

University oUniversity of Western Macedonia
Departmen Department of Informatics & Telecommunications Engineering

 Kozani, 2017

Software Evolution
Diploma Thesis

CHATZIMPARMPAS ANGELOS
SRN: 638

Supervisor

Bibi Stamatia

Software Evolution

CHATZIMPARMPAS ANGELOS 2

Title: Software Evolution

Description: Diploma thesis within the framework of studies for the title of the diploma
«Informatics and Telecommunications Engineer.»

Keywords: Software Evolution, JavaScript, Lehman’s Laws, GitHub, Open Source Software,
SonarQube, JSClassFinder

Author: Chatzimparmpas Angelos

Date of creation: 29-08-2017

Year of issue: 2017

Country of issue: GR

Text language: Eng

Software Evolution

CHATZIMPARMPAS ANGELOS 3

The present diploma thesis was elaborated within the

framework of the studies for the diploma awarded by the

University of Western Macedonia entitled «Informatics and

Telecommunications Engineer.»

Approved on ../../2017 by a committee of inquiry consisting of:

Full name: Academic rank: Signature:

1.

2.

3.

Software Evolution

CHATZIMPARMPAS ANGELOS 4

Acknowledgement

I would first like to thank my thesis supervisor lecturer Mrs. Bibi Stamatia of the Department of
Informatics & Telecommunications Engineering at the University of Western Macedonia. The
door to Prof. Bibi’s office was always open whenever I ran into a trouble spot or had a question
about my research or writing. She consistently allowed this diploma thesis to be my work but
steered me in the right direction whenever he thought I needed it.

I would also like to thank all my friends for the real support and encouragement they provided

to me. Moreover, the teamwork and beautiful moments I passed with them in various projects

and at the same time out of the Department of Informatics & Telecommunications Engineering

is without a doubt one of the most unforgettable moments of my life.

Finally, I must express my very profound gratitude to my parents for providing me with

unfailing support and continuous encouragement throughout my years of study and through

the process of researching and writing this thesis. This accomplishment would not have been

possible without them. Thank you.

 Chatzimparmpas Angelos

 Kozani, August 2017

Software Evolution

CHATZIMPARMPAS ANGELOS 5

Abstract

The primary goal of the present Diploma Thesis is the development of a web application that

predicts trends in software development in open source programs. This platform was designed

to serve and meet the needs of developers or researchers who want to control the applications

they create and how they eventually evolve these over time with new releases. The platform

has been designed to work locally on a computer or online if it is placed on a server that has the

power to control the software that developers build. The conclusions that one of the above

users may make is vital for the development of the software they produce or for further

research on new trends in the development of the software of various projects developers.

More and more software is written in programming languages such as JavaScript. Open source

programs are continually evolving, making it difficult to anticipate success and progress, which

is ultimately influenced by a variety of sectors and factors. It is therefore crucial and necessary

to develop a platform that will control, analyze and study these changes successfully and of

course providing benefits for developers but at the same time supplying data with future

research.

Summarizing the essential elements of this Diploma Thesis, we focus on four main topics.

Precisely, in the first topic, investigation, and analysis of similar issues related to various open

source software and how they evolve from their creation years to the present. Most of them

are written in programming languages, which are fundamental and have been created many

years ago. Also, the purpose and goal of creating this research and the systems that make up

the search for results are clear. The second topic presents the requirements and the programs

used as well as data for their complete installation. The third topic shows the platform and its

use with precise examples and explanations for each system that has been created. Finally, the

fourth topic analyzes and gives the results of the research that was built on the subject of

"Software Evolution."

Keywords: Software Evolution, JavaScript, Lehman’s Laws, GitHub, Open Source Software,

SonarQube, JSClassFinder

Software Evolution

CHATZIMPARMPAS ANGELOS 6

Εξέλιξη Έργων Λογισμικού

Περίληψη

Η παρούσα διπλωματική εργασία έχει ως βασικό στόχο την ανάπτυξη μιας διαδικτυακής

εφαρμογής η οποία προβλέπει τις τάσεις στην ανάπτυξη λογισμικού σε προγράμματα

ανοικτού κώδικα. Η πλατφόρμα αυτή σχεδιάστηκε έτσι ώστε να εξυπηρετεί και να ικανοποιεί

τις ανάγκες των προγραμματιστών ή ερευνητών που θέλουν να ελέγχουν τα προγράμματα που

δημιουργούν και το πόσο τελικά εξελίσσονται με την πάροδο του χρόνου και των νέων

εκδόσεων. Η πλατφόρμα έχει δημιουργηθεί για να λειτουργεί τοπικά σε έναν υπολογιστή ή

διαδικτυακά αν τοποθετηθεί σε έναν διακομιστή ο οποίος θα έχει την ισχύ ώστε να ελέγχει το

λογισμικό που κατασκευάζουν προγραμματιστές. Τα συμπεράσματα τα οποία μπορεί να

βγάλει ένας από τους παραπάνω χρήστες είναι σημαντικά για την εξέλιξη του λογισμικού που

παράγουν ή και για περαιτέρω έρευνα πάνω σε νέες τάσεις για την ανάπτυξη του λογισμικού

έργων διαφόρων παραγωγών.

Ολοένα και περισσότερα λογισμικά γράφονται σε γλώσσες προγραμματισμού όπως η

JavaScript. Τα προγράμματα ανοικτού κώδικα συνεχώς εξελίσσονται κάτι που κάνει δύσκολο

να προβλεφθεί η επιτυχία και η πορεία αυτών η οποία τελικά επηρεάζεται από ποικίλους

τομείς και παράγοντες. Συνεπώς είναι καίριο και απαραίτητο να δημορφωθεί μια πλατφόρμα

η οποία θα ελέγχει, θα αναλύει και θα μελετάει τις αλλαγές αυτές με επιτυχία και φυσικά

παρέχοντας οφέλη για τους προγραμματιστές αλλά ταυτόχρονα να τροφοδοτεί με στοιχεία

μελλοντικές έρευνες.

Συνοψίζοντας τα βασικά στοιχεία αυτής της διπλωματικής εργασίας, επικεντρώνονται σε

τέσσερις θεματικούς άξονες. Συγκεκριμένα, στον πρώτο άξονα, γίνεται διερεύνηση και

ανάλυση παρόμοιων θεμάτων που αφορούν διάφορα λογισμικά ανοικτού κώδικα και το πως

εξελίσσονται από τα χρόνια δημιουργίας τους μέχρι και σήμερα. Τα περισσότερα από αυτά

είναι γραμμένα σε γλώσσες προγραμματισμού οι οποίες είναι βασικές και έχουν δημιουργηθεί

εδώ και πολλά χρόνια. Επιπλέον, γίνεται ξεκάθαρος ο λόγος και ο στόχος δημιουργίας της

έρευνας αυτής και των συστημάτων που την απαρτίζουν για την εύρεση αποτελεσμάτων. Στο

δεύτερο άξονα γίνεται η παρουσίαση των απαιτήσεων και τον προγραμμάτων που

χρησιμοποιούνται καθώς και στοιχεία για την πλήρη εγκατάσταση αυτών. Στον τρίτο άξονα

παρουσιάζεται αναλυτικά η πλατφόρμα και η χρήση της με ακριβή παραδείγματα και

επεξηγήσεις για το κάθε σύστημα που έχει δημιουργηθεί. Τέλος, στον τέταρτο άξονα γίνεται

ανάλυση και παρουσίαση των αποτελεσμάτων της έρευνας που δημιουργήθηκε με θέμα την

«Εξέλιξη Έργων Λογισμικού».

Λέξεις κλειδιά: Εξέλιξη Έργων Λογισμικού, JavaScript, Νόμοι του Lehman, GitHub, Λογισμικό

Ανοιχτού Κώδικα, SonarQube, JSClassFinder

Software Evolution

CHATZIMPARMPAS ANGELOS 7

Contents
1. INTRODUCTION .. 12

1.1 Objective .. 13

1.2 Organization of Chapters .. 13

2. THEORETICAL BACKGROUND .. 14

2.1 Lehman's Laws of Software Evolution & Observations for Contemporary Applications 14

2.1.1 Lehman's Laws of Software Evolution ... 14

2.1.2 Observations for Contemporary Applications .. 15

2.2 Software Evolution in Other Programming Languages and Comparison with JavaScript 17

2.2.1 Software Evolution in Other Programming Languages ... 17

2.2.1.1 Evolution of applications written in C ... 18

2.2.1.2 Evolution of applications written in PHP .. 19

2.2.2 PHP in comparison with JavaScript as languages for open-source projects 20

2.3 Details about JavaScript Language and GitHub Software Development Platform 22

2.3.1 Details about JavaScript Language .. 22

2.3.2 Key Features of JavaScript .. 22

2.3.3 GitHub Software Development Platform ... 24

3. ANALYSIS AND DESIGN OF THE WEB APPLICATION .. 25

3.1 Description of the Requirements ... 25

3.2 Technology and Tools ... 25

3.2.1 Operating Systems ... 25

3.2.2 XAMPP – The Most Popular PHP Development Environment ... 25

3.2.3 LARAVEL and MySQL .. 26

3.2.4 Goutte - A Simple PHP Web Scrapper .. 26

3.2.5 Git – Version Control System .. 26

3.2.6 SonarQube Continuous Code Quality .. 26

3.2.7 JSClassFinder – A Tool to Detect Class-Like Structures in JavaScript 28

3.2.8 AutoHotkey – The Ultimate Automation Scripting Language for Windows 29

3.2.9 Grafana – The Open Platform for Beautiful Analytics and Monitoring 29

3.3 The JS evolution Tool .. 30

4. PLATFORM PRESENTATION ... 36

Software Evolution

CHATZIMPARMPAS ANGELOS 8

4.1 Creation of the Project and Basic Metrics with the Automated Procedure 36

4.2 Generating Basic Metrics with the Manual Procedure .. 38

4.3 Calculations from the Existing Measurements ... 41

4.4 Receiving the Contributors and Stats of Them for Every Project ... 42

4.5 JSClassFinder Variables Added to the Thesis Database ... 42

4.6 General Fixes to Common Problems .. 48

4.7 Creation of Charts with the Use of Grafana .. 49

4.8 Important Parts of Code .. 50

4.9 Details of the Values (Metrics) Obtained ... 52

5. RESULTS AND CONCLUSIONS .. 58

5.1 General Stats for JS projects .. 58

5.2 Database Results Preparation for Analysis ... 62

5.3 Validation of the Software Evolution ... 66

5.3.1 Law I: Continuing Change ... 66

5.3.2 Law II: Increasing complexity .. 68

5.3.3 Law III: Self-Regulation ... 70

5.3.4 Law IV: Conservation of Organizational Stability ... 72

5.3.5 Law V: Conservation of Familiarity .. 76

5.3.6 Law VI: Continuing Growth ... 77

5.3.7 Law VII: Declining Quality ... 79

5.3.8 Law VIII: Feedback System .. 83

5.4 Conclusions and Comparison to other studies .. 84

Bibliographic References .. 86

Software Evolution

CHATZIMPARMPAS ANGELOS 9

Figure 1 : JSClassFinder’s architecture [42] .. 28

Figure 2: JS tool combined usage ... 31

Figure 3: Starting XAMPP and SonarQube .. 32

Figure 4: The entire thesis folder .. 33

Figure 5: Git clone of a repository .. 34

Figure 6: SonarQube Scanner configurations ... 34

Figure 7: Four main folders necessary for the analysis .. 35

Figure 8: AutoHotkey and two necessary scripts ... 35

Figure 9: Projects table in Database ... 36

Figure 10: Main thesis functionality through creation of a new Project 37

Figure 11: For every release stats and metrics in Database ... 37

Figure 12: Zeros in a line in Database at 1285 identifier and version name 2.9.1.1 38

Figure 13: Specific’s release tag from GitHub official website ... 39

Figure 14: Setting release’s tag manually to Git for SonarQube Scanner 39

Figure 15: Manual execution of SonarQube Scanner ... 40

Figure 16: Save results from SonarQube server to HTML format .. 41

Figure 17: Store results in the Database for a specific identifier ... 41

Figure 18: Perform calculations for all the releases ... 41

Figure 19: Store the maximum of 100 contributors in the Database ... 42

Figure 20: Generate a file from every JavaScript file in a release .. 42

Figure 21: Parse the generic file and export the AST tree .. 43

Figure 22: Copy and paste the AST tree to a JSON file ... 44

Figure 23: Send JSON file to JSClassFinder ... 44

Figure 24: Execution of JSClassFinder image and Pharo... 45

Figure 25: Run ast file for analysis .. 46

Figure 26: Results from JSClassFinder software ... 47

Figure 27: Search for “function” key-word in GitHub for every release 47

Figure 28: Store the results in the Database .. 48

Figure 29: Fixing an underlying problem of automated procedure ... 49

Figure 30: Connection to Database and Grafana ... 50

Figure 31: Creation of charts via SQL queries ... 50

Figure 32: Paths of basic code

segments ... 51

Figure 33: Part of code that might change for some GitHub projects ... 52

Figure 34: Download of zip file for every release ... 52

Figure 35: Number of releases for each project ... 59

Figure 36: Number of commits for each project .. 59

Figure 37: Number of watches for each project ... 60

Figure 38: Number of forks created for each project ... 60

Figure 39: Number of Stars for each project .. 61

Software Evolution

CHATZIMPARMPAS ANGELOS 10

Figure 40: Number of open issues for each project ... 61

Figure 41: Number of closed issues for each project ... 62

Figure 42: Selection of table ... 62

Figure 43: Configurations of the export ... 63

Figure 44: The last configuration for the export to be performed ... 63

Figure 45: Delimited cells .. 64

Figure 46: Semicolon option for separation of the entire first column.. 65

Figure 47: DBR chart for 40 Projects ... 68

Figure 48: Complexity chart for 40 Projects ... 70

Figure 49: Incremental Growth chart for 40 Projects ... 72

Figure 50: Maintenance Effort chart for 40 Projects .. 75

Figure 51: Number of Commits chart for 40 Projects ... 76

Figure 52: Incremental Changes chart for 40 Projects ... 77

Figure 53: Lines of Code chart for 40 Projects .. 79

Software Evolution

CHATZIMPARMPAS ANGELOS 11

Table 1: Studies on the validity of Lehman’s laws .. 16

Table 2: The laws of software evolution of the FW analysis [61] ... 17

Table 3: Summary of statistical hypothesis for each Lehman law and each application [12]...... 18

Table 4: Data Analysis [13] .. 20

Table 5: Top 15 most popular languages used on GitHub in the last twelve

months of the Octoverse 2016* ... 21

Table 6: JavaScript and PHP fundamental features differences ... 24

Table 7: SonarQube Metrics ... 27

Table 8: Presentation of results .. 29

Table 9 (Releases Stats Table): Metrics used to this thesis for validation of

each Lehman law to every GitHub JavaScript program .. 56

Table 10 (Projects Table): General statistics metrics for every Project that has

been tested ... 56

Table 11 (Contributors Table): Top 100 contributors to a Project with most

commits... 57

Table 12: Statistical results on law I (continuing change). ... 68

Table 13: Statistical results on law II (increasing complexity). ... 70

Table 14: Statistical results on law III (self-regulation). .. 72

Table 15: Statistical results on law IV (conservation of organizational stability). 75

Table 16: Statistical results on law V (conservation of familiarity). ... 77

Table 17: Statistical results on law VI (continuing growth). ... 79

Table 18: Statistical results on law VII (declining quality). ... 83

Table 19: Statistical results on law VIII (feedback system). .. 84

Table 20: Validation of the laws ... 85

Table 21: Studies about the validity of Lehman’s laws including ours ... 85

Software Evolution

CHATZIMPARMPAS ANGELOS 12

1. INTRODUCTION

Software evolution is the term applied in software engineering and to be more specific in

software maintenance branch and is related to the method of developing software initially,

then frequently updating it for many reasons. As Fred Brooks declares in his book, over 90% of

the costs in a software system is given in the maintenance stage and software will unavoidable

be maintained [62]. The maintenance of software is divided into four main categories [63]:

 Corrective maintenance: Identified problems are solved after of course being known

through reactive adjustment of a software product.

