption was based on their observations and experiments. This
assumption seems to be close to reality since it has not been changed over the last 100
years, however, it adds a very small error in the results.

The last two errors seem to be the least significant errors and are beyond the scope of
the science of CFD and the present thesis. Rather, it is a topic for research in Physics,
Engineering or even Mathematics because the latter is the only available language to
express the physical phenomena. The most significant error in the vast majority of CFD
simulations is the turbulence modeling as it is kind of unknown what exactly it is resolved
regarding the turbulence and the turbulence models are used as “black boxes”. This is the
reason, as it was stated earlier, why LES (Large Eddy Simulation) simulations are more
reliable and closer to the actual values because most of the length scales are resolved. The
LES approach is roughly, the intermediate step between the RANS and the DNS concepts.
It is known that the turbulence consists of various sizes of length scales which glow and
decay at random by exchanging energy from the larger scales to the smaller. The LES
approach lies in resolving the large scales and modeling the small ones. Further analysis
of this approach, however, is beyond the scope of the present thesis and is not further
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analyzed. Unfortunately, the limited available time and computer resources were a big
obstacle to perform so many simulations with LES modeling, so all the presented results
in the next chapters are based on RANS modeling. Finally, regarding the frequency of
the processors, for a numerical grid consisting of 6.25 ·106 elements, using 8 processors
per simulation, 6000 iterations which was an adequate number of iterations for achieving
convergence in most of the cases, required approximately 8 hours.
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Chapter 4

Validation and verification

4.1 General

As it was stated at a previous chapter, results from commercial CFD packages or even in
- house codes cannot be trusted without any clue of confidence. Experimental data for the
geometries that were simulated during this dissertation are not available. Consequently,
the validation process took place on Cooper’s bluff bodies that were shown earlier in liter-
ature review chapter. By taking a closer look on these optimized geometries, it is obvious
that for high Reynolds numbers for the first 2 models, the rectangular box and the simpli-
fied truck model, the flow is separated due to their sharp edges. while for the third model,
the model with the rounded frontal area, the flow is fully attached. These assumption will
be proven later throughout the present dissertation. Taking into consideration these as-
sumptions, the validation of Cooper’s experiments should be performed for both of these
cases. The dimensions of bluff body that Cooper used for his experiments, as well as the
tunnel that he used are presented below [10].
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Figure 4.1: Dimensions of Cooper’s body and wind tunnel.

The dimensions of Cooper’s bluff body are presented in the following table.

Length (m) 1.143
Width (m) 0.381
Height (m) 0.3808

Ground clearance (m) 0.0256

Table 4.1: Dimensions of Cooper’s bluff body.

The characteristic length for the definition of Reynolds number was the square root of
the frontal area of the bluff body. So, for all of his parametric studies the characteristic
length that he used was:

D =
√

A =
√

0.3808×0.381 = 0.3809m (4.1)

As leading edge radius ratio he defined the radius of the edges of the frontal area
divided with the characteristic length of the bluff body:

η =
r
D

=
r

0.3809
(4.2)

The following graph illustrates the drag coefficient of his bluff body, for various
Reynolds numbers, for various radius ratio, for angles of attack of 0◦and 10◦.[11]
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Figure 4.2: Drag coefficient of Cooper’s bluff body for various Reynolds numbers for
various leading edge radius ratio for 0◦and 10◦yaw angle.

This graph can be separated into 3 regions. The fully separated region where the drag
coefficient is high and it appears for low Reynolds numbers, for low radius ratio of the
frontal area. The fully attached region where the drag coefficient has its lowest potential
value, given the geometrical features and it occurs at high Reynolds numbers for high
radius ratios of the frontal area. A third region appears also somewhere between these
2 regions where the flow is not fully attached but not fully separated. This region is
called as transitional region and, as it was stated in a previous chapter, commercial CFD
software are not able to predict it. For the fully attached and the fully separated region,
the drag coefficient seems to be unaffected from a certain Reynolds number and over. As
it was mentioned earlier, the validation will take place for the fully separated and the fully
attached region. The reason for this decision will be discussed later in the next chapter.

A radius ratio of 10% of Cooper’s bluff body was chosen for the validation of the
fully attached region. The geometry along with the computational domain are shown in
the following images.
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Figure 4.3: Cooper’s bluff body and wind tunnel from a 3D point of view.

4.2 Fully attached flow

From a CFD perspective, the inlet region and the wake region should be extended because
it is of vital importance that the flow should be fully developed when the air reaches the
bluff body, as well as in the wake region. As a result, A computational domain with
extended inlet and wake region was selected. This computational domain is represented
in the following image with its numerical grid.
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Figure 4.4: The computational domain that was used for the validation of Cooper’s results.

