m University of Western Macedonia

[E Department of Informatics & Telecommunications Engineering

Software Evolution

Diploma Thesis

CHATZIMPARMPAS ANGELOS
SRN: 638

Supervisor

Bibi Stamatia

Software Evolution

Title: Software Evolution

Description: Diploma thesis within the framework of studies for the title of the diploma
«Informatics and Telecommunications Engineer.»

Keywords: Software Evolution, JavaScript, Lehman’s Laws, GitHub, Open Source Software,
SonarQube, JSClassFinder

Author: Chatzimparmpas Angelos
Date of creation: 29-08-2017
Year of issue: 2017

Country of issue: GR

Text language: Eng

1
CHATZIMPARMPAS ANGELOS 2

Software Evolution

The present diploma thesis was elaborated within the
framework of the studies for the diploma awarded by the
University of Western Macedonia entitled «Informatics and
Telecommunications Engineer.»

Approved on ../../2017 by a committee of inquiry consisting of:

Full name: Academic rank: Signature:

CHATZIMPARMPAS ANGELOS

Software Evolution

Acknowledgement

| would first like to thank my thesis supervisor lecturer Mrs. Bibi Stamatia of the Department of
Informatics & Telecommunications Engineering at the University of Western Macedonia. The
door to Prof. Bibi’s office was always open whenever | ran into a trouble spot or had a question
about my research or writing. She consistently allowed this diploma thesis to be my work but
steered me in the right direction whenever he thought | needed it.

I would also like to thank all my friends for the real support and encouragement they provided
to me. Moreover, the teamwork and beautiful moments | passed with them in various projects
and at the same time out of the Department of Informatics & Telecommunications Engineering
is without a doubt one of the most unforgettable moments of my life.

Finally, | must express my very profound gratitude to my parents for providing me with
unfailing support and continuous encouragement throughout my years of study and through
the process of researching and writing this thesis. This accomplishment would not have been
possible without them. Thank you.

Chatzimparmpas Angelos

Kozani, August 2017

CHATZIMPARMPAS ANGELOS 4

Software Evolution

Abstract

The primary goal of the present Diploma Thesis is the development of a web application that
predicts trends in software development in open source programs. This platform was designed
to serve and meet the needs of developers or researchers who want to control the applications
they create and how they eventually evolve these over time with new releases. The platform
has been designed to work locally on a computer or online if it is placed on a server that has the
power to control the software that developers build. The conclusions that one of the above
users may make is vital for the development of the software they produce or for further
research on new trends in the development of the software of various projects developers.

More and more software is written in programming languages such as JavaScript. Open source
programs are continually evolving, making it difficult to anticipate success and progress, which
is ultimately influenced by a variety of sectors and factors. It is therefore crucial and necessary
to develop a platform that will control, analyze and study these changes successfully and of
course providing benefits for developers but at the same time supplying data with future
research.

Summarizing the essential elements of this Diploma Thesis, we focus on four main topics.
Precisely, in the first topic, investigation, and analysis of similar issues related to various open
source software and how they evolve from their creation years to the present. Most of them
are written in programming languages, which are fundamental and have been created many
years ago. Also, the purpose and goal of creating this research and the systems that make up
the search for results are clear. The second topic presents the requirements and the programs
used as well as data for their complete installation. The third topic shows the platform and its
use with precise examples and explanations for each system that has been created. Finally, the
fourth topic analyzes and gives the results of the research that was built on the subject of
"Software Evolution."

Keywords: Software Evolution, JavaScript, Lehman’s Laws, GitHub, Open Source Software,
SonarQube, JSClassFinder

CHATZIMPARMPAS ANGELOS 5

Software Evolution

E€EAEN Epywv AoyLlopiKoU
NepiAnyn

H napovoa SutAwpatikn epyacia €xel WG BACIKO OTOXO TNV AVANTUEN ULaG SLASIKTUOKAG
edappoyng n omoia MPOPAEMEL TG TACELG OTNV AVATTTUEN AOYLOULKOU OE TIPOYPALLUOTA
avOoLKTOU Kwdika. H mAatdoppa autr) oxeSLAoTNKE £TOL WOTE va eEUTINPETEL KAL VAL LKAVOTTOLEL
TIC AVAYKEG TWV TIPOYPAUUATIOTWY N} EPELVNTWY TIOU BEAOUV VoL EAEYXOUV TA TIPOYPALLATA TIOU
SnuoupyouV Kal To ooo TeEAKA e€eAloooVTaL PE TNV TTAPOSO TOU XPOVOU KOL TWV VEWV
ekb6oewv. H mhatdoppa €xel SnuioupynBel yia va Aeltoupyel TOTKA O€ €vav UTTOAOYLOTA 1
Sladiktuaka av tornoBetnBel oe €vav SlakouLoTr) o omoiog Ba £xeL TNV LOXU WOTE va AEYXEL TO
AOYLOLLKO TIOU KATAOKEUALOUV TIPOYPOUOTIOTEG. TOL CUUMEPACLOTO TA OTtOla UIMoPEL va
ByaAel £vag amod TOUG MOPATIAVW XPHOTEC €LVaL ONUOVTLIKA Yl TNV €€EALEN TOU AoyLopLKOU TIoU
TLAPAYOUV 1] KOL YLO TIEPALTEPW EPEUVA TTAVW OE VEEG TACELG YL TNV AVATTTUEN TOU AOYLOULKOU
£pywv Sladopwv mapoywywv.

OAoéva KoL TeplocOTEPA AOYLOULKA YPADOVTaL O YAWOOEG IPOYPAUUATIOUOU OTIWGE N
JavaScript. Ta mpoypaupaTa avolktol KwdLKa cuveXwE e¢EAloooVTOL KATL TTOU KAVEL SUCKOAO
va tpoBAedOel n emiTUXiA KOL N TTOPELO AUTWV N OTtola TEALKA EMNPEATETAL OO TIOLKIAOUC
TOUELG KAl TP AYOVTEC. ZUVETTWG £lval Kaiplo kat amapaitnto va dnuopdwbel pia mhatdopua
n omoia Ba eAéyyel, Oa avaAvel kal Bo peAeTAEL TIC aANAYEG QUTEG e eTtTu)ia Kot puoLka
napéxovtag ohEAN yLa TOUG MPOYPAUUATIOTEG AAAG TauTOxpova va TpododoTel pe otolxeia
HEAAOVTIKEG EPEVVEG.

Yuvoyilovtog ta Baclkd oTolXelo AUTAG TNG SUTAWUATIKAG EPYACiaG, ETKEVTPWVOVTAL O
TEOOEPLG OePATIKOUG AEOVEG. ZUYKEKPLUEVA, OTOV TTPWTO Afova, yivetal Slepelvnon Kat
avaAuon mapopolwy Bepdtwy mou adopouv Stddopa AOYLOULKA AVOLKTOU KWELKA KAL TO TWE
egellooovtal ano ta xpovia Snuioupyiag toug PEXPL Kal oAUEP. Ta TEPLOCOTEPA ATIO AUTA
elval ypappéva og YAwoOEG TPOYPAULATIOMOU OL OTIOLEG elval BaolkES Kal €xouv dnuoupynOetl
6w KoL TOAAA xpovia. EmumtAéoy, yivetal EekaBapog o Adyog Kal 0 oToxoc dnuLloupyilog tng
£€PEUVOC QUTNC KAL TWV CUCTNHATWYV TIOU TNV anaptilouv yla tTnv eVPECN OMOTEAECUATWY. ITO
Seltepo afova yivetal n mapouaciaon TwV ATALTHCEWY KOL TOV TIPOYPOUUATWY TTOU
Xpnotpomnolouvtal KaBwe Kal oToLXELa yLa TNV TARPN EYKATAOTACN QUTWV. ZToV Tpito dfova
mapoucotaletal avaAuTIKA N TMAathopua Kal n xprion tng Le akpPn mapadeiypata kot
eMe€nyNOoELG yla TO KABE cuotnua mou €xel SnuoupynOel. TEAOG, oTov TETAPTO Afova yiveTal
ovAAUCN KOL TTAPOUCLaoN TWV ATMOTEAECUATWY TNG €peuvag Tou Snuoupyndnke pe Béua tnv
«EEENLEN EpywV AOYLOKOU».

Négerg kAeldLa: EEEALEN Epywv AoyiopkoU, JavaScript, Nopol tou Lehman, GitHub, Aoylopiko
AvolytoU Kwdwka, SonarQube, JSClassFinder

CHATZIMPARMPAS ANGELOS 6

Software Evolution

Contents
1. INTRODUCTION ...t s s 12
R 0 =T o 4 1Y PPTRRN 13
1.2 Organization of Chapterscccciiiiiiiiiiiiiiiiicn e rrssssessessssessenssssssensssanne 13
2. THEORETICAL BACKGROUNDccoiiiiiiiiiiiiiiiiiiiiiiiiiisis s ss s s s s ssssssssssssssssssssssssssssssss s 14
2.1 Lehman's Laws of Software Evolution & Observations for Contemporary Applications 14
2.1.1 Lehman's Laws of Software EVolutionccccovviiiiiiiiiiiiiiiiiiiii, 14
2.1.2 Observations for Contemporary Applications.......cc.cciiveiiiiieeiiiiieniiniieieeess 15
2.2 Software Evolution in Other Programming Languages and Comparison with JavaScript 17
2.2.1 Software Evolution in Other Programming LangUAgesccceccerreeencirrennncireenencereennncessennnes 17
2.2.1.1 Evolution of applications Written in C.......cc..coiieeeiiiiieeiiiiieccnrrecece e e s rene e s renssesssennnes 18
2.2.1.2 Evolution of applications Written in PHPcc.civiiieiiiiieiirecreecrencerenesrnenerenseeensesenseenes 19
2.2.2 PHP in comparison with JavaScript as languages for open-source projects.....cccccceeeverenenenes 20
2.3 Details about JavaScript Language and GitHub Software Development Platform...................... 22
2.3.1 Details about JavaScript LANGUABEcccuuiireeeniiiieeeciireiecerrennneesreneneessenssesssenssesssensssssennnns 22
2.3.2 Key Features of JaVaSCriptciiieeeciiiieciciirececeireeeeesrenenessrennnesssenesesseensssssenssssssensssssnennnns 22
2.3.3 GitHub Software Development Platform..........ccccieeiiieiiiieiirenniieeereecereneereeerenserensesenseenes 24
3. ANALYSIS AND DESIGN OF THE WEB APPLICATIONccccitmiiimuiiimeiiieniiiieienininiieeeneeeneaenenenes 25
3.1 Description of the ReqUIrEMENTS....c..civuiieeiieeiiiiiiteeiereneereeereaseereseeresersassssnsessnssesasssssnsessnsens 25
30 2 1=Yol T3 oY Lo F=AVAF- Ty Te I o Yo] L300 RN 25
3.2.1 Operating SYSEeMSccciiieiiiiiiiiieiiieniiiieierteiernnisteeserensirensessnsssrnsssssessssnsssensessnssssnnsssnssssanss 25
3.2.2 XAMPP - The Most Popular PHP Development Environment.........cccccceeeiiienecniinnncrnennnenns 25
3.2.3 LARAVEL and IMYSQLccceeeieimimiiiimeieimieiiiiieiiieieieieieieiereieieieiemeiemememememsterstsrsrsrsrssssssssrsse 26
3.2.4 Goutte - A Simple PHP Web SCrapper..... ... iieeeieiiieenieritennerreensesseenssessesnssessennssessennssenes 26
3.2.5 Git — Version CoNtrol SYStEMcciveeeiiiiiiieiiiiicerreeeeeereeaeesreenssesseenssessennssessennssessennsnenes 26
3.2.6 SonarQube Continuous Code QUAlItYcccuiiiieeeiiiiieeieiiieecerreeaeeereennereeensseseennsessennsnenns 26
3.2.7 JSClassFinder — A Tool to Detect Class-Like Structures in JavaScript........ccccceeeeriimnnicriennnnenns 28
3.2.8 AutoHotkey — The Ultimate Automation Scripting Language for Windowsccccccevveuunenns 29
3.2.9 Grafana — The Open Platform for Beautiful Analytics and Monitoringccccccevveueccrreennnnnns 29
3.3 The JS evolution TOOIccoiiiiiiiiuiiiiiiiiirrrc s s e e s aaaa s 30
4. PLATFORM PRESENTATIONccoettitieieieieieiiteieieieieeeieteteteteteeeteteteteteeemerererersremsmstsrsrersmessssrsrsrersnes 36

CHATZIMPARMPAS ANGELOS 7

Software Evolution

4.1 Creation of the Project and Basic Metrics with the Automated Procedure.........ccccceerrennnirienann. 36
4.2 Generating Basic Metrics with the Manual Procedure........ccccccoiieuiiiiieniiniinniinienineene. 38
4.3 Calculations from the Existing Measurementsccccceeeereeeniireeeniesreneneiereneneesrenssssssenssesssensnes 41
4.4 Receiving the Contributors and Stats of Them for Every Projectcccccceeereeencirreeecirnenencesnenenn. 42
4.5 JSClassFinder Variables Added to the Thesis Database.........cccccccceiiiiiiiiiinieiiiiiiiiiinrrnn 42
4.6 General Fixes to COmmON Problems............ciiiiiiiiimiiiiiiiiiiiiinicnnnrrrrssss s 48
4.7 Creation of Charts with the Use of Grafana............cceeeveeeiiiiiiiiiiiiiiiiiiiiiiieieiiniienececeeeeeeeeenenenenene 49
4.8 Important Parts of Code......cuuiiiimiiiiiiiiiieiricrrreeereeeeeereenseeerenasesssenasssssensssssrenssssssenssssssennnes 50
4.9 Details of the Values (Metrics) Obtainedccceeuiiiieeiiiiiecirrreece e rene s s s ene e s s senanes 52
5. RESULTS AND CONCLUSIONSccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisiissessses 58
5.1 General Stats fOr JS ProjJeCtS.....cccciiiiiiniiiieieieeiiteerteererenerennereasseraserassersnsssensessnsessasssssnsesansens 58
5.2 Database Results Preparation for Analysis........ccceeeuierieeuiiiienriiriennscereeencereennsseseennssesenasssssenes 62
5.3 Validation of the Software EVolution..........cccoiviiiiiiiiiiiiiiiiii e, 66
5.3.1 Law I: Continuing CRANEGEiieeeniiiiieeciirececsireeeessrenenessrennnesseenssesseenssesssenssssssensssssnennnes 66
5.3.2 Law II: INCreasing COMPIEXitycccceeireiireeierenniieeerennierencereeserenserensersnsserasessnssessnsessnsesensecsns 68
5.3.3 Law lIl: Self-ReGUIAtIONc..ieeuiieeiiiiiiiieeiereeeiteeereeeeereneernenerenserenserenseesasessnssesensessnsesensennns 70
5.3.4 Law IV: Conservation of Organizational Stabilityccccceiiremeiiiieeiiiiirccrrreecerreee e, 72
5.3.5 Law V: Conservation of Familiarity......ccccccoiveeeiiiiieeiiiieicciireccsrececesrenee e s reneesseenesesssennnes 76
5.3.6 Law VI: ContinuUiNg GroWthccceuiiiieeiiiiieiiiiiiniiinecis e srenesssssenesssssenesssssenssssssenenes 77
5.3.7 Law VII: Declining QUAlitY ...ccc.iiieeeiiiiimiiiiieeiiiiieneiiineneisirenesssrenesssssenssssssenssssssansssssssnssns 79
5.3.8 Law VIII: FEedback SYStem.....cccciveuiiieniiieeiereniieeerenniereniereserenssrensessnseesassssnssessnssssnsesensesens 83
5.4 Conclusions and Comparison to other studies........ccccceveeuiiiiieniiiiiecccirrcce e e er e e e enas 84
BibliographiC REfEIENCES....cccuuuiiieeecciieicerteieereeit e e eeea e e s eeaneeeseeasessennsssssennsssssenasssssennsssssensssnnsennnes 86

CHATZIMPARMPAS ANGELOS 8

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24
Figure 25:
Figure 26:
Figure 27:

Software Evolution

JSClassFinder’s architeCture [42] ..o e e e e e 28
JS 100l COMDBINEA USAZE ..eeiiiiiiiieieiiiee ettt e s e e e s ba e e e s s aeaeeeeaas 31
Starting XAMPP and SON@rQUDE.......ueeeiiri e 32
The entire thesis fOlder.......uv e e 33
(G el o] TN A T =T o Jo LY 1 £] VUSSP 34
SonarQube Scanner configurationsccocciiie e 34
Four main folders necessary for the analysiscccccoveviiiiiiii e 35
AutoHotkey and tWO NECESSANY SCPLS ...uuiiiiiiiieeiiiieee et et e e e e e ssbee e e s ieaeeeees 35
Projects table in Databaseueeeeiiii i 36

Main thesis functionality through creation of a new Project......cccccceeeveciniiieeecnnnnee, 37
For every release stats and metrics in Database......ccccccvvvvvecciiiieee e 37
Zeros in a line in Database at 1285 identifier and version name 2.9.1.1.................... 38
Specific’s release tag from GitHub official websiteccoovciiiiiiiiieeiie e, 39
Setting release’s tag manually to Git for SonarQube Scannercccceeeeevveeeeciieeenn, 39
Manual execution of SONAarQUDE SCANNETccuviiiiiiie e 40
Save results from SonarQube server to HTML formatcococeveiiieeiiiiieee e 41
Store results in the Database for a specific identifierccocoveeeeiiieieniiie e, 41
Perform calculations for all the releasesceeveecieei e, 41
Store the maximum of 100 contributors in the Database..........ccccccoveeeiciieeccciieeens 42
Generate a file from every JavaScript file in @ releaseccocceeeeevveeecccieee e, 42
Parse the generic file and export the AST tree.....ccvvveeeeiii e 43
Copy and paste the AST tree to @ JSON fileccovuvieeieiiiiiiiee e 44
Send JSON file t0 JSCIaSSFINAELuviiiiiiiee et e e e 44
Execution of JSClassFinder image and Pharo........ccccveeeeeieeiccciiieeeeeee e 45
RUN @St file fOr @NalySis .cooveciiiiieeiee et e e e e e sear e e e e e e e e eeaans 46
Results from JSClassFinder SOftWAreoeeivei i 47
Search for “function” key-word in GitHub for every releasecccoccevvvvvveeeeieecnnnnee, 47

Figure 28: Store the results in the Database ..., 48
Figure 29: Fixing an underlying problem of automated procedureccccccvviveeeeeiieiccciiieeeeennn. 49
Figure 30: Connection to Database and Grafanacccccceeeieiiieeciiieeeeee e 50
Figure 31: Creation of charts via SQL QUETIEScooccirriieee ettt eetrreee e e e e raeeee e 50
Figure 32: Paths of basic code

Y=Y o{ 0 01) KPP U PP PP PPPPPPTPPIRt 51
Figure 33: Part of code that might change for some GitHub projectsccccovveveeeiiiiiciiinnnn.n. 52
Figure 34: Download of zip file for every release ..., 52
Figure 35: Number of releases for each project........cccueeeeeiiiicccciiieeee e, 59
Figure 36: Number of commits fOr @aCh ProjECtccccvuvveeeeiiiiieiicireeeeee e 59
Figure 37: Number of watches for @ach project.......ccccvveeeeiiiiieciiiiiieeec e 60
Figure 38: Number of forks created for €ach ProjecCt......cccccceeveecciireeeiee e 60
Figure 39: Number of Stars for @ach ProjeCtccouvcciiiviiiei e 61