 Adaptive maintenance: To hold a software product usable in a modified or modifying

environment after of course being known, adjustment of a software product must be

performed.

 Perfective maintenance: To enhance performance or maintainability after of course

being known, adjustment of a software product must be done.

 Preventive maintenance: Adjustment of a software product must be performed to

search and find potential threats in the software product before they grow to sufficient

errors.

There are small additions to each category, but the scientists kept four basic types that are

presented above. To evaluate these categories in real-life software, a set of behaviors in the

evolution of proprietary software has been identified by Lehman and his colleagues.

Several researchers are focused on the subject of “Software Evolution” and tried to test the

validity of Lehman’s laws. However, JavaScript is a well-known and widely used programming

language almost no research has been conducted for JS Software Evolution. This diploma thesis

achieved to test JavaScript open-source projects from GitHub and draw conclusions about their

current state. Also, with these results, the future of JavaScript software can be depicted.

More and more software is written in JavaScript programming language. Therefore, it is

important to test how well made and faultlessly are some of the best known of them and how

they evolve. It is, thus, necessary to develop a platform that will test this software in such a way

as to achieve this goal successfully, while at the same time promotes further research on such

an important issue.

Software Evolution

CHATZIMPARMPAS ANGELOS 13

1.1 Objective
Τhe primary goal of the present diploma thesis is to develop an online web application that, in

combination with other tools, will provide complete data on “Software Evolution” of JavaScript

programs. Specifically, in its context, the theoretical background of “Software Evolution” is

analyzed with lots of details. Furthermore, the results of the survey are interpreted and

presented with high tech and popular tools. Also, the description, design, and implementation

of the platform created to test the open source software are presented.

This platform was designed firstly to cover my and Mrs. Bibi’s curiosity referring to “Software”

and how it will evolve in the future. In an extension of that, it also serves and meets the needs

of software developers and researchers. The platform that we managed to create will help

researchers to estimate and understand main problems of open source projects that

programmers developed. This thesis provides a complete package of programs like the web

application that is created with a particular purpose to collect data from JavaScript notable

projects through the use of special software. Through specific URLs, an entirely open source

project gets into testing, and the results of the procedure are stored in the database.

1.2 Organization of Chapters
This diploma thesis is divided into five chapters-thematic sections.

In 1st chapter, we have a brief reference to “Software Evolution.” In addition, there is a short

presentation of the subject of the thesis and the reasons for choosing the exact web application.

In 2nd chapter, a more general analysis is made of the term “Software Evolution.” Furthermore, relevant

work is examined, and the theoretical background that a reader might need is provided.

In 3rd chapter, the requirements of the platform are presented. Then, theoretical details about systems

that the web application uses are shown. At the end of the section, an extensive guide of how to set up

and execute all the software that this diploma thesis provides is given to the reader.

In the 4th chapter, the platform is presented in detail as well as all the features it has. With the help of

screenshots, all the platform's capabilities are captured, and a detailed explanation of how to use it is

provided.

In the 5th chapter, a detailed exhibition of the results and conclusions that emerged from the use of the

web application is presented.

Finally, reference is made to all the bibliographic sources used in the dissertation, as well as to the

websites that helped to develop the web application.

Software Evolution

CHATZIMPARMPAS ANGELOS 14

2. THEORETICAL BACKGROUND

This specific chapter defines the meanings and the necessary theoretical background to

understand the diploma thesis fully. Firstly, everything starts from the education and the

factors that led Lehman to study the software evolution. Furthermore, the focus of this survey

is to test the validity of the Lehman's Laws which are eight in number. Last but not least is the

explanation of the reasons that the above tests have been applied to JavaScript projects in

comparison with other surveys and more details about JavaScript as a language.

2.1 Lehman's Laws of Software Evolution & Observations for Contemporary

Applications

2.1.1 Lehman's Laws of Software Evolution

Lehman and Belady [1], the mid-70s, formulated the laws of software evolution [1] that is the

most well-known work for them. A software system that everyone thinks it's going to work

cannot be for sure guaranteed that it will. Two reasons are supporting the previous claim:

 The first is that the real world is very complicated and no one could know what will

happen to inside a running program.

 The second reason is that the software interferes with the environment and the

surroundings in which it will run [1].

When time passes the program gets feedback from its users. This continuous feedback supports

developers to evolve the program and the source code eventually. Even if an application

accomplishes users requirements, it should continue to develop because changes to the

environment will appear. Lehman understood the difficulty of improving a program, and with

that in mind, he created some laws to summarize his conclusions for E-type software systems

[1]. E-type systems are those embedded and actively worked in a real-world area [51]. The “E”

letter on E-type systems stands for “Evolutionary.” E-type programs are being influenced by the

surroundings and need to be adaptive. Furthermore, Evolutionary-type software is the most

common and important referring to the real and research world respectively [1]. To continue

with, these results are well-known as Lehman's Laws of Software Evolution (adapted from [1, 2,

3]) and are summarized as follows:

1) "Continuing Change" - A program should adapt to the new needs of the users or else it will

be progressively less satisfactory for them.

2) "Increasing Complexity" - A program will have its complexity constantly increasing except

precise work is done to maintain or even decrease it.

Software Evolution

CHATZIMPARMPAS ANGELOS 15

3) "Self-Regulation" - The software systems are self-regulating while evolving with close to the

normal process of measures and distribution of the product.

4) "Conservation of Organizational Stability" - The average effective global activity rate doesn’t

change when time pass for an E-type evolving system. That means the work stays the same for

every release.

5) "Conservation of Familiarity" - An E-type software system has the same or even less new

content over time in comparison with every successive release.

6) "Continuing Growth" - Over its lifetime a program must show a progressive increase in the

number of functional content to maintain its users pleased.

7) "Declining Quality" - New operational limitations will appear, and an E-type system should be

maintained and adapted to these but in general, the quality will decline over time, and nothing

will happen to preserve it.

8) "Feedback System" - An E-type program constitutes of multi-agent, multi-loop, multi-level

feedback systems and must be treated like this to achieve extravagant improvements over

time. This law proves the importance of the user to give feedback to the evolutionary system to

improve and update in the future.

2.1.2 Observations for Contemporary Applications

Lehman laws, presented in the previous section, are aspired by the software development

techniques adopted in IBM where he was working. The data he used to evaluate these laws

were derived from big industrial programs developed with old-fashioned methods for system-

oriented software. However, the software has suffered significant changes, now it is more agile,

cloud-based and has the power to run in multiple environments and is highly professional and

technical. With all that in mind, it is necessary to test and validate each one of the Lehman’s

Laws merely to understand which should be adjusted for the new software and its evolution

[1].

Some studies doubt the truth of some laws, for example, the 3rd, 4th, 5th. The results of these

studies can be shown in the following table [13]:

Reference Year Programming
Language

Number
of
Projects

I II III IV V VI

VII VIII

Godfrey & Tu
[52, 53]

2000
and
2001

C 5 Y N Y N

Robles et al.
[54]

2005 C, C++, Java 19 Y N Y N

Software Evolution

CHATZIMPARMPAS ANGELOS 16

Mens et al.
[55]

2008 Java 1 Y N Y

Xie et al. [56] 2009 C 7 Y Y Y N Y N N

Israeli &
Feiteison [57]

2010 C 1 Y N Y Y Y N Y

Businge et al.
[58]

2010 Java 21 Y Y N Y

Neamtiu et al.
[59]

2013 C 9 Y N N N N Y N N

Kaur et al. [60] 2014 C++ 2 Y Y Y Y Y Y

Amanatidis &
Chatzigeorgiou
2015[13]

2015 PHP 30 Y N Y Y Y Y N

Table 1: Studies on the validity of Lehman’s laws

These studies found that some rules are valid for example those who have the “Y” letter. The

“N” letter is for the invalid laws. Lastly, the empty rows aren’t tested, or the results are

doubtful about the validity of each law.

That mainly happens due to the different working styles of the past where developers and

engineers were working as teams to significant and expensive projects with deadlines. Of

course, the above conclusions could be understood if we compare the past with the new

industrial software development that is being used in modern times. These new industrial

software development also copy the open source systems style which has more freedom to it.

So, when a program manager sees a significant improvement, releases the new version and

doesn’t need to have a deadline [1].

Lehman did some studies and used some metrics to calculate and test the Laws. One Lehman’s

study has the following results from various measurements in a system which is called Logica

FW (Fastwire) [61] for every release:

Software Evolution

CHATZIMPARMPAS ANGELOS 17

Table 2: The laws of software evolution of the FW analysis [61]

Most of the laws were validated back in 1997 for the “logica” FW system. Laws 3, 5, 7 are in

doubt. But the most important thing is that this survey was in a specific software system which

makes the results controversial. These metrics Lehman used for the previous conclusions are

being used identically to new studies, and that’s why the discussion of some concerns is

required, but for now, the concentration goes to the efficacy of the Lehman's Laws.

2.2 Software Evolution in Other Programming Languages and Comparison with

JavaScript

2.2.1 Software Evolution in Other Programming Languages

There are many surveys about Lehman's Laws to open-source programs, but most of them are

in C and PHP languages. JavaScript is a language that hasn't been tested abroad yet. The

previous assertion is the main reason that this thesis tries to identify the validity and get results

of the laws for a prevalent but still not examined programming language. On the following

chapters, there are results from two significant studies.

Software Evolution

CHATZIMPARMPAS ANGELOS 18

2.2.1.1 Evolution of applications written in C

The 1st paper is called “Towards a better understanding of software evolution: an empirical

study on open-source software” and is about nine open-source applications written in C. The

authors checked if some hypotheses are right for every law and conclude to the confirmation or

doubt of the laws individually [12]. The first column presents laws and their names. The second

column is the hypothesis of each law with a number which is the indicator of the exact law (i.e.,

H1) and letters to count the metrics for each law (i.e., H2a, H2b). Each hypothesis has a

description just to know what it is for. The rest columns are the nine projects that they tested

for validation. The "Y" means that for an application it is confirmed and the "N" means that it is

rejected. The results can be shown in the following table [12]:

Table 3: Summary of statistical hypothesis for each Lehman law and each application [12]

The methodology they used was to first get the data from the official versions of each of the

nine open-source programs. Then they processed and merged all the code to a single .c file, but

at the same time, they held module information. Afterwards, the procedure was to run source

code analysis tools which are two in number [12]:

 ASTdiff gathers a variety of change metrics, for example, changes in attributes,

methods, types, etc. With this tool, they collected information about code complexity

and modules.

 RSM stands for Resource Standard Metrics and is a commercial tool that they used for

cyclomatic computing complexity [12].

The last step was to use statistical hypothesis testing to validate and draw conclusions about

the nine projects. There were four kinds of analysis depending on the type of each hypothesis

[12]:

Software Evolution

CHATZIMPARMPAS ANGELOS 19

 Increase/decrease test: A univariate linear regression has been performed to test the

changes of a metric. The dependent variable is the metric they tested. On the contrary,

the independent argument is the number of days since the start of the project for that

release or maybe the release’s sequence number. If b > 0 or b < 0 (b is the slope) they

had to increase and decrease respectively and p-value < 0.05 to get the hypothesis

validated.

 Non-zero test: One sample t-test has been performed to test if a metric value has non-

zero values. The specified value was zero, and the null hypothesis is that each release

has a mean equal to zero. If this assumption was wrong (p-value < 0.05) the specific

release has non-zero values.

 Invariance test: Some laws support that a specific metric is invariant over time. To test

this hypothesis they used Levene’s test for equality of variance in two samples. The first

example contains the exact metric values for all releases and the second has everything

the same but no variation which means that all elements are equal to the first example.

If the two samples have similar deviation and p-value < 0.05 the hypothesis is validated.

 Non-linear growth test: They performed a univariate linear regression where the

argument is the value of the metric (e.g., LOC) for a specific release, and the

independent argument is the growth model (e.g., the square root of time). The

hypothesis is validated if p-value < 0.05.

P-value is an exact threshold that they set at 0.05 and has been used to every hypothesis.

To make it more “clear” the 1st and 6th laws are only confirmed by this paper [12]. Hypothesis 1,

2d, 3a, 3b, 6a, 6b, 6c and 8a are confirmed from the analysis they performed in each project. In

controversy, 2a, 2c, 4a, 4b, 4c, 5a, 5b, 5c, 7a, 7b, 7c, 8b and 8c hypothesis are not confirmed.

The remaining testing hypothesis is partially being confirmed in a portion of projects. To have a

fully confirmed law each of the hypothesis for this law must be validated. For example, 6a, 6b,

6c are validated, and that’s why the 6th law is being confirmed.

2.2.1.2 Evolution of applications written in PHP

The 2nd paper is called “Studying the evolution of PHP web applications” and is about thirty

open-source applications written in PHP. They checked some variables (metrics) for every law

and found results for the confirmation of the laws [13]. The conclusions of this paper can be

shown in the following table [13]:

Software Evolution

CHATZIMPARMPAS ANGELOS 20

Table 4: Data Analysis [13]

The findings were that 1st, 3rd, 4th, 5th and 6th laws are confirmed, and the others aren't [13].

2.2.2 PHP in comparison with JavaScript as languages for open-source projects

JavaScript is a universal language for web front-end applications but has also embedded the

Node.js in 2009 which is for server-side scripting [24]. PHP and JS have some similarities which

are (adapted from [25, 26]):

 Both languages are usually used for the web and were developed specifically for it in

1995.