In particular, the inlet region was extended to 2.1L and the wake region was extended
to 4L where L is the length of the bluff body. It may seem contradictory that on the one
hand the actual experiment must be validated numerically which means that the originally
dimensions must be implemented, but on the other hand an extension of the inlet and
wake region take place. The reason for these extensions is that numerical simulations,
especially steady state simulations, cannot predict the development of the flow, that is the
actual velocity profile. Consequently, an extension of the physical domain must be done,
in order to enable the numerical solver to make the flow developed, like in the physical
domain. Another change that was made in the computational domain, as it can be seen by
comparing the 2 images above, was with the sharp edges at the left and right side close to
the roof, where they were substituted with rounded edges. The reason for this change is
again for numerical issues. Sometimes, sharp edges may cause problems in the iterative
process of numerical simulations and may lead to instability and divergence. The next
figure shows a closer look on the numerical grid from a 2D point of view.
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Figure 4.5: The numerical grid from a 2D point of view.

The density box has the same width and height as the blunt body and approximately
70% of the body’s length. An expansion ratio of 1.2 was used in order to make the change
smoother from the regions where the grid is very refined to the farfield where the grid is
very coarse. The importance of this expansion ratio will be highlighted for the simulations
of the bluff body with no roundings where the flow is fully separated. The worst quality
of the grid is 30% which is considered as a good quality for unstructured grids.

Despite the fact that Cooper investigated the bluff body for a Reynolds number up
to 2.5 · 106 approximately, the validation of his results is held for Re = 3 · 106. The rea-
sons for this selection are that the drag coefficient does not seem to change from a certain
Reynolds number and over for all regions as it can be seen from figure 4.2, and the flow
around the optimized geometries that are discussed later in this chapter are simulated for
approximately Re = 5.3 · 106 which is highly turbulent, so it would be wiser to select a
Reynolds number closer to this value. A Reynolds number of 3 · 106 corresponds to a
farfield velocity of approximately 115m/s, because the characteristic length as it was de-
fined in equation (4.1) is D = 0.3809m, which corresponds to a Mach number of 0.34
so compressibility effects cannot be neglected and a compressible solver must be used.
Given the fact that compressible solvers are much more time consuming because a Rie-
mann solver must be implemented, it was decided to scale up the physical domain by a
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factor of 2, in order to reduce the velocity magnitude by the same factor, in such a way
that the dynamic similarity is kept. The new characteristic length of the scaled up geome-
try is D = 0.7618m. As a result, the new Mach number is approximately Ma = 0.17 so an
incompressible solver can be trusted. However, it should be kept in mind that this is the
farfield velocity. The velocity close to the body is higher, especially close to the round-
ings because acceleration of the molecules take place, but it never exceeds the limit of
Ma = 0.3. For Ma = 0.3, an error of approximately 5% is expected when an incompress-
ible solver is implemented. Another simplification was that the mountings of the body
were neglected, but given to their small size, the expected error is negligible. They seem
like wheels but actually they are some kind of mountings which helped the bluff body to
“suspend” and they were connected to some measuring devices. Cooper also measured
the turbulence intensity at the inlet, a compulsory variable in order to fully specify the
inlet boundary condition, and he found it 0.5%.

The settings of the simulations and numerical grid characteristics are presented below:

• Unstructured numerical grid consisting of 5,7100,000 tetrahedra

• Non dimensionalized distance from the walls y+ ≈ 12

• Steady state

• Pressure based solver

• Velocity inlet boundary condition for 57.5m/s which corresponds to Re = 3 ·106

• Turbulence intensity 0.5% at inlet

• Length scale 0.027m at inlet

• Pressure outlet boundary condition at the outlet

• No slip boundary conditions for the rest boundaries

• 3rd order MUSCL scheme for the momentum equation

• 1st order scheme for turbulence models

The rest features in the software were left as their default values.
The following table makes a comparison of various turbulence models for Cooper’s

model for a radius ratio of 10% where the flow is fully attached for Re ≈ 1.3 · 106 and
over.
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Turbulence model Drag Coefficient
Standard k− ε 0.39
Standard k−ω 0.413

Spalart Allmaras 0.389
k−ω SST 0.318

k− ε Realizable 0.314
k− ε RNG No convergence

Table 4.2: Parametric study of turbulence models for the validation of Cooper’s results.

In the following diagram a comparison of a digitized version of Cooper’s diagram for
radius ratio 10% with numerical results of various turbulence models is conducted.
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Figure 4.6: Comparative diagram of Cooper’s results for radius ratio 10% with numerical
results for various turbulence models.