CHATZIMPARMPAS ANGELOS 9

Software Evolution

Figure 40: Number of open issues for each projectccoccvveeiiviieei i 61
Figure 41: Number of closed issues for each Projectccccveeiviiieeiiiiiiee e 62
Figure 42: Selection of table ... e 62
Figure 43: Configurations of the @XPOrtccociieicciiie e e 63
Figure 44: The last configuration for the export to be performed...........cccocovvieiiiiieeeciieeeeee, 63
Figure 45: Delimited CIIS ... e e e e s et e e e e e s e s nneraneeeeeas 64
Figure 46: Semicolon option for separation of the entire first column.......cccccevviiieiiiiiiennnnne. 65
Figure 47: DBR Chart fOr 40 ProjECtS.....ciiiiiiieiiiiie ettt ettt e e st e e s e saae e e s saae e e s s nanes 68
Figure 48: Complexity chart fOr 40 ProjECtScccuveeiiriiiei ittt 70
Figure 49: Incremental Growth chart for 40 Projects......ccocueeeiiiiieeeiniiiiee e 72
Figure 50: Maintenance Effort chart for 40 Projects.......cccccvuveeieiiiiee e 75
Figure 51: Number of Commits chart for 40 Projects.........cccveeeeeiieeeecciiee e 76
Figure 52: Incremental Changes chart for 40 Projectscccceeeeeiiieeecciiiee e 77
Figure 53: Lines of Code chart for 40 Projects.......cccccuieeiieiiiee et 79

1
CHATZIMPARMPAS ANGELOS 10

Software Evolution

Table 1: Studies on the validity of Lehman’s lawWscoiiviiiiiiiiiiiieeccee e 16
Table 2: The laws of software evolution of the FW analysis [61].....cccccceeeveciiiiieeeeiei e, 17
Table 3: Summary of statistical hypothesis for each Lehman law and each application [12]...... 18
Table 4: Data ANalySis [13] .. iiie e et e et e e e e et e e e eatae e e e s aaaeeeeeasaeeesessaeeeesnssneeesnnnens 20
Table 5: Top 15 most popular languages used on GitHub in the last twelve

Months of the OCtOVErse 2016™ ... e e e e e e e e e e eanes 21
Table 6: JavaScript and PHP fundamental features differences.......ccccceevvceciieeeenieiieecccieeee, 24
Table 7: SONArQUDE IMELIICS ...uuviieieiiiiee ettt st e e e s e e e e sbee e e s ssbaeeeesabaeeesnanees 27
Table 8: Presentation Of reSUILSocuiiii i e e e 29
Table 9 (Releases Stats Table): Metrics used to this thesis for validation of

each Lehman law to every GitHub JavaScript program........cccccceeievccciiieeee e 56
Table 10 (Projects Table): General statistics metrics for every Project that has

o T=T=T g I8 1 =T ISR 56
Table 11 (Contributors Table): Top 100 contributors to a Project with most

o] 2.1 0 1 5P UPRPN 57
Table 12: Statistical results on law | (continuing change).coocveviiviiiee e 68
Table 13: Statistical results on law Il (increasing complexity).ccocceeeveieeeeiriiiee e 70
Table 14: Statistical results on law IlI (self-regulation)..........ccccoeeoieeiiciiiie e, 72
Table 15: Statistical results on law IV (conservation of organizational stability).ccc..cc........ 75
Table 16: Statistical results on law V (conservation of familiarity).ccccoevviieieiiieeeeciieeeee, 77
Table 17: Statistical results on law VI (continuing growth).ccceeeeeiiieiiciiee e, 79
Table 18: Statistical results on law VII (declining quality).cccooeeiieeeiiiiieeice e 83
Table 19: Statistical results on law VIII (feedback system)........occcveeieiiiiiiiciieee e 84
Table 20: Validation of the [aWsc..eeiiiiceee e e 85
Table 21: Studies about the validity of Lehman’s laws including ours.........cccovveevieeeeiiccivvenennn.n. 85

1
CHATZIMPARMPAS ANGELOS 11

Software Evolution

1. INTRODUCTION

Software evolution is the term applied in software engineering and to be more specific in
software maintenance branch and is related to the method of developing software initially,
then frequently updating it for many reasons. As Fred Brooks declares in his book, over 90% of
the costs in a software system is given in the maintenance stage and software will unavoidable
be maintained [62]. The maintenance of software is divided into four main categories [63]:

e Corrective maintenance: Identified problems are solved after of course being known
through reactive adjustment of a software product.

e Adaptive maintenance: To hold a software product usable in a modified or modifying
environment after of course being known, adjustment of a software product must be
performed.

e Perfective maintenance: To enhance performance or maintainability after of course
being known, adjustment of a software product must be done.

e Preventive maintenance: Adjustment of a software product must be performed to
search and find potential threats in the software product before they grow to sufficient
errors.

There are small additions to each category, but the scientists kept four basic types that are
presented above. To evaluate these categories in real-life software, a set of behaviors in the
evolution of proprietary software has been identified by Lehman and his colleagues.

Several researchers are focused on the subject of “Software Evolution” and tried to test the
validity of Lehman’s laws. However, JavaScript is a well-known and widely used programming
language almost no research has been conducted for JS Software Evolution. This diploma thesis
achieved to test JavaScript open-source projects from GitHub and draw conclusions about their
current state. Also, with these results, the future of JavaScript software can be depicted.

More and more software is written in JavaScript programming language. Therefore, it is
important to test how well made and faultlessly are some of the best known of them and how
they evolve. It is, thus, necessary to develop a platform that will test this software in such a way
as to achieve this goal successfully, while at the same time promotes further research on such
an important issue.

1
CHATZIMPARMPAS ANGELOS 12

Software Evolution

1.1 Objective

The primary goal of the present diploma thesis is to develop an online web application that, in
combination with other tools, will provide complete data on “Software Evolution” of JavaScript
programs. Specifically, in its context, the theoretical background of “Software Evolution” is
analyzed with lots of details. Furthermore, the results of the survey are interpreted and
presented with high tech and popular tools. Also, the description, design, and implementation
of the platform created to test the open source software are presented.

This platform was designed firstly to cover my and Mrs. Bibi’s curiosity referring to “Software”
and how it will evolve in the future. In an extension of that, it also serves and meets the needs
of software developers and researchers. The platform that we managed to create will help
researchers to estimate and understand main problems of open source projects that
programmers developed. This thesis provides a complete package of programs like the web
application that is created with a particular purpose to collect data from JavaScript notable
projects through the use of special software. Through specific URLs, an entirely open source
project gets into testing, and the results of the procedure are stored in the database.

1.2 Organization of Chapters
This diploma thesis is divided into five chapters-thematic sections.

In 1% chapter, we have a brief reference to “Software Evolution.” In addition, there is a short
presentation of the subject of the thesis and the reasons for choosing the exact web application.

In 2" chapter, a more general analysis is made of the term “Software Evolution.” Furthermore, relevant
work is examined, and the theoretical background that a reader might need is provided.

In 3" chapter, the requirements of the platform are presented. Then, theoretical details about systems
that the web application uses are shown. At the end of the section, an extensive guide of how to set up
and execute all the software that this diploma thesis provides is given to the reader.

In the 4™ chapter, the platform is presented in detail as well as all the features it has. With the help of
screenshots, all the platform's capabilities are captured, and a detailed explanation of how to use it is
provided.

In the 5% chapter, a detailed exhibition of the results and conclusions that emerged from the use of the
web application is presented.

Finally, reference is made to all the bibliographic sources used in the dissertation, as well as to the
websites that helped to develop the web application.

1
CHATZIMPARMPAS ANGELOS 13

Software Evolution

2. THEORETICAL BACKGROUND

This specific chapter defines the meanings and the necessary theoretical background to
understand the diploma thesis fully. Firstly, everything starts from the education and the
factors that led Lehman to study the software evolution. Furthermore, the focus of this survey
is to test the validity of the Lehman's Laws which are eight in number. Last but not least is the
explanation of the reasons that the above tests have been applied to JavaScript projects in
comparison with other surveys and more details about JavaScript as a language.

2.1 Lehman's Laws of Software Evolution & Observations for Contemporary
Applications

2.1.1 Lehman's Laws of Software Evolution

Lehman and Belady [1], the mid-70s, formulated the laws of software evolution [1] that is the
most well-known work for them. A software system that everyone thinks it's going to work
cannot be for sure guaranteed that it will. Two reasons are supporting the previous claim:

e The first is that the real world is very complicated and no one could know what will
happen to inside a running program.

e The second reason is that the software interferes with the environment and the
surroundings in which it will run [1].

When time passes the program gets feedback from its users. This continuous feedback supports
developers to evolve the program and the source code eventually. Even if an application
accomplishes users requirements, it should continue to develop because changes to the
environment will appear. Lehman understood the difficulty of improving a program, and with
that in mind, he created some laws to summarize his conclusions for E-type software systems
[1]. E-type systems are those embedded and actively worked in a real-world area [51]. The “E”
letter on E-type systems stands for “Evolutionary.” E-type programs are being influenced by the
surroundings and need to be adaptive. Furthermore, Evolutionary-type software is the most
common and important referring to the real and research world respectively [1]. To continue
with, these results are well-known as Lehman's Laws of Software Evolution (adapted from [1, 2,
3]) and are summarized as follows:

1) "Continuing Change" - A program should adapt to the new needs of the users or else it will
be progressively less satisfactory for them.

2) "Increasing Complexity" - A program will have its complexity constantly increasing except
precise work is done to maintain or even decrease it.

1
CHATZIMPARMPAS ANGELOS 14

Software Evolution

3) "Self-Regulation" - The software systems are self-regulating while evolving with close to the
normal process of measures and distribution of the product.

4) "Conservation of Organizational Stability" - The average effective global activity rate doesn’t
change when time pass for an E-type evolving system. That means the work stays the same for
every release.

5) "Conservation of Familiarity" - An E-type software system has the same or even less new
content over time in comparison with every successive release.

6) "Continuing Growth" - Over its lifetime a program must show a progressive increase in the
number of functional content to maintain its users pleased.

7) "Declining Quality" - New operational limitations will appear, and an E-type system should be
maintained and adapted to these but in general, the quality will decline over time, and nothing
will happen to preserve it.

8) "Feedback System" - An E-type program constitutes of multi-agent, multi-loop, multi-level
feedback systems and must be treated like this to achieve extravagant improvements over
time. This law proves the importance of the user to give feedback to the evolutionary system to
improve and update in the future.

2.1.2 Observations for Contemporary Applications

Lehman laws, presented in the previous section, are aspired by the software development
techniques adopted in IBM where he was working. The data he used to evaluate these laws
were derived from big industrial programs developed with old-fashioned methods for system-
oriented software. However, the software has suffered significant changes, now it is more agile,
cloud-based and has the power to run in multiple environments and is highly professional and
technical. With all that in mind, it is necessary to test and validate each one of the Lehman’s
Laws merely to understand which should be adjusted for the new software and its evolution

[1].

Some studies doubt the truth of some laws, for example, the 3™, 4th, 5t The results of these
studies can be shown in the following table [13]:

Reference Year | Programming | Number [| [Il |l | IV |V | VI|VI]|VII
Language of
Projects

Godfrey & Tu | 2000 | C 5 Y N Y N
[52, 53] and

2001
Robles et al. 2005 | C, C++, Java 19 Y N Y N
[54]

CHATZIMPARMPAS ANGELOS 15

Software Evolution

Mens et al. 2008 | Java 1 Y|N Y

[55]

Xie et al. [56] 2009 | C 7 Y|Y|Y N|Y [N |N
Israeli & 2010 | C 1 Y|N|Y |Y Y [N |Y
Feiteison [57]

Businge etal. | 2010 | Java 21 Y Y N|Y

[58]

Neamtiuetal. | 2013 | C 9 YININ|N|N|Y [N |N
[59]

Kaur et al. [60] | 2014 | C++ 2 Y|IY|Y YI|Y |Y
Amanatidis & | 2015 | PHP 30 YIN|Y |Y |[Y]|Y N
Chatzigeorgiou

2015[13]

Table 1: Studies on the validity of Lehman’s laws

These studies found that some rules are valid for example those who have the “Y” letter. The
“N” letter is for the invalid laws. Lastly, the empty rows aren’t tested, or the results are
doubtful about the validity of each law.

That mainly happens due to the different working styles of the past where developers and
engineers were working as teams to significant and expensive projects with deadlines. Of
course, the above conclusions could be understood if we compare the past with the new
industrial software development that is being used in modern times. These new industrial
software development also copy the open source systems style which has more freedom to it.
So, when a program manager sees a significant improvement, releases the new version and
doesn’t need to have a deadline [1].

Lehman did some studies and used some metrics to calculate and test the Laws. One Lehman’s
study has the following results from various measurements in a system which is called Logica
FW (Fastwire) [61] for every release:

1
CHATZIMPARMPAS ANGELOS 16

Software Evolution

No. Brief Name Support Indicator

I Continuing Change k| Fig. 3 clearly indicates continuing growth. Logica's confirmation that
this i1s partly due to adaptation and change supports the law.
Quantification will be of interest.

I |Increasing Complexity k| The inverse square law of growth (eq. 1) and its predictive power (fig. 7)
supports complexity as a constraining factor.

I |Self Regulation ? The nipple (fig. 3) of the, otherwise, smooth growth (eq. 1) suggests
regulation around a smooth trend. Identification of the underlying
mechanisms 1s required to support the law as it stands.

IV |Conservation of k| The ability to obtain a close fit and very good predictive power with a|
Organisational Stability single and constant parameter E (eq. 1) provides support. Measures of the
(invanant work rate) work rate are required.

V |Conservation of Familianty r Fig. 5 still suggests that the average incremental growth has a defimite
trend. Its invariance as in the original formulation i1s now, however,
questioned. Determination of the trend and the consequences of a release
whose incremental growth exceeds the average significantly must await
the further behaviour of the system in its evolution.

VI |Continuing Growth V Fig. 3 clearly indicates continuing growth. Logica's confirmation that
this 1s partly due to functional growth supports the law. Quantification
will be of interest.

VI |Declining Quality 7 Mo data that provides evidence for or against 1s available.

VIII [Feedback System o Regulation as in figs. 3, 5, 7. 8 and inverse square law, (eq. 1) arc

supportive. Feedback control mechanisms must be identified to obtain
further support.

Table 2: The laws of software evolution of the FW analysis [61]

Most of the laws were validated back in 1997 for the “logica” FW system. Laws 3, 5, 7 are in
doubt. But the most important thing is that this survey was in a specific software system which
makes the results controversial. These metrics Lehman used for the previous conclusions are
being used identically to new studies, and that’s why the discussion of some concerns is
required, but for now, the concentration goes to the efficacy of the Lehman's Laws.

2.2 Software Evolution in Other Programming Languages and Comparison with
JavaScript

2.2.1 Software Evolution in Other Programming Languages

There are many surveys about Lehman's Laws to open-source programs, but most of them are
in C and PHP languages. JavaScript is a language that hasn't been tested abroad yet. The
previous assertion is the main reason that this thesis tries to identify the validity and get results
of the laws for a prevalent but still not examined programming language. On the following
chapters, there are results from two significant studies.

1
CHATZIMPARMPAS ANGELOS 17

Software Evolution

2.2.1.1 Evolution of applications written in C

The 1%t paper is called “Towards a better understanding of software evolution: an empirical
study on open-source software” and is about nine open-source applications written in C. The
authors checked if some hypotheses are right for every law and conclude to the confirmation or
doubt of the laws individually [12]. The first column presents laws and their names. The second
column is the hypothesis of each law with a number which is the indicator of the exact law (i.e.,
H1) and letters to count the metrics for each law (i.e., H2a, H2b). Each hypothesis has a
description just to know what it is for. The rest columns are the nine projects that they tested
for validation. The "Y" means that for an application it is confirmed and the "N" means that it is
rejected. The results can be shown in the following table [12]:

L Hypothesis, metric Bush BIND Bison OpenSSH Quagga Samba Sendmail S0 Lite WValipd
| Comriruiing change H’f: cumulative changes Y Y Y Y Y Y Y Y Y
Il {ncreasing complexty alls per function N Y N N N N N N b |
complexity (ahsoluie) Y Y Y Y Y Y Y Y ¥
complexity {nommalized) N N Y Y N N N Y N
ommon coupling {aheolute) Y Y Y Y Y Y Y Y b |
H™: common coupling (normalized) N N N N Y N N N N
M Self reguiation H* number of modules Y Y Y Y Y Y Y Y N
H number of functions Y ¥ Y Y N Y ¥ ¥ Y
IV Conservation af org. siabiliry H* changes per day N N N N N N N N N
™ change rate N N N N N N N N N
H* growth rate N N N N N N N N N
WV Congervation of familiary H™ net module growth N N N N N N N N N
H\":_L:rnwlh rate {new fumctions) N N N N N N N N N
H™; mumber of changes N N N N N N N N N
V1 Conrinuing growrh H LOC Y Y Y Y Y Y Y Y Y
H number of modules Y Y Y Y Y Y Y Y k|
H'T': mumber of definitions Y Y Y Y Y Y Y Y k|
VI Declining quality H"™ number of defects N N N N N N N N N
" defect density (by LOC) N N N N N N N N N
": defect density (by ALOC) N N N N N N N N N

“ intemal quality, see Law [l _

VI Feedback svatem Hf"’: number of modules o RSN Y Y ¥ k| k| Y ¥ ¥ Y
H"’:&:l' w4 mumber of modules) N N N N Y N N N Y
A oo 57 (LO0) N N N N N N N N Y
A o 3 fnumber of functions) N Y N N ¥ N N N Y

Table 3: Summary of statistical hypothesis for each Lehman law and each application [12]

The methodology they used was to first get the data from the official versions of each of the
nine open-source programs. Then they processed and merged all the code to a single .c file, but
at the same time, they held module information. Afterwards, the procedure was to run source
code analysis tools which are two in number [12]:

e ASTdiff gathers a variety of change metrics, for example, changes in attributes,
methods, types, etc. With this tool, they collected information about code complexity
and modules.

e RSM stands for Resource Standard Metrics and is a commercial tool that they used for
cyclomatic computing complexity [12].

The last step was to use statistical hypothesis testing to validate and draw conclusions about
the nine projects. There were four kinds of analysis depending on the type of each hypothesis
[12]:

1
CHATZIMPARMPAS ANGELOS 18

Software Evolution

e Increase/decrease test: A univariate linear regression has been performed to test the
changes of a metric. The dependent variable is the metric they tested. On the contrary,
the independent argument is the number of days since the start of the project for that
release or maybe the release’s sequence number. If b >0 or b <0 (b is the slope) they
had to increase and decrease respectively and p-value < 0.05 to get the hypothesis
validated.

e Non-zero test: One sample t-test has been performed to test if a metric value has non-
zero values. The specified value was zero, and the null hypothesis is that each release
has a mean equal to zero. If this assumption was wrong (p-value < 0.05) the specific
release has non-zero values.

e Invariance test: Some laws support that a specific metric is invariant over time. To test
this hypothesis they used Levene’s test for equality of variance in two samples. The first
example contains the exact metric values for all releases and the second has everything
the same but no variation which means that all elements are equal to the first example.
If the two samples have similar deviation and p-value < 0.05 the hypothesis is validated.

e Non-linear growth test: They performed a univariate linear regression where the
argument is the value of the metric (e.g., LOC) for a specific release, and the
independent argument is the growth model (e.g., the square root of time). The
hypothesis is validated if p-value < 0.05.