 The syntax styles are taken from the C language on both of them.

 Until lately PHP wasn’t Object-Oriented language, and both weren’t formally Object-

Oriented languages.

 They are platform independent, but PHP needs a compiler and JS a run-time

environment.

There are also many differences between them and here are some basic:

 PHP use is mainly for server-side things while JavaScript is for client-side but with the

Node.js JavaScript has also been a server-side scripting language.

 JavaScript only has constructors and functions in contrast to PHP which has and uses

classes.

 JavaScript is used for visual effects and improvements of web GUIs.

 Users can deactivate all JavaScript while browsing the internet because it is a client-side

language and has some features that are being analyzed in the 2.4.2 chapter.

Software Evolution

CHATZIMPARMPAS ANGELOS 21

Table 5 shows us that JavaScript is the number one language compared to the others and

various GitHub applications are written in it.

Programming Language Pull Requests Percentage Changes from
Previous Period

JavaScript 1,604,219 +97%

Java 763,783 +63%

Python 744,045 +54%

Ruby 740,610 +66%

PHP 478,153 +43%

C++ 330,259 +43%

CSS 271,782 +36%

C# 229,985 +88%

C 202,295 +47%

Go 188,121 +93%

Shell 143,071 +76%

Objective C 75,378 +37%

Scala 70,216 +54%

Swift 62,284 +262%

TypeScript 55,587 +250%

Table 5: Top 15 most popular languages used on GitHub in the last twelve
months of the Octoverse 2016*

*Stats for the Table 5 are obtained from “The state of the Octoverse 2016”
(https://octoverse.github.com/).

The JS has advantages for the programmers and users which can be summed up in the

following bullet points:

 An easy language because it is effortless to learn and the syntax is approaching English.

 Instant response for every visitor because without server interactions you don’t have to

wait for pages to reload to get what you are requesting.

 Pretty fast for the end-user because scripts are being executed on the user’s computer

and for a portion of results they are immediately presented.

 Interactivity is raised because of the development of interfaces that can respond to the

user’s input.

 Smarter and more elegant interfaces are being developed because of drag and drop

features.

 Fast for real-time applications and if lots of simultaneous requests and responses

needed in case of back-end use (Node.js).

https://octoverse.github.com/

Software Evolution

CHATZIMPARMPAS ANGELOS 22

Like every programmer gets and uses the full capabilities of programming languages, this thesis

chose JavaScript projects from GitHub to test the Lehman’s Laws for the above reasons that

have been presented with lots of details.

2.3 Details about JavaScript Language and GitHub Software Development

Platform

2.3.1 Details about JavaScript Language

JavaScript frequently shortened as JS first appeared on December 4 in 1995 which is 21 years

ago [4]. It is a high-level dynamic, object-based, multi-paradigm, interpreted and weakly typed

programming language. World Wide Web uses three core technologies which are JavaScript,

HTML, CSS and that makes JavaScript a standard software language. The last stable version is

ECMAScript June 2017 [5]. The primary use is to create web pages interactive and implement

online programs, including video games. The bulk of websites operate it, and all current web

browsers have a built-in JavaScript engine and support it without the need for any plug-ins.

Each of the multiple JavaScript engines serves a different implementation of JavaScript, all

based on the ECMAScript spec, with some engines not supporting the specification thoroughly,

and with many engines supporting extra features exceeding ECMA.

As a multi-paradigm language, JavaScript supports event-driven, useful, and imperative

programming styles. The API helps JS to work with arrays, text, regular expressions, dates and

necessary administration of the DOM, but it excludes any I/O, such as storage, networking, or

graphics facilities, and uses for these the host environment in which it is embedded.

JavaScript engines are now embedded in numerous other types of host software, including in

non-web software such as word processors and PDF program and also server-side in web

servers and databases. Furthermore, in runtime conditions that make JavaScript accessible for

writing desktop and mobile applications, including desktop widgets despite initially being only

implemented in client-side web browsers.

Although there are apparent outer connections among JavaScript and Java, including language

name, several standard libraries, and syntax, the two languages are different and vary

considerably in design. Self and Scheme are two languages that JavaScript was influenced by

[6].

2.3.2 Key Features of JavaScript

JavaScript also has some main features that make it a new and robust language. First of all, it is

supported widely, and all common web browsers have built-in interpreters. JavaScript supports

the structured programming syntax of other languages like C and makes a separation between

statements and expressions. One change that helps the developers is that it allows omitting the

semicolons (automatic semicolon insertion) [14].

Software Evolution

CHATZIMPARMPAS ANGELOS 23

Moreover, JavaScript is a dynamically typed language which means that a type is combined

with a specific value and not only with every expression. If someone wants to present that with

an example, it will be that variables can change types from a number to a string, etc. [15]

This language also provides run-time evaluation with the eval() function which can run

statements in string format at run-time. JavaScript (JS) is almost utterly object-oriented like

most object-based languages, but a difference is that it uses prototypes where other languages

use classes for heritage [16].

Functions and methods don't differ at all like in other programming languages. Functions can be

also defined as object constructors and have a double usage simultaneously with their essential

role. A new function call to an existing older will produce an instance of a prototype with the

heritage of properties and methods from the constructor [17]. One more significant feature is

that functions are being considered as objects and could have properties, methods and could

be first-class or nested functions with the lexical scope of the external functions [18]. If we are

talking about the nested functions, the internal function object will be a segment of the outer

function and inheritance things from it [19].

An unlimited amount of parameters can be transferred to a function. This is well-known as

“Variadic” functions. The function can reach them through formal parameters or the local

arguments object and create them with the bind method. Array and Object literals can be

created with fast syntax commands which are also the foundation of the JSON data format. JS

processes messages from a queue at a rate of one at a time and also creates a call stack frame

which expands or retracts upon its needs. When this event loop happens, it allows the

program’s input or output to be performed. In more simple words the event loop doesn't block

the other procedures, for example, a mouse click while simultaneously waiting for database

queries to send back information [20]. In addition, JavaScript can have regular expressions

which give a strong syntax for text administration [21]. Last but not least there are more

features that some engines support and this thesis is going to present them in a referential

manner:

 property getter and setter functions [22]

 conditional catch clauses

 iterator protocol

 shallow generators-coroutines

 array comprehensions and generator expressions

 proper block scope via the let keyword

 array and object destructuring

 concise function expressions

 ECMAScript for XML (E4X), an extension that adds native XML support to ECMAScript
[23]

Software Evolution

CHATZIMPARMPAS ANGELOS 24

JavaScript PHP

The JavaScript code is obtainable even
after the output hasn’t already
produced.

The PHP code is accessible only after
server performs the needing
procedures.

JavaScript can manage certain local
assignments.

PHP executes on servers, and the
primary responsibility is to generate
the HTML code that browsers
interpret.

JavaScript can be mixed with XML,
HTML, and AJAX.

PHP can be mixed with HTML and not
XML.

JavaScript doesn't mainly use MySQL as
a database but other types.

The central database of a PHP
software is MySQL.

JavaScript runs in a browser. PHP doesn’t run in a browser but in a
server, a compiler as a program or
elsewhere.

With the URL of a file written in the
address bar of a web browser,
JavaScript can send files of accessible
data.

PHP can get files from other web pages
and also import them from the
available server. The use of PHP is to
create web pages with the power of a
server.

Table 6: JavaScript and PHP fundamental features differences

2.3.3 GitHub Software Development Platform

GitHub is a web-based or version control repository and Internet hosting service founded on

February 8 in 2008. The primary use of it is for code and offers all of the assigned version

control and source code management (SCM) functionality like Git and also adds its specific

characteristics. It provides access control and various collaboration features such as feature

requests, bug tracking, task management, and wikis for every project developers add [7].

GitHub allows both methods for free and private repositories on the same account [8] which

are usually used to host open-source software programs [9]. In April of this 2017, GitHub

reports having approximately 57 million repositories and 20 million users, [10] making it the

most prominent host of source code in the whole world [11].

Software Evolution

CHATZIMPARMPAS ANGELOS 25

3. ANALYSIS AND DESIGN OF THE WEB APPLICATION

In this chapter, there will be an analysis of the system that this thesis uses to get the results

from the GitHub open-source projects. Initially, requirements will be described and technology

that has been used. Afterwards, details of the programming language will be presented and

after that information about the open-source programs that produce specific essential metrics.

Moreover, the reader will be informed about the operating systems and more critical aspects of

the code and also the functionalities. Lastly, the use of the entire system will be explained along

with the processes to extract the results. In the end, two categories of data will be explained

the more general, and the focused to releases of each project and details of the values that

obtained.

3.1 Description of the Requirements
The platform has to retrieve information from GitHub by parsing the website and store them

into a database. It also has to get data from an analysis and save them into the same database.

The purpose is to get measurements for each official release of 100 JavaScript projects and

keep the results of them. Then an analysis of the results will be performed, and conclusions will

be drawn from it. The need of a combined system to collect all the data was essential. Note

that this application is made for the creator’s purpose to get the needing data or programmers

that want to do a similar study of GitHub open-source applications.

3.2 Technology and Tools

3.2.1 Operating Systems

A Windows 10 x64-bit personal computer has been used for the primary tasks like Database

store of variables, SonarQube analysis and so on. This system was combined with a Raspberry Pi

3 model B that runs Raspbian [27] and had to run JSClassFinder to compute some extra metrics.

JSClassFinder wasn’t working at the Windows System so the Raspberry Pi was a good system

that could handle the load of work.

3.2.2 XAMPP – The Most Popular PHP Development Environment

XAMPP is a free open-source and cross-platform web server that this thesis used to gather the

data locally to a computer. It is developed by Apache Friends [28]. XAMPP is the first letters of

five packets well-known as Cross-Platform (X), Apache (A), MariaDB (M), PHP (P) and Perl (P). It

is a lightweight Apache release that makes easy for programmers to create a local server like

this thesis used. The main reason of use was for executing code that takes data from GitHub

and other Analysis programs and also gathers all that into a Database. Everything needed to set

Software Evolution

CHATZIMPARMPAS ANGELOS 26

up a web server at a “localhost” computer is included. It works equally well on Linux, Mac, and

Windows but the use was tested into a Windows system as mentioned in the 3.2.1 chapter.

With this software, phpMyAdmin is added which is a free open-source managing tool

for MySQL and MariaDB. It has become one of the most popular MySQL administration tools for

web hosting services.

3.2.3 LARAVEL and MySQL

Laravel is a free and open-source PHP web framework that makes easier the creation of code,

maintenance and the transaction of the whole code to other systems if needed. It has lots of

features like modular packaging system with a dedicated dependency manager, several ways

for obtaining relational Databases, services that help in application deployment and very

common and easy syntactic. It is also one of the most popular PHP frameworks of March 2015

and in more current statistics [29, 30].

MySQL is an open-source relational database management system [31] and has been used as a

Database type to create as cell-format and store the data that are being processed afterward.

3.2.4 Goutte - A Simple PHP Web Scrapper

It is a screen scraping and crawling web library for PHP that has been used to get general and

more specific variables from the GitHub projects. It gives the power to crawl websites and

extract data from the HTML responses. Moreover, with this tool, the scrapping of SonarQube

Analysis is achievable using the same way that parses HTML web pages from GitHub. This a

module that has been added to Laravel code and XAMPP web system [32].

3.2.5 Git – Version Control System

Git is a version control system for tracking differences in computer files and coordinate work

with other people. It is used for source code administration in software development [33]. It is

very fast [34], keeps the data as it is [35] and also supports various workflows at the same time

[36]. Furthermore, the use of it at this particular thesis is to download the Projects and change

the release version just to be tested by SonarQube. The latest release is 6.5 that this thesis uses

and has been published since 3rd of August.

3.2.6 SonarQube Continuous Code Quality

SonarQube well-known also as Sonar [37] in previous versions is an open-source program that

allows endless review of the state and quality that code has. The measurements that

SonarQube provides are summed up in the following table:

Software Evolution

CHATZIMPARMPAS ANGELOS 27

Name Description

Complexity It is the complexity calculated based
on the number of paths through the
code. [66]

Cognitive Complexity How hard it is to understand the
code's control flow. [66]

Complexity / file Average complexity by file.

Complexity / function Average complexity by function.

Comment lines The number of lines containing
either comment or commented-out
code.

Comments (%) Density of comment lines
= Comment lines / (Lines of
code + Comment lines) * 100

Duplicated blocks The number of duplicated blocks of
lines.

Duplicated files The number of files involved in
duplications.

Duplicated lines The number of lines involved in
duplications.

Duplicated lines (%) Density of duplication = Duplicated
lines / Lines * 100

t Technical Debt Ratio
(Maintainability)

The ratio between the cost to
develop the software and the cost
to fix it.

Issues The number of issues.

Code Smells The number of code smells.

Bugs The number of bugs.

Vulnerabilities Number of vulnerabilities.

Functions The number of functions.

Statements The number of statements.

Files The number of files.

Directories The number of directories.

Lines The number of physical lines.

Lines of Code The number of physical lines that
contain one or more characters
which aren’t whitespace or
tabulation or part of a comment.

Table 7: SonarQube Metrics

It performs statistical analysis of code to find bugs; code smells, security vulnerabilities and

other software problems. It is a multi-language tool because 20+ programming languages

Software Evolution

CHATZIMPARMPAS ANGELOS 28

including JavaScript are being covered for analyses. Furthermore, it can be used manually and

independently and also to be integrated into other software like Eclipse, Visual Studio and

more. It has a significant number of plugins [38, 39] to fulfill all users needs and provides

additional metrics for example duplicated code, code coverage, code complexity, comments,

etc. [40, 41]. SonarQube has Sonar-Scanner which is the tool that scans the GitHub projects and

gets the analytics that later is being displayed to it. This means that SonarQube is a system that

reports the results and gives the view option to users.

3.2.7 JSClassFinder – A Tool to Detect Class-Like Structures in JavaScript

This program is developed by a team and has two stages the first is preprocessing and the

second is a visualization of the processed results. Moreover, the first step is qualified for the

examination of the AST source code and the creation of object-oriented models which is a

transformation of the initial code [42]. The second step is the access of the user to visualize and

gain the results of the previous process and use the features that he or she might want. To

execute this software you have firstly to run Pharo which is a complete environment for

programming and running object-oriented codes. Like, JSClassFinder Pharo, has many features,

for example, the basic are a live update, hot recompilation and administration [42]. The system

requirements are:

 AST of a JavaScript source code in JSON format

 Pharo image with JSClassFinder

The results of this program are the following metrics:

 Total Number of Classes (NOC)

 Total Number of Attributes (NOM)

 Total Number of Methods (NOA)

 Total Number of Children (subclasses)

 The depth of Inheritance Tree (DIT).

