Show simple item record

dc.contributor.authorΙωσηφίδης, Αντώνιος
dc.date.accessioned2025-01-16T13:41:03Z
dc.date.available2025-01-16T13:41:03Z
dc.date.issued2024-01
dc.identifier.urihttps://dspace.uowm.gr/xmlui/handle/123456789/5281
dc.description.abstractThis thesis examines the potential of employing photorealistic synthetic data for training neural networks to achieve collision-free autonomous driving in highway environments. Centered around a case study of a highway accident involving a Tesla Model 3, the research utilizes Unreal Engine 5 to reconstruct the event and explore the effectiveness of an End-to-End autopilot system. The study innovatively applies Domain Structured Randomization to generate varied driving scenarios, assessing the autopilot’s adaptability and response. The absence of real-world domain access underscores the significance of synthetic data in simulating and analyzing the incident, aiming to enhance the safety features of autonomous driving technologies.en_US
dc.description.sponsorshipΕπιβλέπων καθηγητής : Πλόσκας Νικόλαοςen_US
dc.language.isogren_US
dc.publisherIosifidis, Antoniosen_US
dc.subjectPhotorealistic synthetic dataen_US
dc.subjectNeural networksen_US
dc.subjectAutonomous drivingen_US
dc.subjectHighway environmentsen_US
dc.titleReinforcement learning algorithms in highway drivingen_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record