P-value is an exact threshold that they set at 0.05 and has been used to every hypothesis.

To make it more “clear” the 15t and 6™ laws are only confirmed by this paper [12]. Hypothesis 1,
2d, 3a, 3b, 6a, 6b, 6¢c and 8a are confirmed from the analysis they performed in each project. In
controversy, 2a, 2c, 4a, 4b, 4c, 5a, 5b, 5c, 7a, 7b, 7c, 8b and 8c hypothesis are not confirmed.
The remaining testing hypothesis is partially being confirmed in a portion of projects. To have a
fully confirmed law each of the hypothesis for this law must be validated. For example, 6a, 6b,
6c are validated, and that’s why the 6 law is being confirmed.

2.2.1.2 Evolution of applications written in PHP

The 2" paper is called “Studying the evolution of PHP web applications” and is about thirty
open-source applications written in PHP. They checked some variables (metrics) for every law
and found results for the confirmation of the laws [13]. The conclusions of this paper can be
shown in the following table [13]:

CHATZIMPARMPAS ANGELOS 19

Software Evolution

Laws Variables Dara analysis

Law [{Continuing change) [V1] Days Berween Releases (DBR) - Trend rest
- Slope estimation

Law Il (Increasing complexicy) [V3] Complexity merric: - Trend rest
Cydomaric Complexity Number/Lines OF Code (CCN/LOC) - Slope estimarion

Law I (Self regularion) [V5] Incremental growth of methods & funcrions - Trend test
- Slope estimarion

Law IV (Conservarion of organizarional stabiliy) [V.41] Mainrenance efforcEffort = rotal changes/DBER[V, ;] - Trend rest
Number of commirs - Slope estimarion

Law V (Conservarion of familiariny) [V5] Incremental changes (IC) in methods & funcrions - Trend est

- Slope estimarion

Law V1 (Conrinuing growth) [Vg] Lines of Code (LOC) - Trend rest
- Slope estimarion

Law VII { Declining quality) [V7,] Afferent Coupling (CA)® - Trend rest
[V32] Efferent Coupling (CE)* - Slope estimarion

[V31] Depth of Inheritance Tree {DIT)*
[V74] Comment Rario (CR);

Commented Lines Of Code/Lines Of Code
[V75] Maintainability Index (MI)

[V35] Mumber of bug-related commirs

Law VIl (Feedback system) [Vg] Acual (£ and cheorerical growth rate (c-1-1) wao sample Kolmogorov-Smirnoff rest

* These merrics have been measured ar class level and their average values (divided by rhe number of classes) have been considered.

Table 4: Data Analysis [13]

The findings were that 1st, 3rd, 4th, 5th and 6th laws are confirmed, and the others aren't [13].

2.2.2 PHP in comparison with JavaScript as languages for open-source projects
JavaScript is a universal language for web front-end applications but has also embedded the

Node.js in 2009 which is for server-side scripting [24]. PHP and JS have some similarities which
are (adapted from [25, 26]):

e Both languages are usually used for the web and were developed specifically for it in
1995.

e The syntax styles are taken from the C language on both of them.

e Until lately PHP wasn’t Object-Oriented language, and both weren’t formally Object-
Oriented languages.

e They are platform independent, but PHP needs a compiler and JS a run-time
environment.

There are also many differences between them and here are some basic:

e PHP use is mainly for server-side things while JavaScript is for client-side but with the
Node.js JavaScript has also been a server-side scripting language.

e JavaScript only has constructors and functions in contrast to PHP which has and uses
classes.

e JavaScript is used for visual effects and improvements of web GUIs.

e Users can deactivate all JavaScript while browsing the internet because it is a client-side
language and has some features that are being analyzed in the 2.4.2 chapter.

CHATZIMPARMPAS ANGELOS 20

Software Evolution

Table 5 shows us that JavaScript is the number one language compared to the others and
various GitHub applications are written in it.

Programming Language | Pull Requests Percentage Changes from
Previous Period

JavaScript 1,604,219 +97%

Java 763,783 +63%

Python 744,045 +54%

Ruby 740,610 +66%

PHP 478,153 +43%

C++ 330,259 +43%

CSS 271,782 +36%

CH 229,985 +88%

C 202,295 +47%

Go 188,121 +93%

Shell 143,071 +76%
Objective C 75,378 +37%

Scala 70,216 +54%

Swift 62,284 +262%
TypeScript 55,587 +250%

Table 5: Top 15 most popular languages used on GitHub in the last twelve
months of the Octoverse 2016*

*Stats for the Table 5 are obtained from “The state of the Octoverse 2016”
(https://octoverse.github.com/).

The JS has advantages for the programmers and users which can be summed up in the
following bullet points:

e An easy language because it is effortless to learn and the syntax is approaching English.

¢ Instant response for every visitor because without server interactions you don’t have to
wait for pages to reload to get what you are requesting.

o Pretty fast for the end-user because scripts are being executed on the user’s computer
and for a portion of results they are immediately presented.

¢ Interactivity is raised because of the development of interfaces that can respond to the
user’s input.

e Smarter and more elegant interfaces are being developed because of drag and drop
features.

e Fast for real-time applications and if lots of simultaneous requests and responses
needed in case of back-end use (Node.js).

1
CHATZIMPARMPAS ANGELOS 21

https://octoverse.github.com/

Software Evolution

Like every programmer gets and uses the full capabilities of programming languages, this thesis
chose JavaScript projects from GitHub to test the Lehman’s Laws for the above reasons that
have been presented with lots of details.

2.3 Details about JavaScript Language and GitHub Software Development
Platform

2.3.1 Details about JavaScript Language

JavaScript frequently shortened as JS first appeared on December 4 in 1995 which is 21 years
ago [4]. It is a high-level dynamic, object-based, multi-paradigm, interpreted and weakly typed
programming language. World Wide Web uses three core technologies which are JavaScript,
HTML, CSS and that makes JavaScript a standard software language. The last stable version is
ECMAScript June 2017 [5]. The primary use is to create web pages interactive and implement
online programs, including video games. The bulk of websites operate it, and all current web
browsers have a built-in JavaScript engine and support it without the need for any plug-ins.

Each of the multiple JavaScript engines serves a different implementation of JavaScript, all
based on the ECMAScript spec, with some engines not supporting the specification thoroughly,
and with many engines supporting extra features exceeding ECMA.

As a multi-paradigm language, JavaScript supports event-driven, useful, and imperative
programming styles. The API helps JS to work with arrays, text, regular expressions, dates and
necessary administration of the DOM, but it excludes any 1/0, such as storage, networking, or
graphics facilities, and uses for these the host environment in which it is embedded.

JavaScript engines are now embedded in numerous other types of host software, including in
non-web software such as word processors and PDF program and also server-side in web
servers and databases. Furthermore, in runtime conditions that make JavaScript accessible for
writing desktop and mobile applications, including desktop widgets despite initially being only
implemented in client-side web browsers.

Although there are apparent outer connections among JavaScript and Java, including language
name, several standard libraries, and syntax, the two languages are different and vary
considerably in design. Self and Scheme are two languages that JavaScript was influenced by

[6].

2.3.2 Key Features of JavaScript

JavaScript also has some main features that make it a new and robust language. First of all, it is
supported widely, and all common web browsers have built-in interpreters. JavaScript supports
the structured programming syntax of other languages like C and makes a separation between
statements and expressions. One change that helps the developers is that it allows omitting the
semicolons (automatic semicolon insertion) [14].

|

CHATZIMPARMPAS ANGELOS 22

Software Evolution

Moreover, JavaScript is a dynamically typed language which means that a type is combined
with a specific value and not only with every expression. If someone wants to present that with
an example, it will be that variables can change types from a number to a string, etc. [15]

This language also provides run-time evaluation with the eval() function which can run
statements in string format at run-time. JavaScript (JS) is almost utterly object-oriented like
most object-based languages, but a difference is that it uses prototypes where other languages
use classes for heritage [16].

Functions and methods don't differ at all like in other programming languages. Functions can be
also defined as object constructors and have a double usage simultaneously with their essential
role. A new function call to an existing older will produce an instance of a prototype with the
heritage of properties and methods from the constructor [17]. One more significant feature is
that functions are being considered as objects and could have properties, methods and could
be first-class or nested functions with the lexical scope of the external functions [18]. If we are
talking about the nested functions, the internal function object will be a segment of the outer
function and inheritance things from it [19].

An unlimited amount of parameters can be transferred to a function. This is well-known as
“Variadic” functions. The function can reach them through formal parameters or the local
arguments object and create them with the bind method. Array and Object literals can be
created with fast syntax commands which are also the foundation of the JSON data format. JS
processes messages from a queue at a rate of one at a time and also creates a call stack frame
which expands or retracts upon its needs. When this event loop happens, it allows the
program’s input or output to be performed. In more simple words the event loop doesn't block
the other procedures, for example, a mouse click while simultaneously waiting for database
queries to send back information [20]. In addition, JavaScript can have regular expressions
which give a strong syntax for text administration [21]. Last but not least there are more
features that some engines support and this thesis is going to present them in a referential
manner:

e property getter and setter functions [22]

e conditional catch clauses

e iterator protocol

o shallow generators-coroutines

e array comprehensions and generator expressions

e proper block scope via the let keyword

e array and object destructuring

e concise function expressions

e ECMAScript for XML (E4X), an extension that adds native XML support to ECMAScript
[23]

CHATZIMPARMPAS ANGELOS 23

Software Evolution

JavaScript

PHP

The JavaScript code is obtainable even
after the output hasn’t already
produced.

The PHP code is accessible only after
server performs the needing
procedures.

JavaScript can manage certain local
assignments.

PHP executes on servers, and the
primary responsibility is to generate
the HTML code that browsers
interpret.

JavaScript can be mixed with XML,
HTML, and AJAX.

PHP can be mixed with HTML and not
XML.

JavaScript doesn't mainly use MySQL as
a database but other types.

The central database of a PHP
software is MySQL.

JavaScript runs in a browser.

PHP doesn’t run in a browser but in a
server, a compiler as a program or
elsewhere.

With the URL of a file written in the
address bar of a web browser,
JavaScript can send files of accessible
data.

PHP can get files from other web pages
and also import them from the
available server. The use of PHP is to
create web pages with the power of a
server.

Table 6: JavaScript and PHP fundamental features differences

2.3.3 GitHub Software Development Platform

GitHub is a web-based or version control repository and Internet hosting service founded on
February 8 in 2008. The primary use of it is for code and offers all of the assigned version
control and source code management (SCM) functionality like Git and also adds its specific
characteristics. It provides access control and various collaboration features such as feature
requests, bug tracking, task management, and wikis for every project developers add [7].

GitHub allows both methods for free and private repositories on the same account [8] which
are usually used to host open-source software programs [9]. In April of this 2017, GitHub
reports having approximately 57 million repositories and 20 million users, [10] making it the
most prominent host of source code in the whole world [11].

1
CHATZIMPARMPAS ANGELOS 24

Software Evolution

3. ANALYSIS AND DESIGN OF THE WEB APPLICATION

In this chapter, there will be an analysis of the system that this thesis uses to get the results
from the GitHub open-source projects. Initially, requirements will be described and technology
that has been used. Afterwards, details of the programming language will be presented and
after that information about the open-source programs that produce specific essential metrics.
Moreover, the reader will be informed about the operating systems and more critical aspects of
the code and also the functionalities. Lastly, the use of the entire system will be explained along
with the processes to extract the results. In the end, two categories of data will be explained
the more general, and the focused to releases of each project and details of the values that
obtained.

3.1 Description of the Requirements

The platform has to retrieve information from GitHub by parsing the website and store them
into a database. It also has to get data from an analysis and save them into the same database.
The purpose is to get measurements for each official release of 100 JavaScript projects and
keep the results of them. Then an analysis of the results will be performed, and conclusions will
be drawn from it. The need of a combined system to collect all the data was essential. Note
that this application is made for the creator’s purpose to get the needing data or programmers
that want to do a similar study of GitHub open-source applications.

3.2 Technology and Tools

3.2.1 Operating Systems

A Windows 10 x64-bit personal computer has been used for the primary tasks like Database
store of variables, SonarQube analysis and so on. This system was combined with a Raspberry Pi
3 model B that runs Raspbian [27] and had to run JSClassFinder to compute some extra metrics.
JSClassFinder wasn’t working at the Windows System so the Raspberry Pi was a good system
that could handle the load of work.

3.2.2 XAMPP - The Most Popular PHP Development Environment

XAMPP is a free open-source and cross-platform web server that this thesis used to gather the
data locally to a computer. It is developed by Apache Friends [28]. XAMPP is the first letters of
five packets well-known as Cross-Platform (X), Apache (A), MariaDB (M), PHP (P) and Perl (P). It
is a lightweight Apache release that makes easy for programmers to create a local server like
this thesis used. The main reason of use was for executing code that takes data from GitHub

and other Analysis programs and also gathers all that into a Database. Everything needed to set
- -~ |

CHATZIMPARMPAS ANGELOS 25

Software Evolution

up a web server at a “localhost” computer is included. It works equally well on Linux, Mac, and
Windows but the use was tested into a Windows system as mentioned in the 3.2.1 chapter.
With this software, phpMyAdmin is added which is a free open-source managing tool
for MySQL and MariaDB. It has become one of the most popular MySQL administration tools for
web hosting services.

3.2.3 LARAVEL and MySQL

Laravel is a free and open-source PHP web framework that makes easier the creation of code,
maintenance and the transaction of the whole code to other systems if needed. It has lots of
features like modular packaging system with a dedicated dependency manager, several ways
for obtaining relational Databases, services that help in application deployment and very
common and easy syntactic. It is also one of the most popular PHP frameworks of March 2015
and in more current statistics [29, 30].

MySQL is an open-source relational database management system [31] and has been used as a
Database type to create as cell-format and store the data that are being processed afterward.

3.2.4 Goutte - A Simple PHP Web Scrapper

It is a screen scraping and crawling web library for PHP that has been used to get general and
more specific variables from the GitHub projects. It gives the power to crawl websites and
extract data from the HTML responses. Moreover, with this tool, the scrapping of SonarQube
Analysis is achievable using the same way that parses HTML web pages from GitHub. This a
module that has been added to Laravel code and XAMPP web system [32].

3.2.5 Git — Version Control System

Git is a version control system for tracking differences in computer files and coordinate work
with other people. It is used for source code administration in software development [33]. It is
very fast [34], keeps the data as it is [35] and also supports various workflows at the same time
[36]. Furthermore, the use of it at this particular thesis is to download the Projects and change
the release version just to be tested by SonarQube. The latest release is 6.5 that this thesis uses
and has been published since 3™ of August.

3.2.6 SonarQube Continuous Code Quality

SonarQube well-known also as Sonar [37] in previous versions is an open-source program that
allows endless review of the state and quality that code has. The measurements that
SonarQube provides are summed up in the following table:

1
CHATZIMPARMPAS ANGELOS 26

Software Evolution

Name

Description

Complexity

It is the complexity calculated based
on the number of paths through the
code. [66]

Cognitive Complexity

How hard it is to understand the
code's control flow. [66]

Complexity / file

Average complexity by file.

Complexity / function

Average complexity by function.

Comment lines

The number of lines containing
either comment or commented-out
code.

Comments (%)

Density of comment lines
= Comment lines / (Lines of
code + Comment lines) * 100

Duplicated blocks

The number of duplicated blocks of
lines.

Duplicated files

The number of files involved in
duplications.

Duplicated lines

The number of lines involved in
duplications.

Duplicated lines (%)

Density of duplication = Duplicated
lines / Lines * 100

Technical Debt Ratio
(Maintainability)

The ratio between the cost to
develop the software and the cost
to fix it.

Issues The number of issues.

Code Smells The number of code smells.
Bugs The number of bugs.
Vulnerabilities Number of vulnerabilities.
Functions The number of functions.
Statements The number of statements.
Files The number of files.
Directories The number of directories.
Lines The number of physical lines.

Lines of Code

The number of physical lines that
contain one or more characters
which aren’t whitespace or
tabulation or part of a comment.

Table 7: SonarQube Metrics

It performs statistical analysis of code to find bugs; code smells, security vulnerabilities and
other software problems. It is a multi-language tool because 20+ programming languages

1
CHATZIMPARMPAS ANGELOS 27

Software Evolution

including JavaScript are being covered for analyses. Furthermore, it can be used manually and
independently and also to be integrated into other software like Eclipse, Visual Studio and
more. It has a significant number of plugins [38, 39] to fulfill all users needs and provides
additional metrics for example duplicated code, code coverage, code complexity, comments,
etc. [40, 41]. SonarQube has Sonar-Scanner which is the tool that scans the GitHub projects and
gets the analytics that later is being displayed to it. This means that SonarQube is a system that
reports the results and gives the view option to users.

3.2.7 JSClassFinder — A Tool to Detect Class-Like Structures in JavaScript

This program is developed by a team and has two stages the first is preprocessing and the
second is a visualization of the processed results. Moreover, the first step is qualified for the
examination of the AST source code and the creation of object-oriented models which is a
transformation of the initial code [42]. The second step is the access of the user to visualize and
gain the results of the previous process and use the features that he or she might want. To
execute this software you have firstly to run Pharo which is a complete environment for
programming and running object-oriented codes. Like, JSClassFinder Pharo, has many features,
for example, the basic are a live update, hot recompilation and administration [42]. The system
requirements are:

e AST of a JavaScript source code in JSON format
e Pharo image with JSClassFinder

The results of this program are the following metrics:

¢ Total Number of Classes (NOC)

e Total Number of Attributes (NOM)

e Total Number of Methods (NOA)

e Total Number of Children (subclasses)
e The depth of Inheritance Tree (DIT).

Last but not least, it has a specific architecture which users have to follow in order metrics to be
created and this can be described by the figure below:

Models
Source AST Class {metrics &
code Parser Detectar wisunlization)
AST

Figure 1 : JSClassFinder’s architecture [42]

1
CHATZIMPARMPAS ANGELOS 28

Software Evolution

3.2.8 AutoHotkey — The Ultimate Automation Scripting Language for Windows

It is a free, open-source custom scripting language for Windows. The first use was to give an
easy keyboard shortcuts or hotkeys access and software automation. With this tool data from
GitHub Projects were gained because the parser can get HTML variables and store them in the
Database. Furthermore, scripts were running and saving the complete web pages that were
needing. So, AutoHotkey helped with the automation of repetitive tasks of the entire
procedure.