Last but not least, it has a specific architecture which users have to follow in order metrics to be

created and this can be described by the figure below:

Figure 1 : JSClassFinder’s architecture [42]

Software Evolution

CHATZIMPARMPAS ANGELOS 29

3.2.8 AutoHotkey – The Ultimate Automation Scripting Language for Windows

It is a free, open-source custom scripting language for Windows. The first use was to give an

easy keyboard shortcuts or hotkeys access and software automation. With this tool data from

GitHub Projects were gained because the parser can get HTML variables and store them in the

Database. Furthermore, scripts were running and saving the complete web pages that were

needing. So, AutoHotkey helped with the automation of repetitive tasks of the entire

procedure.

3.2.9 Grafana – The Open Platform for Beautiful Analytics and Monitoring

The results are being presented directly from the Database with SQL queries with the use of

Grafana. It is a leading open-source software for time series analytics which supports various

types of Databases. In addition, there are 30 data sources, 27 panels, 16 apps and 461

dashboards available by the time this thesis is being written [43]. With this tool, the display of

the results is pretty straightforward, accurate and nicely presented. Moreover, programmers

can avoid the Excel graph format to present results which is more difficult. It also has the option

to be hosted via the official website or run it manually. Of course, this thesis adapted the

second option. Metrics are presented in five different ways depending on

Name Description

Time Graph The x-axis represents time, and
the data is grouped by time.

Series Graph The data is grouped by series and
not by time. The y-axis still
represents the value.

Histogram It is a kind of bar chart that groups
numbers into areas, often called
buckets or bins. Lower bars show
that fewer data falls in that range.

Spark Lines

They are a great way of seeing the
historical data related to the
summary stat, providing valuable
context at a glance.

Gauge It gives a clear picture of how high
value is in its context. The user
can adjust and set the right
thresholds for specific values.
When a value exceeds the
particular amount that we
mentioned before the color will
change.

Table 8: Presentation of results

Software Evolution

CHATZIMPARMPAS ANGELOS 30

3.3 The JS evolution Tool
In this chapter, the use of the specific software that has been created to receive measurements

is going to be analyzed. So, let’s start with a general use-case of all the programs that this thesis

uses. Firstly, the setup procedure is going to be explained and after that the use-case of the

software to get metrics for one Project of the total number which is 100. Moreover, the next

figure shows in detail the entire process that is used to extract data from the combined JS

evolution tool:

Software Evolution

CHATZIMPARMPAS ANGELOS 31

Figure 2: JS tool combined usage

Software Evolution

CHATZIMPARMPAS ANGELOS 32

The XAMPP has to be downloaded [44], installed and opened with the Apache and MySQL

running (Figure 3). Then the SonarQube must be downloaded [45] from the official website and

has to be executed. To achieve that the user has to run StartSonar Batch File by double-clicking

it (Figure 3).

Figure 3: Starting XAMPP and SonarQube

The thesis folder of the entire project copy must be stored in the following path like this:

“C:\xampp\htdocs\thesis” (Figure 4).

Software Evolution

CHATZIMPARMPAS ANGELOS 33

Figure 4: The entire thesis folder

To get the projects into the local computer, the user has to download [46], install and run the

Git (Git Bash) and also go to the GitHub web page to choose the Projects. In this thesis, the

JavaScript language combined with sort by “Most forks” has been selected (Figure 5). The place

where Git has been installed and the user has to download Projects is

“C:\Users\”Username”\.git.” The commands to Git clone a repository can be shown in the

following picture (Figure 5):

Software Evolution

CHATZIMPARMPAS ANGELOS 34

Figure 5: Git clone of a repository

To analyze and present the results to the SonarQube service which is running on localhost:9000

when you start the StartSonar Batch File the user has to download the SonarQube Scanner [47]

and store it at “C:\Users\”Username”\Downloads.” SonarQube Scanner has a sonar-

scanner.properties file stored in “conf” folder in which some parameters have to be

synchronized with SonarQube. For example the keys of the project same as SonarQube like the

above screenshot (Figure 6):

Figure 6: SonarQube Scanner configurations

If for any reason the tester needs to close the SonarQube there is a StopNTService Batch File

that he or she has to execute to achieve that. Sometimes java.exe must stop to restart and run

Software Evolution

CHATZIMPARMPAS ANGELOS 35

the software again. In this case, you can use the command “taskkill /f /im java.exe” to

terminate java.exe processes that might run in the background and then start SonarQube. The

above programs should be like the following screenshot (Figure 7):

Figure 7: Four main folders necessary for the analysis

Moreover, the AutoHotkey has to be download [48] and installed along with a Desktop shortcut

and the two scripts for making procedures more automatic. To be more specific the following

screenshot shows the three archives needed to be on the Desktop of the Computer (Figure 8):

Figure 8: AutoHotkey and two necessary scripts

Furthermore, a ready-to-use Pharo image with JSClassFinder installed [49] is also essential to

get the other metrics of NOA, NOC, NOM, NOS, and DIT.

Last but not least we have to download and set up Grafana [50]. Because XAMPP needs port

3000 and Grafana also, we can change the Grafana’s port to 8000 at configurations file.

Software Evolution

CHATZIMPARMPAS ANGELOS 36

4. PLATFORM PRESENTATION

The web application has five main web addresses (URLs). URL stands for Uniform Resource

Locator and is a reference to a web resource that specifies its location on a computer network.

 http://localhost/thesis/public/projects/create/{id}

 http://localhost/thesis/public/projects/manualSQ/{id}

 http://localhost/thesis/public/projects/calculations/{id}

 http://localhost/thesis/public/projects/contributors/{id}

 http://localhost/thesis/public/projects/JSClassFinder/{id}

Every URL has its use in the platform. More details are presented in the following chapters from

4.1 to 4.5.

4.1 Creation of the Project and Basic Metrics with the Automated Procedure
First of all, there is a core web page that the software uses to create some vital things as the

Project itself and also simultaneously to get the number of releases (Figure 9).

Figure 9: Projects table in Database

For example at the “http://localhost/thesis/public/projects/create/{id}” the tester can create a

project by adding the id to the URL of the following identifier in the Database that has not been

http://localhost/thesis/public/projects/create/%7bid%7d
http://localhost/thesis/public/projects/create/%7bid%7d
http://localhost/thesis/public/projects/create/%7bid%7d
http://localhost/thesis/public/projects/create/%7bid%7d
http://localhost/thesis/public/projects/JSClassFinder/%7bid%7d
http://localhost/thesis/public/projects/create/%7bid%7d

Software Evolution

CHATZIMPARMPAS ANGELOS 37

established so far. Also, the user has to complete the Author, Name, and Number of Releases of

the exact Project on GitHub (Figure 10).

Figure 10: Main thesis functionality through creation of a new Project

Then, it creates the precise release that the SonarQube is testing and initialize the values to

zero. For example, the last version is shown in the following screenshot (Figure 11):

Figure 11: For every release stats and metrics in Database

Software Evolution

CHATZIMPARMPAS ANGELOS 38

4.2 Generating Basic Metrics with the Manual Procedure
Sometimes the power of a personal computer isn’t enough for this kind of Projects, and the

automated procedure fails to store into the Database the metrics that will after be used for the

evaluation of the Software Evolution. In addition, to generate the variables for testing the

validity of Lehman’s Laws as the 4.3 chapter mentions a manual procedure has to be done.

When lots of zeros are presented to the Database, this means something went wrong and the

execution of SonarQube manually is essential. For example, the release with id 1285 has been

skipped (Figure 12).

Figure 12: Zeros in a line in Database at 1285 identifier and version name 2.9.1.1

The Project id is 14, so if the user goes to Projects table, he or she can determine the author

and name of the Project. In this case, author name is “alvarotrigo” and name of the Project

“fullPage.js.” Then the tester has to find the exact tag of the version in a coded format which is

“eac6956” in our case. The website will be https://github.com/”author name”/”project

name”/releases/tag/”version name” and in our example

https://github.com/alvarotrigo/fullPage.js/releases/tag/2.9.1.1 (Figure 13).

https://github.com/alvarotrigo/fullPage.js/releases/tag/2.9.1.1

Software Evolution

CHATZIMPARMPAS ANGELOS 39

Figure 13: Specific’s release tag from GitHub official website

Afterwards, the encoded tag must be set to the folder with the command “git reset –hard

“tag”” for the exact Project name (Figure 14). The location of the folder is known from the 3.3.1

chapter.

Figure 14: Setting release’s tag manually to Git for SonarQube Scanner

Software Evolution

CHATZIMPARMPAS ANGELOS 40

To run and start the scanning of a release the user already set before with the tag the same

location must be accessed through a command prompt. And then

C:\Users\”Username”\Downloads\sonar-scanner\3.0.3.778-windows\bin\sonar-scanner.bat

path must be executed from the first location mentioned before (Figure 15).

Figure 15: Manual execution of SonarQube Scanner

When the “Execution Success” message appears the tester has to browse at

http://localhost:9000/component_measures?id=Thesis (Figure)and save the page as a

complete web page at the C:\Users\”Username”\Downloads\thesis with the name “Measures –

Thesis.”

http://localhost:9000/component_measures?id=Thesis

Software Evolution

CHATZIMPARMPAS ANGELOS 41

Figure 16: Save results from SonarQube server to HTML format

Lastly, the following page must be used to store the data from the web page to the Database.

The last variable in the URL is modified in relation to the id that user tried to fix (Figure 17).

Figure 17: Store results in the Database for a specific identifier

4.3 Calculations from the Existing Measurements
After finishing with the above two chapters and tester has everything that is being needed,

some calculations have to be done to find the measurements that are going to verify the

Software Evolution of open-source Programs. More details about these metrics are on 4.9

chapter. The screenshot (Figure 18) shows the execution of the exact URL starting from id = 1

because we want this counts from the first Project stored in the Database. A similar procedure

is being used for the contributors at the next chapter (4.4).

Figure 18: Perform calculations for all the releases

Software Evolution

CHATZIMPARMPAS ANGELOS 42

4.4 Receiving the Contributors and Stats of Them for Every Project
The general metrics for the Project are being saved to the Database from the 4.1 automated

procedure and as another form which are the Contributors of the Project. The maximum

available stats for Contributors could be 100 or less. By running the Figure’s URL (Figure 19), the

contributors are being stored to the Database one by one for every Project the project’s table

has information. It is an automated procedure and similar to 4.4 chapter.

Figure 19: Store the maximum of 100 contributors in the Database

4.5 JSClassFinder Variables Added to the Thesis Database
Raspberry Pi 3 model B has been used for taking some additional metrics that 3.2.7 chapter

mentions with every detail. For every project and release, we set the path to the version the

tester wants to accumulate the excess metrics. To do that he or she has to place after “/s”

(source) parameter the path “C\Users\”Username”\Downloads\thesis\”Release name”*.js.

The “*” means that the tester needs every folder and subfolder of this release that has an

ending of .js (JavaScript files). The “/y” means to accept all the files to be copied to the text file

that the user defines later with the path “C:\Users\”Username”\Desktop\”File name.txt”

(Figure 30).

Figure 20: Generate a file from every JavaScript file in a release

Software Evolution

CHATZIMPARMPAS ANGELOS 43

To continue with the process, there is a web page called http://esprima.org/demo/parse.html

in which the user has to copy the content of the text file, for example, AST_TREE.txt we have

here to the left column of the site. And then the right side will generate the AST tree (Abstract

syntax tree) of the JavaScript code we gave at the first time (Figure 31).

Figure 21: Parse the generic file and export the AST tree

Afterwards, the content of the right column on this website must be copied to a new folder

with the name “ast.json” or whatever the tester wants it to be called (Figure 32). Because in

this thesis an external use of a Raspberry Pi 3 model B as another computer has been used it is

necessary to transfer this file with WinSCP at the “home/pi/pharo” path (Figure 33).

http://esprima.org/demo/parse.html

Software Evolution

CHATZIMPARMPAS ANGELOS 44

Figure 22: Copy and paste the AST tree to a JSON file

Figure 23: Send JSON file to JSClassFinder

Then to execute the JSClassFinder software, Pharo must be running. To do so (Figure 34) we get

to the installation folder and run the JSClassFinder image that was embedded to Pharo.

Software Evolution

CHATZIMPARMPAS ANGELOS 45

Figure 24: Execution of JSClassFinder image and Pharo

Moreover, the tester has to load the .json file that previously was put on the right spot. He or

she has to set a Name to determine the results and write only the file name for example “ast”

without the .json ending (Figure 35).

Software Evolution

CHATZIMPARMPAS ANGELOS 46

Figure 25: Run ast file for analysis

After a while, the results will be appeared (Figure 26), and we need them stored in the

Database. To achieve that there is a URL with the name “JSClassFinder” in which everyone can

put the specific identifier (id) and set these variables (Figure 28). At the same time, we have to

compute the incremental changes. We go to every release web page, for example,

https://github.com/hexojs/hexo/compare/3.2.1...master and search with Ctrl+F the word

“function” (Figure 27). Then we store the result at the “incremental changes” field. The system

will multiply this value by a 40% because some of these functions are not truly changed but

added or deleted. The last number the system get will be added to the “incremental growth”

value, and that will eventually be the “incremental changes” (Figure 28).

https://github.com/hexojs/hexo/compare/3.2.1...master

Software Evolution

CHATZIMPARMPAS ANGELOS 47

Figure 26: Results from JSClassFinder software

Figure 27: Search for “function” key-word in GitHub for every release

Software Evolution

CHATZIMPARMPAS ANGELOS 48

Figure 28: Store the results in the Database

Note that the identifier (id) changes automatically every time the user adds the above

measurements to the Database.

4.6 General Fixes to Common Problems
Two are the most common problems that may occur. The first one is the automated saving

procedure to get stuck because of insufficient CPU power to make the whole SonarQube

analysis and run the scripts. To fix that the tester has to save and replace the file HTML file

manually only at this point and then everything will run fine (Figure 29). Note that the

SonarQube needs empty browser tabs to run flawlessly. So, all computer resource must be

focused on the task of analysis. The second is to store zeros to the Database like the initial state

and to check if it is right or wrong decision of the system, the user has to execute a manual

analysis as chapter 4.2 mentioned before.

Software Evolution

CHATZIMPARMPAS ANGELOS 49

Figure 29: Fixing an underlying problem of automated procedure

4.7 Creation of Charts with the Use of Grafana
After installing and setting up Grafana, we execute “grafana-server” file to localhost:8000 and

find our Database (Figure 30). After that, we go to dashboards and create Graphs using SQL

queries (Figure 31). Each Graph is being fixed to show the metrics the user already had stored

like in this thesis. The chapter 3, in general, presents all the results and conclusions from the

charts that Grafana generated. Grafana is the best way to show the results of this survey in a

user-friendly form.

Software Evolution

CHATZIMPARMPAS ANGELOS 50

Figure 30: Connection to Database and Grafana

Figure 31: Creation of charts via SQL queries

4.8 Important Parts of Code
There are comments at the entire code, but in this chapter, the critical parts will be explained.