As it seems from figure 4.5, as well as from the original diagram of Cooper’s results,
figure 4.2, the value of drag coefficient does not change significantly from Re≈ 1.4 ·106

up to Re ≈ 2.5 · 106, that is the fully attached region, so it is expected to have the same
value for Re = 3 · 106. The digitization of Cooper’s diagram exports a drag coefficient
of CD ≈ 0.308 for this range of Reynolds numbers. Consequently, the most favorable
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turbulence models for this application are the k - ω SST and the realizable k - ε . The
difference of these models as well as their deviation from the experimental value for
the drag coefficient is almost negligible, considering also the error of the digitization of
Cooper’s diagram. However, the realizable k - ε model was chosen as the most appropriate
model, and this model was implemented throughout this dissertation. The reasons for this
selection are because the realizable k - ε performed slightly better that the k - ω SST, and
also the latter could not converge when simulated a bluff body with no radius ratio where
the flow is fully separated. This will be shown later in this project. Finally, as far the
the convergence behavior is concerned, the following table represents the convergence of
each equation for both models:

Equations Realizable SST
Continuity equation 1.2 ·10−4 10−5

x momentum equation 1.1 ·10−6 5.2 ·10−6

y momentum equation 6.4 ·10−7 3 ·10−6

z momentum equation 6.7 ·10−7 3.2 ·10−6

1st equation of turbulence model 1.3 ·10−5 4.4 ·10−5

2nd equation of turbulence model 1.1 ·10−5 1.3 ·10−5

Table 4.3: Residuals of each equation for k - ω SST and realizable k - ε turbulence
models.

The residuals of each equation were fluctuated around the values stated in the table
above. The 1st equation of turbulence model stands for the equation of turbulence kinetic
energy for both models. while the 2nd equation of turbulence model stands for the eddy
dissipation for the realizable k - ε model and the specific dissipation rate for the k - ω SST
model. In general, simulations with these residuals are not to be trusted without any other
clue of confidence because they did not achieve the limit of 10−5 which is considered as
the highest limit that a simulation should reach in order to be trusted [7]. As a result, both
simulations were left to run for around 10,000 iterations which is a considerable amount
of iterations in order to reach a stable drag coefficient value. Fortunately, a steady drag co-
efficient value was achieved for all models within less that 10,000 iterations so, the results
can be trusted. Finally, the drag coefficient value was CD = 0.318 for a second order dis-
cretization scheme for the momentum equation. The third order MUSCL scheme slightly
improved the results, so this is the scheme that will be applied in the next simulations in
the present thesis.

The next figures illustrate the y+ distribution around the Cooper’s model from a 2D
and 3D point of view.
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Figure 4.7: 2D and 3D point of view of the y+ value respectively around Cooper’s model.

It can be easily observed from the images above, that the y+ value never exceeds the
limit of 12. It appears to have lower values in the frontal area and at the rear of the body
because the velocity of air at these regions becomes smaller. The point where appears that
the y+ value is almost zero is the stagnation point where the total pressure has its highest
value. The next 2 figures illustrate the pressure coefficient value around the body.

Figure 4.8: Pressure coefficient distribution around the body from a 2D and 3D point of
view.

The pressure coefficient seems to have its lowest value at the roundings which makes
total sense because the velocity is accelerated at these regions, so keeping in mind the
energy conservation law, the pressure drops. The negative values of pressure coefficient
is due to the fact that the static pressure at these regions is smaller that the reference
pressure. Ideally, for an isentropic flow, the pressure coefficient should be equal to 1.
However, in nature there are no isentropic flows because there is always friction between
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the molecules, so the pressure coefficient should be smaller than 1. However, as it is
observed from the contour maps above, it seems that the pressure coefficient exceeds
the limit of this value, so the results seem to be non realistic. The overprediction of
pressure coefficient is a common issue with RANS modeling. It has to do probably with
the interpolation of the values that the software uses. Another possible explanation is that
it is an error by the turbulence model. Many turbulence models sometimes overpredict
the turbulent kinetic energy, so this lead can lead to slightly non realistic results. Since the
pressure coefficient does not exceed the limit of 1 very much and the drag coefficient is
well predicted when compared with experimental data it can be trusted. In the rest regions
it appears to have a stable value.

The following images show the streamline distribution around the body.

Figure 4.9: Streamline distribution around the body from 2 different angles.

As it was assumed and stated many times earlier, the flow is fully attached everywhere
around the body. The region at the frontal area where the velocity has low values can be
observed, and this is the region where the pressure coefficient has its highest values. The
velocity accelerates close to the rounded edges and has its highest value. It appears from
these images that the maximum velocity magnitude appears to be105.9m/s. This velocity
corresponds to Ma = 0.311. Since it slightly exceeds the limit of Ma = 0.3 which is the
threshold in order to use a compressible solver and also given the fact that these regions are
very small in relation to the rest domain, the assumption of the usage of an incompressible
solver was correct. Finally, at the rear of the body, the region where strong vortices occur
can be observed, which is the main source of the drag coefficient. This statement will be
proven in the next chapter.