3.2.9 Grafana — The Open Platform for Beautiful Analytics and Monitoring

The results are being presented directly from the Database with SQL queries with the use of
Grafana. It is a leading open-source software for time series analytics which supports various
types of Databases. In addition, there are 30 data sources, 27 panels, 16 apps and 461
dashboards available by the time this thesis is being written [43]. With this tool, the display of
the results is pretty straightforward, accurate and nicely presented. Moreover, programmers
can avoid the Excel graph format to present results which is more difficult. It also has the option
to be hosted via the official website or run it manually. Of course, this thesis adapted the
second option. Metrics are presented in five different ways depending on

Name Description
Time Graph The x-axis represents time, and
the data is grouped by time.
Series Graph The data is grouped by series and

not by time. The y-axis still
represents the value.
Histogram It is a kind of bar chart that groups
numbers into areas, often called
buckets or bins. Lower bars show
that fewer data falls in that range.
Spark Lines They are a great way of seeing the
historical data related to the
summary stat, providing valuable
context at a glance.
Gauge It gives a clear picture of how high
value is in its context. The user
can adjust and set the right
thresholds for specific values.
When a value exceeds the
particular amount that we
mentioned before the color will
change.

Table 8: Presentation of results
|

CHATZIMPARMPAS ANGELOS 29

Software Evolution

3.3 The JS evolution Tool

In this chapter, the use of the specific software that has been created to receive measurements
is going to be analyzed. So, let’s start with a general use-case of all the programs that this thesis
uses. Firstly, the setup procedure is going to be explained and after that the use-case of the
software to get metrics for one Project of the total number which is 100. Moreover, the next
figure shows in detail the entire process that is used to extract data from the combined JS
evolution tool:

CHATZIMPARMPAS ANGELOS 30

Software Evolution

Parsing GitHub
Projects for
General Metrics

Git Process -
GitHub JavaScript y [SonarQube combined Grafana
i Storing |:> . -
Projects P y Calculations after
Repositories of with Senar-Scanner Collacting the Database Exporting data in
GitHub SonarQuibe data Graphs format
Loop for every
release
Process
GitHud Projects |:> Greation of |:[> JSClassFinder Contributors Table
zip fles Abstract Syntax
Tree (AST) Name
Project Commits
Additions
Releases Stats Table Deletions
Number of Aftributes
Number of Classes
MNumber of Methods Projects Table
Releases Stats Table
Number of Subclasses Author
Name

Depth of Inheritance Tree Name

Release Date
Number of Releases
Maintenance Effort
Project Commits

Commits

Contributors
MNumber of Bug-Related
Commits Watch
Bugs Star
Bugs Difference Fork
Vulnerabilities Open Issues
Code smells Closed Issues

Maintainability

Files Analyzed
Directories
Statements

Number of Functions
Lines of Code

Total Lines
Comments
Comments Rate
Incremental Changes
Incremental Growth
Growth Rate

Days Between Releases
Duplicated Lines Rate
Duplicated Blocks
Duplicated Lines
Duplicated Files
Complexity

Cyclomatic Complexity
Number

Complexity / Function
Complexity / File
Complexity / Class
Cognitive Complexity

Issues

Figure 2: JS tool combined usage

1
CHATZIMPARMPAS ANGELOS 31

Software

Evolution

The XAMPP has to be downloaded [44], installed and opened with the Apache and MySQL
running (Figure 3). Then the SonarQube must be downloaded [45] from the official website and
has to be executed. To achieve that the user has to run StartSonar Batch File by double-clicking

it (Figure 3).

Apache] Attemplinglo start Apache app.
[Apache] Status change detected. runming

7 items

=] D@~ Application Toats windows-s86-64 - o x
F=3 Home Shae View Manage L]
XAMPP Control Panel v3.2.2 o=
Wodues i « 4> ThisPC > Downloads > sonmqube-6s > bin > windows-di-64 A
Service Module PID(S) Port(s] Actions = -
fres Name Date modified ype Size
==l oo 061,318 | swe | | aoe || cowns || oo e # Quick aceess
iib der
wpsaL 1200 5306 | swp | [Admn | [ceaty | [Logs Exgorer 1 Desttop -
InstallNTService s Bt [
=3 e E e & Servioss 3] Documems [StatNTService Bt 2k
Wercury St o | [S & Downleads] stanSonar = Bsteh F k8
e = = - & Pictures.] StopNTsenvice Banct K
L = & ou 1032014 5] UninstaliNTService Bat
m: Bionformatics B wrepper
projects
thesis
& OneDie
I This PC
I Desktop
% Document:
& Downloads
b husic
& Pictures.
B Videos
e Local Disk (€)
= Local Disk (D)
 Libearies
@ Network
Attemping to start MySQL app
my=q] Status change detected: running

1tem selected 135 KB

Figure 3: Starting XAMPP and SonarQube

The thesis folder of the entire project copy must be stored in the following path like this:

“C:\xampp\htdocs\thesis” (Figure 4).

CHATZIMPARMPAS ANGELOS

32

Software Evolution

« + This PC » Local Disk(C) » sampp » hidoss » thesis »

Figure 4: The entire thesis folder

To get the projects into the local computer, the user has to download [46], install and run the
Git (Git Bash) and also go to the GitHub web page to choose the Projects. In this thesis, the
JavaScript language combined with sort by “Most forks” has been selected (Figure 5). The place
where Git has been installed and the user has to download Projects is
“C:\Users\"Username”\.git.” The commands to Git clone a repository can be shown in the
following picture (Figure 5):

CHATZIMPARMPAS ANGELOS 33

Software Evolution

Figure 5: Git clone of a repository

To analyze and present the results to the SonarQube service which is running on localhost:9000
when you start the StartSonar Batch File the user has to download the SonarQube Scanner [47]

and store it at “C:\Users\”Username”\Downloads.” SonarQube Scanner has a sonar-
scanner.properties file stored in “conf” folder in which some parameters have to be

synchronized with SonarQube. For example the keys of the project same as SonarQube like the

above screenshot (Figure 6):

| sonar-scanner properties E3 l

, such as SonarCQube DB details for example

code encoding
TF-8

10 # must be unigque in a given SonarQube instance

11 sonar.projectRey=Thesis

12 # this is the name and version displayed in the SonarQube UI. Was mandatory prior to SonarQube 6.]
13 sonar.projectName=Thesis

14 sonar.projectVersion=1.0

.. Replace "\" by "/" on Windows.

18 SOnar.sources=.

20 # Encoding of the source code. - system encoding

21 }sonar.sourceEncoding

Figure 6: SonarQube Scanner configurations

If for any reason the tester needs to close the SonarQube there is a StopNTService Batch File

that he or she has to execute to achieve that. Sometimes java.exe must stop to restart and run

CHATZIMPARMPAS ANGELOS

34

Software Evolution

the software again. In this case, you can use the command “taskkill /f /im java.exe” to
terminate java.exe processes that might run in the background and then start SonarQube. The
above programs should be like the following screenshot (Figure 7):

*' Iﬂ = | Downloads
Home Share View

& = v 4 d&» ThisPC > Downloads »

MName Date medified Type Size

Quick access
[Desktop

tf] Documents
& Downloads

&=/ Pictures

grafana-4.5.1 File folder

sonarqube-6.5 File folder

sonar-scanner-3.0.3.778-windows

thesis

File folder

File folder

Figure 7: Four main folders necessary for the analysis

Moreover, the AutoHotkey has to be download [48] and installed along with a Desktop shortcut
and the two scripts for making procedures more automatic. To be more specific the following
screenshot shows the three archives needed to be on the Desktop of the Computer (Figure 8):

Figure 8: AutoHotkey and two necessary scripts

Furthermore, a ready-to-use Pharo image with JSClassFinder installed [49] is also essential to
get the other metrics of NOA, NOC, NOM, NOS, and DIT.

Last but not least we have to download and set up Grafana [50]. Because XAMPP needs port
3000 and Grafana also, we can change the Grafana’s port to 8000 at configurations file.

CHATZIMPARMPAS ANGELOS 35

Software Evolution

4. PLATFORM PRESENTATION

The web application has five main web addresses (URLs). URL stands for Uniform Resource
Locator and is a reference to a web resource that specifies its location on a computer network.

e http://localhost/thesis/public/projects/create/{id}

e http://localhost/thesis/public/projects/manualSQ/{id}

e http://localhost/thesis/public/projects/calculations/{id}

e http://localhost/thesis/public/projects/contributors/{id}
e http://localhost/thesis/public/projects/JSClassFinder/{id}

Every URL has its use in the platform. More details are presented in the following chapters from
4.1to4.5.

4.1 Creation of the Project and Basic Metrics with the Automated Procedure
First of all, there is a core web page that the software uses to create some vital things as the
Project itself and also simultaneously to get the number of releases (Figure 9).

& localbost/ 127001 78 X e - 8 x
fe C | @ locathost, e P -
phngAdmlﬂ B 7S 127.0 0.1 » @ Datahase tesi ») Table projects

oNO9e Browse [Stucture [/ SQL 4 Search ¥ Insert &) Export (@ lmport =o Privileges ' Operations % Tracking 3 Triggers

Recont Favorites

= Showing rows 25 - 39 (40 total, Query took 0.0006 secands)

— g New
e SELECT * FROM “profects
4. | information_schema
B.G i | Profling [Edit inline][EGit][Explain SQL][Create PHP code | { Refresh |
%4 performance_schema |
[<< < 2 Show all | Number of rows. 25 v Filfter rows. | Search this table Sort by key None
* phpmyadmin
i
F tost
i +Optons
23 New T e proj_commits contributors watch star fork open_issues closed_issues

.4 contributors & 4545 343 1240 31779 498 3784

-4 migrations 2 1885 179 657 188 963

G projecs P 787 53 425 12852 3057 677 734
. releases_stats

846 125 550 15332 3137 3 522

364 1 119395 3208 4 3236

14866 680 1046 18229 3752 46 5109

F 3808 9 03 4916 2472 1460 3407

? hexo 120 2385 02 731 1813 2678 264 2187

P pijs pixijs 79 4447 245 818 15710 2668 310 2380

P fodash lodash 380 7859 29 706 26172 212% 0 2603

P 36 jquery-validation jquery-vaiidation 17 782 175 480 8040 2402 134 1247

37 RockefChat Rocket Chat 101 12160 3% 706 13859 2691 1858 359

oo 38 vues vuex 7] 690 159 461 9819 2839 3 542

lete 39 Modernizr 27 2398 222 1027 21088 2841 186 1107

ete 40 hammer js % 0 [] [] 0 0 0 []

1 Checkall With selected 7 Edit §éCopy @ Delets (= Export

< 2 v Showall | Numberofrows: 25 v Fterrows: | Search this tabi Sotbykey None
Query results operations

{2 Print 3¢ Copy 10 clipboard =} Export g, Display chart Create view

| mConsole

Figure 9: Projects table in Database

For example at the “http://localhost/thesis/public/projects/create/{id}” the tester can create a
project by adding the id to the URL of the following identifier in the Database that has not been

1
CHATZIMPARMPAS ANGELOS 36

http://localhost/thesis/public/projects/create/%7bid%7d
http://localhost/thesis/public/projects/create/%7bid%7d
http://localhost/thesis/public/projects/create/%7bid%7d
http://localhost/thesis/public/projects/create/%7bid%7d
http://localhost/thesis/public/projects/JSClassFinder/%7bid%7d
http://localhost/thesis/public/projects/create/%7bid%7d

Software Evolution

established so far. Also, the user has to complete the Author, Name, and Number of Releases of
the exact Project on GitHub (Figure 10).

(localhost/thesis/public/p X

<« X | @ localhost/thesis/public/projects/create/42

New Project

Author |sentsin |

Name |Iayui |
Number of Releases |1 3
Add

Figure 10: Main thesis functionality through creation of a new Project

Then, it creates the precise release that the SonarQube is testing and initialize the values to
zero. For example, the last version is shown in the following screenshot (Figure 11):

b localhost / 127001 /4 X e - o b 4

e C | ® locathost/phpmyadm

phpMyAdmin
LMo 9 \ Search 3¢ Insert) Export [u lmport = Privileges J* Operations % Tracking = Triggers
Recent Favorites
= Showing rows 3800 - 3803 (3804 total. Query took 0.0149 saconds.) [project_id: 39... - 40... [rel_date: 2010.07-16... - 2016.04-21...]
ol b SELCT * #ROM “releases_STats” ODER BY “profect_18” ASC, rel_date DEsC
.. 4 information_schema
& mysql Profiling | Edit infine] [Edit] [Explain SQL J| Create PHP code] [Refresh]
:o— performance_schema 7 " " "
<< < 153 v | | Numborotows |25 + o rows: | Soarch s tabie Sortby key. | reloases_stats_project_id_index (ASC) ¥
*- admin - - —
3 phpmy
g test
1 + Options.
= 4 thesls
ANew T v id pw)\xcl’k‘l name ml,«:n" maintenance_effort commits NOBug_related_commits bugs bugs_differ vulnerabilities code_smells maintainability files_snalyzed directories statements NOF
8.4 convbutors o Et 3i Copy @ Delete 3801 39 v201007 06dev 2010-07-16 0.000 2205 0000 272 [} 2 3086 2500 3 13 3307 6952
.} migrations
4 pro o Edt }&Cugy @ Delete 3802 39 vit 2009-12-07 0.000 2 0000 22 0 21 309 2500 3 13 33090 6944
i - releases_stats. & Edt 3¢ Copy @ Delete 3803 40 v208 2016-04-22 0000 53 0.000 82 0 9 1599 3800 137 16 23014 3722
o Edt ;&Cnpy @ Delete 3804 40 V207 201604-21 0.000 3 o0.000 0 o [(] 0.000 0 0 0 0

1 Checkall Wit selected 7 Edit 3:Copy @ Delete i3 Export

< 183 Number ofrows: | 25 v Filtec rows: | Search this table Sortby key | releases_stats_project_id_index (ASC) ¥

Query results operations

& Print 3 Copy to clipboard i} Export g, Display chart i Create view

& Bookmark this SQL query

Labet Let every user access this baokmark

Bookmark this SQL query

m Console

Figure 11: For every release stats and metrics in Database

1
CHATZIMPARMPAS ANGELOS 37

Software Evolution

4.2 Generating Basic Metrics with the Manual Procedure

Sometimes the power of a personal computer isn’t enough for this kind of Projects, and the
automated procedure fails to store into the Database the metrics that will after be used for the
evaluation of the Software Evolution. In addition, to generate the variables for testing the
validity of Lehman’s Laws as the 4.3 chapter mentions a manual procedure has to be done.
When lots of zeros are presented to the Database, this means something went wrong and the
execution of SonarQube manually is essential. For example, the release with id 1285 has been
skipped (Figure 12).

& Showing rows 1275 - 1299 (3852 total. Query took 0.0055 seconds.) [project_id: 13... - 14...] [rel_date: 2013-09-27... - 2016-01-25...

SELECT * FROM "releases_stats™ ORDER BY “project_id’ ASC, “rel date’ DESC

Profiing [Edit infine] [Edit] [Explain SQL][Create PHP code [Refresh |

<< < 52 v| > > | Numberofrows: |25 v Filter rows: | Search this table Sortby key: | releases_stats_project_id_index (ASC) ¥

+ Options

“T— v id projectid name rel date maintenance effort commits NOBug_related commits bugs bugs_differ vulnerabilities code_smells maintainability files_analyzed directories statements NOF |

a1 -2

& Edit %i Copy @ Delete 1276 13031 20130827 0.000 6537 0000 15 0 1 1113 2300 110 35 13421 2955
7 Edit 3i Copy @ Delete 1277 13 030 20130927 0.000 6595 0000 15 0 1 113 2300 10 35 13304 2917
& Edit %i Copy @ Delete 1278 13 dashboard 2013-08-12 0.000 6815 0000 15 0 1 1072 2.400 12 3% 12445 2765
7 Edit 3i Copy @ Delete 1279 13 021 20130807 0.000 7113 0000 15 0 1 1285 2900 94 34 13627 2713
&7 Edit & Copy @ Delete 1280 13 020 2013-07-11 0.000 7212 0.000 10 0 1 893 3.200 il 28 8263 1529
7 Edit 3i Copy @ Delete 1281 13 011 20130624 0.000 7323 0000 336 0 10 1606 5300 7 29 10492 2071
&7 Edit i Copy @ Delete 1282 14 294 2017-03-10 0.000 33 0.000 25 0 4 246 2300 14 6 4374 648
7 Edit 3¢ Copy @ Delete 1283 14 293 2017-03-01 0.000 51 0000 25 0 4 240 2300 14 6 4350 638
o Edit i Copy @ Delete 1284 14 292 2016-12-19 0.000 76 0.000 25 0 4 240 2300 14 6 4348 638
7 Edit 3¢ Copy @ Delote 1285 14 2911 20161219 0.000 78 0.000 0 0 0 0 0.000 0 0 (U]

Figure 12: Zeros in a line in Database at 1285 identifier and version name 2.9.1.1

The Project id is 14, so if the user goes to Projects table, he or she can determine the author
and name of the Project. In this case, author name is “alvarotrigo” and name of the Project
“fullPage.js.” Then the tester has to find the exact tag of the version in a coded format which is
“eac6956” in our case. The website will be https://github.com/”author name”/”project
name”/releases/tag/”version name” and in our example
https://github.com/alvarotrigo/fullPage.js/releases/tag/2.9.1.1 (Figure 13).

CHATZIMPARMPAS ANGELOS 38

https://github.com/alvarotrigo/fullPage.js/releases/tag/2.9.1.1

Software Evolution

) Relesse fulpages 291 X e - o

Q Features Business Explore Marketplace Pricing i Signin Sign up

)/ fullPage j Oweteh | 830 | | desiar | 20660 | Yrok | 520

fullpage.js 2.9.1.1

Downloads

Figure 13: Specific’s release tag from GitHub official website

Afterwards, the encoded tag must be set to the folder with the command “git reset —hard
“tag”” for the exact Project name (Figure 14). The location of the folder is known from the 3.3.1
chapter.

MINGWE:/ c/Users/Aggelos/.git/fullPage.js — O >

~f.git/fullPage. s

Figure 14: Setting release’s tag manually to Git for SonarQube Scanner

CHATZIMPARMPAS ANGELOS 39

Software Evolution

To run and start the scanning of a release the user already set before with the tag the same
location must be accessed through a command prompt. And then
C:\Users\”Username”\Downloads\sonar-scanner\3.0.3.778-windows\bin\sonar-scanner.bat
path must be executed from the first location mentioned before (Figure 15).

BN Command Prompt — O *

Figure 15: Manual execution of SonarQube Scanner

When the “Execution Success” message appears the tester has to browse at
http://localhost:9000/component measures?id=Thesis (Figure)and save the page as a
complete web page at the C:\Users\”Username”\Downloads\thesis with the name “Measures —
Thesis.”