The main file is ProjectsController where all the functionality is there. There are two big loops

one for every page on GitHub that has ten releases and the second for the last page in which

Software Evolution

CHATZIMPARMPAS ANGELOS 51

releases number may vary. The essential parts are in the following sectors of the thesis project

(Figure 32):

Figure 32: Paths of basic code
segments

Software Evolution

CHATZIMPARMPAS ANGELOS 52

An uncertain number of GitHub projects has different commits URL. To get data referring to

commits, the tester has to change the “…develop” line to the right one for the exact project

(Figure 33). For example, some endings are “…latest,” “…dev,” etc.

Figure 33: Part of code that might change for some GitHub projects

Furthermore, there is a script that allows the software to download zip files for all releases to

get tested later with the JSClassFinder (Figure 34) as chapter 4.5 explained before.

Figure 34: Download of zip file for every release

4.9 Details of the Values (Metrics) Obtained
The following tables have every detail for all the metrics that this thesis used. It also contains

calculations and more general information of each one of them. The first table is about the

fundamental metrics for every release of each project. Then at the second and third tables,

there are details for the general variables of projects.

Metric Calculation Description

Software Evolution

CHATZIMPARMPAS ANGELOS 53

Name of Every Release
(name)

- For every release, names are
being stored.

Release Date (rel_date)

- For every release, the release
date is being stored.

Maintenance Effort
(maintenance_effort)

Incremental Changes /
Days Between Releases

The effort of programmers to
change and update the
project.

Commits (commits)

- The number of commits.

Number of Bug-Related
Commits
(NOBug_related_commits)

Bugs Difference*(-1) /
Commits

The number of commits that
are being associated with the
solution of some bugs.

Bugs (bugs) - The number of bugs.

Bugs Difference bugs[recent_release] –
bugs[previous_release]

For every release bugs, the
previous release bugs are
being subtracted. The initial
state of these calculations is
the newest release.

Vulnerabilities
(vulnerabilities)

- Number of vulnerabilities.

Code smells (code_smells) - Number of code smells.

Maintainability
(maintainability)

Remediation cost / (Cost to
develop 1 line of code *
Number of lines of code)
[66]

 Remediation cost: The cost to fix
each issue from the rule is the
same, and the formula is: The
total remediation cost per file =
number of issues x constant.
The ratio between the cost to
develop the software and the
cost to fix it. The value of the
cost to develop a line of code is
0.06 days. [66]

Files Analyzed
(files_analyzed)

- The number of files.

Directories (directories) - The number of directories.

Statements (statements) - The number of statements.

Number of Functions (NOF)

- The number of functions.

Number of Attributes
(NOA)

- The number of attributes.

Software Evolution

CHATZIMPARMPAS ANGELOS 54

Number of Classes (NOC) - The number of classes (including
nested classes, interfaces,
enums and annotations).

Number of Methods (NOM) - The number of methods.

Number of Subclasses
(NOS)

- The number of children
(subclasses).

Depth of Inheritance Tree
(DIT)

- Is defined as “the maximum
length from the node to the
root of the tree” [67]

Lines of Code (LOC) - The number of physical lines
that contain at least one
character which is neither a
whitespace or a tabulation or
part of a comment. [66]

Total Lines (Total_lines) - The number of physical lines.

Comments (comments) Total Lines (Total_lines) –
Lines of Code (LOC)

The number of lines containing
either comment or commented-
out code.

Non-significant comment lines
(empty comment lines,
comment lines containing only
special characters, etc.) do not
increase the number of
comment lines. [66]

Comments Rate
(comments_rate)

Density of comment lines
= Comments / (Lines of
code + Comments) * 100
[66]]]

With such a formula:

 50% means that the
number of lines of code
equals the number of
comment lines.

 100% means that the
file only contains
comment lines. [66]

Incremental Changes
(incremental_changes)

Functions Added or
Removed + Functions
Modified

The number of functions that
have been added removed and
modified in total.

Incremental Growth
(incremental_growth)

Functions Added or
Removed

The number of functions that
have been added and removed
in total.

Growth Rate (growth_rate) Functions Added or
Removed / Days Between
Releases

The number of functions that
have been added and removed
in total divided by Days
Between Releases.

Software Evolution

CHATZIMPARMPAS ANGELOS 55

Days Between Releases
(dif_days)

rel_date[recent_release] –
rel_date[previous_release]

For every release date, I
subtract the previous release
date. The initial state of these
calculations is the newest
release.

Duplicated Lines Rate
(duplicated_lines_rate)

Density of duplication
= Duplicated Lines / Total
Lines * 100

It is the % ratio of Duplicated
Lines divided by Total Lines.

Duplicated Blocks
(duplicated_blocks)

- The number of duplicated
blocks of lines.

For a block of code to be
considered as duplicated:

 There should be at least
100 successive and
duplicated tokens.

 Those tokens should be
spread at least on ten
lines of code.

Differences in indentation as
well as in string literals are
ignored while detecting
duplications. [66]

Duplicated Lines
(duplicated_lines)

- The number of lines involved in
duplications.

Duplicated Files
(duplicated_files)

- The number of files involved in
duplications.

Complexity (complexity) Cyclomatic Complexity
Number / Lines of Code
(CCN/LOC)

The Cyclomatic Complexity
Number divided by the Lines
of Code.

Cyclomatic Complexity
Number (CCN)

- It is the complexity calculated
based on the number of paths
through the code. Whenever
the control flow of a function
splits, the complexity counter
gets incremented by one.
Each function has a minimum
complexity of 1. [66]

Cyclomatic Complexity
Number / Function
(complexity_function)

- Average complexity by function.

Cyclomatic Complexity
Number / File
(complexity_file)

- Average complexity by file.

Software Evolution

CHATZIMPARMPAS ANGELOS 56

Cyclomatic Complexity
Number / Class
(complexity_class)

Cyclomatic Complexity
Number / Number of
Classes (CCN / NOC)

Average complexity by class.

Cognitive Complexity
(cognitive_complexity)

- How hard it is to understand the
code's control flow. [66]

Issues (issues) - SonarQube raises an issue every
time a piece of code breaks a
coding rule.

Table 9 (Releases Stats Table): Metrics used to this thesis for validation of
each Lehman law to every GitHub JavaScript program

Metric Description

Author (author) The author name of the GitHub Project.

Name (name) The name of the GitHub Project.

Number of Releases (number_rel) The number of releases of a GitHub Project
so far.

Project Commits (proj_commits) How many commits every Project has in
total.

Contributors (contributors) The number of contributors this Project has.

Watch (watch) The number of people watching a repository
and want to get notifications from it.

Star (star) This is the number of tracking Projects
repositories that people submitted.

Fork (fork) Is the number of copies of a repository that
allows doing experiments with it. It also
offers the possibility to change the path of
the primary reason that a Project has been
created for.

Open Issues (open_issues) How many issues are being submitted and
don’t have a solution.

Closed Issues (closed_issues) The number of resolved Issues that
developers found a solution.

Table 10 (Projects Table): General statistics metrics for every Project that has
been tested

Name (name) This is the name of the contributor.

Project Commits (proj_commits) The number of commits has every
contributor in every Project.

Additions (add) How many added parts of the basic code

Software Evolution

CHATZIMPARMPAS ANGELOS 57

had been done.

Deletions (delet) How many deleted parts of the basic code
has been done.

Table 11 (Contributors Table): Top 100 contributors to a Project with most
commits

Software Evolution

CHATZIMPARMPAS ANGELOS 58

5. RESULTS AND CONCLUSIONS

In this chapter, the results are going to be presented. The first part will have general

information on how to test the results we already have collected. Afterwards, general metrics

for the 100 projects will be presented with the help of Grafana charts. To continue with, for

each one of the Lehman’s laws of evolution, we have a table with results from the Mann-

Kendall trend test [64] that we have already executed. Furthermore, we are going to draw

conclusions about the Software Evolution of 100 projects and understanding whether

JavaScript programs comply with the laws of evolution. Tables show results for 40 of the 100

projects but despite that analysis has performed to all the samples. The last part of this section

after the validation of the laws is a sort comparison between JavaScript and other programming

languages findings referring to evolution.

5.1 General Stats for JS projects
In the seven following graphs, we present general statistics about the projects we analyzed. The

1st figure out of 7 displays the “Number of Releases” for these 100 projects. Most of our

programs have at least 50 official versions which make the research more reliable. The 2nd

shows the “Number of Commits” in total for every project. As we can notice JavaScript

programs have thousands of commits by their developers. They fix, update, improve and

maintain the software on a regular basis. The 3rd and 5th figures indicate the popularity of the

GitHub projects we tested. In addition, the 4th figure which is about the different forks (changed

versions) of a program is the filter that we used in GitHub. That’s why the charts are going from

the higher value to the lowest. In the end, we have the last two graphs that are for the open

and closed issues of a project which are indicating the effort of programmers to respond to

customer’s questions and meet their expectations in future updates.

Software Evolution

CHATZIMPARMPAS ANGELOS 59

Figure 35: Number of releases for each project

Figure 36: Number of commits for each project

Software Evolution

CHATZIMPARMPAS ANGELOS 60

Figure 37: Number of watches for each project

Figure 38: Number of forks created for each project

Software Evolution

CHATZIMPARMPAS ANGELOS 61

Figure 39: Number of Stars for each project

Figure 40: Number of open issues for each project

Software Evolution

CHATZIMPARMPAS ANGELOS 62

Figure 41: Number of closed issues for each project

5.2 Database Results Preparation for Analysis
After we collected data for projects we want to test, in our case written in JavaScript, we export

the "releases_stats" table in a CSV for MS Excel format. The following figures show the exact

procedure which is quite simple.

 First, we have to select the exact table we want to export in an MS Excel format.

Figure 42: Selection of table

 Then go to Export tab and select as an export method the “Custom – display all possible

options” which is the second option of the two. As a format, we choose “CSV for MS

Excel” option (Figure 36). Afterwards, we selected the “Put columns names in the first

row” option in the “Format-specific options section and pressed the “Go” button to

download the file (Figure 37).

Software Evolution

CHATZIMPARMPAS ANGELOS 63

Figure 43: Configurations of the export

Figure 44: The last configuration for the export to be performed

After this procedure, we open the file and change “Text to Columns” in “Data” tab of the Excel.

By clicking on this option, we gain access to a menu in which we separate the characters by the

semicolon (Figure 38, Figure 39). We did all that to move the results from the first cell and make

different cells for each one of the metrics. Note that the rel_date column must be formatted in

“Category: Date” and “Type: 3/14/2012”.

Software Evolution

CHATZIMPARMPAS ANGELOS 64

Figure 45: Delimited cells

Software Evolution

CHATZIMPARMPAS ANGELOS 65

Figure 46: Semicolon option for separation of the entire first column

For the two-sample Kolmogorov-Smirnoff test we need to find the elapsed time in days from

the initial release with the following command:

 “=DAYS(all values of rel_date table for each project_id, last value of rel_date table for

each project_id)”

An example of this command for the project_id=1 would be: “=DAYS(D2, D43)”. The “$”

symbol is to keep everywhere as a constant the exact cell.

Afterwards, we create a new column that has the theoretical values of growth rate. To do so,

we need to execute the command that follows:

 “=IFERROR(POWER(first row in the column we calculated before “:” last row in the

column we calculated before,-2/3),0)”

An example of this command for the first 40 projects would be: “=IFERROR(POWER(F2 “:”

F3110,-2/3),0)”. The IFERROR() function is set to 0 to protect from division by zero value.

Also, POWER() function calculates the theoretical approach of growth rate [64]. So, we

power the values in a specific manner which is t^-2/3. The “t” argument is the elapsed time

from the initial release we calculated before.

Software Evolution

CHATZIMPARMPAS ANGELOS 66

With the use of XLSTAT (trial version) a Mann-Kendall trend test performed for every important

metric we calculated. For the last table (Growth Rate) we performed a two-sample

Kolmogorov-Smirnoff test. In the section below we check 12 metrics for the whole eight laws.

Each metric corresponds to a specific law.

5.3 Validation of the Software Evolution
In this chapter, one section for each of the law is going to presented to validate or not every

one of them. We are going to present results and conclusions for 40 projects, but the same

attitude can be observed in the other 60 projects. We have acquired measurements for a total

of 100 JavaScript projects. For some laws statistically significant conclusions missing, because

there aren’t enough evidence to declare the law as validated or not. But if there is a lack of a

noticeable trend and we are in the previous case, we will announce the law that it might be

practically validated or not. Each test has two hypothesis:

 H0: Metric x exhibits no trend

 H1: Metric x exhibits a trend

Where “x” is the exact metric, we tested for each law. The “p-value” is to assure the truth of

the result and a “p-value > 0.05” is considered safe to be accepted. The trend for every project

generated from the sign of the Slope number. If it is positive, we have a positive trend, and in

the other case, it will be opposite. Note that all Grafana charts are presented with the option

“stack,” to help us make conclusions from these efficiently and accurately. This option sends

each project on top of the other and so on.

5.3.1 Law I: Continuing Change

To check the 1st law, the “Days Between Releases” (DBR) metric is statistically tested. As we can

observe (Table 12) in 2 samples, we haven’t any slope which means that there is no evidence of

a statistical trend, in 25 we have negative trend and in 13 a positive one. A positive trend in DBR

implies that the frequency at which new releases are published decreases. To be more specific

a positive trend weakens the validity of the law. However, as we can see we have more projects

with a negative trend which corresponds to validation of the law. One important thing is to

observe the rate of changes and to do so; we used Grafana to plot a stack (cumulative) of 40

projects (Figure 40). The chart has lots of fluctuations, and an exact rate of change between the

commits of new releases cannot be concluded. The percentage of changes seems to increase

and the Law to be accurate if we check the number of projects with a positive trend in

Software Evolution

CHATZIMPARMPAS ANGELOS 67

comparison to the negative but this hypothesis isn’t right for every JavaScript project. In

conclusion the Law I is validated, but the rate of change is unknown.