In order to verify to a great extent the validity of the turbulence model realizable k
- ε , a simulation for Re = 1.8 · 106 is performed. For this specific Reynolds number,
a lower velocity magnitude is required, so the height of the first prism layer must be
modified. In order to avoid this procedure, the domain is scaled up by a factor of 1.2
instead of 2, like in the case of Re = 3 · 106. Consequently, the grid settings and the
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velocity inlet remain exactly the same. The only necessary changes that are applied is
the frontal area of the truck and the length scale at the inlet boundary condition. The
frontal area for this case is A = 0.20881m2 and the length scale is l = 0.032m, because
the new characteristic length of the model becomes D = 0.45708m. The exported value
of the drag coefficient is CD = 0.321 as it seems in figure 4.5 while the real value should
be again CD ≈ 0.308. This value makes an error of around 4.2% which is higher than
the case of Re = 3 · 106. One possible explanation for this deviation of drag coefficient
between these 2 different Reynolds numbers may lie to the fact that turbulence models
perform better in highly turbulent flows. In general, the higher the Reynolds number, the
more reliable the results are. This happens because in low Reynolds numbers the flow
may be not fully turbulent but turbulence models are not supposed to model transitional
regions or laminar flows. On the other hand, a flow with a Reynolds number of 1.8 ·106 is
fully turbulent so, theoretically, it should perform as good as for the case of Re = 3 ·106.
However, an error of 4.2% in general is acceptable for CFD simulations. Finally, as it was
stated earlier, the optimized geometries are simulated for Re≈ 5.3 ·106, so theoretically,
the expected error should be very small as in the case of Re = 3 ·106.

4.3 Grid Independence

As it was stated earlier, an unstructured numerical grid consisting of 5.71 ·106 tetrahedra is
used for the parametric study of various turbulence models for y+ ≈ 12. A numerical grid
for Cooper’s model with the same features and characteristics is also used for Cooper’s
model without the roundings of the frontal area, in order to validate also the case where
the flow is fully separated. Of course, the selection for this grid size was far from random.
The following table represents the GCI (Grid Convergence Index) values for various grid
sizes. The variable which is considered is the drag coefficient. It should be stated here
that size of the cells in the farfield region was stable. During the grid convergence study,
the size of the cells around the body and the density box was changed.

Grid size CD ε GCI
1.07 ·106 0.38 - -
2.11 ·106 0.341 0.1144 0.0172
3.34 ·106 0.327 0.0428 0.0144
7.87 ·106 0.309 0.0583 0.0048

Table 4.4: GCI values for the Cooper’s model of 10% radius ratio.

ε stands for error which is given by the following formula:
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ε =
CD,i−CD,i+1

CD,i+1
(4.3)

GCI is computed by the following relation:

GCI =
ε(

Ni+1
Ni

)n
−1

(4.4)

Ni stands for the number of elements of the numerical grid and n stands for the order
of the discretization scheme that was used. In this case, as it was stated earlier, the 3rd

order MUSCL scheme was used, so n is equal to 3.
It is clear from the table above that the GCI value always descends which means

that the change of the examined value, that is the drag coefficient in this case, becomes
smaller and smaller as the grid is refined. Strictly speaking, a more refined grid should
be used until the GCI value starts to increase, which practically means that, in the best
case, the grid of 7.87 · 106 would be used for the computations. However, instead of
this, a grid consisting of 5.71 · 106 cells was selected for the validation process, as it
was mentioned earlier. The selection of this grid size is due to the following reasons.
First of all, since the GCI value is very small for the final grid, it is likely that a more
refined grid would export a higher GCI value and the difference in drag coefficient would
be negligible, so the grid consisting of 7.87 · 106 cells would be considered as the most
practical for this application. Also, since experimental data are available, it is clear that
the grid of 7.87 ·106 almost reached the experimental value of CD = 0.308. Moreover, a
grid consisting of 10 or 12 million cells, necessary for the grid convergence study, is not
that practical, or even unfeasible to be created and simulated due to the limitations of the
available hardware. Finally, this procedure was done for the validation of experimental
data and it was successful with a small error with a grid of 5.71 · 106 cells. A more
elaborated and proper grid convergence study will take place on the optimized geometries
later. Since, a steady state simulation was sufficient in validating the experimental values
of Cooper’s experiments, there is no need to perform any transient simulation at least for
this case.