CHATZIMPARMPAS ANGELOS 40

http://localhost:9000/component_measures?id=Thesis

Software Evolution

¢] % 3
17 5 The: - ekl
@ e Messur Admnstratior
o -
Reliability
4h semin
s om0 @
4h Sémin
o Relibility Rating
(0]
Security
- '
som
6 & Security Rating
(0]
Mai
240 0
P mells & sintainabilty Rating -
L]

Figure 16: Save results from SonarQube server to HTML format

Lastly, the following page must be used to store the data from the web page to the Database.
The last variable in the URL is modified in relation to the id that user tried to fix (Figure 17).

lzcalhest/thesis/public/ X

“— C | @ localhost/thesis/public/projects/manualSQ/ 1285

Figure 17: Store results in the Database for a specific identifier

4.3 Calculations from the Existing Measurements

After finishing with the above two chapters and tester has everything that is being needed,
some calculations have to be done to find the measurements that are going to verify the
Software Evolution of open-source Programs. More details about these metrics are on 4.9
chapter. The screenshot (Figure 18) shows the execution of the exact URL starting from id = 1
because we want this counts from the first Project stored in the Database. A similar procedure
is being used for the contributors at the next chapter (4.4).

Mew Tab X
C | O localhost/thesis/public/projects/calculations/1

Figure 18: Perform calculations for all the releases

CHATZIMPARMPAS ANGELOS 41

Software Evolution

4.4 Receiving the Contributors and Stats of Them for Every Project

The general metrics for the Project are being saved to the Database from the 4.1 automated
procedure and as another form which are the Contributors of the Project. The maximum
available stats for Contributors could be 100 or less. By running the Figure’s URL (Figure 19), the
contributors are being stored to the Database one by one for every Project the project’s table
has information. It is an automated procedure and similar to 4.4 chapter.

Mew Tab x

C | O localhost/thesis/public/projects/contributars/ 1

Figure 19: Store the maximum of 100 contributors in the Database

4.5 JSClassFinder Variables Added to the Thesis Database

Raspberry Pi 3 model B has been used for taking some additional metrics that 3.2.7 chapter
mentions with every detail. For every project and release, we set the path to the version the
tester wants to accumulate the excess metrics. To do that he or she has to place after “/s”
(source) parameter the path “C\Users\”Username”\Downloads\thesis\”"Release name”*.js.
The “*” means that the tester needs every folder and subfolder of this release that has an
ending of .js (JavaScript files). The “/y” means to accept all the files to be copied to the text file
that the user defines later with the path “C:\Users\”Username”\Desktop\”File name.txt”
(Figure 30).

BN Command Prompt - O >

Figure 20: Generate a file from every JavaScript file in a release

CHATZIMPARMPAS ANGELOS 42

Software Evolution

To continue with the process, there is a web page called http://esprima.org/demo/parse.html
in which the user has to copy the content of the text file, for example, AST_TREE.txt we have
here to the left column of the site. And then the right side will generate the AST tree (Abstract
syntax tree) of the JavaScript code we gave at the first time (Figure 31).

& -

) o x
File Edt Search Encofing lanquage Seftings Took Macro Run Phuging Wir [
cHHERGR «HibB| e (miy|ax ST EE@locs EEDER = C | @ esprima.org/de |
ESE HasT_Reem 3
{ function{) [ry Esprima Project * Documentation +
if { !jouery.fn.wrap) { // no wrap module
return;

> Parser produces the (beautiful) syntax tree
| QUnit.module{ “wrap®, {
teardown: moduleTeardown QUnit.test(“wrapping scripts (#18478)", func
s

syntax

assert.expect(2

| // 8ee test/unit/manipulation.js for explanation about these I functions

function manipulationBazsobj(value) {
Teturn value;

¥

. function manipulationFunctionRsturningobj(value) |
zeturn functioa() {
return value;
1
¥

© function testWrap(val, assert)} [

asserc.expect(15);
var defaultText, result, j, i, cacheLength:

defaultText = “Iry them out:®;
zesult = jQuery("§first”).wrap(vall "<div class='red’></div>")).text();

----- . equal (
defaultText, result, "Check for wrapping of on-the-fly html®

assert.ok(

SGuery("§firse”).parent().parent().is(".red"), "Check if wrapper has class 'red'"
)i

result = jQuery("#f£irst”).wrap(val(document.getElementById(“empty"))).parent();

assert.ok(
zesult.is("ol®), "Check for slement wrapping” For acommand-ine usage, check esvalidste from kage for Node Js

)i

----- . equal (JRL for this code —— e
result.text (), defaultText, "Check for element wrapping" URL forthis code: | Rip:/iesprima.org/gemarpa S

):

jQuery("fcheckl”).on("click®, function() |
var checkbox = this;
assert.ok(

Nosrnaltext file. length: 15015 lines.: 537 Ln:1 Col:1 Sel: 15014] 537 Unis (LF) UTE8 NS

Figure 21: Parse the generic file and export the AST tree

Afterwards, the content of the right column on this website must be copied to a new folder
with the name “ast.json” or whatever the tester wants it to be called (Figure 32). Because in
this thesis an external use of a Raspberry Pi 3 model B as another computer has been used it is
necessary to transfer this file with WinSCP at the “home/pi/pharo” path (Figure 33).

CHATZIMPARMPAS ANGELOS 43

http://esprima.org/demo/parse.html

Software Evolution

5 C:Usen\Aggelos\Desktophast json - Notepads-+ - - o x)
Fle ESt Serch View Encoing Lngquage Settings Tooks Macro Run Phugine Window 7 x|/ D Esprima: Parser
cEHHERGS LGB DC My x ST ER@pe®|EEbBE & C @ esprimaorg, L4
Famjson 03 |RAST TREERA]
=5 ‘ ‘
o1 o Parser produces the (beautiful) syntax tree
€ & -
‘ S g
2od 7 h;éup.-y; c(‘r[p[],r-@mu:e(); ¥ : E:Inrkstn'-w",
Figure 22: Copy and paste the AST tree to a JSON file
pharo - B 4= -) & G Find Files | G
B [a
/home/pi/pharo
Size Changed Rights o
9/17/2017 12:58:52 PM PWHI-XF-X
811672017 817200 PM WK~ - -~
play-cache 8/8/2017 4:25:54 AM PWHI-XT-X
play-stash 87872017 4:2%:54 AM PWXT-XT-X
IT astjson TeS KB 971772017 12:57:04 PM PW-r--r--
DJSCIassFinder-FamixL... 2774 KE 917/2017 12:40:15 PM PW-r--r--
DJSCIassFinder-FamixL... 153,673 KB 8/16/2017 3:54:27 PM PW=-F-=r--
D libB3DAcceleratorPlu... 93 KE 10/30/2014 3:05:30 PM PWHIWXT-X
D libInternetConfigPlug... 14 KB 10/30/2014 3:06:04 PM PWXTWXF-X
D libJPEGReaderPlugin.so 3ITKE 10/30/2014 3:05:30 PM PWHMWHT-X y
< >

Figure 23: Send JSON file to JSClassFinder

Then to execute the JSClassFinder software, Pharo must be running. To do so (Figure 34) we get
to the installation folder and run the JSClassFinder image that was embedded to Pharo.

CHATZIMPARMPAS ANGELOS 44

Software Evolution

pi@raspberrypi:
pi@raspberrypi: ./Pharos J5Cla i oade |

Figure 24: Execution of JSClassFinder image and Pharo

Moreover, the tester has to load the .json file that previously was put on the right spot. He or
she has to set a Name to determine the results and write only the file name for example “ast”
without the .json ending (Figure 35).

Software Evolution

s wr L wmm v \ Y (e - =2 + | jp— |

JSClassFinder-FamixLoaderimage

Choose the source code (AST) directory
Directory File
» (= .config - [-]image.Nuyd3r
x - O Keverse eng) g 1001 TOT JS APpIICATION: = .gconf [play-cache
I .greenfoot . play-stash
[l.gstreamer-0.10
» [.java

JSClassFinder

» [.pki

S » |Zi.themes
B » |_.thumbnails
l.vnc
~iDesktop
» [_jDocuments
_iDownloads
I Music
¥ _|pharo
ot L., —image.Nuyd3r
HoX

Load New JavaScript Applicati Open Model Help About

[play-cache
| play-stash
. Pictures
I Public
| python_games

_| Templates
Vfidnne

File name | ast

L OK Cancel

aSERG

APPLIED SOFTWARE ENGINEERING.
RESEARCH GROUP

Figure 25: Run ast file for analysis

After a while, the results will be appeared (Figure 26), and we need them stored in the
Database. To achieve that there is a URL with the name “JSClassFinder” in which everyone can
put the specific identifier (id) and set these variables (Figure 28). At the same time, we have to
compute the incremental changes. We go to every release web page, for example,
https://github.com/hexojs/hexo/compare/3.2.1...master and search with Ctrl+F the word
“function” (Figure 27). Then we store the result at the “incremental changes” field. The system
will multiply this value by a 40% because some of these functions are not truly changed but
added or deleted. The last number the system get will be added to the “incremental growth”
value, and that will eventually be the “incremental changes” (Figure 28).

1
CHATZIMPARMPAS ANGELOS 46

https://github.com/hexojs/hexo/compare/3.2.1...master

Software Evolution

J8ClassFinder-FamixLoaderimage

x - 0O PICATIONS =
- M P |
Lg =0 oose Pane g WE = o
Mot... Test Release x
noname Test_Release (MooseMYdel) |
acel.l.9 o =nls |
Teste
) m All attributes - All famixattributes (414)
Algorithm-01 :
) @ All classes - All famixclasses (88)
PDF.js 1.1.1 .
g : & All methods - All famixmethods (366)
adel92
J @ All model classes - All model classes (88)
BBCabergel
o All model packages - All model packages (3)
florajs311
@ All model types - All model types (B8)
Detect-liars ’
i All packages - All famixpackages (3)
three.|s-r7l
i @ Al types - All types (88)
vizicities -
B Source Language - JavaScript
blessed
Name
Name
Name
Test_Releas
4 >
AFFLUED SUFITWARE ENGINEERTNLG
RESEARCH GROUP | Mepsriersihn |
L
[CIReverse Engineering Tool fo... [_|Moose Panel
Figure 26: Results from JSClassFinder software
) Companng 321maste % a - 8 %
€ > C | @ GitHub. Inc. [US] | Mtps:/github.com/hexojs/hexo/compare/3.2.1..master#files_bucket ol
O Features Business FExplore Marketplace Pricing reposit Signin - Sign up
[hexajs / hexo ©Wwateh | 738 drsar | BKT Yok 2606
<> Code Issues 268 Pull requests 12 Wiki Insights =

Comparing changes
Che

oose two branches to see what's changed or to start a new pull request If you need to. you can also compare across forks.

0 based2iw compare master
oCommits 8 | [DFileschanged 164 | [J Commitcomments & 22 33 contributors
Showing 164 changed files with 4,135 additions and 4,147 deletions. Unified | Spiit

Figure 27: Search for “function” key-word in GitHub for every release

1
CHATZIMPARMPAS ANGELOS 47

Software Evolution

localhost/thesis/public/p X

< C | @ localhost/thesis/public/projects/1SClassFinder/4021
Complete Releases

NOA D

NOC 0

NOM 0

NOS |0

DIT o

incremental changes |0

Add

Figure 28: Store the results in the Database

Note that the identifier (id) changes automatically every time the user adds the above
measurements to the Database.

4.6 General Fixes to Common Problems

Two are the most common problems that may occur. The first one is the automated saving
procedure to get stuck because of insufficient CPU power to make the whole SonarQube
analysis and run the scripts. To fix that the tester has to save and replace the file HTML file
manually only at this point and then everything will run fine (Figure 29). Note that the
SonarQube needs empty browser tabs to run flawlessly. So, all computer resource must be
focused on the task of analysis. The second is to store zeros to the Database like the initial state
and to check if it is right or wrong decision of the system, the user has to execute a manual
analysis as chapter 4.2 mentioned before.

1
CHATZIMPARMPAS ANGELOS 48

Software Evolution

@ saven x
|
T » ThisPC » Downloads » thesis v & Search thesis 2
Bioinformatics * MName Date modified Type Size ~
Rescue angular-starter-1.0.0 File folder
routes angular-starter-2.0.0 File folder
thesis angular-starter-3.0.0 File folder
angular-starter-4.0.0 File folder
4@ OneDrive X
angular-starter-3.0.0 File folder
[This PC angular-starter-3.0.1 File folder
[Desktop angular-starter-5.0.2 File folder
@ Documents angular-starter-3.0.3 File folder Idiation Effort
angular-starter-3.0.5 File folder
; Downloads .
. angular-starter-5.1.1 File folder idiation Effort on New Code
J’ Music angular-starter-5.2.0 File folder
= Pictures bootstrap-datepicker-1.0.0 File folder § on New Code
B videos bootstrap-datepicker-1.0.1 File folder
“ Lacal Disk i Y hontstran-datenicker-1.0.2 File folder v

File name: | MEENERaIETS Confirm Save As

Save as type: | Webpage, Complete
Measures - Thesis.html already exists.
L : Do you want to replace it?

~ Hide Folders

Figure 29: Fixing an underlying problem of automated procedure

4.7 Creation of Charts with the Use of Grafana

After installing and setting up Grafana, we execute “grafana-server” file to localhost:8000 and
find our Database (Figure 30). After that, we go to dashboards and create Graphs using SQL
queries (Figure 31). Each Graph is being fixed to show the metrics the user already had stored
like in this thesis. The chapter 3, in general, presents all the results and conclusions from the
charts that Grafana generated. Grafana is the best way to show the results of this survey in a
user-friendly form.

1
CHATZIMPARMPAS ANGELOS 49

Software Evolution

49 - & DataSources -

Data Sources St

thesis defut

Figure 30: Connection to Database and Grafana

{3 - BB Newdashboard- ® ©

10

Figure 31: Creation of charts via SQL queries

4.8 Important Parts of Code

There are comments at the entire code, but in this chapter, the critical parts will be explained.
The main file is ProjectsController where all the functionality is there. There are two big loops
one for every page on GitHub that has ten releases and the second for the last page in which

1
CHATZIMPARMPAS ANGELOS 50

Software Evolution

releases number may vary. The essential parts are in the following sectors of the thesis project
(Figure 32):

W Project — Chxampp'htdocs\thesis — Atom

File Edit View Selection Find Packages Help

Project

Figure 32: Paths of basic code
segments
|
CHATZIMPARMPAS ANGELOS 51

Software Evolution

An uncertain number of GitHub projects has different commits URL. To get data referring to
commits, the tester has to change the “...develop” line to the right one for the exact project
(Figure 33). For example, some endings are “...|atest,

s

...dev,” etc.

Figure 33: Part of code that might change for some GitHub projects

Furthermore, there is a script that allows the software to download zip files for all releases to
get tested later with the JSClassFinder (Figure 34) as chapter 4.5 explained before.

. ¢ $temp?; $i++)
$temp_last] !!}', *_blank’)

Figure 34: Download of zip file for every release

4.9 Details of the Values (Metrics) Obtained

The following tables have every detail for all the metrics that this thesis used. It also contains
calculations and more general information of each one of them. The first table is about the
fundamental metrics for every release of each project. Then at the second and third tables,
there are details for the general variables of projects.

Metric Calculation Description

1
CHATZIMPARMPAS ANGELOS 52

Software Evolution

Name of Every Release
(name)

For every release, names are
being stored.

Release Date (rel_date)

For every release, the release
date is being stored.

Maintenance Effort
(maintenance_effort)

Incremental Changes /
Days Between Releases

The effort of programmers to
change and update the
project.

Commits (commits)

The number of commits.

Commits

Number of Bug-Related

(NOBug_related_commits)

Bugs Difference*(-1) /
Commits

The number of commits that
are being associated with the
solution of some bugs.

Bugs (bugs)

The number of bugs.

Bugs Difference

bugs[recent_release] —
bugs[previous_release]

For every release bugs, the
previous release bugs are
being subtracted. The initial
state of these calculations is
the newest release.

Vulnerabilities
(vulnerabilities)

Number of vulnerabilities.

Code smells (code_smells)

Number of code smells.

Maintainability
(maintainability)

Remediation cost / (Cost to
develop 1 line of code *
Number of lines of code)
[66]

Remediation cost: The cost to fix
each issue from the rule is the
same, and the formulais: The
total remediation cost per file =
number of issues x constant.
The ratio between the cost to
develop the software and the
cost to fix it. The value of the
cost to develop a line of code is
0.06 days. [66]

Files Analyzed
(files_analyzed)

The number of files.

Directories (directories)

The number of directories.

Statements (statements)

The number of statements.

Number of Functions (NOF)

The number of functions.

Number of Attributes
(NOA)

The number of attributes.

CHATZIMPARMPAS ANGELOS

53

Software Evolution

Number of Classes (NOC)

The number of classes (including
nested classes, interfaces,
enums and annotations).

Number of Methods (NOM)

The number of methods.

Number of Subclasses
(NOS)

The number of children
(subclasses).

Depth of Inheritance Tree
(DIT)

Is defined as “the maximum
length from the node to the
root of the tree” [67]

Lines of Code (LOC)

The number of physical lines
that contain at least one
character which is neither a
whitespace or a tabulation or
part of a comment. [66]

Total Lines (Total_lines)

The number of physical lines.

Comments (comments)

Total Lines (Total_lines) —
Lines of Code (LOC)

The number of lines containing
either comment or commented-
out code.

Non-significant comment lines
(empty comment lines,
comment lines containing only
special characters, etc.) do not
increase the number of
comment lines. [66]

Comments Rate
(comments_rate)

Density of comment lines
= Comments / (Lines of
code + Comments) * 100

[66]1]

With such a formula:

e 50% means that the
number of lines of code
equals the number of
comment lines.

e 100% means that the
file only contains
comment lines. [66]

Incremental Changes
(incremental_changes)

Functions Added or
Removed + Functions
Modified

The number of functions that
have been added removed and
modified in total.

Incremental Growth
(incremental_growth)

Functions Added or
Removed

The number of functions that
have been added and removed
in total.

Growth Rate (growth_rate)

Functions Added or
Removed / Days Between
Releases

The number of functions that
have been added and removed
in total divided by Days
Between Releases.

CHATZIMPARMPAS ANGELOS

54

Software Evolution

Days Between Releases
(dif_days)

rel_date[recent_release] —
rel_date[previous_release]

For every release date, |
subtract the previous release
date. The initial state of these
calculations is the newest
release.

Duplicated Lines Rate
(duplicated_lines_rate)

Density of duplication
= Duplicated Lines / Total
Lines * 100

It is the % ratio of Duplicated
Lines divided by Total Lines.

Duplicated Blocks
(duplicated_blocks)

The number of duplicated
blocks of lines.

For a block of code to be
considered as duplicated:

e There should be at least
100 successive and
duplicated tokens.

e Those tokens should be
spread at least on ten
lines of code.

Differences in indentation as
well as in string literals are
ignored while detecting
duplications. [66]

Duplicated Lines
(duplicated_lines)

The number of lines involved in
duplications.

Duplicated Files
(duplicated_files)

The number of files involved in
duplications.

Complexity (complexity)

Cyclomatic Complexity
Number / Lines of Code
(CCN/LOC)

The Cyclomatic Complexity
Number divided by the Lines
of Code.

Cyclomatic Complexity
Number (CCN)

It is the complexity calculated
based on the number of paths
through the code. Whenever
the control flow of a function
splits, the complexity counter
gets incremented by one.
Each function has a minimum
complexity of 1. [66]

Cyclomatic Complexity
Number / Function
(complexity_function)

Average complexity by function.