Days Between Releases (DBR)

 Project p-
value

Tren
d

Slope
(%)

 Project p-
value

Tren
d

Slope
(%)

1 bootstrap 0.004 ↓ -1.533 21 swagger-ui 0.043 ↑ 0.063

2 react 0.626 ↑ 0.032 22 pdf.js 0.328 ↓ -0.200

3 jquery 0.346 23 jquery-ui 0.002 ↓ -0.375

4 three.js <
0.000
1

↓ -0.614 24 bootstrap-
datepicker

0.036

↓ -0.848

5 javascript 1.000 25 materialize <
0.000
1

↓ -1.267

6 html5-
boilerplate

0.003

↓ -2.929

26 webpack 0.001 ↓ -0.006

7 vue 0.848 27 mean 0.060 ↓ -5.182

8 Chart.js 0.990 28 dropzone 0.001 ↓ -0.053

9 redux ∼0.00
0

↓ -0.083 29 react-starter-kit 0.386

↓ -7.050

1
0

echarts 0.316 ↑ 0.138 30 Leaflet 0.046 ↓ -0.925

1
1

express ∼0.00
0

↑ 0.010 31 ember.js 0.002 ↑ 0.007

1
2

brackets 0.132 ↑ 0.063 32 ui-grid 0.015 ↓ -0.063

1
3

Ghost 0.009 ↑ 0.063 33 hexo <
0.000
1

↓ -0.087

1
4

fullPage.js 0.201 ↓ -0.099 34 pixi.js 0.202 ↓ -0.056

1
5

material-ui <
0.000
1

↑ 0.032

35 lodash <
0.000
1

1
6

angular-
starter

0.150 ↓ -6.0 36 jquery-validation 0.187

↓ -8.706

1
7

video.js 0.377 ↑ 0.778 37 Rocket.Chat 0.357

1
8

moment 0.133 ↓ -0.233 38 vuex 0.05 ↓ -0.221

1
9

underscor
e

<
0.000

↓ -0.748 39 Modernizr 0.661 ↓ -0.3

Software Evolution

CHATZIMPARMPAS ANGELOS 68

1

2
0

select2 0.71 ↓ -0.168 40 hammer.js 0.139 ↓ -0.517

Table 12: Statistical results on law I (continuing change).

Figure 47: DBR chart for 40 Projects

5.3.2 Law II: Increasing complexity

To check the 2nd law, the “Complexity” metric is statistically tested. As we can observe (Table

13) in 24 samples, we haven’t any slope which means that there is no evidence of a statistical

trend, in 6 we have negative trend and in 10 a positive one. A negative trend or a no trend at all

means that Complexity remains at the same levels and weakens the validity of the law. Figure

41 validates the statistical analysis we performed and indicates that there isn’t any slope in

most projects. As we can see we have more projects with a negative or no trend which

corresponds not to validate the law. Maybe there is a maintenance effort from the developers

to keep low the complexity level of the JavaScript software that they produce. In conclusion,

the Law II is not practically and statistically validated.

Complexity: CCN / LOC

 Project p-
value

Tren
d

Slope
(%)

 Project p-
value

Tren
d

Slope
(%)

1 bootstrap <
0.000
1

↑ 0.003 21 swagger-ui 0.004

2 react 0.000 22 pdf.js <
0.000

↓ -0.001

Software Evolution

CHATZIMPARMPAS ANGELOS 69

1

3 jquery <
0.000
1

↑ 0.001

23 jquery-ui 0.034

4 three.js <
0.000
1

↓ -0.002

24 bootstrap-
datepicker

0.048

5 javascript <
0.000
1

 25 materialize 0.072

6 html5-
boilerplate

0.034

↑ 0.006

26 webpack <
0.000
1

7 vue <
0.000
1

 27 mean 0.193 ↓ -0.001

8 Chart.js 0.002

↑ 0.002

28 dropzone <
0.000
1

9 redux <
0.000
1

 29 react-starter-kit 0.076

↑ 0.026

1
0

echarts 0.008 30 Leaflet 0.008 ↓ -0.001

1
1

express <
0.000
1

 31 ember.js 0.621

1
2

brackets <
0.000
1

↑ 0.001

32 ui-grid <
0.000
1

1
3

Ghost <
0.000
1

↑ 0.001

33 hexo <
0.000
1

1
4

fullPage.js <
0.000
1

 34 pixi.js <
0.000
1

↑ 0.001

1
5

material-ui 0.048 35 lodash <
0.000
1

1
6

angular-
starter

0.454 36 jquery-validation 0.029

↓ -0.008

1
7

video.js 0.724 37 Rocket.Chat <
0.000

↓ -0.001

Software Evolution

CHATZIMPARMPAS ANGELOS 70

1

1
8

moment 0.174 38 vuex <
0.000
1

1
9

underscor
e

<
0.000
1

↑ 0.001 39 Modernizr <
0.000
1

2
0

select2 0.021 ↑ 0.001 40 hammer.js 1.000

Table 13: Statistical results on law II (increasing complexity).

Figure 48: Complexity chart for 40 Projects

5.3.3 Law III: Self-Regulation

To check the 3rd law, the “Incremental Growth” metric is statistically tested. As we can observe

(Table 14) in 24 samples, we haven’t any slope which means that there is no evidence of a

statistical trend, in 6 we have negative trend and in 10 a positive one. A positive trend means

that Incremental Growth increases and the validity of the law strengthened. As we can see

more than 50% of projects have no trend at all and the other portion remaining has a negative

or positive trend. Furthermore, to test the practical validation of the law, we created the Figure

42. In this chart, (Figure 42) there are fluctuations regarding the increase or decrease of

incremental growth of methods and functions. If JavaScript projects had more stable gradual

growth, we could call the law practically validated, but this doesn’t happen in our tests. In

conclusion, the Law III is practically but not statistically confirmed.

Incremental Growth

 Project p-
value

Tren
d

Slope
(%)

 Project p-
valu

Tren
d

Slope
(%)

Software Evolution

CHATZIMPARMPAS ANGELOS 71

e

1 bootstrap 0.777 21 swagger-ui 0.96
4

2 react 0.581 ↑ 0.024 22 pdf.js 0.29
9

↑ 0.198

3 jquery 0.276 ↓ -0.243 23 jquery-ui 0.44
7

↑ 0.273

4 three.js 0.002 ↑ 1.407 24 bootstrap-
datepicker

0.91
0

5 javascript 0.130 25 materialize 0.18
7

↑ 1.0

6 html5-
boilerplate

0.362

 26 webpack 0.04
1

7 vue 0.482 ↑ 0.029

27 mean 0.72
3

8 Chart.js 0.160 ↑ 0.406 28 dropzone 0.77
0

9 redux 0.561 29 react-starter-kit 0.23
2

↑ 0.367

10 echarts 0.578 ↓ -0.337 30 Leaflet 0.42
7

11 express 0.642 31 ember.js 0.34
7

12 brackets <
0.000
1

↓ -1.691 32 ui-grid 0.48
1

13 Ghost 0.208 ↓ -0.167 33 hexo 0.09
4

14 fullPage.js 0.688 34 pixi.js 0.30
6

15 material-ui 0.064 ↓ -0.075 35 lodash 0.11
4

16 angular-
starter

0.036 ↑ 0.500

36 jquery-validation 0.95
9

17 video.js 0.241 ↓ -1.0 37 Rocket.Chat 0.79
3

18 moment 0.821 38 vuex 0.48
7

Software Evolution

CHATZIMPARMPAS ANGELOS 72

19 underscore 0.687 39 Modernizr 0.73
6

20 select2 0.708 ↑ 0.033 40 hammer.js 0.36
7

Table 14: Statistical results on law III (self-regulation).

Figure 49: Incremental Growth chart for 40 Projects

5.3.4 Law IV: Conservation of Organizational Stability

To check the 4th law, the “Maintenance Effort” and “Number of Commits” metrics are

statistically tested. As we can observe (Table 15) for the “Maintenance Effort” metric in 12

samples, we haven’t any slope which means that there is no evidence of a statistical trend, in

13 we have negative trend and in 15 a positive one. The visual interpretation of Figure 43

indicates that in general, the work rate doesn’t increase or decrease drastically as the projects

evolve. Moreover, for the “Number of Commits” variable in 4 samples we haven’t any slope

which means that there is no evidence of a statistical trend, in 1 we have negative trend and in

35 a positive one. There is a problem with all these positive trend measurements in “Number of

Commits” metric, and it is the p-value which is significantly less than the p-value = 0.05

threshold. To explain it in another way the 35 positive trends are statistically inaccurate. That’s

why we plotted the metric with the help of Grafana charts (Figure 44). In Figure 44 we can

observe the declining slope indicating that the commits are becoming less as developers

publish new releases. The maintenance effort remains the same despite the commits that are

reduced over time. In conclusion, the Law IV is not statistically but practically validated.

Maintenance Effort

 Project p- Tren Slope Project p- Tren Slope

Software Evolution

CHATZIMPARMPAS ANGELOS 73

value d (%) value d (%)

1 bootstrap 0.803 ↑ 0.008 21 swagger-ui 0.118 ↓ -0.032

2 react 0.623 22 pdf.js 0.476 ↑ 0.016

3 jquery <
0.000
1

↑ 0.009 23 jquery-ui 0.424 ↑ 0.052

4 three.js 0.014 ↑ 0.057 24 bootstrap-
datepicker

0.549

↓ -0.03

5 javascript 0.224 ↑ 0.007 25 materialize 0.022 ↑ 0.309

6 html5-
boilerplate

0.718

 26 webpack 0.018

↑ 0.047

7 vue 0.163 27 mean 1.000 ↑ 0.009

8 Chart.js 0.958 ↓ -0.005 28 dropzone 0.222

9 redux 0.140 ↓ -0.027 29 react-starter-kit 0.158

↑ 0.320

1
0

echarts 0.115 ↓ -0.198 30 Leaflet 0.479 ↑ 0.050

1
1

express 0.028 ↑ 0.05

31 ember.js 0.493

1
2

brackets <
0.000
1

↓ -0.252

32 ui-grid 0.944

1
3

Ghost 0.007 ↓ -0.300 33 hexo 0.266

1
4

fullPage.js 0.185 ↑ 0.021 34 pixi.js 0.455 0.007

1
5

material-ui 0.401 35 lodash 0.669

1
6

angular-
starter

0.424

↑ 0.090

36 jquery-validation 0.902

↓ -0.003

1
7

video.js 1.000 37 Rocket.Chat 0.092 ↓ -0.053

1
8

moment 0.307 ↓ -0.092 38 vuex 0.562

1
9

underscor
e

0.001 ↑ 0.149 39 Modernizr 0.404 ↓ -0.097

2
0

select2 0.865 ↓ -0.011 40 hammer.js 0.589 ↓ -0.044

Number of Commits

 Project p-
value

Tren
d

Slope
(%)

 Project p-
value

Tren
d

Slope
(%)

1 bootstrap < ↑ 279.34 21 swagger-ui < ↑ 31.896

Software Evolution

CHATZIMPARMPAS ANGELOS 74

0.000
1

8 0.000
1

2 react <
0.000
1

↑ 121.51
9

22 pdf.js <
0.000
1

↑ 94.610

3 jquery <
0.000
1

↑ 43.019 23 jquery-ui <
0.000
1

↑ 4.775

4 three.js 0.057 ↑ 1.396 24 bootstrap-
datepicker

<
0.000
1

↑ 39.929

5 javascript <
0.000
1

↑ 11.6 25 materialize <
0.000
1

↑ 87.158

6 html5-
boilerplate

<
0.000
1

↑ 50.0

26 webpack <
0.000
1

↑ 8.029

7 vue <
0.000
1

 27 mean <
0.000
1

↑ 96.857

8 Chart.js 0.564 ↓ -0.154 28 dropzone <
0.000
1

↑ 8.861

9 redux <
0.000
1

↑ 49.339

29 react-starter-kit 0.001 ↑ 57.833

1
0

echarts <
0.000
1

↑ 71.308 30 Leaflet 0.001 ↑ 142.80
6

1
1

express <
0.000
1

↑ 12.548

31 ember.js <
0.000
1

↑ 44.091

1
2

brackets <
0.000
1

↑ 123.94
7

32 ui-grid <
0.000
1

↑ 53.960

1
3

Ghost <
0.000
1

↑ 64.558 33 hexo 0.730

1
4

fullPage.js <
0.000
1

↑ 12.890 34 pixi.js <
0.000
1

↑ 63.000

1
5

material-ui 0.790 35 lodash <
0.000

Software Evolution

CHATZIMPARMPAS ANGELOS 75

1

1
6

angular-
starter

<
0.000
1

↑ 69.667

36 jquery-validation <
0.000
1

↑ 51.718

1
7

video.js 0.015 ↑ 4.2 37 Rocket.Chat <
0.000
1

↑ 90.975

1
8

moment <
0.000
1

↑ 64.929 38 vuex <
0.000
1

↑ 5.459

1
9

underscor
e

<
0.000
1

↑ 19.593 39 Modernizr <
0.000
1

↑ 78.0

2
0

select2 <
0.000
1

↑ 64.333 40 hammer.js <
0.000
1

↑ 42.415

Table 15: Statistical results on law IV (conservation of organizational stability).

Figure 50: Maintenance Effort chart for 40 Projects

Software Evolution

CHATZIMPARMPAS ANGELOS 76

Figure 51: Number of Commits chart for 40 Projects

5.3.5 Law V: Conservation of Familiarity

To check the 5th law, the “Incremental Changes” metric is statistically tested. As we can observe

(Table 16) in 4 samples, we haven’t any slope which means that there is no evidence of a

statistical trend, in 19 we have negative trend and in 17 a positive one. Figure 45 has identical

results as “Incremental Growth” of the 3rd law with the only difference that the graph is

positively displaced because of the addition of changed functions and methods. We combined

the statistical and practical results and observed that in some projects the trend is increasing

and in others decreasing but not throughout the whole project's releases. These fluctuations

that are presented and the divided in half statistical results conclude that some projects have a

positive trend which implies that the number of functions is added or changed increases, but it

will be wrong to happen continuously in every project. On the other hand, other projects have a

negative trend which implies that fewer functions are added or changed over time, and the

project is almost extinct. In conclusion, the Law V is not practically and statistically validated.

Incremental Changes

 Project p-
value

Trend Slope
(%)

 Project p-
value

Trend Slope
(%)

1 bootstrap 0.259 ↓ -0.7 21 swagger-ui 0.497 ↑ 0.029

2 react 0.101 ↓ -0.514 22 pdf.js 0.571 ↑ 0.629

3 jquery 0.096 ↓ -0.515 23 jquery-ui 0.666 ↑ 0.412

4 three.js 0.006 ↑ 1.4 24 bootstrap-
datepicker

0.398

↓ -0.699

5 javascript ∼0.000 ↑ 0.133 25 materialize 0.205 ↑ 1.7

Software Evolution

CHATZIMPARMPAS ANGELOS 77

6 html5-
boilerplate

0.895 26 webpack 0.041

7 vue 0.577 ↑ 0.056 27 mean 0.487 ↓ -3.1

8 Chart.js 0.340 ↑ 0.442 28 dropzone 0.777

9 redux 0.439 ↑ 0.220 29 react-starter-kit 0.902 ↑ 0.458

10 echarts 0.293 ↓ -1.427 30 Leaflet 0.320 ↑ 0.628

11 express 0.485 ↑ 0.065 31 ember.js 0.381 ↓ -0.033

12 brackets <
0.0001

↓ -3.381

32 ui-grid 0.549 ↑ 0.400

13 Ghost 0.111

↓ -0.286

33 hexo 0.117 ↓ -0.263

14 fullPage.js 0.373 ↑ 0.067 34 pixi.js 0.086 ↑ 0.212

15 material-ui 0.041 ↓ -0.164 35 lodash 0.114

16 angular-
starter

0.085

↑ 1.200

36 jquery-validation 0.650 ↓ -0.833

17 video.js 0.390 ↓ -3.000 37 Rocket.Chat 0.775 ↓ -0.045

18 moment 0.752 ↓ -0.278 38 vuex 0.710 ↓ -0.131

19 underscore 0.425 ↑ 0.057 39 Modernizr 0.786 ↓ -0.053

20 select2 0.889 ↓ -0.270 40 hammer.js 0.052 ↓ -1.928

Table 16: Statistical results on law V (conservation of familiarity).