4.4 Other parametric studies

So far, only one value for y+ was examined, that is y+ ≈ 12. Also, a simplification
of the original wind tunnel (the computational domain represents the wind tunnel) was
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done by substituting the sharp edges which connect the roof and the sides of the tunnel,
with rounded curves. Finally, the distances of 2.1L and 4L for the inlet and wake region
respectively, may be questionable since in other similar studies, as well as in this thesis
in the next chapter where the optimized geometries are simulated, authors tend to use
extended inlet and wake regions. In this section, a parametric study for y+, for the inlet
and wake region, for a symmetry plane, as well as one simulation with the original wind
tunnel used by Cooper, is examined.

The following images illustrate the prism layers around the rounded frontal area for
y+ ≈ 12 and y+ ≈ 30 respectively. Since the height of the first layer is increased for the
case of y+ ≈ 30, only 18 prism layers were used, instead of 25.

Figure 4.10: A 2D illustration of prism layers around the frontal rounded area for y+ ≈ 12
and y+ ≈ 30 respectively.

As seen in the figures above, the total height is in the same order of magnitude. In par-
ticular, the total height for the cases of y+≈ 12 and y+≈ 30 are 0.2304mm and 0.2475mm
respectively. The computed drag coefficient with the grid of y+ ≈ 30 is CD = 0.331 which
makes a considerable relative error of 7.5%. The reason for this increment may be very
complicated since it has to do with the wall functions applied by the software. Unfortu-
nately, convergence with a grid of y+ ≈ 1 could not be achieved. Consequently, the value
of y+ ≈ 12 is the optimum for this application.

The following image illustrates the computational domain that was used for Cooper’s
bluff body with frontal radius edge ratio of 10%. The same grid and flow settings were
applied like in the stage of validation process. The only difference is at the dimensions
of the inlet and wake region of the domain. Instead of 2.1L and 4L for the inlet and wake
region respectively, an inlet region of 3L and a wake region of 6L is used.
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Figure 4.11: The computational domain with extended entry and wake regions.

The exported drag coefficient for this extended computational domain is CD = 0.317
which is slightly worse in relation to exported value from the smaller domain. However,
the difference between these 2 values is less than 1%, so in practical terms, the appropriate
dimensions for the computational domain were chosen.

The following figure illustrates the computational domain without the roundings of
the edges which connect the roof of the domain with the side walls.
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Figure 4.12: The computational domain with sharp edges like Cooper’s original wind
tunnel.

As in the previous cases, all the parameters and features of the grid and flow are the
same. The computed drag coefficient is CD = 0.312 which is practically the same as in
the case of the domain with the rounded curves having a difference of 0.6%.

In many engineering applications, when the geometrical characteristics of the domain
are symmetrical, it is a common practice to simulate only the half of the domain, and
reflect the flow field at the other half of the domain which is not simulated, for post
processing. This concept has the basic advantage of the decreased computational cost
because only half of the required number of cells is required. However, it should be used
after careful consideration because sometimes, even if the the domain is symmetrical, the
flow field is not necessarily symmetrical, especially in turbulent flows. The following
image illustrates the domain that was used for this application.

As in the previous case, the same flow characteristics were used, except for a symme-
try boundary condition at the symmetry plane of the domain. Unfortunately, the exported
drag coefficient was CD = 0.301 which has a non negligible relative error of 4.1% from
the simulation without the symmetry. This difference shows that the flow field is not sym-
metrical, consequently, it cannot be used throughout this project. This assumption could
be made by a closer look at the figures 4.9. The strong vortices that occur seem to be
slightly different in size.

60



4. Validation and verification

4.5 Fully separated flow

Finally, the same settings regarding the numerical grid were applied for Cooper’s bluff
body without any roundings on the frontal area. Taking a closer look on Cooper’s graph, it
can be observed that bluff bodies with small values of leading edge radii ratios are charac-
terized by high drag coefficients because the flow is fully separated. The drag coefficient
values, like in the case of attached flows, they do not seem to be affected by the Reynolds
number from a certain value of the latter and over. The computed drag coefficient value
by the software of this case was CD = 0.942. The following graph shows a digitized ver-
sion of Cooper’s experimental values for this case compared with the numerical value for
Re = 3 ·106.
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Figure 4.13: Comparative diagram of Cooper’s results for no radius ratio with numerical
results.

It can be observed that experimental values by Cooper are available for up to Re =

2.7 · 106, while the numerical is for Re = 3 · 106. It seems that, contrary to the attached
case, here there is a slight increase of the drag coefficient with the Reynolds number. The
drag coefficient for Re = 2.7 · 106 is CD = 0.89 according to Cooper’s experiments. As-
suming that this is the same value for Re = 3 ·106, the relative error of the numerical value
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is 5.8%. However, the error may be little smaller if the drag coefficient is little higher for
Re = 3 · 106. The error for the separated flow is higher in relation to the attached flow,
nevertheless it can be considered as an acceptable error for CFD applications. Unfortu-
nately, convergence with the model k - ω SST could not be achieved as the fluctuations
of the drag coefficient value were random and non periodic. As a result, the realizable k -
ε model is the only one to be trusted for the fully separated flow case despite its increased
relative error compared to the attached case. The following images show the pressure
coefficient distribution and the streamlines around the body.