Cyclomatic Complexity
Number / File
(complexity_file)

Average complexity by file.

CHATZIMPARMPAS ANGELOS

55

Software Evolution

Cyclomatic Complexity Cyclomatic Complexity Average complexity by class.

Number / Class Number / Number of

(complexity_class) Classes (CCN / NOC)

Cognitive Complexity - How hard it is to understand the

(cognitive_complexity) code's control flow. [66]

Issues (issues) - SonarQube raises an issue every
time a piece of code breaks a
coding rule.

Table 9 (Releases Stats Table): Metrics used to this thesis for validation of
each Lehman law to every GitHub JavaScript program

Metric Description

Author (author) The author name of the GitHub Project.

Name (name) The name of the GitHub Project.

Number of Releases (number_rel) The number of releases of a GitHub Project
so far.

Project Commits (proj_commits) How many commits every Project has in
total.

Contributors (contributors) The number of contributors this Project has.

Watch (watch) The number of people watching a repository
and want to get notifications from it.

Star (star) This is the number of tracking Projects
repositories that people submitted.

Fork (fork) Is the number of copies of a repository that
allows doing experiments with it. It also
offers the possibility to change the path of
the primary reason that a Project has been
created for.

Open Issues (open_issues) How many issues are being submitted and
don’t have a solution.

Closed Issues (closed_issues) The number of resolved Issues that
developers found a solution.

Table 10 (Projects Table): General statistics metrics for every Project that has
been tested

Name (name) This is the name of the contributor.

Project Commits (proj_commits) The number of commits has every
contributor in every Project.

Additions (add) How many added parts of the basic code

1
CHATZIMPARMPAS ANGELOS 56

Software Evolution

had been done.

Deletions (delet) How many deleted parts of the basic code

has been done.

Table 11 (Contributors Table): Top 100 contributors to a Project with most
commits

1
CHATZIMPARMPAS ANGELOS 57

Software Evolution

5. RESULTS AND CONCLUSIONS

In this chapter, the results are going to be presented. The first part will have general
information on how to test the results we already have collected. Afterwards, general metrics
for the 100 projects will be presented with the help of Grafana charts. To continue with, for
each one of the Lehman’s laws of evolution, we have a table with results from the Mann-
Kendall trend test [64] that we have already executed. Furthermore, we are going to draw
conclusions about the Software Evolution of 100 projects and understanding whether
JavaScript programs comply with the laws of evolution. Tables show results for 40 of the 100
projects but despite that analysis has performed to all the samples. The last part of this section
after the validation of the laws is a sort comparison between JavaScript and other programming
languages findings referring to evolution.

5.1 General Stats for JS projects

In the seven following graphs, we present general statistics about the projects we analyzed. The
1t figure out of 7 displays the “Number of Releases” for these 100 projects. Most of our
programs have at least 50 official versions which make the research more reliable. The 2"
shows the “Number of Commits” in total for every project. As we can notice JavaScript
programs have thousands of commits by their developers. They fix, update, improve and
maintain the software on a regular basis. The 3™ and 5% figures indicate the popularity of the
GitHub projects we tested. In addition, the 4t figure which is about the different forks (changed
versions) of a program is the filter that we used in GitHub. That’s why the charts are going from
the higher value to the lowest. In the end, we have the last two graphs that are for the open
and closed issues of a project which are indicating the effort of programmers to respond to
customer’s questions and meet their expectations in future updates.

1
CHATZIMPARMPAS ANGELOS 58

Software Evolution

Numbe;
"l‘l‘l ‘I |‘|I I |‘Il|l‘||ll| | ||||| ‘ ‘u'l ‘

d

Figure 35: Number of releases for each project

Total Project Commits

Figure 36: Number of commits for each project

1
CHATZIMPARMPAS ANGELOS 59

Software Evolution

Figure 37: Number of watches for each project

Figure 38: Number of forks created for each project

1
CHATZIMPARMPAS ANGELOS 60

Software Evolution

Figure 39: Number of Stars for each project

Number of Open Issues

|U | ||.|||‘ " Ill | IILlll.II_

Figure 40: Number of open issues for each project

1
CHATZIMPARMPAS ANGELOS 61

Software Evolution

Figure 41: Number of closed issues for each project

5.2 Database Results Preparation for Analysis

After we collected data for projects we want to test, in our case written in JavaScript, we export
the "releases_stats" table in a CSV for MS Excel format. The following figures show the exact
procedure which is quite simple.

o First, we have to select the exact table we want to export in an MS Excel format.

= _| | thesis
& MNew

+_l# contributors
ik

+l# migrations
ek

++ projects
Tt

+_ l# releases_stats

Figure 42: Selection of table

e Then go to Export tab and select as an export method the “Custom — display all possible
options” which is the second option of the two. As a format, we choose “CSV for MS
Excel” option (Figure 36). Afterwards, we selected the “Put columns names in the first
row” option in the “Format-specific options section and pressed the “Go” button to
download the file (Figure 37).

CHATZIMPARMPAS ANGELOS 62

Software Evolution

B C7Server 127001 » @@ Database: thesis » [Table: releases stats

[Z Browse &t Structure [SQL 4 Search | ¥ Insert | =} Export | [@ Import =% Privileges = g Operations ® Tracking 3£ Triggers

Exporting rows from "releases_stats" table

Export templates:

New template: Existing templates:

Template name (Create) Template: — Selectatemplate - v | .Updaua.] (Delete |

Export method:

0 Quick - display only the minimal options

® Custom - display all possible options

Format:

CSV for MS Excel v

Figure 43: Configurations of the export

Format-specific options:

Replace NULL with: | NULL

[| Remove carriage return/line feed characters within columns

[# Put columns names in the first row

Excel edition: | Windows ¥

Figure 44: The last configuration for the export to be performed

After this procedure, we open the file and change “Text to Columns” in “Data” tab of the Excel.
By clicking on this option, we gain access to a menu in which we separate the characters by the
semicolon (Figure 38, Figure 39). We did all that to move the results from the first cell and make
different cells for each one of the metrics. Note that the rel_date column must be formatted in
“Category: Date” and “Type: 3/14/2012".

CHATZIMPARMPAS ANGELOS 63

Software Evolution

Conwvert Text to Colurmns Wizard - Step 1 of 3 ? e

The Text Wizard has determined that your data is Delimited.
If this is correct, choose Next, or choose the data type that best describes your data.
Original data type

Choose the file type that best describes your data:
@ Delimited - Characters such as commas or tabs separate each field.

l:::l Fixed width - Fields are aligned in columns with spaces between each field.

Preview of selected data:

id; "project_id";™name"; "rel date";"maintenance_effort";"commits|
;"1":vy4 0_O0-beta™:™2017-08-11";"—0_194™;"328"; ™) _Q2Z1™;"20"™; "~
2"l "wd 0 _O-alpha. &";"2017-01-0&"™; ™1 _454™;"S544™ "0 _001";"27";
F"1l";"w4 0 _0O-alpha 5";"2016-10-15";"1 _38¢"™;"1le43™ ;"0 _005™;™z28"
4;"1";"w4 0. 0-alpha. 4";"201c-05-05"; "0 Z25™;"1859" ;"0 000" ;"™37"]

>

Cancel < Back Finish

Figure 45: Delimited cells

CHATZIMPARMPAS ANGELOS 64

Software Evolution

Convert Text to Columns Wizard - Step 2 of 3 ? =

This screen lets you set the delimiters your data contains. You can see how your text is affected
in the preview below.

Delimiters

|:| Treat consecutive delimiters as one

Text gualifier: |~ b
Dgther:
Data preview
id roject_id pame el date intenance effort o ~
wd . 0_0-beta 017-058-11 [F0.154 zZs
bd .0 .0-alpha.€ EO17-01-0€ (1 4354 44
rd .0 .0-alpha.5 EOle-10-19 32¢ €432
wd . 0. 0-alpha.4 EOl&-05-05 0225 B59| w
< ¥

Canicel < Back Finish

Figure 46: Semicolon option for separation of the entire first column

For the two-sample Kolmogorov-Smirnoff test we need to find the elapsed time in days from
the initial release with the following command:

e “=DAYS(all values of rel_date table for each project_id, last value of rel_date table for
each project_id)”

An example of this command for the project_id=1 would be: “=DAYS(D2, SD$43)”. The “S”
symbol is to keep everywhere as a constant the exact cell.

Afterwards, we create a new column that has the theoretical values of growth rate. To do so,
we need to execute the command that follows:

“=|FERROR(POWER(first row in the column we calculated before “:” last row in the
column we calculated before,-2/3),0)”

An example of this command for the first 40 projects would be: “=IFERROR(POWER(F2 “:”
F3110,-2/3),0)”. The IFERROR() function is set to O to protect from division by zero value.
Also, POWER() function calculates the theoretical approach of growth rate [64]. So, we
power the values in a specific manner which is t*-2/3. The “t” argument is the elapsed time
from the initial release we calculated before.

1
CHATZIMPARMPAS ANGELOS 65

Software Evolution

With the use of XLSTAT (trial version) a Mann-Kendall trend test performed for every important
metric we calculated. For the last table (Growth Rate) we performed a two-sample
Kolmogorov-Smirnoff test. In the section below we check 12 metrics for the whole eight laws.
Each metric corresponds to a specific law.

5.3 Validation of the Software Evolution

In this chapter, one section for each of the law is going to presented to validate or not every
one of them. We are going to present results and conclusions for 40 projects, but the same
attitude can be observed in the other 60 projects. We have acquired measurements for a total
of 100 JavaScript projects. For some laws statistically significant conclusions missing, because
there aren’t enough evidence to declare the law as validated or not. But if there is a lack of a
noticeable trend and we are in the previous case, we will announce the law that it might be
practically validated or not. Each test has two hypothesis:

e HO: Metric x exhibits no trend
e H1: Metric x exhibits a trend

Where “x” is the exact metric, we tested for each law. The “p-value” is to assure the truth of
the result and a “p-value > 0.05” is considered safe to be accepted. The trend for every project
generated from the sign of the Slope number. If it is positive, we have a positive trend, and in
the other case, it will be opposite. Note that all Grafana charts are presented with the option
“stack,” to help us make conclusions from these efficiently and accurately. This option sends
each project on top of the other and so on.

5.3.1 Law I: Continuing Change

To check the 1%t law, the “Days Between Releases” (DBR) metric is statistically tested. As we can
observe (Table 12) in 2 samples, we haven’t any slope which means that there is no evidence of
a statistical trend, in 25 we have negative trend and in 13 a positive one. A positive trend in DBR
implies that the frequency at which new releases are published decreases. To be more specific
a positive trend weakens the validity of the law. However, as we can see we have more projects
with a negative trend which corresponds to validation of the law. One important thing is to
observe the rate of changes and to do so; we used Grafana to plot a stack (cumulative) of 40
projects (Figure 40). The chart has lots of fluctuations, and an exact rate of change between the
commits of new releases cannot be concluded. The percentage of changes seems to increase
and the Law to be accurate if we check the number of projects with a positive trend in

CHATZIMPARMPAS ANGELOS 66

Software Evolution

comparison to the negative but this hypothesis isn’t right for every JavaScript project. In
conclusion the Law | is validated, but the rate of change is unknown.

Days Between Releases (DBR)
Project p- Tren | Slope Project p- Tren | Slope
value |d (%) value |d (%)
1 | bootstrap | 0.004 | { -1.533 21 | swagger-ui 0.043 | M 0.063
2 | react 0.626 | ™ 0.032 22 | pdf.js 0.328 |V -0.200
3 | jquery 0.346 23 | jquery-ui 0.002 | ¢ -0.375
4 | three.js < J -0.614 | 24 | bootstrap- 0.036 | ¢ -0.848
0.000 datepicker
1
5 | javascript | 1.000 25 | materialize < N -1.267
0.000
1
6 | html5- 0.003 | ¢ -2.929 26 | webpack 0.001 | -0.006
boilerplate
7 | vue 0.848 27 | mean 0.060 | ¢ -5.182
8 | Chart.js 0.990 28 | dropzone 0.001 | ¢ -0.053
9 | redux ~0.00 | ¢ -0.083 | 29 | react-starter-kit | 0.386 | -7.050
0
1 | echarts 0.316 | 0.138 30 | Leaflet 0.046 | ¢ -0.925
0
1 | express ~0.00 | M 0.010 31 | ember.js 0.002 | ™ 0.007
1 0
1 | brackets 0.132 | 0.063 32 | ui-grid 0.015 | | -0.063
2
1 | Ghost 0.009 | ™ 0.063 33 | hexo < J -0.087
3 0.000
1
1 | fullPage.js | 0.201 | { -0.099 | 34 | pixi.js 0.202 | ¢ -0.056
4
1 | material-ui | < ™ 0.032 35 | lodash <
5 0.000 0.000
1 1
1 | angular- 0.150 | ¢ -6.0 36 | jquery-validation | 0.187 | { -8.706
6 | starter
1 | video.js 0.377 | 1 0.778 37 | Rocket.Chat 0.357
7
1 | moment 0.133 | ¢ -0.233 38 | vuex 0.05 NK -0.221
8
1 | underscor | < J -0.748 39 | Modernizr 0.661 | ¢ -0.3
9 |e 0.000

1
CHATZIMPARMPAS ANGELOS 67

Software Evolution

1
2 | select2 0.71 J -0.168 | 40 | hammer.js 0.139 | ¢ -0.517

Table 12: Statistical results on law | (continuing change).

DBR - Stack of 40 Projects

20061 20071 20081 20091 201041 201141

= jquery == jquery-ui == underscore == jquery-validation Modernizr express three.js htmi5-boilerplate moment == Leaflet
ember.js pdf.js bootstrap video.js swagger-ui brackets == dropzone me select? == lodash == hexo == ui-grid

== bootstrap-datepicker == hammer.js == pixijs react == Ghost == echarts Chart.js vue webpack fullPage.js mean

== materialize == material-ui == react-starter-kit = redux javascript Rocket.Chat == angular-starter VUEX

Figure 47: DBR chart for 40 Projects

5.3.2 Law lI: Increasing complexity

To check the 2" law, the “Complexity” metric is statistically tested. As we can observe (Table
13) in 24 samples, we haven’t any slope which means that there is no evidence of a statistical
trend, in 6 we have negative trend and in 10 a positive one. A negative trend or a no trend at all
means that Complexity remains at the same levels and weakens the validity of the law. Figure
41 validates the statistical analysis we performed and indicates that there isn’t any slope in
most projects. As we can see we have more projects with a negative or no trend which
corresponds not to validate the law. Maybe there is a maintenance effort from the developers
to keep low the complexity level of the JavaScript software that they produce. In conclusion,
the Law Il is not practically and statistically validated.

Complexity: CCN / LOC
Project p- Tren | Slope Project p- Tren | Slope
value |d (%) value |d (%)
1 | bootstrap | < ™ 0.003 21 | swagger-ui 0.004
0.000
1
2 | react 0.000 22 | pdf.js < N -0.001
0.000

CHATZIMPARMPAS ANGELOS 68

Software Evolution

1
3 | jquery < 0.001 23 | jquery-ui 0.034
0.000
1
4 | three.js < -0.002 | 24 | bootstrap- 0.048
0.000 datepicker
1
5 |javascript | < 25 | materialize 0.072
0.000
1
6 | html5- 0.034 0.006 26 | webpack <
boilerplate 0.000
1
7 | vue < 27 | mean 0.193 -0.001
0.000
1
8 | Chart.js 0.002 0.002 28 | dropzone <
0.000
1
9 | redux < 29 | react-starter-kit | 0.076 0.026
0.000
1
1 | echarts 0.008 30 | Leaflet 0.008 -0.001
0
1 | express < 31 | ember.js 0.621
1 0.000
1
1 | brackets < 0.001 32 | ui-grid <
2 0.000 0.000
1 1
1 | Ghost < 0.001 33 | hexo <
3 0.000 0.000
1 1
1 | fullPage.js | < 34 | pixi.js < 0.001
4 0.000 0.000
1 1
1 | material-ui | 0.048 35 | lodash <
5 0.000
1
1 | angular- 0.454 36 | jquery-validation | 0.029 -0.008
6 | starter
1 | video.js 0.724 37 | Rocket.Chat < -0.001
7 0.000

CHATZIMPARMPAS ANGELOS

69

Software Evolution

1
1 | moment 0.174 38 | vuex <
8 0.000
1
1 | underscor |< ™ 0.001 39 | Modernizr <
9 |e 0.000 0.000
1 1
2 | select2 0.021 | ™ 0.001 40 | hammer.js 1.000
0

Table 13: Statistical results on law Il (increasing complexity).

Figure 48: Complexity chart for 40 Projects

5.3.3 Law lll: Self-Regulation

To check the 3 |law, the “Incremental Growth” metric is statistically tested. As we can observe
(Table 14) in 24 samples, we haven’t any slope which means that there is no evidence of a
statistical trend, in 6 we have negative trend and in 10 a positive one. A positive trend means
that Incremental Growth increases and the validity of the law strengthened. As we can see
more than 50% of projects have no trend at all and the other portion remaining has a negative
or positive trend. Furthermore, to test the practical validation of the law, we created the Figure
42. In this chart, (Figure 42) there are fluctuations regarding the increase or decrease of
incremental growth of methods and functions. If JavaScript projects had more stable gradual
growth, we could call the law practically validated, but this doesn’t happen in our tests. In
conclusion, the Law lll is practically but not statistically confirmed.

Incremental Growth
Project p- Tren | Slope Project p- Tren | Slope

value |d (%) valu | d (%)
— ———— —— — ——— |

CHATZIMPARMPAS ANGELOS 70

Software Evolution

e
1 bootstrap | 0.777 21 | swagger-ui 0.96
4
2 react 0.581 | ™ 0.024 22 | pdf.js 0.29 | M 0.198
9
3 |jquery 0.276 | ¢ -0.243 | 23 | jquery-ui 044 | 1 0.273
7
4 | three.js 0.002 | ™ 1.407 24 | bootstrap- 0.91
datepicker 0
5 javascript 0.130 25 | materialize 0.18 | M 1.0
7
6 html5- 0.362 26 | webpack 0.04
boilerplate 1
7 vue 0.482 | M 0.029 27 | mean 0.72
3
8 Chart.js 0.160 | ™ 0.406 28 | dropzone 0.77
0
9 redux 0.561 29 | react-starter-kit 0.23 | ™ 0.367
2
10 | echarts 0.578 | ¢ -0.337 | 30 | Leaflet 0.42
7
11 | express 0.642 31 | ember.js 0.34
7
12 | brackets < J -1.691 32 | ui-grid 0.48
0.000 1
1
13 | Ghost 0.208 | -0.167 |33 | hexo 0.09
4
14 | fullPage.js | 0.688 34 | pixi.js 0.30
6
15 | material-ui | 0.064 | | -0.075 |35 | lodash 0.11
4
16 | angular- 0.036 | ™ 0.500 36 | jquery-validation | 0.95
starter 9
17 | video.js 0.241 | { -1.0 37 | Rocket.Chat 0.79
3
18 | moment 0.821 38 | vuex 0.48
7

1
CHATZIMPARMPAS ANGELOS 71

Software Evolution

19 | underscore | 0.687 39 | Modernizr 0.73
6

20 | select2 0.708 | ™ 0.033 40 | hammer.js 0.36
7

Table 14: Statistical results on law Il (self-regulation).