Figure 52: Incremental Changes chart for 40 Projects

5.3.6 Law VI: Continuing Growth

To check the 6th law, the “Lines of Code” metric is statistically tested. As we can observe (Table

17) in 1 samples, we haven’t any slope which means that there is no evidence of a statistical

Software Evolution

CHATZIMPARMPAS ANGELOS 78

trend, in 34 we have negative trend and in 2 a positive one. Despite the biggest amount of

negative trend, in general, the p-value is far less than the accepted 0.05 value. However, the

two projects with positive trend have a p-value > 0.05. Figure 46 validates the statistical

analysis and reinforces the results. There is an increasing trend for the JavaScript projects, and

programmers keep adding new code to enhance the offered functionality. In addition, one

important thing we noticed is the last part of Figure 46 which points out that developers try to

reduce the Lines of Code (LOC) and improve the software with only the necessary lines for

functionalities they provide. This effort has been increased in our contemporary years and at

the latest versions. In conclusion, the Law VI is practically and statistically validated.

Lines of Code (LOC)

 Project p-
value

Trend Slope
(%)

 Project p-
value

Trend Slope
(%)

1 bootstrap ∼0.000 ↓ -343 21 swagger-ui N/A N/A N/A

2 react <
0.0001

↓ -1172 22 pdf.js N/A N/A N/A

3 jquery <
0.0001

↓ -308.89 23 jquery-ui <
0.0001

↓ -148.45

4 three.js <
0.0001

↓ -2162.5 24 bootstrap-
datepicker

0.360 ↓ -16.043

5 javascript <
0.0001

↓ -9.6

25 materialize <
0.0001

↓ -322.92

6 html5-
boilerplate

0.006 ↑ 215.525

26 webpack <
0.0001

↓ -3247.1

7 vue <
0.0001

 -207.66 27 mean <
0.0001

↓ -121.37

8 Chart.js <
0.0001

↓ -1026.7 28 dropzone 0.040 ↓ -83.703

9 redux <
0.0001

↓ -85.810 29 react-starter-kit <
0.0001

↓ -66.453

10 echarts 0.287 ↓ -288.35 30 Leaflet <
0.0001

↓ -416.66

11 express N/A N/A N/A 31 ember.js <
0.0001

↓ -64.9

12 brackets <
0.0001

↓ -19.000

32 ui-grid <
0.0001

↓ -468.03

13 Ghost <
0.0001

↓ -1969.9 33 hexo <
0.0001

↓ -57.364

14 fullPage.js <
0.0001

↓ -318.51

34 pixi.js <
0.0001

↓ -78.152

15 material-ui <
0.0001

↓ -127.39 35 lodash 0.002 ↓ -125.29

Software Evolution

CHATZIMPARMPAS ANGELOS 79

16 angular-
starter

<
0.0001

↓ -168.11

36 jquery-validation <
0.0001

↓ -222.23

17 video.js 0.284 ↓ -1.0 37 Rocket.Chat 0.352 ↑ 16.995

18 moment 0.010 ↓ -28.2 38 vuex 0.016

↓ -1248.6

19 underscore <
0.0001

↓ -2357.3 39 Modernizr <
0.0001

↓ -56.471

20 select2 <
0.0001

↓ -68.069 40 hammer.js <
0.0001

↓ -52.334

Table 17: Statistical results on law VI (continuing growth).

Figure 53: Lines of Code chart for 40 Projects

5.3.7 Law VII: Declining Quality

To check the 7th law, the “Depth of Inheritance Tree,” “Comment Rate,” “Maintainability,” and

“Number of bug-related commits” metrics are statistically tested. As we can observe (Table 18)

for “DIT” variable in 18 samples, we haven’t any slope which means that there is no evidence of

a statistical trend, in 2 we have a negative trend. The p-value is low, and we can’t reach to a

result from the DIT value, only that it remains at equal levels if we examine the entire range of

the projects. For “Comment Rate” (CR) variable in 8 samples we haven’t any slope which means

that there is no evidence of a statistical trend, in 13 we have negative trend and in 19 a positive

one. The “Comment Rate” shows us that it has an attitude to increase. For “Maintainability”

variable in 17 samples, we haven’t any slope which means that there is no evidence of a

statistical trend, in 7 we have negative trend and in 15 a positive one. The “Maintainability”

shows us that in general is not increasing or decreasing, but in some cases, it has an attitude to

Software Evolution

CHATZIMPARMPAS ANGELOS 80

increase. An increase in “Maintainability” and “Comment Rate” are an indication of

improvement in the quality. Furthermore, for “Number of bug-related commits” variable in 40

samples we haven’t any slope which means that there is no evidence of a statistical trend. By

examining each project separately, we can identify a general increase in “Maintainability” and

“CR” metrics of and at least a neutral state for the other two remaining. In other words, the

quality is at equal levels or maybe increases a bit. In conclusion, the Law VII is not statistically

validated.

Depth of Inheritance Tree (DIT)

 Project p-
value

Trend Slope
(%)

 Project p-
value

Trend Slope
(%)

1 bootstrap <

0.0001

 21 swagger-ui N/A N/A N/A

2 react <
0.0001

 22 pdf.js N/A N/A N/A

3 jquery N/A N/A N/A 23 jquery-ui N/A N/A N/A

4 three.js 0.091 24 bootstrap-
datepicker

N/A N/A N/A

5 javascript N/A N/A N/A 25 materialize 0.098

6 html5-
boilerplate

N/A N/A N/A 26 webpack 0.001

7 vue N/A N/A N/A 27 mean 0.021

8 Chart.js <
0.0001

 28 dropzone N/A N/A N/A

9 redux 0.096 29 react-starter-kit 0.015

10 echarts 0.018 30 Leaflet 0.012

11 express <
0.0001

 31 ember.js N/A N/A N/A

12 brackets 0.090 32 ui-grid N/A N/A N/A

13 Ghost <
0.0001

 33 hexo <
0.0001

↓ -0.071

14 fullPage.js 0.018 34 pixi.js <
0.0001

15 material-ui N/A N/A N/A 35 lodash N/A N/A N/A

16 angular-
starter

N/A N/A N/A 36 jquery-validation N/A N/A N/A

17 video.js 0.045 37 Rocket.Chat N/A N/A N/A

18 moment <
0.0001

 38 vuex N/A N/A N/A

Software Evolution

CHATZIMPARMPAS ANGELOS 81

19 underscore N/A N/A N/A 39 Modernizr N/A N/A N/A

20 select2 <
0.0001

↓ -0.161 40 hammer.js N/A N/A N/A

Comment Rate (CR)

 Project p-
value

Trend Slope
(%)

 Project p-
value

Trend Slope
(%)

1 bootstrap 0.003 ↑ 0.043 21 swagger-ui <
0.0001

↑ 0.08

2 react <
0.0001

↑ 0.122 22 pdf.js 0.513

3 jquery 0.024 ↓ -0.021 23 jquery-ui 0.000 ↓ -0.055

4 three.js <
0.0001

↓ -0.091 24 bootstrap-
datepicker

0.001

↑ 0.026

5 javascript <
0.0001

↓ -0.065

25 materialize 0.016 ↑ 0.080

6 html5-
boilerplate

0.385

↓ -0.073

26 webpack <
0.0001

↑ 0.009

7 vue <
0.0001

↑ 0.047

27 mean 0.027 ↑ 0.270

8 Chart.js 0.012 ↑ 0.075 28 dropzone <
0.0001

↑ 0.114

9 redux 0.121 ↑ 0.012 29 react-starter-kit 0.003 ↑ 1.708

10 echarts 0.003 ↓ -0.049 30 Leaflet 0.622

11 express <
0.0001

↑ 0.015

31 ember.js <
0.0001

↑ 0.015

12 brackets <
0.0001

↓ -0.016

32 ui-grid 0.639

13 Ghost <
0.0001

↑ 0.043

33 hexo <
0.0001

↓ -0.039

14 fullPage.js 0.531 34 pixi.js 0.570

15 material-ui <
0.0001

↓ -0.009

35 lodash <
0.0001

↑ 0.142

16 angular-
starter

0.564 36 jquery-validation 0.152

↓ -0.036

17 video.js 0.186 ↑ 0.017 37 Rocket.Chat 0.053 ↓ -0.019

18 moment 0.001 ↑ 0.068 38 vuex <
0.0001

↓ -0.005

19 underscore <
0.0001

↑ 0.061 39 Modernizr 0.004 0.013

20 select2 0.602 40 hammer.js <
0.0001

↓ -0.160

Software Evolution

CHATZIMPARMPAS ANGELOS 82

Maintainability

 Project p-
value

Trend Slope
(%)

 Project p-
value

Trend Slope
(%)

1 bootstrap ∼0.000 ↑ 0.033 21 swagger-ui 0.081 ↑ 0.004

2 react 0.623 22 pdf.js 0.368

3 jquery <
0.0001

↑ 0.009 23 jquery-ui 0.028

↑ 0.002

4 three.js <
0.0001

↓ -0.017 24 bootstrap-
datepicker

0.160 ↑ 0.005

5 javascript 0.001 25 materialize 0.168 ↑ 0.003

6 html5-
boilerplate

0.001 ↑ 0.11 26 webpack <
0.0001

↑ 0.004

7 vue <
0.0001

↓ -0.002

27 mean 0.674

8 Chart.js <
0.0001

↑ 0.011

28 dropzone 0.222

9 redux 0.071 29 react-starter-kit 0.158 ↑ 0.32

10 echarts 0.571 30 Leaflet 0.015 ↓ -0.006

11 express ∼0.000 31 ember.js <
0.0001

↓ -0.001

12 brackets <
0.0001

↑ 0.009

32 ui-grid <
0.0001

13 Ghost 0.118 33 hexo ∼0.000 ↓ -0.002

14 fullPage.js 0.249 34 pixi.js <
0.0001

↑ 0.034

15 material-ui <
0.0001

↑ 0.002 35 lodash <
0.0001

↑ 0.004

16 angular-
starter

0.648 36 jquery-validation 0.011 ↓ -0.213

17 video.js 0.724 37 Rocket.Chat 0.293

18 moment 0.252 ↓ -0.007 38 vuex N/A N/A N/A

19 underscore 0.583 39 Modernizr <
0.0001

20 select2 0.196 ↑ 0.007 40 hammer.js 0.807

Number of bug-related commits

 Project p-
value

Trend Slope
(%)

 Project p-
value

Trend Slope
(%)

1 bootstrap 0.001 21 swagger-ui 0.990

Software Evolution

CHATZIMPARMPAS ANGELOS 83

2 react 0.020 22 pdf.js 0.255

3 jquery <

0.0001

 23 jquery-ui 0.926

4 three.js 0.001 24 bootstrap-
datepicker

0.914

5 javascript 25 materialize 0.957

6 html5-
boilerplate

0.270

 26 webpack <
0.0001

7 vue 0.338 27 mean 0.391

8 Chart.js 0.412 28 dropzone 0.314

9 redux 0.891 29 react-starter-kit 0.511

10 echarts 0.053 30 Leaflet 0.940

11 express 0.001 31 ember.js 0.094

12 brackets 0.017 32 ui-grid 0.261

13 Ghost 0.106 33 hexo 0.028

14 fullPage.js 0.163 34 pixi.js 0.087

15 material-ui 0.088 35 lodash ∼0.000

16 angular-
starter

0.429 36 jquery-validation 0.453

17 video.js 0.349 37 Rocket.Chat 0.293

18 moment 0.621 38 vuex 0.039

19 underscore 0.059 39 Modernizr 0.919

20 select2 0.034 40 hammer.js 0.271

Table 18: Statistical results on law VII (declining quality).

5.3.8 Law VIII: Feedback System

To check the 8th law, a statistical comparison between “Growth Rate” and Theoretical Growth

Rate was performed. Theoretical Growth Rate is defined as t-2/3 where “t” is the elapsed time in

days from the initial release [64]. We executed a two-sample Kolmogorov-Smirnoff test [65]

and compared the actual evolution with the theoretical. As we can observe (Table 19) in 40

samples, the p-value is less than 0.0001. We didn’t have any value matching between the two

variables tested in all the projects. In conclusion, the Law VI is not statistically validated.

Growth Rate

 Project p-value Project p-value

1 bootstrap 0.000 21 swagger-ui < 0.0001

Software Evolution

CHATZIMPARMPAS ANGELOS 84

2 react < 0.0001 22 pdf.js < 0.0001

3 jquery < 0.0001 23 jquery-ui < 0.0001

4 three.js < 0.0001 24 bootstrap-
datepicker

< 0.0001

5 javascript < 0.0001 25 materialize < 0.0001

6 html5-
boilerplate

< 0.0001 26 webpack < 0.0001

7 vue < 0.0001 27 mean < 0.0001

8 Chart.js < 0.0001 28 dropzone < 0.0001

9 redux < 0.0001 29 react-starter-
kit

< 0.0001

10 echarts < 0.0001 30 Leaflet < 0.0001

11 express < 0.0001 31 ember.js < 0.0001

12 brackets < 0.0001 32 ui-grid < 0.0001

13 Ghost < 0.0001 33 hexo < 0.0001

14 fullPage.js < 0.0001 34 pixi.js < 0.0001

15 material-ui < 0.0001 35 lodash < 0.0001

16 angular-
starter

< 0.0001 36 jquery-
validation

< 0.0001

17 video.js < 0.0001 37 Rocket.Chat < 0.0001

18 moment < 0.0001 38 vuex < 0.0001

19 underscore < 0.0001 39 Modernizr < 0.0001

20 select2 < 0.0001 40 hammer.js < 0.0001

Table 19: Statistical results on law VIII (feedback system).

5.4 Conclusions and Comparison to other studies
In chapter 2.1.2 we have introduced a table with results from other studies. Now that we

obtained results, we are going to conclude and compare them to various studies. The summary

table follows for our results (Table 20):

Law - Hypothesis Our Finding for JavaScript Projects

I – System continuously change True.