Figure 4.14: Pressure coefficient distribution around Cooper’s body with no roundings at
the leading edges.

Figure 4.15: Streamlines around Cooper’s blunt body with no roundings at the leading
edges.

The pressure coefficient distribution is almost the same as for the fully attached flow
case. The only difference is that it appears to have a slightly higher maximum pressure
coefficient value. As far as the streamlines are concerned, it is clear that the flow is fully
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separated and the reattachment point seems to be close to the rear of the body. These
strong vortices are responsible for the high drag coefficient for this case despite the fact
that the vortices at the rear seem to be smaller regarding to their magnitude and intensity.

4.6 10◦ yaw angle

In the nature, it is a very common phenomenon for the wind to blow in random directions
and sometimes with high velocity magnitude, especially in north countries. Consequently,
the case of a yaw angle of 0◦ is very rare. Depending on the direction and magnitude of
the air, the yaw angle of trucks and other automobiles can exceed a yaw angle of 45◦.
In this section, an effort is put to validate Cooper’s results for a yaw angle of 10◦. The
numerical grid and flow features remain the same. The only difference take place at the
velocity inlet boundary condition. Instead of the absolute value of 57.5m/s, the value of
57.5 · cos10◦ = 56.626m/s is input for the velocity in the x direction, and the value of
57.5 · sin10◦ = 9.985m/s is input for the y direction. The computed drag coefficient from
the software was CD = 0.229 which is far different from Cooper’s experimental value. By
taking a closer look on Cooper’s graph the, drag coefficient for 10◦ yaw angle for 10%
radius ratio for Re > 1.8 ·106 seem to be approximately CD ≈ 0.35 making a relative error
of 35%, so under no circumstances should the results be trusted. A final effort was put
into validation of Cooper’s results for the case of 10◦ yaw angle with a transient simula-
tion. The same settings were applied also in this simulation. The time step was selected
to be ∆t = 0.01s. Since an implicit method is implemented by the software, there is no
restriction for the Courant number. Consequently, any time step value can be selected.
A sensitivity analysis can show the most appropriate time step selection, but this proce-
dure is beyond the scope of this assignment and there was not much available time. The
transient simulation was performed to check whether or not there was some improvement
on the drag coefficient value. The simulation used as initial condition the results from
the steady state simulation and was simulated 2 physical seconds. There was no point in
simulating more physical time because the results did not change during the simulation.
On the contrary the computed drag coefficient was exactly the same as in steady state sim-
ulation at the 3rd decimal figure, that is CD = 0.229. Therefore, the validation of Cooper’s
experiments completely failed for yaw angle of 10◦, so no simulations for non zero yaw
angles for the optimized geometries are performed.
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Optimized models

From the previous chapter enough confidence was gained through the validation process
with experimental data of blunt bodies, especially for the case of the attached flows where
the error was almost negligible. However, it should be stated that Cooper’s experiments
took place inside a wind tunnel while the optimized geometries are simulated in the free
field like real trucks, because experimental data on blunt bodies in the free field are not
available. However, since there are no significant changes in the flow, as well as in the
geometries, the confidence that was gained can be preserved for free field flows.

The following images illustrate the blunt body that is investigated with the 3 different
frontal shapes.

Figure 5.1: 2D and 3D points of view of the rectangular box (model 1).
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Figure 5.2: 2D and 3D points of view of model 2.

Figure 5.3: 2D and 3D points of view for the bluff body with the rounded frontal area
(model 3).

The frontal area is the same for all of the geometries above since the bluff body has
the same dimensions. The only difference is the front of it as it can be observed in the
figures above. The dimensions of the rectangular box are summarized in the table below:

Length (m) 13.6
Width (m) 2.55
Height (m) 3.87

Ground clearance (m) 0.17
Characteristic length (m) 3.1414

Frontal area
(
m2) 9.8685

Table 5.1: Dimensions of the rectangular box (model 1).
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The characteristic length was computed according to Cooper’s definition in the pre-
vious chapter. In almost all European countries, the maximum allowable speed limit for
trucks is more or less 90km/h = 25m/s. This velocity magnitude, for the characteristic
length mentioned above, corresponds to Re ≈ 5.4 · 106, so the flow is highly turbulent.
Lower velocity values are not considered throughout this project. The reason for this se-
lection lies on the definition of the aerodynamic force. The aerodynamic force is defined
as:

FD = 0.5CDρAV 2 (5.1)