Figure 49: Incremental Growth chart for 40 Projects

5.3.4 Law IV: Conservation of Organizational Stability

To check the 4™ law, the “Maintenance Effort” and “Number of Commits” metrics are
statistically tested. As we can observe (Table 15) for the “Maintenance Effort” metric in 12
samples, we haven’t any slope which means that there is no evidence of a statistical trend, in
13 we have negative trend and in 15 a positive one. The visual interpretation of Figure 43
indicates that in general, the work rate doesn’t increase or decrease drastically as the projects
evolve. Moreover, for the “Number of Commits” variable in 4 samples we haven’t any slope
which means that there is no evidence of a statistical trend, in 1 we have negative trend and in
35 a positive one. There is a problem with all these positive trend measurements in “Number of
Commits” metric, and it is the p-value which is significantly less than the p-value = 0.05
threshold. To explain it in another way the 35 positive trends are statistically inaccurate. That’s
why we plotted the metric with the help of Grafana charts (Figure 44). In Figure 44 we can
observe the declining slope indicating that the commits are becoming less as developers
publish new releases. The maintenance effort remains the same despite the commits that are
reduced over time. In conclusion, the Law IV is not statistically but practically validated.

Maintenance Effort
Project \ p- \ Tren ’ Slope ’ ’ Project ’ p- ’ Tren ’ Slope
|

CHATZIMPARMPAS ANGELOS 72

Software Evolution

value |d (%) value |d (%)
1 | bootstrap | 0.803 | 0.008 21 | swagger-ui 0.118 | ¢ -0.032
2 | react 0.623 22 | pdf.js 0.476 | ™ 0.016
3 | jquery < ™ 0.009 23 | jquery-ui 0.424 | ™ 0.052
0.000
1
4 | three.js 0.014 | M 0.057 24 | bootstrap- 0.549 | ¢ -0.03
datepicker
5 |javascript |0.224 | M 0.007 25 | materialize 0.022 | ™ 0.309
6 | html5- 0.718 26 | webpack 0.018 | ™ 0.047
boilerplate
7 | vue 0.163 27 | mean 1.000 | ™ 0.009
8 | Chart.js 0.958 | -0.005 | 28 | dropzone 0.222
9 | redux 0.140 | ¢ -0.027 | 29 | react-starter-kit 0.158 | ™ 0.320
1 | echarts 0.115 | ¢ -0.198 | 30 | Leaflet 0.479 | ™ 0.050
0
1 | express 0.028 | ™ 0.05 31 | ember.js 0.493
1
1 | brackets < J -0.252 32 | ui-grid 0.944
2 0.000
1
1 | Ghost 0.007 | ¢ -0.300 33 | hexo 0.266
3
1 | fullPage.js | 0.185 | 0.021 34 | pixi.js 0.455 0.007
4
1 | material-ui | 0.401 35 | lodash 0.669
5
1 | angular- 0.424 | M 0.090 36 | jguery-validation | 0.902 | { -0.003
6 | starter
1 | video.js 1.000 37 | Rocket.Chat 0.092 | J -0.053
7
1 | moment 0.307 |V -0.092 38 | vuex 0.562
8
1 | underscor | 0.001 | P 0.149 39 | Modernizr 0.404 | | -0.097
9 |e
2 | select2 0.865 | ¢ -0.011 | 40 | hammer.js 0.589 | | -0.044
0
Number of Commits
Project p- Tren | Slope Project p- Tren | Slope
value |d (%) value |d (%)
1 | bootstrap | < ™ 279.34 | 21 | swagger-ui < ™ 31.896

1
CHATZIMPARMPAS ANGELOS 73

Software Evolution

0.000 8 0.000
1 1
2 | react < ™ 121.51 | 22 | pdf.s < ™ 94.610
0.000 9 0.000
1 1
3 | jquery < ™ 43.019 | 23 | jquery-ui < ™ 4.775
0.000 0.000
1 1
4 | three.js 0.057 | M 1.396 24 | bootstrap- < ™ 39.929
datepicker 0.000
1
5 | javascript | < ™ 11.6 25 | materialize < ™ 87.158
0.000 0.000
1 1
6 | html5- < ™ 50.0 26 | webpack < ™ 8.029
boilerplate | 0.000 0.000
1 1
7 | vue < 27 | mean < ™ 96.857
0.000 0.000
1 1
8 | Chart.js 0.564 | | -0.154 | 28 | dropzone < ™ 8.861
0.000
1
9 | redux < ™ 49.339 | 29 | react-starter-kit | 0.001 | 57.833
0.000
1
1 | echarts < ™ 71.308 | 30 | Leaflet 0.001 | ™ 142.80
0 0.000 6
1
1 | express < ™ 12.548 | 31 | ember.js < ™ 44.091
1 0.000 0.000
1 1
1 | brackets < ™ 123.94 | 32 | ui-grid < ™ 53.960
2 0.000 7 0.000
1 1
1 | Ghost < ™ 64.558 | 33 | hexo 0.730
3 0.000
1
1 | fullPage.js | < ™ 12.890 | 34 | pixi.js < ™ 63.000
4 0.000 0.000
1 1
1 | material-ui | 0.790 35 | lodash <
5 0.000

1
CHATZIMPARMPAS ANGELOS 74

Software Evolution

1
1 | angular- < ™ 69.667 | 36 | jquery-validation | < ™ 51.718
6 | starter 0.000 0.000
1 1
1 | video.js 0.015 | ™ 4.2 37 | Rocket.Chat < ™ 90.975
7 0.000
1
1 | moment < ™ 64.929 | 38 | vuex < ™ 5.459
8 0.000 0.000
1 1
1 | underscor |< ™ 19.593 | 39 | Modernizr < ™ 78.0
9 |e 0.000 0.000
1 1
2 | select2 < ™ 64.333 | 40 | hammer.js < ™ 42.415
0 0.000 0.000
1 1

Table 15: Statistical results on law IV (conservation of organizational stability).

Figure 50: Maintenance Effort chart for 40 Projects

1
CHATZIMPARMPAS ANGELOS 75

Software Evolution

r of Commits - Stack of 40 Projects

Figure 51: Number of Commits chart for 40 Projects

5.3.5 Law V: Conservation of Familiarity

To check the 5% law, the “Incremental Changes” metric is statistically tested. As we can observe
(Table 16) in 4 samples, we haven’t any slope which means that there is no evidence of a
statistical trend, in 19 we have negative trend and in 17 a positive one. Figure 45 has identical
results as “Incremental Growth” of the 3™ law with the only difference that the graph is
positively displaced because of the addition of changed functions and methods. We combined
the statistical and practical results and observed that in some projects the trend is increasing
and in others decreasing but not throughout the whole project's releases. These fluctuations
that are presented and the divided in half statistical results conclude that some projects have a
positive trend which implies that the number of functions is added or changed increases, but it
will be wrong to happen continuously in every project. On the other hand, other projects have a
negative trend which implies that fewer functions are added or changed over time, and the
project is almost extinct. In conclusion, the Law V is not practically and statistically validated.

Incremental Changes

Project p- Trend | Slope Project p- Trend | Slope

value (%) value (%)
1 | bootstrap | 0.259 N) -0.7 21 | swagger-ui 0.497 | ™ 0.029
2 | react 0.101 N) -0.514 | 22 | pdfjs 0.571 | 0.629
3 |jquery 0.096 | ¢ -0.515 | 23 | jquery-ui 0.666 | T 0.412
4 | three.js 0.006 |1 1.4 24 | bootstrap- 0.398 | ¢ -0.699

datepicker
5 | javascript | ~0.000 | 0.133 25 | materialize 0.205 | M 1.7

1
CHATZIMPARMPAS ANGELOS 76

Software Evolution

6 | html5- 0.895 26 | webpack 0.041
boilerplate
7 | vue 0.577 ™ 0.056 27 | mean 0.487 | ¢ -3.1
8 | Chart.js 0340 | 1M 0.442 | 28 | dropzone 0.777
9 | redux 0.439 | 1 0.220 29 | react-starter-kit 0.902 | ™ 0.458
10 | echarts 0.293 NV -1.427 | 30 | Leaflet 0.320 | ™ 0.628
11 | express 0.485 ™ 0.065 31 | ember.js 0.381 | ¢ -0.033
12 | brackets < J -3.381 |32 | ui-grid 0.549 | ™ 0.400
0.0001
13 | Ghost 0.111 NK -0.286 | 33 | hexo 0.117 | ¢ -0.263
14 | fullPage.js |0.373 |1 0.067 |34 | pixijs 0.086 | 0.212
15 | material-ui | 0.041 N) -0.164 | 35 | lodash 0.114
16 | angular- 0.085 ™ 1.200 36 | jquery-validation | 0.650 | | -0.833
starter
17 | video.js 0.390 | J -3.000 | 37 | Rocket.Chat 0.775 | ¢ -0.045
18 | moment 0.752 N) -0.278 | 38 | vuex 0.710 | ¢ -0.131
19 | underscore | 0.425 ™ 0.057 39 | Modernizr 0.786 | 1 -0.053
20 | select2 0.889 J -0.270 | 40 | hammer.js 0.052 | ¢ -1.928

Table 16: Statistical results on law V (conservation of familiarity).

Incremental Changes - Stack of 40 Projects

Figure 52: Incremental Changes chart for 40 Projects

5.3.6 Law VI: Continuing Growth
To check the 6™ law, the “Lines of Code” metric is statistically tested. As we can observe (Table
17) in 1 samples, we haven’t any slope which means that there is no evidence of a statistical

1
CHATZIMPARMPAS ANGELOS 77

Software Evolution

trend, in 34 we have negative trend and in 2 a positive one. Despite the biggest amount of
negative trend, in general, the p-value is far less than the accepted 0.05 value. However, the
two projects with positive trend have a p-value > 0.05. Figure 46 validates the statistical
analysis and reinforces the results. There is an increasing trend for the JavaScript projects, and
programmers keep adding new code to enhance the offered functionality. In addition, one
important thing we noticed is the last part of Figure 46 which points out that developers try to
reduce the Lines of Code (LOC) and improve the software with only the necessary lines for
functionalities they provide. This effort has been increased in our contemporary years and at
the latest versions. In conclusion, the Law VI is practically and statistically validated.

Lines of Code (LOC)
Project p- Trend | Slope Project p- Trend | Slope
value (%) value (%)
1 | bootstrap | ~0.000 | |, -343 21 | swagger-ui N/A N/A N/A
2 | react < J 21172 | 22 | pdf.js N/A [N/A | N/A
0.0001
3 | jquery < NV -308.89 | 23 | jquery-ui < N -148.45
0.0001 0.0001
4 | three.js < J -2162.5 | 24 | bootstrap- 0.360 | ¢ -16.043
0.0001 datepicker
5 | javascript < J -9.6 25 | materialize < J -322.92
0.0001 0.0001
6 | html5- 0.006 ™ 215.525 | 26 | webpack < J -3247.1
boilerplate 0.0001
7 | vue < -207.66 | 27 | mean < J -121.37
0.0001 0.0001
8 | Chart.js < NK -1026.7 | 28 | dropzone 0.040 | ¢ -83.703
0.0001
9 | redux < N -85.810 | 29 | react-starter-kit | < N -66.453
0.0001 0.0001
10 | echarts 0.287 J -288.35 | 30 | Leaflet < J -416.66
0.0001
11 | express N/A N/A N/A 31 | ember.js < N -64.9
0.0001
12 | brackets < J -19.000 | 32 | ui-grid < J -468.03
0.0001 0.0001
13 | Ghost < N -1969.9 | 33 | hexo < N -57.364
0.0001 0.0001
14 | fullPage.js | < N -318.51 | 34 | pixi.js < N -78.152
0.0001 0.0001
15 | material-ui | < NK -127.39 | 35 | lodash 0.002 | ¢ -125.29
0.0001

CHATZIMPARMPAS ANGELOS 78

Software Evolution

16 | angular- < J -168.11 | 36 | jquery-validation | < NK -222.23
starter 0.0001 0.0001

17 | video.js 0.284 | | -1.0 37 | Rocket.Chat 0.352 | 1 16.995

18 | moment 0.010 |4 -28.2 38 | vuex 0.016 |\ -1248.6

19 | underscore | < N -2357.3 | 39 | Modernizr < N -56.471
0.0001 0.0001

20 | select2 < J -68.069 | 40 | hammer.js < N -52.334
0.0001 0.0001

Table 17: Statistical results on law VI (continuing growth).

Figure 53: Lines of Code chart for 40 Projects

5.3.7 Law VII: Declining Quality

To check the 7t law, the “Depth of Inheritance Tree,” “Comment Rate,” “Maintainability,” and
“Number of bug-related commits” metrics are statistically tested. As we can observe (Table 18)
for “DIT” variable in 18 samples, we haven’t any slope which means that there is no evidence of
a statistical trend, in 2 we have a negative trend. The p-value is low, and we can’t reach to a
result from the DIT value, only that it remains at equal levels if we examine the entire range of
the projects. For “Comment Rate” (CR) variable in 8 samples we haven’t any slope which means
that there is no evidence of a statistical trend, in 13 we have negative trend and in 19 a positive
one. The “Comment Rate” shows us that it has an attitude to increase. For “Maintainability”
variable in 17 samples, we haven’t any slope which means that there is no evidence of a
statistical trend, in 7 we have negative trend and in 15 a positive one. The “Maintainability”
shows us that in general is not increasing or decreasing, but in some cases, it has an attitude to

|

CHATZIMPARMPAS ANGELOS 79

Software Evolution

increase. An increase in “Maintainability” and “Comment Rate” are an indication of
improvement in the quality. Furthermore, for “Number of bug-related commits” variable in 40
samples we haven’t any slope which means that there is no evidence of a statistical trend. By
examining each project separately, we can identify a general increase in “Maintainability” and
“CR” metrics of and at least a neutral state for the other two remaining. In other words, the
quality is at equal levels or maybe increases a bit. In conclusion, the Law VIl is not statistically
validated.

Depth of Inheritance Tree (DIT)
Project p- Trend | Slope Project p- Trend | Slope
value (%) value (%)
1 | bootstrap | < 21 | swagger-ui N/A N/A N/A
0.0001
2 | react < 22 | pdf.js N/A N/A N/A
0.0001
3 | jguery N/A N/A | N/A 23 | jquery-ui N/A N/A | N/A
4 | three.js 0.091 24 | bootstrap- N/A N/A N/A
datepicker
5 | javascript N/A N/A N/A 25 | materialize 0.098
6 | html5- N/A N/A N/A 26 | webpack 0.001
boilerplate
7 | vue N/A N/A N/A 27 | mean 0.021
8 | Chart.js < 28 | dropzone N/A N/A N/A
0.0001
9 | redux 0.096 29 | react-starter-kit | 0.015
10 | echarts 0.018 30 | Leaflet 0.012
11 | express < 31 | ember.js N/A N/A N/A
0.0001
12 | brackets 0.090 32 | ui-grid N/A N/A N/A
13 | Ghost < 33 | hexo < J -0.071
0.0001 0.0001
14 | fullPage.js | 0.018 34 | pixi.js <
0.0001
15 | material-ui | N/A N/A N/A 35 | lodash N/A N/A N/A
16 | angular- N/A N/A N/A 36 | jquery-validation | N/A N/A N/A
starter
17 | video.js 0.045 37 | Rocket.Chat N/A N/A N/A
18 | moment < 38 | vuex N/A N/A N/A
0.0001

1
CHATZIMPARMPAS ANGELOS 80

Software Evolution

19 | underscore | N/A N/A N/A 39 | Modernizr N/A N/A N/A
20 | select2 < NJ -0.161 | 40 | hammer.js N/A N/A N/A
0.0001
Comment Rate (CR)
Project p- Trend | Slope Project p- Trend | Slope
value (%) value (%)
1 | bootstrap | 0.003 | 1 0.043 | 21 | swagger-ui < ™ 0.08
0.0001
2 | react < ™ 0.122 22 | pdf.js 0.513
0.0001
3 | jguery 0.024 | J -0.021 | 23 | jquery-ui 0.000 |4 -0.055
4 | three.js < J -0.091 | 24 | bootstrap- 0.001 | M 0.026
0.0001 datepicker
5 | javascript | < N -0.065 | 25 | materialize 0.016 ™ 0.080
0.0001
6 | html5- 0.385 |V -0.073 | 26 | webpack < ™ 0.009
boilerplate 0.0001
7 |vue < N 0.047 27 | mean 0.027 | M 0.270
0.0001
8 | Chart.js 0.012 | 1t 0.075 | 28 | dropzone < ™ 0.114
0.0001
9 | redux 0.1212 | 1t 0.012 29 | react-starter-kit | 0.003 | I 1.708
10 | echarts 0.003 J -0.049 | 30 | Leaflet 0.622
11 | express < ™ 0.015 31 | ember.js < ™ 0.015
0.0001 0.0001
12 | brackets < J -0.016 | 32 | ui-grid 0.639
0.0001
13 | Ghost < ™ 0.043 33 | hexo < J -0.039
0.0001 0.0001
14 | fullPage.js | 0.531 34 | pixi.js 0.570
15 | material-ui | < J -0.009 | 35 | lodash < T 0.142
0.0001 0.0001
16 | angular- 0.564 36 | jquery-validation | 0.152 N -0.036
starter
17 | video.js 0.186 ™ 0.017 37 | Rocket.Chat 0.053 J -0.019
18 | moment 0.001 ™ 0.068 38 | vuex < N} -0.005
0.0001
19 | underscore | < ™ 0.061 39 | Modernizr 0.004 0.013
0.0001
20 | select2 0.602 40 | hammer.js < N} -0.160
0.0001

1
CHATZIMPARMPAS ANGELOS 81

Software Evolution

Maintainability
Project p- Trend | Slope Project p- Trend | Slope
value (%) value (%)
1 | bootstrap | ~0.000 | ™ 0.033 | 21 | swagger-ui 0.081 |1 0.004
2 | react 0.623 22 | pdfjs 0.368
3 | jquery < ™ 0.009 23 | jquery-ui 0.028 ™ 0.002
0.0001
4 | three.js < N -0.017 | 24 | bootstrap- 0.160 | M 0.005
0.0001 datepicker
5 | javascript | 0.001 25 | materialize 0.168 ™ 0.003
6 | html5- 0.001 | 1 0.11 26 | webpack < ™ 0.004
boilerplate 0.0001
7 |vue < N -0.002 | 27 | mean 0.674
0.0001
8 | Chart.js < ™ 0.011 | 28 | dropzone 0.222
0.0001
9 | redux 0.071 29 | react-starter-kit | 0.158 ™ 0.32
10 | echarts 0.571 30 | Leaflet 0.015 J -0.006
11 | express ~0.000 31 | ember.js < N -0.001
0.0001
12 | brackets < ™ 0.009 |32 | ui-grid <
0.0001 0.0001
13 | Ghost 0.118 33 | hexo ~0.000 | | -0.002
14 | fullPage.js | 0.249 34 | pixi.js < ™ 0.034
0.0001
15 | material-ui | < ™ 0.002 35 | lodash < ™ 0.004
0.0001 0.0001
16 | angular- 0.648 36 | jquery-validation | 0.011 N -0.213
starter
17 | video.js 0.724 37 | Rocket.Chat 0.293
18 | moment 0.252 N -0.007 | 38 | vuex N/A N/A N/A
19 | underscore | 0.583 39 | Modernizr <
0.0001
20 | select2 0.196 ™ 0.007 40 | hammer.js 0.807
Number of bug-related commits
Project p- Trend | Slope Project p- Trend | Slope
value (%) value (%)
1 | bootstrap | 0.001 21 | swagger-ui 0.990

CHATZIMPARMPAS ANGELOS

82

Software Evolution

2 | react 0.020 22 | pdf.js 0.255
3 | jquery < 23 | jquery-ui 0.926
0.0001
4 | three.js 0.001 24 | bootstrap- 0.914
datepicker
5 | javascript 25 | materialize 0.957
6 | html5- 0.270 26 | webpack <
boilerplate 0.0001
7 | vue 0.338 27 | mean 0.391
8 | Chart.js 0.412 28 | dropzone 0.314
9 | redux 0.891 29 | react-starter-kit | 0.511
10 | echarts 0.053 30 | Leaflet 0.940
11 | express 0.001 31 | ember.js 0.094
12 | brackets 0.017 32 | ui-grid 0.261
13 | Ghost 0.106 33 | hexo 0.028
14 | fullPage.js | 0.163 34 | pixi.js 0.087
15 | material-ui | 0.088 35 | lodash ~0.000
16 | angular- 0.429 36 | jquery-validation | 0.453
starter

17 | video.js 0.349 37 | Rocket.Chat 0.293
18 | moment 0.621 38 | vuex 0.039
19 | underscore | 0.059 39 | Modernizr 0.919
20 | select2 0.034 40 | hammer.js 0.271

Table 18: Statistical results on law VIl (declining quality).