II – Complexity rises False. Complexity remains almost the same.

III – Incremental growth exhibits adjustments True. Practically validated.

IV – Work rate is constant True. Practically validated.

V – Incremental changes remain invariant False. Lots of fluctuations.

VI – Continuously grow True.

VII – Quality declines False. Quality remains almost the same or in
some cases increases.

VIII – Growth rate drops at a rate comparable
to t-2/3

False. The growth rate doesn’t decrease that
rapidly.

Software Evolution

CHATZIMPARMPAS ANGELOS 85

Table 20: Validation of the laws

We added our study in the table of the chapter 2.1.2 to summarize our results and conclusions

(Table 21):

Reference Year Programming
Language

Number
of
Projects

I II III IV V VI

VII VIII

Godfrey & Tu
[52, 53]

2000
and
2001

C 5 Y N Y N

Robles et al.
[54]

2005 C, C++, Java 19 Y N Y N

Mens et al.
[55]

2008 Java 1 Y N Y

Xie et al. [56] 2009 C 7 Y Y Y N Y N N

Israeli &
Feiteison [57]

2010 C 1 Y N Y Y Y N Y

Businge et al.
[58]

2010 Java 21 Y Y N Y

Neamtiu et al.
[59]

2013 C 9 Y N N N N Y N N

Kaur et al. [60] 2014 C++ 2 Y Y Y Y Y Y

Amanatidis &
Chatzigeorgiou
2015[13]

2015 PHP 30 Y N Y Y Y Y N

This study 2017 JavaScript 100 Y N Y Y N Y N N

Table 21: Studies about the validity of Lehman’s laws including ours

If we compare our results to the others we conclude to the following observations:

 The 1st law is validated to all programming languages.

 The 2nd law is not validated in JavaScript, PHP, and Java. C and C++ have different

outcomes regarding the specific study we notice.

 The 3rd law is validated in JavaScript, PHP, and C++. C and Java have different outcomes

regarding the specific study we notice.

 The 4th law is validated in JavaScript and PHP. C, C, and C++ projects don’t verify the law.

The exception is one study related to C.

 The 5th law is validated in C++ and PHP. JavaScript, C, and Java don’t confirm the law.

 The 6th law is validated to all programming languages.

 The 7th law is validated from only one study about C++ programming languages. Our

thesis and the others don’t support the law.

Software Evolution

CHATZIMPARMPAS ANGELOS 86

 The 8th law is validated only by one study for projects written in C programming

language. All the others don’t endorse the 8th law.

Bibliographic References
[1] Michael W. Godfrey and Daniel M. German "On the Evolution of Lehman’s Laws" JOURNAL

OF SOFTWARE: EVOLUTION AND PROCESS J. Softw. Evol. and Proc. 0000; 00:1–7 Published

online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.

[2] Lehman, M. M. (1980). "On Understanding Laws, Evolution, and Conservation in the Large-

Program Life Cycle." Journal of Systems and Software. 1: 213–221. doi: 10.1016/0164-

1212(79)90022-0.

[3] Liguo Yu and Alok Mishra (2013) "An Empirical Study of Lehman’s Law on Software Quality

Evolution in International" Journal of Software and Informatics, 11/2013; 7(3):469-481.

[4] Press release announcing JavaScript, "Netscape and Sun announce JavaScript," PR

Newswire, December 4, 1995

[5] "Standard ECMA-262". Ecma International. 2017-07-03.

[6] "ECMAScript Language Overview" (PDF). 2007-10-23. p. 4. Retrieved 2009-05-03.

[7] Williams, Alex (9 July 2012). "GitHub Pours Energies into Enterprise – Raises $100 Million

From Power VC Andreessen Horowitz". TechCrunch. "Andreessen Horowitz is investing an eye-

popping $100 million into GitHub".

[8] "Why GitHub’s pricing model stinks (for us)." LosTechies. 7 November 2012. Archived from

the original on 29 June 2015. Retrieved 29 June 2015.

[9] "The Problem With Putting All the World's Code in GitHub." Wired. 29 June 2015. Archived

from the original on 29 June 2015. Retrieved 29 June 2015.

[10] "Celebrating nine years of GitHub with an anniversary sale." github.com. Github. Retrieved

2017-04-11.

[11] Gousios, Georgios; Vasilescu, Bogdan; Serebrenik, Alexander; Zaidman, Andy. "Lean

GHTorrent: GitHub Data on Demand" (PDF). The Netherlands: Delft University of Technology &

†Eindhoven University of Technology: 1. Retrieved 9 July 2014. During recent years, GITHUB

(2008) has become the largest code host in the world.

[12] Iulian Neamtiu, Guowu Xie and Jianbo Chen "Towards a better understanding of software

evolution: an empirical study on open-source software" JOURNAL OF SOFTWARE: EVOLUTION

AND PROCESS J. Softw.: Evol. and Proc. 2013; 25:193–218 Published online 1 September 2011

in Wiley Online Library (www.wileyonlinelibrary.com). DOI: 10.1002/smr.564.

http://www.interscience.wiley.com/
http://www.wileyonlinelibrary.com/

Software Evolution

CHATZIMPARMPAS ANGELOS 87

[13] Theodoros Amanatidis, Alexander Chatzigeorgiou "Studying the evolution of PHP web

applications" Information and Software Technology 72 (2016) 48–67 Contents lists available at

Science Direct Information and Software Technology journal homepage:

www.elsevier.com/locate/infsof.

[14] Flanagan 2006, p. 16.

[15] "JavaScript data types and data structures - JavaScript | MDN". Developer.mozilla.org.

2017-02 16. Retrieved 2017-02-24.

[16] "Inheritance and the prototype chain." Mozilla Developer Network. Mozilla. Retrieved 6

April 2013.

[17] Haverbeke, Marijn (2011). "Eloquent JavaScript." No Starch Press. pp. 95–97. ISBN 978-1-

59327-282-1.

[18] "Properties of the Function Object." Es5.github.com. Retrieved 2013-05-26.

[19] Flanagan 2006, p. 141.

[20] "Concurrency model and Event Loop". Mozilla Developer Network. Retrieved 2015-08-28.

[21] Haverbeke, Marijn (2011). "Eloquent JavaScript." No Starch Press. pp. 139–149. ISBN 978-

1-59327-282-1.

[22] John Resig, "JavaScript Getters and Setters," Ejohn.org, 18 July 2007, accessed 2 January

2010.

[23] "E4X – Archive of obsolete content | MDN". Mozilla Developer Network. Mozilla

Foundation. Feb 14, 2014. Retrieved 13 July 2014.

[24] Mahemoff, Michael (17 December 2009). "Server-Side JavaScript, Back with a

Vengeance". readwrite.com. Retrieved 2016-07-16.

[25] Crockford, D (2001) JavaScript: The World’s Most Misunderstood Programming

Language [Online]. Available from http://www.crockford.com/javascript/javascript.html

(Accessed: 10 October 2010).

[26] The PHP Group (2010) History of PHP [Online]. Available

from http://www.php.net/manual/en/history.php.php (Accessed: 10 October 2010).

[27] RASPBIAN STRETCH WITH DESKTOP. https://www.raspberrypi.org/downloads/raspbian/.

August 2017.

[28] "Interview with Kai Seidler from the XAMPP project." MySQL AB. Retrieved 2015-06-07.

[29] Daniel Gafitescu (June 6, 2013). "Goodbye CodeIgniter, Hello Laravel." www.sitepoint.com.

Retrieved December 21, 2013.

http://www.elsevier.com/locate/infsof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-59327-282-1
https://en.wikipedia.org/wiki/Special:BookSources/978-1-59327-282-1
http://ejohn.org/blog/javascript-getters-and-setters/
https://developer.mozilla.org/en-US/docs/Archive/Web/E4X
http://readwrite.com/2009/12/17/server-side_javascript_back_with_a_vengeance/
http://readwrite.com/2009/12/17/server-side_javascript_back_with_a_vengeance/
http://www.crockford.com/javascript/javascript.html
http://www.php.net/manual/en/history.php.php
https://www.raspberrypi.org/downloads/raspbian/
http://www.sitepoint.com/

Software Evolution

CHATZIMPARMPAS ANGELOS 88

[30] Martin Bean (April 2015). Laravel 5 Essentials. www.books.google.com. Packt. ISBN 978-

1785283017. Retrieved September 2, 2015.

[31] “What is MySQL?” MySQL 5.1 Reference Manual. Oracle. Retrieved 17 September 2012.

The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”).

[32] “Goutte, a simple PHP Web Scraper.” https://github.com/FriendsOfPHP/Goutte. Last

version v.3.2.1. 03 January 2017.

[33] Scopatz, Anthony; Huff, Kathryn D. (2015). Effective Computation in Physics. O'Reilly

Media, Inc. p. 351. ISBN 9781491901595. Retrieved 20 April 2016.

[34] Torvalds, Linus (2005-04-07). "Re: Kernel SCM saga..". Linux-kernel (Mailing list). "So I'm

writing some scripts to try to track things a whole lot faster."

[35] Torvalds, Linus (2007-06-10). "Re: fatal: serious inflate inconsistency". git (Mailing list).

[36] Linus Torvalds (2007-05-03). Google tech talk: Linus Torvalds on git. Event occurs at 02:30.

Retrieved 2007-05-16.

[37] Freddy Mallet (20 March 2013). "SONAR is becoming SONARQUBE". SonarQube project

mailing list. Retrieved 3 July 2013.

[38] Mariano (2009-11-17). "Creating a Sonar Plugin for software development metrics".

Archived from the original on March 24, 2010. Retrieved 2017-08-29.

[39] Hazrati, Vikas (2010-03-30). "Monetizing the Technical Debt". Retrieved 2017-08-29.

[40] "Methods and Tools issue"(PDF). 2010-03-01. Retrieved 2017-08-29.

[41] Campell/Papapetrou, Ann/Patroklos (2013). Sonar (SonarQube) in action. Greenwich,

Connecticut, USA: Manning Publications. p. 350. ISBN 978-1617290954.

[42] Leonardo Humberto Silva, Daniel Hovadick, Marco Tulio Valente, Alexandre Bergel,Nicolas

Anquetil, Anne Etien “JSClassFinder: A Tool to Detect Class-like Structures in JavaScript”

arXiv:1602.05891v1 [cs.SE] 18 Feb 2016.

[43] https://grafana.com/. 2017.

[44] https://www.apachefriends.org/download.html. 2017.

[45] https://www.sonarqube.org/downloads/. SonarQube 6.5. Aug 3, 2017.

[46] https://git-scm.com/downloads. Latest source Release: 2.14.1. 2017-08-04.

[47] https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner. 2017.

[48] https://autohotkey.com/download/. v1.1.26.01 - July 16, 2017.

http://www.books.google.com/
https://github.com/FriendsOfPHP/Goutte
https://grafana.com/
https://www.apachefriends.org/download.html
https://www.sonarqube.org/downloads/
https://git-scm.com/downloads
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://autohotkey.com/download/

Software Evolution

CHATZIMPARMPAS ANGELOS 89

[49] https://github.com/aserg-ufmg/JSClassFinder. 2017.

[50] https://grafana.com/grafana/download?platform=windows. 2017.

[51] /Lehman, 1985a/. “Software Evolution - Processes of Software Change”. London 1985.

[52] M.W. Godfrey, Q.Tu. Evolution in open source software: a case study, in Proceedings of the

International Conference on Software Maintenance (ICSM’00), Washington, DC, USA, 2000,

p.131.

[53] M. Godfrey, Q. Tu, Growth, evolution, and structural change in open source software, in

Proceedings of the 4th International Workshop On Principles Of Software Evolution, New York,

NY, USA, pp. 103-106.

[54] G. Robles, J.J. Amor, J.M. Gonzalez-Barahona, I. Herraiz, Evolution and growth in large libre

software projects, in Proceedings of Eight International Workshop on Principles of Software

Evolution, 2005, pp. 165-174.

[55] T. Mens, J. Fernandez-Ramil, S. Degrandsart, The evolution of Eclipse, in Proceedings of

IEEE International Conference on Software Maintenance, 2008. ICSM2008, 2008, pp.386–395.

[56] G. Xie, J. Chen, I. Neamtiu, Towards a better understanding of software evolution: an

empirical study on open source software, in Proceedings of IEEE International Conference on

Software Maintenance, ICSM2009, 2009, pp.51–60.

[57] A. Israeli, D.G. Feitelson. The Linux kernel as a case study in software evolution, J. Syst.

Softw. 83 (3) (Mar.2010) 485–501.

[58] J. Businge, A. Serebrenik, M. van den Brand, An empirical study of the evolution of eclipse

third-party plug-ins, in: Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL)

and International Workshop on Principles of Software Evolution (IWPSE), New York, NY, USA,

2010, pp.63–72.

[59] I. Neamtiu, G. Xie, J. Chen. Towards a better understanding of software evolution: an

empirical study on open-source software, J. Softw. Evol. Process 25 (3) (Mar.2013) 193–218.

[60] T. Kaur, N. Ratti, P. Kaur, Applicability of Lehman laws on open source evolution: a case

study, Int. J. Comput. Appl. 93 (18) (May2014) 40–46.

[61] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski. Metrics and laws of

software evolution - The nineties view. In Proc. of the Fourth Intl. Software Metrics Symposium,

Albuquerque, NM, November 1997.

[62] Fred Brooks. The Mythical Man-Month. Addison-Wesley. 1975 & 1995. ISBN 0-201-00650-2

& ISBN 0-201-83595-9.

[63] ISO/IEC 14764:2006, 2006.

https://github.com/aserg-ufmg/JSClassFinder.%202017
https://grafana.com/grafana/download?platform=windows

Software Evolution

CHATZIMPARMPAS ANGELOS 90

[64] W.M. Turski, The reference model for smooth growth of software systems revisited, IEEE

Trans. Softw. Eng. 28 (8) (Aug.2002) 814–815.

[65] D.J. Sheskin, D. Sheskin, Handbook of Parametric and Nonparametric Statistical

Procedures, Second Edition, 2 ed., Chapman and Hall/CRC, Boca Raton, 2000.

[66] https://docs.sonarqube.org/display/SONAR/Metric+Definitions. SonarQube
Documentation. Sep 05, 2017.

[67] Stephen Haunts. https://stephenhaunts.com/2013/02/18/unit-test-coverage-code-
metrics-and-static-code-analysis/. UNIT TEST COVERAGE, CODE METRICS, AND STATIC CODE
ANALYSIS. FEBRUARY 18, 2013

https://docs.sonarqube.org/display/SONAR/Metric+Definitions
https://stephenhaunts.com/2013/02/18/unit-test-coverage-code-metrics-and-static-code-analysis/
https://stephenhaunts.com/2013/02/18/unit-test-coverage-code-metrics-and-static-code-analysis/