From the relation above, it can be concluded that a reduction of velocity to 50% cor-
responds to a reduction of the aerodynamic force to 75%. Taking into account that, on
the average, the aerodynamic force accounts for 40% to 60% approximately, depending
on the operating conditions, of the total fuel consumption when the truck operates with
a steady velocity V = 25m/s, a reduction of the velocity to V = 12.5m/s, when the rest
parameters remain unchanged, the aerodynamic force accounts for only 10% of the total
fuel consumption. This percentage is not negligible but even small amendments on the
drag coefficient will have a very small impact on the fuel consumption of the truck. Also,
the assumption of stable drag coefficient for this range of velocities is almost true because
the velocity of V = 12.5m/s which is close to the upper limit of trucks inside residential
areas, corresponds to Re≈ 2.7 ·106, where the according to Cooper’s diagrams in a previ-
ous chapter, the drag coefficient remains almost the same when the flow is either attached
or separated. The flow starts to enter into the transitional region at lower Reynolds num-
bers. Taking all the above into consideration, it can be concluded that there is no point in
spending valuable time for simulating lower velocity values.

The inlet and wake region of the optimized geometries is chosen to be 4L and 6L re-
spectively, where L is the length of the body. This selection is not abrupt. The distance of
the body from the inlet is significant because the flow must be developed before reaching
the body, that is the reason it was extended to 4L. As far as the wake region is concerned,
the selection of 6L was based on the strong vortices that occur at the rear of the body
which tend to decay after a long distance of the body. The height of the domain is 4.3H
and its width is 3.5W at each side. The following figures show the blunt body with the
computational domain with its numerical grid.
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Figure 5.4: The computational domain with numerical grid of the bluff body with the
rounded frontal area from a 3D and 2D point of view respectively.

In the figure above, the density box that was used can be observed. It has the same
height and width with the bluff body and approximately 62% of the body’s length. As in
the validation stage of Cooper’s results, a grid convergence study is proceeded here on the
blunt body with the rounded frontal area. The spacing of the cells of the farfield were kept
intact during the grid convergence study. During the study the variable was the spacing
of the cells around the body as well as the the spacing of the density box. The The grid
convergence study is based exclusively on the drag coefficient. It should be stated that
the same parameters regarding the grid generation and flow field were applied here as in
the validation of Cooper’s results in the previous chapter. The only difference took place
at the boundary conditions of the roof and the 2 perpendicular side walls of the domain.
Instead of a no slip condition, a free slip boundary condition was applied since the body is
supposed to be in the free field. The following table represents the computed CGI values.

Grid size CD ε GCI
1.05 ·106 0.321 - -
2.08 ·106 0.284 0.037 5.46 ·10−3

3.95 ·106 0.263 0.021 3.59 ·10−3

7.71 ·106 0.244 0.017 2.64 ·10−3

Table 5.2: GCI values for the blunt body with the rounded frontal area.

The grid convergence study was successful as it can be observed from the table above
since the GCI value decreases as the grid size increases. Instead of the time consuming
grid size of 7.71 ·106 elements, a grid size of 6.25 ·106 elements is selected for the rest of
the simulations. The computed drag coefficient from this grid size is CD = 0.246 which is
practically the same value computed by the very refined grid consisting of 7.71 ·106 cells.
Consequently, this is the grid size that is applied for the rest simulations.
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The following table represents the drag coefficient values for each optimized model
for 0.5% and 5% turbulent intensity at the inlet. The flow settings are the same as in
the validation stage. The only difference is that these are flows in the free field so, free
slip boundary conditions were applied on the roof and at the perpendicular sides of the
domain.

0.5% 5%
Model 1 0.949 0.95
Model 2 0.519 0.526
Model 3 0.246 0.259

Table 5.3: Drag coefficients for the optimized models.

Turbulent intensity seems to play a minor role for model 1 and it seems to have a
slightly more significant impact for model 3 with the rounded frontal area. However, in
general, turbulent intensity does not change significantly the drag coefficient of the mod-
els. As it was expected, the lower drag coefficient is found for model 3 since it has a
rounded frontal area. Model 2 seems to be the intermediate step between this model and
the rectangular box. It should be stated here that an error of around 6% is expected for
model 1 and an error of around 2% is expected for model 3. However, since the velocities
here are smaller than in the validation stage, so the flow is more “incompressible” the
expected error may be little decreased. Nevertheless, this difference should not be sig-
nificant. These assumptions were made from the validation stage in the previous chapter
as the realizable k - ε model seems to overestimate the drag coefficient. The next figures
show the pressure coefficient distribution around the bodies.

Figure 5.5: Pressure coefficient distribution around model 1.
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Figure 5.6: Pressure coefficient distribution around model 2.