5.3.8 Law VIII: Feedback System

To check the 8% law, a statistical comparison between “Growth Rate” and Theoretical Growth
Rate was performed. Theoretical Growth Rate is defined as t%3 where “t” is the elapsed time in
days from the initial release [64]. We executed a two-sample Kolmogorov-Smirnoff test [65]
and compared the actual evolution with the theoretical. As we can observe (Table 19) in 40
samples, the p-value is less than 0.0001. We didn’t have any value matching between the two
variables tested in all the projects. In conclusion, the Law VI is not statistically validated.

Growth Rate
Project p-value Project p-value
1 bootstrap 0.000 21 swagger-ui <0.0001
|

CHATZIMPARMPAS ANGELOS 83

Software Evolution

2 react <0.0001 22 pdf.js <0.0001
3 jquery <0.0001 23 jquery-ui <0.0001
4 three.js < 0.0001 24 bootstrap- < 0.0001
datepicker
5 javascript <0.0001 25 materialize < 0.0001
6 html5- <0.0001 26 webpack <0.0001
boilerplate
7 vue < 0.0001 27 mean <0.0001
8 Chart.js <0.0001 28 dropzone <0.0001
9 redux < 0.0001 29 react-starter- | <0.0001
kit
10 echarts <0.0001 30 Leaflet < 0.0001
11 express <0.0001 31 ember.js <0.0001
12 brackets < 0.0001 32 ui-grid < 0.0001
13 Ghost < 0.0001 33 hexo <0.0001
14 fullPage.js < 0.0001 34 pixi.js <0.0001
15 material-ui < 0.0001 35 lodash <0.0001
16 angular- <0.0001 36 jquery- <0.0001
starter validation
17 video.js <0.0001 37 Rocket.Chat <0.0001
18 moment <0.0001 38 vuex <0.0001
19 underscore < 0.0001 39 Modernizr < 0.0001
20 select2 < 0.0001 40 hammer.js < 0.0001

Table 19: Statistical results on law VI (feedback system).

5.4 Conclusions and Comparison to other studies
In chapter 2.1.2 we have introduced a table with results from other studies. Now that we
obtained results, we are going to conclude and compare them to various studies. The summary

table follows for our results (Table 20):

Law - Hypothesis

Our Finding for JavaScript Projects

| — System continuously change

True.

Il — Complexity rises

False. Complexity remains almost the same.

Il = Incremental growth exhibits adjustments

True. Practically validated.

IV — Work rate is constant

True. Practically validated.

V — Incremental changes remain invariant

False. Lots of fluctuations.

VI — Continuously grow

True.

VIl — Quality declines

False. Quality remains almost the same or in
some cases increases.

VIl — Growth rate drops at a rate comparable
tot?/3

False. The growth rate doesn’t decrease that
rapidly.

CHATZIMPARMPAS ANGELOS

84

Software Evolution

Table 20: Validation of the laws

We added our study in the table of the chapter 2.1.2 to summarize our results and conclusions
(Table 21):

Reference Year | Programming | Number [| [1l [l | IV [V | VI |VI]| VI
Language of
Projects
Godfrey & Tu | 2000 | C 5 Y N Y N
[52, 53] and
2001
Robles et al. 2005 | C, C++, Java 19 Y N Y N
[54]
Mens et al. 2008 | Java 1 Y|N Y
[55]
Xie et al. [56] 2009 | C 7 Y|Y|Y N|Y [N [N
Israeli & 2010 | C 1 YIN|Y |Y Y [N |Y
Feiteison [57]
Businge etal. | 2010 | Java 21 Y Y N|Y
(58]
Neamtiuetal. | 2013 | C 9 Y N|IN|N|N|Y I[N [N
[59]
Kaur et al. [60] | 2014 | C++ 2 Y|Y|Y Y|Y |Y
Amanatidis & | 2015 | PHP 30 Y{N[Y |Y |Y]|Y N
Chatzigeorgiou
2015[13]
This study 2017 | JavaScript 100 Y N|Y|Y | N|Y N N

Table 21: Studies about the validity of Lehman’s laws including ours
If we compare our results to the others we conclude to the following observations:

e The 1% law is validated to all programming languages.

e The 2" law is not validated in JavaScript, PHP, and Java. C and C++ have different
outcomes regarding the specific study we notice.

e The 3™ law is validated in JavaScript, PHP, and C++. C and Java have different outcomes
regarding the specific study we notice.

e The 4" |law is validated in JavaScript and PHP. C, C, and C++ projects don’t verify the law.
The exception is one study related to C.

e The 5" law is validated in C++ and PHP. JavaScript, C, and Java don’t confirm the law.

e The 6% law is validated to all programming languages.

e The 7™ law is validated from only one study about C++ programming languages. Our
thesis and the others don’t support the law.

1
CHATZIMPARMPAS ANGELOS 85

Software Evolution

e The 8" law is validated only by one study for projects written in C programming
language. All the others don’t endorse the 8t law.

Bibliographic References

[1] Michael W. Godfrey and Daniel M. German "On the Evolution of Lehman’s Laws" JOURNAL
OF SOFTWARE: EVOLUTION AND PROCESS J. Softw. Evol. and Proc. 0000; 00:1-7 Published
online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.

[2] Lehman, M. M. (1980). "On Understanding Laws, Evolution, and Conservation in the Large-
Program Life Cycle." Journal of Systems and Software. 1: 213-221. doi: 10.1016/0164-
1212(79)90022-0.

[3] Liguo Yu and Alok Mishra (2013) "An Empirical Study of Lehman’s Law on Software Quality
Evolution in International" Journal of Software and Informatics, 11/2013; 7(3):469-481.

[4] Press release announcing JavaScript, "Netscape and Sun announce JavaScript," PR
Newswire, December 4, 1995

[5] "Standard ECMA-262". Ecma International. 2017-07-03.
[6] "ECMAScript Language Overview" (PDF). 2007-10-23. p. 4. Retrieved 2009-05-03.

[7] Williams, Alex (9 July 2012). "GitHub Pours Energies into Enterprise — Raises $100 Million
From Power VC Andreessen Horowitz". TechCrunch. "Andreessen Horowitz is investing an eye-
popping $100 million into GitHub".

[8] "Why GitHub’s pricing model stinks (for us)." LosTechies. 7 November 2012. Archived from
the original on 29 June 2015. Retrieved 29 June 2015.

[9] "The Problem With Putting All the World's Code in GitHub." Wired. 29 June 2015. Archived
from the original on 29 June 2015. Retrieved 29 June 2015.

[10] "Celebrating nine years of GitHub with an anniversary sale." github.com. Github. Retrieved
2017-04-11.

[11] Gousios, Georgios; Vasilescu, Bogdan; Serebrenik, Alexander; Zaidman, Andy. "Lean
GHTorrent: GitHub Data on Demand" (PDF). The Netherlands: Delft University of Technology &
tEindhoven University of Technology: 1. Retrieved 9 July 2014. During recent years, GITHUB
(2008) has become the largest code host in the world.

[12] lulian Neamtiu, Guowu Xie and Jianbo Chen "Towards a better understanding of software
evolution: an empirical study on open-source software" JOURNAL OF SOFTWARE: EVOLUTION
AND PROCESS J. Softw.: Evol. and Proc. 2013; 25:193-218 Published online 1 September 2011
in Wiley Online Library (www.wileyonlinelibrary.com). DOI: 10.1002/smr.564.

1
CHATZIMPARMPAS ANGELOS 86

http://www.interscience.wiley.com/
http://www.wileyonlinelibrary.com/

Software Evolution

[13] Theodoros Amanatidis, Alexander Chatzigeorgiou "Studying the evolution of PHP web
applications" Information and Software Technology 72 (2016) 48—67 Contents lists available at
Science Direct Information and Software Technology journal homepage:
www.elsevier.com/locate/infsof.

[14] Flanagan 2006, p. 16.

[15] "JavaScript data types and data structures - JavaScript | MDN". Developer.mozilla.org.
2017-02 16. Retrieved 2017-02-24.

[16] "Inheritance and the prototype chain." Mozilla Developer Network. Mozilla. Retrieved 6
April 2013.

[17] Haverbeke, Marijn (2011). "Eloquent JavaScript." No Starch Press. pp. 95-97. ISBN 978-1-
59327-282-1.

[18] "Properties of the Function Object." Es5.github.com. Retrieved 2013-05-26.
[19] Flanagan 2006, p. 141.
[20] "Concurrency model and Event Loop". Mozilla Developer Network. Retrieved 2015-08-28.

[21] Haverbeke, Marijn (2011). "Eloquent JavaScript." No Starch Press. pp. 139-149. ISBN 978-
1-59327-282-1.

[22] John Resig, "JavaScript Getters and Setters," Ejohn.org, 18 July 2007, accessed 2 January
2010.

[23] "E4X — Archive of obsolete content | MDN". Mozilla Developer Network. Mozilla
Foundation. Feb 14, 2014. Retrieved 13 July 2014.

[24] Mahemoff, Michael (17 December 2009). "Server-Side JavaScript, Back with a
Vengeance". readwrite.com. Retrieved 2016-07-16.

[25] Crockford, D (2001) JavaScript: The World’s Most Misunderstood Programming
Language [Online]. Available from http://www.crockford.com/javascript/javascript.html
(Accessed: 10 October 2010).

[26] The PHP Group (2010) History of PHP [Online]. Available
from http://www.php.net/manual/en/history.php.php (Accessed: 10 October 2010).

[27] RASPBIAN STRETCH WITH DESKTOP. https://www.raspberrypi.org/downloads/raspbian/.
August 2017.

[28] "Interview with Kai Seidler from the XAMPP project." MySQL AB. Retrieved 2015-06-07.

[29] Daniel Gafitescu (June 6, 2013). "Goodbye Codelgniter, Hello Laravel." www.sitepoint.com.

Retrieved December 21, 2013.
|

CHATZIMPARMPAS ANGELOS 87

http://www.elsevier.com/locate/infsof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-59327-282-1
https://en.wikipedia.org/wiki/Special:BookSources/978-1-59327-282-1
http://ejohn.org/blog/javascript-getters-and-setters/
https://developer.mozilla.org/en-US/docs/Archive/Web/E4X
http://readwrite.com/2009/12/17/server-side_javascript_back_with_a_vengeance/
http://readwrite.com/2009/12/17/server-side_javascript_back_with_a_vengeance/
http://www.crockford.com/javascript/javascript.html
http://www.php.net/manual/en/history.php.php
https://www.raspberrypi.org/downloads/raspbian/
http://www.sitepoint.com/

Software Evolution

[30] Martin Bean (April 2015). Laravel 5 Essentials. www.books.google.com. Packt. ISBN 978-
1785283017. Retrieved September 2, 2015.

[31] “What is MySQL?” MySQL 5.1 Reference Manual. Oracle. Retrieved 17 September 2012.
The official way to pronounce “MySQL” is “My Ess Que EllI” (not “my sequel”).

[32] “Goutte, a simple PHP Web Scraper.” https://github.com/FriendsOfPHP/Goutte. Last
version v.3.2.1. 03 January 2017.

[33] Scopatz, Anthony; Huff, Kathryn D. (2015). Effective Computation in Physics. O'Reilly
Media, Inc. p. 351. ISBN 9781491901595. Retrieved 20 April 2016.

[34] Torvalds, Linus (2005-04-07). "Re: Kernel SCM saga..". Linux-kernel (Mailing list). "So I'm
writing some scripts to try to track things a whole lot faster."

[35] Torvalds, Linus (2007-06-10). "Re: fatal: serious inflate inconsistency". git (Mailing list).

[36] Linus Torvalds (2007-05-03). Google tech talk: Linus Torvalds on git. Event occurs at 02:30.
Retrieved 2007-05-16.

[37] Freddy Mallet (20 March 2013). "SONAR is becoming SONARQUBE". SonarQube project
mailing list. Retrieved 3 July 2013.

[38] Mariano (2009-11-17). "Creating a Sonar Plugin for software development metrics".
Archived from the original on March 24, 2010. Retrieved 2017-08-29.

[39] Hazrati, Vikas (2010-03-30). "Monetizing the Technical Debt". Retrieved 2017-08-29.
[40] "Methods and Tools issue"(PDF). 2010-03-01. Retrieved 2017-08-29.

[41] Campell/Papapetrou, Ann/Patroklos (2013). Sonar (SonarQube) in action. Greenwich,
Connecticut, USA: Manning Publications. p. 350. ISBN 978-1617290954.

[42] Leonardo Humberto Silva, Daniel Hovadick, Marco Tulio Valente, Alexandre Bergel,Nicolas
Anquetil, Anne Etien “JSClassFinder: A Tool to Detect Class-like Structures in JavaScript”
arXiv:1602.05891v1 [cs.SE] 18 Feb 2016.

[43] https://grafana.com/. 2017.

[44] https://www.apachefriends.org/download.html. 2017.

[45] https://www.sonarqube.org/downloads/. SonarQube 6.5. Aug 3, 2017.

[46] https://git-scm.com/downloads. Latest source Release: 2.14.1. 2017-08-04.

[47] https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner. 2017.

[48] https://autohotkey.com/download/. v1.1.26.01 - July 16, 2017.

1
CHATZIMPARMPAS ANGELOS 88

http://www.books.google.com/
https://github.com/FriendsOfPHP/Goutte
https://grafana.com/
https://www.apachefriends.org/download.html
https://www.sonarqube.org/downloads/
https://git-scm.com/downloads
https://docs.sonarqube.org/display/SCAN/Analyzing+with+SonarQube+Scanner
https://autohotkey.com/download/

Software Evolution

[49] https://github.com/aserg-ufmg/JSClassFinder. 2017.

[50] https://grafana.com/grafana/download?platform=windows. 2017.

[51] /Lehman, 1985a/. “Software Evolution - Processes of Software Change”. London 1985.

[52] M.W. Godfrey, Q.Tu. Evolution in open source software: a case study, in Proceedings of the
International Conference on Software Maintenance (ICSM’00), Washington, DC, USA, 2000,
p.131.

[53] M. Godfrey, Q. Tu, Growth, evolution, and structural change in open source software, in
Proceedings of the 4t International Workshop On Principles Of Software Evolution, New York,
NY, USA, pp. 103-106.

[54] G. Robles, J.J. Amor, J.M. Gonzalez-Barahona, |. Herraiz, Evolution and growth in large libre
software projects, in Proceedings of Eight International Workshop on Principles of Software
Evolution, 2005, pp. 165-174.

[55] T. Mens, J. Fernandez-Ramil, S. Degrandsart, The evolution of Eclipse, in Proceedings of
IEEE International Conference on Software Maintenance, 2008. ICSM2008, 2008, pp.386—395.

[56] G. Xie, J. Chen, |. Neamtiu, Towards a better understanding of software evolution: an
empirical study on open source software, in Proceedings of IEEE International Conference on
Software Maintenance, ICSM2009, 2009, pp.51-60.

[57] A. Israeli, D.G. Feitelson. The Linux kernel as a case study in software evolution, J. Syst.
Softw. 83 (3) (Mar.2010) 485-501.

[58] J. Businge, A. Serebrenik, M. van den Brand, An empirical study of the evolution of eclipse
third-party plug-ins, in: Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL)
and International Workshop on Principles of Software Evolution (IWPSE), New York, NY, USA,
2010, pp.63-72.

[59] I. Neamtiu, G. Xie, J. Chen. Towards a better understanding of software evolution: an
empirical study on open-source software, J. Softw. Evol. Process 25 (3) (Mar.2013) 193-218.

[60] T. Kaur, N. Ratti, P. Kaur, Applicability of Lehman laws on open source evolution: a case
study, Int. J. Comput. Appl. 93 (18) (May2014) 40-46.

[61] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski. Metrics and laws of
software evolution - The nineties view. In Proc. of the Fourth Intl. Software Metrics Symposium,
Albugquerque, NM, November 1997.

[62] Fred Brooks. The Mythical Man-Month. Addison-Wesley. 1975 & 1995. ISBN 0-201-00650-2
& ISBN 0-201-83595-9.

[63] 1ISO/IEC 14764:2006, 2006.
. __|
CHATZIMPARMPAS ANGELOS 89

https://github.com/aserg-ufmg/JSClassFinder.%202017
https://grafana.com/grafana/download?platform=windows

Software Evolution

[64] W.M. Turski, The reference model for smooth growth of software systems revisited, IEEE
Trans. Softw. Eng. 28 (8) (Aug.2002) 814-815.

[65] D.J. Sheskin, D. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, Second Edition, 2 ed., Chapman and Hall/CRC, Boca Raton, 2000.

[66] https://docs.sonarqube.org/display/SONAR/Metric+Definitions. SonarQube
Documentation. Sep 05, 2017.

[67] Stephen Haunts. https://stephenhaunts.com/2013/02/18/unit-test-coverage-code-
metrics-and-static-code-analysis/. UNIT TEST COVERAGE, CODE METRICS, AND STATIC CODE
ANALYSIS. FEBRUARY 18, 2013

1
CHATZIMPARMPAS ANGELOS 90

https://docs.sonarqube.org/display/SONAR/Metric+Definitions
https://stephenhaunts.com/2013/02/18/unit-test-coverage-code-metrics-and-static-code-analysis/
https://stephenhaunts.com/2013/02/18/unit-test-coverage-code-metrics-and-static-code-analysis/