Figure 5.7: Pressure coefficient distribution around model 3.

The same assumptions can be made also here as in the validation of Cooper’s models.
The pressure drops at the roundings due to the acceleration of the velocity and the frontal
area is the area that the pressure coefficient has its higher value. It is interesting again that
the pressure coefficient exceeds the upper limit of 1.

The following images illustrate the streamlines around each of the models.
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Figure 5.8: Streamline distribution around model 1.

Figure 5.9: Streamline distribution around model 2.

Figure 5.10: Streamline distribution around model 3.

The same trend of the streamlines is also visible here as in the validation chapter for
models 1 and 2. The interesting part here is model 2 as it seems that the flow is almost
attached at the roof of it and separated at the sides. However, these bubble region is not
as intense as in model 1. It seems that at its frontal area some recirculations take place
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but the flow seems to be attached. This is the reason why it appears to have a significant
lower drag coefficient value in relation to model 1.

The following graphs show the balance between the drag coefficient introduced by
pressure forces and the drag coefficient introduced my viscous forces for each model.
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Figure 5.11: Balance between pressure coefficient from pressure forces and viscous forces
for model 1.
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Figure 5.12: Balance between pressure coefficient from pressure forces and viscous forces
for model 2.
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Figure 5.13: Balance between pressure coefficient from pressure forces and viscous forces
for model 3.
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It seems from the graphs above that for the first 2 models viscous forces play a negli-
gible role to the total drag coefficient which makes total sense because they do not have
any curves. On the contrary, in model 3, viscous forces start to become significant as they
contribute to approximately 18% of the total drag. This fact deserves careful considera-
tion since any dust of other kind of fouling may increase further not only the percentage
of the viscous drag coefficient, but also the total drag of the vehicle. The next comparative
graph shows the balance between the absolute values of pressure and viscous forces of the
models.
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Figure 5.14: Comparison of pressure and viscous forces for all models.

A drop of pressure forces of approximately 75% for model 3 in relation to model 1 is
clear with a slight increase in viscous forces. This is the explanation of the very low drag
coefficient of this model.

In the next graphs the contribution of each part of the model, for all models, to the
total drag coefficient is presented.
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Figure 5.15: Contribution to the drag coefficient of each part of model 1.
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Figure 5.16: Contribution to the drag coefficient of each part of model 2.
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Figure 5.17: Contribution to the drag coefficient of each part of model 3.

For the first 2 models, it can be observed that the frontal part of them is mainly re-
sponsible for the drag coefficient which makes sense because this part the pressure forces
are predominant. The second most important part is the rear due to their strong vortices
of the air. In the third model, it seems that the rear of the truck contributes to the drag
coefficient more than the front. This can be explained by the fact that the elliptical curves
at the front reduce the drag coefficient to a great extent, but the rear of the body remains
unchanged, so the same goes with the drag coefficient in absolute values but since the
overall drag coefficient drops, its percentage to the drag coefficient increases. The rest
parts, as it is expected, have a negligible contribution to the drag coefficient.
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Chapter 6

Conclusions and Recommendations

Three different shape optimization models were simulated numerically and analyzed in
this thesis project. These optimized models can very roughly represent trucks and their
dimensions are close to them. After an introduction to the whole concept of the science
of CFD and the numerical procedure that was followed, a validation process was held
for Cooper’s blunt bodies, since no experimental data were available for the optimized
models. The validation process was successful for fully attached flows as well as fully
separated flows for zero yaw angle with acceptable relative errors, so enough confidence
was gained to simulate the optimized models. The validation of Cooper’s experiments
totally failed for a yaw angle of 10◦, so simulations for this yaw angle were not per-
formed for the optimized models. Pressure forces for all of the optimized models were
predominant compared to viscous forces. The lowest drag coefficient was found for the
model with a rounded frontal area since the flow is everywhere fully attached. Model 2,
despite the fact that it does not have any roundings at any of its edge showed a promising
improvement compared to the rectangular box. Even small roundings on its edges will
decrease further the overall drag coefficient. However, it is the authors opinion that the
drag coefficient of the simplified model will never drop below the one of the model with
the rounded frontal area. The latter seems to have a very low drag coefficient, however,
since viscous forces are significant on its frontal area, further improvements of it will lead
to very small drops in the drag coefficient. Further improvements of this model can be
attained by making the frontal area more elliptical with a very small frontal area normal
to the flow or ideally with no frontal area normal to the flow, that is something like the
frontal area of a bullet. Nevertheless, this shape is not practical for real trucks. Conse-
quently, it is the authors opinion that an emphasis should be put into the rear of the truck
where it contributes to a great extent into the total drag coefficient and given that it has
sharp edges with no roundings, there is a lot of improvement that can be done.
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